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THE ORBIFOLD COHOMOLOGY RING OF SIMPLICIAL
TORIC STACK BUNDLES

YUNFENG JIANG

Abstract. We introduce a new quotient construction of toric
Deligne–Mumford stacks. We use this new construction to define

toric stack bundles which generalize the construction of toric bun-
dles by Sankaran and Uma [Comment. Math. Helv. 78 (2003)

540–554]. The orbifold Chow ring of such toric stack bundles is

computed. We show that the orbifold Chow ring of the toric stack

bundle and the Chow ring of its crepant resolution are fibres of
a flat family, generalizing a result of Borisov–Chen–Smith.

1. Introduction

For a complex algebraic orbifold (or equivalently a smooth Deligne–Mum-
ford stack), the orbifold cohomology was constructed using the genus zero and
degree zero orbifold Gromov–Witten invariants of Deligne–Mumford stacks,
see [AGV], [CR1], [CR2]. In this paper, we explicitly compute the orbifold
cohomology ring of toric stack bundles. These are bundles over a smooth base
variety B with fibers toric Deligne–Mumford stacks of [BCS].

From [Cox], to a simplicial fan Σ with n rays, one can associate a sim-
plicial toric variety X(Σ) expressed as a quotient Z/G, where Z is an open
subset of Cn and G is a subgroup of (C×)n. Let T := (C×)n/G be the torus
acting on X(Σ). Given a principle T -bundle E → B, one can form a fibre
bundle EX(Σ) := E ×T X(Σ) → B over B with fibers isomorphic to X(Σ).
The cohomology ring of EX(Σ) was computed in [SU].

Generalizing Cox’s construction, Borisov, Chen, and Smith [BCS] con-
structed toric Deligne–Mumford stacks. A toric Deligne–Mumford stack is
defined in terms of a stacky fan Σ = (N,Σ, β), where N is a finitely generated
Abelian group, Σ ⊂ N = N ⊗Z Q is a simplicial fan and β : Zn −→ N is a map
determined by the elements {b1, . . . , bn} in N . They require that β has finite
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cokernel and {b1, . . . , bn} generate the simplicial fan Σ, where bi is the image
of bi under the natural map N −→ N . (Note that n equals the number of rays
in Σ.) The toric Deligne–Mumford stack X (Σ) associated to Σ is defined to be
the quotient stack [Z/G], where Z is the same as in the quotient construction
of toric varieties, G is the product of an algebraic torus and a finite Abelian
group, and the action is through a group homomorphism α : G −→ (C×)n

determined by the stacky fan. Let P −→ B be a principal (C×)n-bundle over
a smooth variety B. The group G acts on the fibre product P ×(C×)n Z via
the map α. Define PX (Σ) to be the quotient stack [(P ×(C×)n Z)/G] which
we write as P ×(C×)n X (Σ). The fibre bundle PX (Σ) −→ B is called a toric
stack bundle over B whose fibre is the toric Deligne–Mumford stack X (Σ).

Both Cox and Borisov–Chen–Smith’s construction used the minimal pre-
sentation of a toric variety (stack) as a quotient. One may expect that toric
Deligne–Mumford stacks can be represented as a quotient stack of a larger
space Z by a larger group G. For example, the classifying stack Bμ3 = [pt/μ3]
is a toric Deligne–Mumford stack in the sense of Borisov, Chen, and Smith,
where the corresponding stacky fan is (Z3,0,0). The stack Bμ3 is isomorphic
to the stack [C×/C×], where C× acts on C× by λx �→ λ3x. Given a line,
bundle L −→ B over B. Applying the construction above yields, a μ3-gerbe
[(L× ×C× C×)/C×] over B which is nontrivial if L is. The presentation [pt/μ3]
only produces trivial gerbes.

Motivated by the study of gerbes, the above discussion suggests that it is de-
sirable to work with other presentations of toric Deligne–Mumford stacks. For
this purpose, we introduce the notion of extended stacky fans. An extended
stacky fan is a triple Σe := (N,Σ, βe), where N and Σ are the same as in the
stacky fan Σ, but βe : Zm −→ N is determined by {b1, . . . , bn} and additional
elements {bn+1, . . . , bm} in N . An extended stacky fan Σe has an underly-
ing stacky fan Σ. Using Σe, we define a quotient stack X (Σe) := [Ze/Ge],
where Ze = Z × (C×)m−n and Ge acts on Ze through the homomorphism
αe : Ge −→ (C×)m determined by the extended stacky fan. We prove that
X (Σe) is isomorphic to the toric Deligne–Mumford stack X (Σ). So, enlarg-
ing the presentation from the minimal ones of Cox and Borisov–Chen–Smith is
encoded in the extended stacky fan. For example, let N = Z3, let βe : Z −→ N
be the map defined by b1 = 1 ∈ Z3, then Σe = (N,Σ, βe) is an extended stacky
fan. (Note that this is not a stacky fan.) The toric Deligne–Mumford stack
is X (Σe) = [C×/C×] which is isomorphic to [pt/μ3].

