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Abstract

In this paper we consider an optimal taxation problem in an incomplete markets
model to study the optimal quantity of capital and debt. The government commits
itself ex-ante to a tax schedule and government debt. In contrast to most of the existing
literature these instruments are chosen to to maximize agents’ discounted present value
of lifetime utility.

Whereas the literature mainly focuses on characterizing the steady state which max-
imizes welfare, we characterize and compute the optimal policy along the full transition
path. In particular our characterization takes into account that the optimal long-run
policy depends on capital, debt and taxation during the transition path.

We show theoretically that it is optimal to equalize the pre-tax return on capital and
the rate of time preference in the long-run, i.e. the capital stock satisfies the modified
golden-rule.

Quantitatively we find that the tax on capital is around 3 percent in the long-
run. Labor is taxed at a much higher rate where the precise number depends on the
labor supply elasticity. For standard choices for this elasticity we find a labor tax rate of
almost 40 percent to be optimal in the long-run. The reason for such a hight tax rate on
labor income is that labor income is risky. Taxing this risky income and redistributing
it back through lump-sum transfers improves ex-ante welfare in the long-run.

Transfers and the optimal level of debt along the transition are chosen to equalize
the amount of redistribution over time. Initially capital is taxed higher than in the
long-run since it is inelastically supplied whereas labor is taxed less than in steady
state.
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1 Introduction

In this paper we consider an optimal taxation problem in an incomplete markets model to

study the optimal quantity of capital and debt. The government commits itself ex-ante to

a tax schedule and government debt. In contrast to most of the existing literature these

instruments are chosen to to maximize agents’ discounted present value of lifetime utility.

Whereas the literature mainly focuses on characterizing the steady state which maximizes

welfare, we characterize and compute the optimal policy along the full transition path. In

particular our characterization takes into account that the optimal long-run policy depends

on capital, debt and taxation during the transition path.

We show theoretically that it is optimal to equalize the pre-tax return on capital and the

rate of time preference in the long-run, i.e. the capital stock satisfies the modified golden-rule.

Quantitatively we find that the tax on capital is around 3 percent in the long-run. Labor

is taxed at a much higher rate where the precise number depends on the labor supply

elasticity. For standard choices for this elasticity we find a labor tax rate of almost 40

percent to be optimal in the long-run. The reason for such a hight tax rate on labor income

is that labor income is risky. Taxing this risky income and redistributing it back through

lump-sum transfers improves ex-ante welfare in the long-run.

Transfers and the optimal level of debt along the transition are chosen to equalize the

amount of redistribution over time. Initially capital is taxed higher than in the long-run

since it is inelastically supplied whereas labor is taxed less than in steady state.

2 The Model

2.1 Households’ Problem

Following Acikgoz 2014, we formulate a Household’s problem as:

V H (a0; r̄, w̄) = max
{at+1(ht),ct(ht)}

∞∑
t=0

βt
∑
ht

Π
(
ht
)
u
(
ct
(
ht
)
, nt(h

t)
)

subject to

ct
(
ht
)

+ at+1

(
ht
)
≤ at

(
ht−1

)
(1 + r̄t) + w̄tet

(
ht
)
nt
(
ht
)

+ Tt,

at+1

(
ht
)
≥ −a.
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We use the utility function u (c, n) = c1−σ

1−σ − χn
1+φ

1+φ
, so a household’s labor supply can be

expressed as

uc (ct, nt) etw̄t + un (ct, nt) = 0⇒
−un (ct, nt)

uc (ct, nt)
= etw̄t ⇒

χnφt
c−σt

= etw̄t ⇒

nt =
(
χ−1etw̄tc

−σ
t

) 1
φ ,

yt =
(
χ−1e1+φ

t w̄1+φ
t c−σt

) 1
φ
.

Moreover,

etwtuct + unt = 0

will be a useful expression to simplify expressions later. Keeping the expressions of n and y

in mind, the households’ policy functions solve the following system of necessary conditions

u′
(
ct
(
ht
))
≥ β (1 + r̄t+1)

∑
ht+1

Π
(
ht+1|ht

)
u′
(
ct+1

(
ht+1

))
,

0 =
(
at+1

(
ht
)

+ a
)(

u′
(
ct
(
ht
))
− β (1 + r̄t+1)

∑
ht+1

Π
(
ht+1|ht

)
u′
(
ct+1

(
ht+1

)))
ct
(
ht
)

+ at+1

(
ht
)
≤ at

(
ht−1

)
(1 + r̄t) + yt

at+1

(
ht
)

+ a ≥ 0.

2.2 Ramsey Problem

The Ramsey problem in Aiyagari (1994) can be formed as

V (a0, B0) = max
{r̄t,w̄t,Bt+1,Tt,at+1(ht),ct(ht)}

∞∑
t=0

βt
∑
ht

Π
(
ht
)
u
(
ct
(
ht
)
, nt
(
ht
))
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subject to

ct
(
ht
)

+ at+1

(
ht
)
≤ at

(
ht−1

)
(1 + r̄t) + yt

(
ht
)

+ Tt

u′
(
ct
(
ht
))
≥ β (1 + r̄t+1)

∑
ht+1

Π
(
ht+1|ht

)
u′
(
ct+1

(
ht+1

))
(1)

0 =
(
at+1

(
ht
)

+ a
)

(2)

(u′
(
ct
(
ht
))
− β (1 + r̄t+1)

∑
ht+1

Π
(
ht+1|ht

)
u′
(
ct+1

(
ht+1

))
)

(3)
at+1

(
ht
)

+ a ≥ 0,

Gt + Tt + (1 + r̄t)Bt + r̄tKt + w̄tNt ≤ F (Kt, Nt) +Bt+1,

Kt+1 =
∑
ht

Π
(
ht
)
at+1

(
ht
)
−Bt+1,

Nt =
∑
ht

Π
(
ht
)
etnt

(
ht, w̄t, ct

)
.

Let βtΠ (ht) θt+1 (ht) and βtΠ (ht) ηt+1 (ht) represent the Lagrange multipliers for (1) and

(3) respectively, and define λt+1 (ht) ≡ ηt+1 (ht) (at+1 (ht) + a)− θt+1 (ht), then we can write

down the Lagrangian as

L =
∞∑
t=0

βt
∑
ht

Π
(
ht
)
u
(
ct
(
ht
))

+
∞∑
t=0

βt
∑
ht

Π
(
ht
)
θt+1

(
ht
)(

u′
(
ct
(
ht
))
− β (1 + r̄t+1)

∑
ht+1

Π
(
ht+1|ht

)
u′
(
ct+1

(
ht+1

)))

−
∞∑
t=0

βt
∑
ht

Π
(
ht
)
ηt+1

(
ht
) (
at+1

(
ht
)

+ a
)

(
u′
(
ct
(
ht
))
− β (1 + r̄t+1)

∑
ht+1

Π
(
ht+1|ht

)
u′
(
ct+1

(
ht+1

)))

=
∞∑
t=0

βt
∑
ht

Π
(
ht
)

[u
(
ct
(
ht
))

+ u′
(
ct
(
ht
))

[
θt+1

(
ht
)
− θt

(
ht−1

)
(1 + r̄t)− ηt+1

(
ht
) (
at+1

(
ht
)

+ a
)

+ ηt
(
ht−1

) (
at
(
ht−1

)
+ a
)

(1 + r̄t)
]
]

=
∞∑
t=0

βt
∑
ht

Π
(
ht
) [
u
(
ct
(
ht
))

+ u′
(
ct
(
ht
)) [

λt
(
ht−1

)
(1 + r̄t)− λt+1

(
ht
)]]
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subject to

ct
(
ht
)

+ at+1

(
ht
)
≤ at

(
ht−1

)
(1 + r̄t) + y

(
ht, w̄t, ct

)
+ Tt,

at+1

(
ht
)

+ a ≥ 0,

Gt + Tt + (1 + r̄t)Bt + r̄tKt + w̄tNt ≤ F (Kt, Nt) +Bt+1,

Kt+1 =
∑
ht

Π
(
ht
)
at+1

(
ht
)
−Bt+1,

Nt =
∑
ht

Π
(
ht
)
etnt

(
ht, w̄t

)
.

given the known forms of y (ht) and n (ht), with initial conditions a0 (h−1) = a0, B0 and

λ0 (h−1) = 0.

2.3 Recursive Form

To write the problem in the recursive form, follow Marcet (2011) to expand the state space to

include Lagrange multipliers of the dynamic implementability constraints to recover station-

arity. Index all households by (s, e) ≡ (a, λ, e) and denote µ as the corresponding probability

measure. Then we have V (a0, B0) = W (µ0, B0) which solves:

W (µ,B) = min
θ′(.),η′(.)≥0

max
r̄,w̄,T,B′,a′(.),c(.)