Let P −→ B be a principal (C×)m-bundle. The group Ge acts on the fi-
bre product P ×(C×)m Ze via the map αe. The quotient stack PX (Σe) :=
[(P ×(C×)m Ze)/Ge] is called a toric stack bundle over B whose fibre is iso-
morphic to the toric Deligne–Mumford stack X (Σe).

In [BCS], Borisov, Chen, and Smith computed the orbifold Chow ring
of toric Deligne–Mumford stacks. The computation in the special case of
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weighted projective stack was pursued in [Jiang1]. In this paper, we compute
the orbifold cohomology ring of PX (Σe). To describe the result, we introduce
line bundles ξθ for θ ∈ M = N ∗. For θ ∈ M , let χθ : (C×)m −→ C× be the
map induced by θ ◦ βe : Zm −→ Z. The bundle ξθ −→ B is the line bundle
P ×χθ C. We introduce the deformed ring A∗(B)[N ]Σ

e

= A∗(B) ⊗ Q[N ]Σ
e

,
where Q[N ]Σ

e

:=
⊕

c∈N Qyc, y is a formal variable and A∗(B) is the Chow
ring of B. The multiplication of Q[N ]Σ

e

is given by:

(1) yc1 · yc2 :=

{
yc1+c2 if there is a cone σ ∈ Σ such that c1 ∈ σ, c2 ∈ σ,

0 otherwise.

Let I(PΣe) be the ideal in A∗(B)[N ]Σ
e

generated by the elements:

(2)

(
c1(ξθ) +

n∑
i=1

θ(bi)ybi

)
θ∈M

,

and A∗
orb(

PX (Σe)) the orbifold Chow ring of the toric stack bundle PX (Σe).

Theorem 1.1. If PX (Σe) −→ B is a toric stack bundle over a smooth
variety B whose fibre is the toric Deligne–Mumford stack X (Σe) associated
to an extended stacky fan Σe, then we have an isomorphism of Q-graded rings:

A∗
orb(

PX (Σe)) ∼= A∗(B)[N ]Σ
e

I(PΣe)
.

The extra data {bn+1, . . . , bm} in the extended stacky fan Σe does affect
the structure of PX (Σe), but does not affect its orbifold cohomology ring.

To prove this theorem, we show that twisting by the (C×)m-bundle P
does not “twist” the components of the inertia stack of the toric Deligne–
Mumford stack X (Σe). Thus, we can describe the components of the inertia
stack I(PX (Σe)) of PX (Σe) using Box (Σe), in a manner analogous to [BCS].
This makes it possible to use the similar methods as in [BCS] to determine
3-twisted sectors, obstruction bundles and compute the orbifold Chow ring of
PX (Σe).

As an example, let N be a finite Abelian group and βe : Z −→ N any
homomorphism, then Σe = (N,0, βe) is an extended stacky fan. The toric
Deligne–Mumford stack is X (Σe) = Bμ, where μ = Hom(N,C×). Twisting
this toric Deligne–Mumford stack by a line bundle L over a smooth variety
B gives a μ-gerbe X over B. So, no matter if the gerbe is trivial or not, our
result gives that H∗

orb(X ,Q) = H∗(B,Q) ⊗ H∗
orb(Bμ,Q).

The paper is organized as follows. In Section 2, we introduce extended
stacky fans and their associated toric Deligne–Mumford stacks. In Section 3,
we define toric stack bundles and discuss their properties. In Section 4, we
describe the orbifold Chow ring of toric stack bundles. In Section 5, we
discuss the μ-gerbe X mentioned above. Finally, in Section 6, we give some
applications to crepant resolutions. We generalize a result of Borisov, Chen,
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and Smith showing that the orbifold Chow ring of a toric stack bundle and
the Chow ring of its crepant resolution can be put into a flat family.

Conventions. In this paper, we work entirely algebraically over the field of
complex numbers. Chow rings and orbifold Chow rings are taken with rational
coefficients. By an orbifold, we mean a smooth Deligne–Mumford stack with
trivial generic stabilizer. We refer to [BCS] for the construction of Gale dual
(βe)∨ : Zm → DG(β) from βe : Zm → N . We denote by N ∗ the dual of N
and N → N the natural map modulo torsion.