∑
e

∫
u (c (.) , n (.))+uc (c (.)) [λ (1 + r̄)− λ′ (.)]µ (ds, e)+βW (µ′, B′)

subject to

c (.) + a′ (.) ≤ a (1 + r̄) + y (.) + T (4)

a′ + a ≥ 0

G+ T + (1 + r̄)B + r̄K + w̄N ≤ F (K,N) +B′

K =
∑
e

∫
aµ (ds, e)−B

N =
∑
e

∫
en (.)µ (ds, e) =

∑
e

πeen (e, w̄)

µ′ (S ′, e′) =
∑
e

πee′

∫
I [(a′ (.) , λ′ (.)) ∈ S ′]µ (ds, e)

λ′ (.) = η′ (.) (a′ (.) + a)− θ′.
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2.4 Interior Solution

Denote the multiplier for government budget constraint as γ. Then we treat c as a function

of other control variables, which requires substituting the expressions of n and y:

c+ a′ = a (1 + r̄) + y + T ⇒

c+ a′ = a (1 + r̄) +
(
χ−1w̄1+φe1+φc−σ

) 1
φ + T.

We can get the following useful expressions on how n and y respond to c, which of course

respond to other choice variable x ∈ {T,B′, r̄, w̄},

∂n

∂c
= −σ

φ

(
χ−1w̄e

) 1
φ c−

σ
φ
−1

= −σ
φ

n

c
,

∂n

∂w̄
=

1

φ

n

w̄
,

∂y

∂c
= −σ

φ

(
χ−1w̄1+φ

t e1+φ
t

) 1
φ
c
−σ
φ
−1

t

= −σ
φ

y

c

= −σ
φ

n

c
ew

= ew
∂n

∂c
,

∂c

∂T
= ew̄

∂n

∂c

∂c

∂T
+ 1⇒

∂c

∂T

(
1− ew̄∂n

∂c

)
= 1,

∂u (c, n)

∂T
= uc

∂c

∂T
+ un

∂n

∂c

∂c

∂T

= uc
∂c

∂T

(
1 +

un
uc

∂n

∂c

)
= uc

∂c

∂T

(
1− ew̄∂n

∂c

)
= uc.

5



This is essentially the envelop theorem. Similarly, we can also show that

∂u (c, n)

∂a′
= uc,

∂u (c, n)

∂r̄
= auc,

∂u (c, n)

∂w̄
= enuc,

∂u (c, n)

∂a
= (1 + r̄)uc,

It is not possible to directly solve for the expression of c, but we can derive the necessary

partial derivatives to know how c responds to other control variables, including T, a′, r̄, w̄, a,
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as follows:

∂c

∂T
=
∂y

∂c

∂c

∂T
+ 1⇒

∂c

∂T
=

1

1− ∂y
∂c

=
1

1 + σ
φ
y
c

∂c

∂a′
+ 1 =

∂y

∂c

∂c

∂a′
⇒

∂c

∂a′
=

1
∂y
∂c
− 1

=
1

σ
φ
y
c
− 1

∂c

∂w̄
= en+ ew̄

∂n

∂w̄
+ ew̄

∂n

∂c

∂c

∂w̄
⇒

∂c

∂w̄
= en+ ew̄

1

φ

n

w̄
+ ew̄

(
−σ
φ

n

c

)
∂c

∂w̄
⇒

∂c

∂w̄
=

1 + φ

φ

en

1− σ
φ
ew̄nc−1

,

∂c

∂r̄
= a+

∂y

∂c

∂c

∂r̄
⇒

∂c

∂r̄
=

a

1− ∂y
∂c

=
a

1 + σ
φ
y
c

,

∂c

∂a
= (1 + r̄) +

∂y

∂c

∂c

∂a
⇒

∂c

∂a
=

1 + r̄

1− ∂y
∂c

=
1 + r̄

1 + σ
φ
y
c

.
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Then the interior solution to the Ramsey problem satisfies the following conditions.