2. A new quotient representation of toric Deligne–Mumford
stacks

In this section, we introduce extended stacky fans and construct a new
representation of toric Deligne–Mumford stacks.

We refer to [BCS] the construction and notation of toric Deligne–Mumford
stacks. Let N be a finitely generated Abelian group of rank d and N the lat-
tice generated by N in the d-dimensional vector space NQ := N ⊗Z Q. Write b

for the image of b under the natural map N −→ N . Let Σ be a rational
simplicial fan in NQ. Suppose ρ1, . . . , ρn are the rays in Σ. We fix bi ∈ N

for 1 ≤ i ≤ n such that bi generates the cone ρi. Let {bn+1, . . . , bm} ⊂ N .
We consider the homomorphism βe : Zm −→ N determined by the elements
{b1, . . . , bm}. We require that βe has finite cokernel.

Definition 2.1. The triple Σe := (N,Σ, βe) is called an extended stacky
fan.

It is easy to see that any extended stacky fan Σe = (N,Σ, βe) naturally
determines a stacky fan Σ := (N,Σ, β), where β : Zn −→ N is given by {b1, . . . ,
bn}. Now since βe has finite cokernel, by Proposition 2.2 in [BCS], we have
exact sequences:

0 −→ DG(βe)∗ −→ Zm βe

−→ N −→ Coker(βe) −→ 0,

0 −→ N ∗ −→ Zm (βe)∨

−→ DG(βe) −→ Coker((βe)∨) −→ 0,

where (βe)∨ is the Gale dual of βe. As a Z-module, C× is divisible, so it is
an injective Z-module, and hence from [Lang], the functor HomZ(−,C×) is
exact. We get the exact sequence:

1 −→ HomZ(Coker((βe)∨),C×) −→ HomZ(DG(βe),C×)
−→ HomZ(Zm,C×) −→ HomZ(N ∗,C×) −→ 1.

Let μ := HomZ(Coker((βe)∨),C×), we have the exact sequence:

(3) 1 −→ μ −→ Ge αe

−→ (C×)m −→ T −→ 1.
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From [BCS], the toric Deligne–Mumford stack X (Σ) = [Z/G] is a quotient
stack, where they use the method of quotient construction of toric vari-
eties [Cox]. Define Ze := Z × (C×)m−n, then there exists a natural action
of (C×)m on Ze. The group Ge acts on Ze through the map αe in (3). The
quotient stack [Ze/Ge] is associated to the groupoid Ze × Ge ⇒ Ze. De-
fine the morphism ϕ : Ze × Ge −→ Ze × Ze to be ϕ(x, g) = (x, g · x). Since
Ze = Z × (C×)m−n, we can mimic the proof the Lemma 3.1 in [BCS] to show
that ϕ is finite which means that the stack [Ze/Ge] is a Deligne–Mumford
stack.

Lemma 2.2. The morphism ϕ : Ze × Ge −→ Ze × Ze is a finite morphism.

Definition 2.3. For an extended stacky fan Σe = (N,Σ, βe), we denote
the quotient stack [Ze/Ge] by X (Σe).

Proposition 2.4. For an extended stacky fan Σe = (N,Σ, βe), the stack
X (Σe) is isomorphic to the toric Deligne–Mumford stack X (Σ) associated to
the underlying stacky fan Σ.

Proof. From the definitions of extended stacky fan Σe and stacky fan Σ,
we have the following commutative diagram:

0 Zn

β

Zm

βe

Zm−n

β̃

0

0 N
id

N 0 0.

From the definition of Gale dual, we compute that DG(β̃) = Zm−n and β̃∨ is
an isomorphism. So, from Lemma 2.3 in [BCS], applying the Gale dual and
the HomZ(−,C×) functor to the above diagram we get:

1 G

α

ϕ1
Ge

αe

(C×)m−n

α̃

1

1 (C×)n (C×)m (C×)m−n 1.

(4)

We define the morphism ϕ0 : Z −→ Ze = Z × (C×)m−n to be the inclusion
defined by z �−→ (z,1). So, (ϕ0 × ϕ1, ϕ0) : (Z × G ⇒ Z) −→ (Ze × Ge ⇒ Ze)
defines a morphism between groupoids. Let ϕ : [Z/G] −→ [Ze/Ge] be the
morphism of stacks induced from (ϕ0 × ϕ1, ϕ0). From the above commutative
diagram we have the following commutative diagram:

Z × G

(s,t)

ϕ0×ϕ1
Ze × Ge

(s,t)

Z × Z
ϕ0×ϕ0

Ze × Ze.