∂λ′ : uc (c) ≥ β (1 + r̄′)E [uc (c′) |e] with equality if a′ > −a

∂a′ : uc (c) +
∂c

∂a′
ucc (c) [λ (1 + r̄)− λ′] = βE

[
(1 + r̄′)uc (c′) +

∂c′

∂a′
ucc (c′) [λ′ (1 + r̄′)− λ′′] |e

]
+ βγ′ (FK (K ′, N ′)− r̄′) if a′ > −a, otherwise λ′ = 0

∂T : γ =
∑
e

∫ (
uc (c) +

∂c

∂T
ucc (c) [λ (1 + r̄)− λ′]

)
µ (ds, e)

+ γ (FN (K,N)− w̄)
∂N

∂T
∂B′ : γ = β (1 + FK (K ′, N ′)) γ′

∂r̄ : γA =
∑
e

∫
uc (c)λµ (ds, e)

+ γ (FN (K,N)− w̄)
∂N

∂r̄

+
∑
e

∫
auc (c) +

∂c

∂r̄
ucc (c) [λ (1 + r̄)− λ′]µ (ds, e)

∂w̄ : γN = γ (FN (K,N)− w̄)
∂N

∂w̄

+
∑
e

∫
en (e, w̄, c)uc (c) +

∂c

∂w̄
ucc (c) [λ (1 + r̄)− λ′]µ (ds, e) ,

where

∂N

∂w̄
=
∑
e

∫ (
∂n

∂w̄
+
∂n

∂c

∂c

∂w̄

)
µ (ds, e) ,

∂N

∂T
=
∑
e

∫
∂n

∂c

∂c

∂T
µ (ds, e) ,

∂N

∂r̄
=
∑
e

∫
∂n

∂c

∂c

∂r̄
µ (ds, e) .

Here the unknowns are λ′ (.) , a′ (.) , B′, T, r̄, w̄, while c (.)µ (.) , K,N,A are considered as

functions of these unknowns, from the household and the government budget constraint, the

market clearing conditions and so on. We denote the p.d.f of the distribution of (a, λ, e) as

p (a, λ, e), while its probalistic measure is µ. Similarly, we denote the p.d.f. of the distribution

of (a, e) as m (a, e). Moreover, as we know that ct and at+1 should only depend on (at, et)

but not λt because they should satisfy the households’ optimization which doesn’t consider

λt, we can use ga,t+1 (at, et) as the policy function of at+1, gc,t (at, et) the policy function of

ct, and gλ,t+1 (at,λt, et) the policy function of λt+1. Now all the unknowns and their related
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equations can be written as follows.

uc (ct) ≥ β (1 + r̄t+1)E [uc (ct) |et+1] with equality if at+1 > −a (5)

uc (ct) +
∂ct
∂at+1

ucc (ct) [λt (1 + r̄t)− λt+1] (6)

= βE
[
(1 + r̄t+1)uc (ct+1) +

∂ct
∂at+1

ucc (ct+1) [λt+1 (1 + r̄t+1)− λt+2] |et+1

]
+ βγt+1 (FK (Kt+1, Nt+1)− r̄t+1) if at+1 > −a, otherwise λt+1 = 0 (7)

γt = β (1 + FK (Kt+1, Nt+1)) γt+1 (8)

γt =
∑
e

∫ ∫ (
uc (ct) +

∂ct
∂Tt

ucc (ct) [λt (1 + r̄t)− λt+1]

)
p (at, λt, et) datdλt (9)

+ γt (FN (Kt, Nt)− w̄t)
∂Nt

∂Tt
,

γtAt =
∑
et

∫ ∫
uc (ct)λtpt (at, λt, et) datdλt

+ γt (FN (Kt, Nt)− w̄t)
∂Nt

∂r̄t

+
∑
et

∫ ∫
at (uc (ct) + ucc (ct) [λt (1 + r̄t)− λt+1]) p (at, λt, et) datdλt (10)

γtNt = γt (FN (Kt, Nt)− w̄t)
∂Nt

∂w̄t

+
∑
et

∫ ∫
etn (et, w̄t) (u′ (ct) + u′′ (ct) [λt (1 + r̄t)− λt+1]) (11)

pt (at, λt, et) datdλt
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subject to

ct + at+1 = at (1 + r̄t) + y (et, w̄t) (12)

Gt + (1 + r̄t)Bt + r̄tKt + w̄tNt ≤ F (Kt, Nt) +Bt+1 (13)

Kt = At −Bt (14)

At =
∑
et

∫ ∫
atpt (at, λt, et) datdλt (15)

Nt =
∑
et

π (et) etn (et, w̄t) (16)

pt+1 (at+1, λt+1, et+1) =
∑
et

π (et+1|et)
∫ ∫

I [ga,t+1 (at, et) = at+1, gλ,t+1 (at, λt, et) = λt+1]

(17)
pt (at, λt, et) datdλt

mt+1 (at+1, et+1) =
∑
et

π (et+1|et)
∫
I [ga,t+1 (at, et) = at+1]mt (at, et) dat

(18)
∂Nt

∂Tt
=
∑
e

∫ ∫
∂nt
∂ct

∂ct
∂Tt

pt (at, λt, et) datdλt (19)

∂Nt

∂r̄t
=
∑
e

∫ ∫
∂nt
∂ct

∂ct
∂r̄t

pt (at, λt, et) datdλt (20)

∂Nt

∂w̄t
=
∑
e

∫ ∫ (
∂nt
∂w̄t

+
∂nt
∂ct

∂ct
∂w̄t

)
pt (at, λt, et) datdλt. (21)

Now there are 12 sets of unknowns ga,t+1 (at, et) , gλ,t+1 (at, λt, et) , gc,t (at, et) , pt (at, λt, et.) ,mt (at, et)

and γt, r̄t, w̄t, Kt, Nt, At, Bt, Tt. We have 12 sets of equations to solve them.

3 The Algorithm

3.1 Steady State

Here we illustrate the algorithm to compute the steady state using a simplified example as in

Aiyagari (1994) and Acikgoz (2014) where the labor supply depends on the tradeoff between

the market wage and home production. In the steady state, we can use the knowledge that

all the variables r̄, w̄, γ,K,N,B are constant and all the policy functions do not change over
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time, to simplify the set of equations that we need to solve as follows:

u′ (c) ≥ β (1 + r̄)E [u′ (c′) |e] with equality if a′ > −a (22)

u′ (c) + u′′ (c) [λ (1 + r̄)− λ′] = β (1 + r̄)E [u′ (c′) + u′′ (c′) [λ′ (1 + r̄′)− λ′′] |e]

+ βγ (FK (K,N)− r̄) if a′ > −a, otherwise λ′ = 0 (23)

1 = β (1 + FK (K,N)) (24)

γ =
∑
e

∫
(u′ (c) + u′′ (c) [λ (1 + r̄)− λ′])µ (ds, e) (25)

γA =
∑
e

∫
u′ (c)λµ (ds, e)

+
∑
e

∫
a (u′ (c) + u′′ (c) [λ (1 + r̄)− λ′])µ (ds, e) (26)

γN = γ (FN (K,N)− w̄)N ′ (w̄)

+
∑
e

∫
en (e, w̄) (u′ (c) + u′′ (c) [λ (1 + r̄)− λ′])µ (ds, e) (27)

c+ a′ = a (1 + r̄) + y (e, w̄) + T (28)

G+ T + r̄B + r̄K + w̄N ≤ F (K,N) (29)

K = A−B (30)

N =
∑
e

πeen (e, w̄) (31)

A =
∑
e

∫
aµ (ds, e) (32)

p (a′, λ′, e′) =
∑
e

πee′

∫
I [ga′ (a, e) = a′, gλ′ (a, λ, e) = λ′] p (a, λ, e) dadλ

(33)

m (a′, e′) =
∑
e

πee′

∫
I [ga′ (a, e) = a′]m (a, e) da. (34)

1. Guess T .

2. Guess w̄. Solve for r̄ (w) following Aiyagari (1994)

(a) Solve for K from (24).

(b) Guess r̄ and solve the household’s problem: solve for c = gc (a, e) , a′ = ga′ (a, e)

from (22) and (28), keeping in mind that n = (χ−1w̄ec−σ)
1
φ , y =

(
χ−1w̄1+φe1+φc−σ

) 1
φ .

(c) Compute N from (31).

11



(d) Solve for m (a, e) or equivalently m (., e) from (34).

(e) Solve for A from (32).

(f) Solve for B from (30).

(g) Verify r̄ using (29). If the equation is not satisfied, update r̄.

3. Define q ≡ λ/γ, and solve for q′ = gq′ (a, q, e) from (23).

(a) Approach 1. Guess q′ (a, q, e) = g0
q′ (a, q, e), and then use equation 23 to find the

new q′ (a, q, e) = g1
q′ (a, q, e).

(b) Approach 2. Guess q′ = gq′ (a, q, e) = α0 (a, e) q + α1(a,e)
(1+r̄)u′′(c)

and solve for α0 (a, e)

and α1 (a, e), as in Acikgoz (2014).