498 Y. JIANG

In (4), α̃ is an isomorphism, which implies that the left square in (4) is Carte-
sian. So, the above commutative diagram is Cartesian and ϕ : [Z/G] −→
[Ze/Ge] is injective. Given an element (z1, . . . , zn, zn+1, . . . , zm) ∈ Ze, there
exists an element ge ∈ (C×)m−n such that ge · (z1, . . . , zn, zn+1, . . . , zm) =
(z1, . . . , zn,1, . . . ,1). From (4), ge determines an element in Ge, so ϕ is sur-
jective. We conclude that the stacks X (Σe) and X (Σ) are isomorphic. �

Remark. In view of Proposition 2.4, we call X (Σe) the toric Deligne–
Mumford stack associated to the extended stacky fan Σe.

Let X(Σ) be the simplicial toric variety associated to the simplicial fan Σ
in the extended stacky fan Σe. We have the following corollary.

Corollary 2.5. Given an extended stacky fan Σe, the coarse moduli space
of the toric Deligne–Mumford stack X (Σe) is also the simplicial toric variety
X(Σ).

As in [BCS], for each top dimensional cone σ in Σ, denote by Box (σ) to be
the set of elements v ∈ N such that v =

∑
ρi ⊆σ aibi for some 0 ≤ ai < 1. The

elements in Box (σ) are in one-to-one correspondence with the elements in the
finite group N(σ) = N/Nσ , where N(σ) is a local group of the stack X (Σe).
If τ ⊆ σ is a low dimensional cone, we define Box (τ) to be the set of elements
in v ∈ N such that v =

∑
ρi ⊆τ aibi, where 0 ≤ ai < 1. It is easy to see that

Box (τ) ⊂ Box (σ). In fact, the elements in Box (τ) generate a subgroup of the
local group N(σ). Let Box (Σe) be the union of Box (σ) for all d-dimensional
cones σ ∈ Σ. For v1, . . . , vn ∈ N , let σ(v1, . . . , vn) be the unique minimal cone
in Σ containing v1, . . . , vn.

3. The toric stack bundle PX (Σe)

In this section, we introduce the toric stack bundle PX (Σe) and determine
its twisted sectors. Let P −→ B be a principal (C×)m-bundle over a smooth
variety B. Through the map αe in (3), Ge acts on the fibre product P ×(C×)m

Ze.

Definition 3.1. We define the toric stack bundle PX (Σe) −→ B to be the
quotient stack

(5) PX (Σe) :=
[(

P ×(C×)m Ze
)
/Ge

]
.

Let φ : Zm −→ Zm be the map given by ei �−→ ei for 1 ≤ i ≤ n, and ej �−→
ej +

∑n
i=1 aj

iei for n + 1 ≤ j ≤ m, where aj
i ∈ Z. Then from the following

commutative diagram

0 Zm

β̃e

φ
Zm

βe

0

id

0

0 N
id

N 0 0,
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we obtain a new extended stacky fan Σ̃e = (N,Σ, β̃e), where the extra data
in Σ̃e are b′

n+1 = bn+1 +
∑n

i=1 an+1
i bi, . . . , b

′
m = bm +

∑n
i=1 am

i bi. The map
φ gives a map Cn × (C×)m−n −→ Cn × (C×)m−n which is the identity on
the first factor and given by φ on the second factor. Since the map in the
above diagram doesn’t change the fan in the extended stacky fans, we have a
map ϕ0 : P ×(C×)m Ze −→ P ×(C×)m Ze. We may use the same argument as
that in Proposition 2.4 to prove that PX (Σe) ∼= PX (Σ̃e). This means that we
can always choose the extra data {bn+1, . . . , bm}, so that bj =

∑n
i=1 aibi for

j = n+1, . . . ,m and 0 ≤ ai < 1. These extra data are actually in the Box (Σe).

Example. By above, the extra data can be chosen to lie in Box (Σe). In
this example, we prove that they cannot be put into the torsion subgroup of N .
Let N = Z and b1 = 2, b2 = −2. Then Σ = {b1, b2} is a simplicial fan in NQ.
Let Σe = (N,Σ, βe), where βe : Z3 −→ Z is determined by {b1, b2, b3 = 1}. We
compute that DG(βe) = Z2 and the Gale dual (βe)∨ : Z3 −→ Z2 is given by
the matrix [

1 1 0
−1 0 2

]
.

The toric Deligne–Mumford stack is X (Σe) = [(C2 − {0}) × C×/(C×)2], where
the action is given by (λ1, λ2)(x, y, z) = (λ1λ

−1
2 · x,λ1 · y,λ2

2 · z). We get
X (Σe) = P1 × [C×/C×] = P1 × Bμ2. Now, let Σ̃e = (N,Σ, β̃e), where β̃e :
Z3 −→ Z is determined by {b1, b2, b̃3 = 0}, then we compute that DG(βe) =
Z2 ⊕ Z2 and the Gale dual (β̃e)∨ : Z3 −→ Z2 ⊕ Z2 is given by the matrix⎡

⎣1 1 0
0 0 1
0 0 0

⎤
⎦ .