4. Solve for γ from (26)

5. Check whether (27) is satisfied.

(a) Simplify the expression of N as

N = (FN (K,N)− w̄)N ′ (w̄) +
1

γ

∑
e

∫
en (e, w̄)u′ (c) p (a, λ, e) dadλ

+
∑
e

∫
en (e, w̄)u′′ (c) [q (1 + r̄)− q′] p (a, λ, e) dadλ (35)

= (FN (K,N)− w̄)N ′ (w̄) +
1

γ

∑
e

∫
en (e, w̄)u′ (c) pq (a, q, e) dadq (36)

+
∑
e

∫
en (e, w̄)u′′ (c) [q (1 + r̄)− q′] pq (a, q, e) dadq

= (FN (K,N)− w̄)N ′ (w̄) +
1

γ

∑
e

∫
en (e, w̄)u′ (c)m (a, e) da (37)

+
∑
e

∫
en (e, w̄)u′′ (c) (1 + r̄)E [q|a, e]m (a, e) da (38)

−
∑
e

∫
en (e, w̄)u′′ (c)E [q′|a, e]m (a, e) da. (39)

(b) If equation (39) holds, stop.

(c) If not, update w̄.

i. If LHS of (39) > RHS, adjust w̄ down.

ii. If LHS < RHS, adjust w̄ up.
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iii. One potential new candidate of w̄ can be computed as follows: use RHS of

(39) to represent the new N to backout the new w̄ from (31).

6. Verify T using (25).

3.2 Transition Dynamics

We consider three approaches to solve the transition dynamics. The first one is to guess the

distribution of households on a, λ, e and then update it. The second is to guess the price

sequences and then to iterate on the price sequences, similar to how transition dynamics of

Aiyagari model without taxes is solved. The last one is to use backward induction from the

steady state. Let us first consider the transition dynamics without transfer.

3.2.1 Guess the Distribution

Main idea

- Guess the distribution pt (at, λt, et)

- Solve from backward for policy functions and Lagrangian multipliers using the guessed

pt

- Compute forward the new distribution, starting from p0 (at, λt, et)

- Iterate until pt (at, λt, et) converge

Steps

1. Set all variables after T at the steady state

2. Guess {pt (at, λt, et)}T−1
t=1

3. Starting from t = T − 1, solve for variables at t using variables from t+ 1 on. We use

guess and verify to find w̄t and then other variables at t.

(a) Compute γt from (8).

(b) Guess w̄t.

(c) Guess r̄t.

(d) Solve for ct = gc,t (at, et) and at+1 = ga,t+1 (at, et) from (5) and (12).

13



(e) Solve for λt+1 = gλ,t+1 (at, λt, et) from (7).

(f) Compute At and Nt from (15) and (16).

(g) Check whether r̄t satisfies (10). Otherwise update on r̄t

(h) Solve for Kt and Bt from (13) and (14).

(i) Verify (11) and update w̄t.

i. If LHS of (11) > RHS, reduce w̄t as the new guess, and vise versa.

ii. A possible choice of the new guess of w̄t is to use the RHS of (11) to get a

new Nt and then back out the new guess of w̄t using (16).

4. Continue the backward induction until t = 0.

5. Starting from p0 (a0, λ0, et), compute the new pt (at, λt, et) using the new policy func-

tions at+1 = ga,t+1 (at, et) and λt+1 = gλ,t+1 (at, λt, et).

6. Iterate until pt (at, λt, et) converge for each t.

3.2.2 Guess the Price Sequences and Iterate on Them

Main idea

- Guess {w̄t, r̄t}∞t=0

- Solve the households’ problem on at+1 (at, et) from backward

- Compute mt (at, et) , At, Bt, Kt from forward

- Solve for γt and λt+1 (at, et) from backward

- Compute pt (at, λt, et) from forward

- Check and update {w̄t, r̄t}∞t=0

The steps are the following:

1. Guess {w̄t, r̄t}∞t=0

2. Solve households’ problem by backward induction, as in Aiyagari model

(a) Compute n (et, w̄t) and y (et, w̄t)

14



(b) Solve for at+1 (at, et) by backward induction from from (5) and (12).

3. Compute mt (at, et), starting from m0 (a0, e0) using (18) or simulation.

4. Compute At and Nt from (15) and (16).

5. Compute Kt and Bt+1 forward using (14) and (13), namely,

Kt = At −Bt

Bt+1 = F (Kt, Nt)−Gt + (1 + r̄t)Bt + r̄tKt + w̄tNt.