The toric Deligne–Mumford stack is X (Σ̃e) = [(C2 − {0}) × C×/(C×)2 × μ2],
where the action is given by (λ1, λ2, λ3)(x, y, z) = (λ1 · x,λ1 · y,λ2 · z). We get
X (Σ̃e) = [P1/μ2] = P1 × Bμ2. Let B = P1 and P = C× ⊕ C× ⊕ O(−1)×, then
PX (Σe) is a nontrivial μ2-gerbe over P1 × P1 coming from the line bundle
OP1×P1(0, −1). Let Q = O(n1)× ⊕ O(n2)× ⊕ O(n3)×, then QX(Σ̃e) is the
trivial μ2-gerbe over the P1-bundle E over P1. So PX (Σe) is not isomorphic
to QX (Σ̃e) for any Q.

From Corollary 2.5, X (Σe) has the coarse moduli space X(Σ) which is
the simplicial toric variety associated to the simplicial fan Σ. From the exact
sequence in (3), a (C×)m-bundle over B naturally determines a T -bundle
over B. Let E −→ B be the principal T -bundle induced by P , then we have the
twists PXred(Σe) −→ B with fibre the toric orbifold Xred(Σe) and EX(Σ) −→
B with fibre the simplicial toric variety X(Σ), where PXred(Σe) := [(P ×(C×)m

Ze)/G
e
], EX(Σ) := E ×T X(Σ), and G

e
= Im(αe) in (3). We obtain the exact
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sequence:

(6) 1 −→ μ −→ Ge αe

−→ G
e −→ 1.

From [DP], we have the following proposition.

Proposition 3.2. PX (Σe) is a μ-gerbe over PXred(Σe) for a finite Abelian
group μ.

Remark. In fact, any toric Deligne–Mumford stack is a μ-gerbe over the
underlying toric orbifold for a finite Abelian group μ and some kind of μ-
gerbes over toric Deligne–Mumford stacks are again toric Deligne–Mumford
stacks, see [Jiang2].

Because any toric stack bundle is a μ-gerbe over the corresponding toric
orbifold bundle and can be represented as a quotient stack, we have the fol-
lowing propositions.

Proposition 3.3. The simplicial toric bundle EX(Σ) is the coarse mod-
uli space of the toric stack bundle PX (Σe) and the toric orbifold bundle
PXred(Σe).

Proof. The toric stack bundle PX (Σe) is a μ-gerbe over the simplicial
toric orbifold bundle PXred(Σe) for a finite Abelian group μ. The stacks
PX (Σe) = [(P ×(C×)m Ze)/Ge] and PXred(Σe) = [(P ×(C×)m Ze)/G

e
] are quo-

tient stacks. Taking geometric quotient, we have the coarse moduli space
(P ×(C×)m Ze)//G

e
= (P × Ze)//(C×)m × G

e
. From Corollary 2.5, X(Σ) =

Z//G = Ze//G
e

so,

E ×T (Ze//G
e
) =

(
P ×(C×)m T

)
×T (Ze//G

e
) = (P × Ze)//(C×)m × G

e
.

From the universal geometric quotients in [KM], EX(Σ) is the coarse moduli
space of PX (Σe) and PXred(Σe). �

Proposition 3.4. The toric stack bundle PX (Σe) is a Deligne–Mumford
stack.

Proof. From (5), PX (Σe) = [(P ×(C×)m Ze)/Ge] is a quotient stack, where
Ge acts trivially on P . The action of Ge on Ze has finite, reduced stabilizers
because the stack [Ze/Ge] is a Deligne–Mumford stack, so the action of Ge on
P ×(C×)m Ze also has finite, reduced stabilizers. From Corollary 2.2 of [Ed],
PX (Σe) is a Deligne–Mumford stack. �

For an extended stacky fan Σe, let σ ∈ Σ be a cone, we define

link(σ) := {τ : σ + τ ∈ Σ, σ ∩ τ = 0}.

Let {ρ̃1, . . . , ρ̃l} be the rays in link(σ). Then Σe/σ = (N(σ) = N/Nσ,Σ/σ,
βe(σ)) is an extended stacky fan, where βe(σ) : Zl+m−n −→ N(σ) is given by
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the images of b1, . . . , bl, bn+1, . . . , bm under N −→ N(σ). From the construc-
tion of toric Deligne–Mumford stacks, we have X (Σe/σ) := [Ze(σ)/Ge(σ)],
where Ze(σ) = (Al − V(JΣ/σ)) × (C×)m−n = Z(σ) × (C×)m−n, Ge(σ) =
HomZ(DG(βe(σ)),C×). We have an action of (C×)m on Ze(σ) induced by
the natural action of (C×)l+m−n on Ze(σ) and the projection (C×)m −→
(C×)l+m−n. We consider

PX (Σe/σ) =
[(

P ×(C×)m (C×)l+m−n ×(C×)l+m−n Ze(σ)
)
/Ge(σ)

]
=

[(
P ×(C×)m Ze(σ)

)
/Ge(σ)

]
.

Then we have the following proposition.

Proposition 3.5. Let σ be a cone in the extended stacky fan Σe, then
PX (Σe/σ) defines a closed substack of PX (Σe).

Proof. Let W e(σ) be the closed subvariety of Ze defined by J(σ) := 〈zi :
ρi ⊆ σ〉 in C[z1, . . . , zn, z±1

n+1, . . . , z
±1
m ], then we see that W e(σ) = W (σ) ×

(C×)m−n, where W (σ) is the closed subvariety of Z defined by J(σ) := 〈zi :
ρi ⊆ σ〉 in C[z1, . . . , zn]. From [BCS], there is a map ϕ0 : W (σ) −→ Z(σ) which
is (C×)n-equivariant. We define the map W e(σ) −→ Ze(σ) by ϕ0 × 1. Twist-
ing it by the bundle P , we have a map ϕ0 : P ×(C×)m W e(σ) −→ P ×(C×)m

Ze(σ). From the following diagram:

0 Zn−l Zm

β
e

Zl+m−n

β
e
(σ)

0

0 Nσ N N(σ) 0,

applying Gale dual and HomZ(−,C×) functor we get:

(7)

Ge

αe

ϕ1
Ge(σ)

αe(σ)

(C×)m (C×)l+m−n.

So, we get a map of groupoids: ϕ0 × ϕ1 : P ×(C×)m W e(σ) × Ge −→ P ×(C×)m

Ze(σ) × Ge(σ) which is Morita equivalent. So, we have an isomorphism of
stacks [(P ×(C×)m W (σ))/Ge] ∼= [(P ×(C×)m Ze(σ))/Ge(σ)]. Since, W e(σ) is
a subvariety of Ze, and P ×(C×)m W e(σ) is a subvariety of P ×(C×)m Ze, so,
[(P ×(C×)m W e(σ))/Ge] is a substack of [(P ×(C×)m Ze)/Ge] = PX (Σe). So,
PX (Σe/σ) is a closed substack of PX (Σe). �

Remark. From [BCS], W (σ) = Z〈g1,...,gr 〉 for some group elements g1, . . . ,
gr ∈ G. From Proposition 2.4, the toric Deligne–Mumford stack [Ze(σ)/Ge(σ)]
is isomorphic to the stack [Z(σ)/G(σ)]. Let g1, . . . , gr still represent the ele-
ments in Ge through the map ϕ1 in (4). Then W e(σ) = (Ze)〈g1,...,gr 〉.
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Proposition 3.6. Let PX (Σe) −→ B be a toric stack bundle over a smooth
variety B whose fibre X (Σe) is the toric Deligne–Mumford stack associated
to the extended stacky fan Σe, then rth inertia stack of this toric stack bundle
is

Ir(PX (Σe)) =
∐

(v1,...,vr)∈Box(Σe)r

PX
(
Σe/σ(v1, . . . , vr)

)
.

Proof. From (5), PX (Σe) = [(P ×(C×)m Ze)/Ge] is a quotient stack. Be-
cause Ge is an Abelian group and the action has finite, reduced stabilizers,
we have the rth inertia stack:

Ir(PX (Σe)) =
[( ∐

(g1,...,gr)∈(Ge)r

(
P ×(C×)m Ze

)H
)/

Ge

]
,

where H is the subgroup in Ge generated by the elements g1, . . . , gr. From
Lemma 4.6 in [BCS], there is a map from Box (Σe) to G. So, from the map
ϕ1 in (4), we have a map ρ : Box (Σe) −→ Ge such that ρ(v) = g(v). For
a r-tuple (v1, . . . , vr) in the Box (Σe), from Proposition 3.5 and the above
Remark, we have: PX (Σe/σ(v1, . . . , vr)) ∼= [P ×(C×)m (Ze)H/Ge]. Taking the
disjoint union over all r -tuples in Box (Σe) we get a map:

ψ :
∐

(v1,...,vr)∈Box(Σe)r

PX
(
Σe/σ(v1, . . . , vr)

)
−→ Ir(PX (Σe)).