6. Compute γt backward using

γt = β (1 + FK (Kt+1, Nt+1)) γt+1

7. Solve for λt+1 (at, λt, et) from

u′ (ct) + u′′ (ct) [λt (1 + r̄t)− λt+1]

= β (1 + r̄t+1)E [u′ (ct+1) + u′′ (ct+1) [λt+1 (1 + r̄t+1)− λt+2] |et+1]

+ βγt+1 (FK (Kt+1, Nt+1)− r̄t+1)

if at+1 > −a, otherwise λt+1 = 0.

Notice that λt+2 is a function of λt+1, namely, λt+2 = λt+2 (at+1, λt+1, et+1).

8. Compute pt forward by simulaitons using p0 and the policy functions: at+1 (at, et) and

λt+1 (at, λt, et).

9. Check whether the guessed {w̄t, r̄t}∞t=0 is the solution, and update if not.

(a) Check the equation

γtNt = γt (FN (Kt, Nt)− w̄t)N ′ (w̄t)

+
∑
et

∫ ∫
etn (et, w̄t) (u′ (ct) + u′′ (ct) [λt (1 + r̄t)− λt+1]).
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If it is not satisfied, update w̄t, for example by solving

γtNt (w̄newt ) = γt (FN (Kt, Nt)− w̄t)N ′ (w̄t)

+
∑
et

∫ ∫
etn (et, w̄t) (u′ (ct) + u′′ (ct) [λt (1 + r̄t)− λt+1]).

(b) Check the equation

γtAt =
∑
et

∫ ∫
u′ (ct)λtpt (at, λt, et) datdλt

+
∑
et

∫ ∫
at (u′ (ct) + u′′ (ct) [λt (1 + r̄t)− λt+1]) p (at, λt, et) datdλt

If it is not satisfied, update r̄t, for example by solving r̄newt from the above equa-

tion.

3.2.3 Backward Induction

Knowing the steady state, we can solve for the transition dynamics, given the initial bond

B0 and the initial asset and productivity distribution m0 (a, e), by backward induction, with

the following steps.

1. Set all variables After T + 1 at the steady state levels.

2. At T , all variables except BT and pT are at the steady state levels. Guess BT and pT .

3. Solve for variables at t using variables from t + 1 on. We use guess and verify to find

w̄t and then other variables at t.

(a) Compute γt from (8).

(b) Guess w̄t.

(c) Guess r̄t.

(d) Solve for ct = gc,t (at, et) and at+1 = ga,t+1 (at, et) from (5) and (12).

(e) Solve for λt+1 = gλ,t+1 (at, λt, et) from (7).

(f) Solve for pt (at, λt, et) from (17). One choice is to solve in two steps.

i. Solve for mt (at, et) from (18), using the knowledge of ga,t+1 (at, et) , π (et+1|et)
and mt+1 (at+1, et+1).
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ii. Solve for pt (λt|at, et) from (17), using the knowledge of gλ,t+1 (at, λt, et), pt+1 (λt+1|at+1, et+1)

and mt (at, et).

(g) Compute At and Nt from (15) and (16).

(h) Check whether r̄t satisfies (10). Otherwise update on r̄t

(i) Solve for Kt and Bt from (13) and (14). We can substitute Bt = At − Kt into

(13) and get

Gt + (1 + r̄t)At −Kt + w̄Nt ≤ F (Kt, Nt) +Bt+1

which leads to a unique solution of Kt.

(j) Verify (11) and update w̄t.

i. If LHS of (11) > RHS, reduce w̄t as the new guess, and vise versa.

ii. A possible choice of the new guess of w̄t is to use the RHS of (11) to get a

new Nt and then back out the new guess of w̄t using (16).

4. Continue the backward induction until t = 0.

5. Check whether p0 (λ, a, e) satisfies the initial conditions

(a) m0 (a, e) =
∫
p0 (λ, a, e) dλ equals the initial asset and productivity distribution

(b) p0 (λ|a, e) is degenerate distribution at λ = 0

(c) If not, update the guess of BT and pT . One possible way to get the new BT and

pT is to compute the transition forward from the real B0 and p0, with the policy

functions calculated . Then we will get a new sequence of pt and Bt, which give

us a new guess of pT and BT .
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