The toric stack bundle PX (Σe) locally is the product of a smooth variety
with the toric Deligne–Mumford stack X (Σe). From [BCS], the map ψ is
an isomorphism locally in the Zariski topology of the base B, so ψ is an
isomorphism globally. We complete the proof of the proposition. �

Remark. For any pair (v1, v2) ∈ Box (Σe)2, there exists a unique element
v3 ∈ Box (Σe) such that v1 + v2 + v3 ∈ N . This means that in the local group
N/Nσ(v1,v2), the corresponding group elements g1, g2, g3 satisfy g1g2g3 = 1.
So, this implies that σ(v1, v2, v3) = σ(v1, v2). In fact, Proposition 3.6 deter-
mines all 3-twisted sectors of the toric stack bundle PX (Σe). See also [Po],
[Jiang1] for the case of toric varieties.

4. The orbifold cohomology ring

In this section, we describe the ring structure of the orbifold cohomology
of toric stack bundles.

4.1. The module structure on A∗
orb(

PX (Σe)). Let Σe be an extended
stacky fan, P → B a (C×)m-bundle and PX (Σe) −→ B the associated toric
stack bundle. Let M = N ∗ be the dual of N . For θ ∈ M , let χθ : (C×)m −→
C× be the map induced by θ ◦ βe : Zm −→ Z. Let ξθ −→ B be the line bundle
P ×χθ C. We give several definitions.
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Definition 4.1. Let A∗(B) denote the Chow ring over Q of the smooth
variety B. Define the deformed ring A∗(B)[N ]Σ

e

as follows: A∗(B)[N ]Σ
e

=
A∗(B) ⊗Q Q[N ]Σ

e

, Q[N ]Σ
e

=
⊕

c∈N Qyc, where y is a formal variable. Mul-
tiplication is given by (1).

The deformed ring A∗(B)[N ]Σ
e

has a Q-grading defined as follows: if c =∑
ρi ⊆σ(c) aibi, deg(yc) =

∑
ai ∈ Q. If γ ∈ A∗(B), then deg(γ · yc) = deg(γ) +

deg(yc).

Definition 4.2. Let Σe = (N,Σ, βe) be an extended stacky fan. Let SΣ be
the ring A∗(B)[x1, . . . , xn]/IΣ, where the ideal IΣ is generated by the square-
free monomials {xi1 · · · xis : ρi1 + · · · + ρis /∈ Σ}.

Note that SΣ is a subring of A∗(B)[N ]Σ
e

given by the map xi �−→ ybi for
1 ≤ i ≤ n. Let {ρ1, . . . , ρn} be the rays of Σe, then each ρi corresponds to a
line bundle Li over the toric Deligne–Mumford stack X (Σe). This line bundle
can be defined as follows. The line bundle Li on the toric Deligne–Mumford
stack X (Σ) is given by the trivial line bundle C × Z over Z with the G action
on C given by the ith component αi of α : G −→ (C×)n in (3) when Σe = Σ.
From (4), we have:

(8)

G

α

ϕ1
Ge

αe

(C×)n i (C×)m.

Definition 4.3. For each ρi, define the line bundle Li over X (Σe) to be
the quotient of the trivial line bundle Ze × C over Ze under the action of Ge

on C through the component of αe such that the pullback component in α
through (8) is αi. Twisting it by the principal (C×)m-bundle P , we get the
line bundle Li over the toric stack bundle PX (Σe).

Let I(PΣe) be the ideal in (2). We first describe the ordinary Chow ring
of the toric stack bundle PX (Σe).

Lemma 4.4. Let PX (Σe) −→ B be a toric stack bundle over a smooth va-
riety B whose fibre X (Σe) is the toric Deligne–Mumford stack associated to
the extended stacky fan Σe, then there is an isomorphism of Q-graded rings:

SΣ

I(PΣe)
∼= A∗(PX (Σe))

given by xi �−→ c1(Li).

Proof. From Corollary 2.5, let X(Σ) be the coarse moduli space of the
toric Deligne–Mumford stack X (Σe). Let E −→ B be the principal T -bundle
induced from the (C×)m-bundle P . Then from Proposition 3.3, EX(Σ) is
the coarse moduli space of the toric stack bundle PX (Σe). Let ai be the
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first lattice vector in the ray generated by bi, then bi = liai for some positive
integer li. The ideal I(PΣe) in (2) also defines an ideal in SΣ. From [SU], we
have

SΣ

I(PΣe)
∼= A∗(EX(Σ)),

which is given by xi �−→ E(V (ρi)), where E(V (ρi)) is the associated bundle
over B corresponding to the T -invariant divisor V (ρi). From [V], the Chow
ring of the stack PX (Σe) is isomorphic to the Chow ring of its coarse moduli
space EX(Σ) given by c1(Li) �−→ l−1

i · E(V (ρi)). Then we conclude by c1(ξθ)+∑n
i=1 θ(ai)liybi = c1(ξθ) +

∑n
i=1 θ(bi)ybi . �

Now, we discuss the module structure of A∗
orb(

PX (Σe)). Because Σ is a
simplicial fan, we have the following lemma.

Lemma 4.5. For any c ∈ N , let σ be the minimal cone in Σ containing c,
then there exists a unique expression

c = v +
∑
ρi ⊂σ

mibi,

where mi ∈ Z≥0, and v ∈ Box (σ).

Lemma 4.6. Let τ is a cone in the complete simplicial fan Σ and {ρ1, . . . ,
ρs} ⊂ link(τ). Suppose ρ1, . . . , ρs are contained in a cone σ ⊂ Σ. Then σ ∪ τ
is contained in a cone of Σ.

Proof. Using the following result, see [F], [O]. Let ρ1, . . . , ρs be rays in the
complete simplicial fan Σ. If for any i, j, ρi, ρj generate a cone, then ρ1, . . . , ρs

generate a cone. �

Proposition 4.7. Let PX (Σe) −→ B be a toric stack bundle over a smooth
variety B whose fibre X (Σe) is the toric Deligne–Mumford stack associated
to the extended stacky fan Σe, then we have an isomorphism of A∗(PX (Σe))-
modules: ⊕

v∈Box(Σe)

A∗(
PX

(
Σe/σ(v)

))
[deg(yv)] ∼= A∗(B)[N ]Σ

e

I(PΣe)
.

Proof. From the definition of A∗(B)[N ]Σ
e

and Lemma 4.5, we see that
A∗(B)[N ]Σ

e

=
⊕

v∈Box(Σe) yv · SΣ. Since I(PΣe) is the ideal in A∗(B)[N ]Σ
e

defined in (2), then
⊕

v∈Box(Σe) yv · I(PΣe) is the ideal I(PΣe) in⊕
v∈Box(Σe) yv · SΣ = A∗(B)[N ]Σ

e

. So, we obtain the isomorphism of
A∗(PX (Σe))-modules:

(9)
A∗(B)[N ]Σ

e

I(PΣe)
∼=

⊕
v∈Box(Σe)

yv · SΣ

yv · I(PΣe)
.
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For any v ∈ Box (Σe), let σ(v) be the minimal cone in Σ containing v.
Let ρ1, . . . , ρl ∈ link(σ(v)), and ρ̃i be the image of ρi under the natural map
N −→ N(σ(v)) = N/Nσ(v). Then SΣ/σ(v) ⊂ A∗(B)[N(σ(v))]Σ

e/σ(v) is the sub-
ring given by: x̃i �−→ yb̃i , for ρi ∈ link(σ(v)). Consider the morphism: i :
A∗(B)[x̃1, . . . , x̃l] −→ A∗(B)[x1, . . . , xn] given by x̃i −→ xi. From Lemma 4.6,
it is easy to check that the ideal IΣ/σ(v) goes to the ideal IΣ, so we have
a morphism SΣ/σ(v) −→ SΣ. Since SΣ is a subring of A∗(B)[N ]Σ

e

given by
xi �−→ ybi , we use the notations ybi . Let Ψ̃v : SΣ/σ(v)[deg(yv)] −→ yv · SΣ be
the morphism given by: yb̃i �−→ yv · ybi . If

∑l
i=1 θ̃(b̃i)yb̃i + c1(ξθ̃) belongs to

the ideal I(PΣe/σ(v)), then

Ψ̃v

(
l∑

i=1

θ̃(b̃i)yb̃i + c1(ξθ̃)

)
= yv ·

(
l∑

i=1

θ̃(b̃i)yb̃i + c1(ξθ̃)

)

= yv ·
(

n∑
i=1

θ(bi)ybi + c1(ξθ)

)
,

where θ is determined by the diagram:

(10)

N

π
θ

N(σ(v)) θ̃
Z.

So, θ(bi) = θ̃(b̃i). From the definition of the line bundle ξθ, we have ξθ
∼= ξθ̃.

We obtain that Ψ̃v(
∑l

i=1 θ̃(b̃i)yb̃i + c1(ξθ̃)) ∈ yv · I(PΣe). So, Ψ̃v induce
a morphism Ψv : SΣ/σ(v)

I(PΣe/σ(v))
[deg(yv)] −→ yv ·SΣ

yv ·I(PΣe)
, such that Ψv([yb̃i ]) =

[yv · ybi ].
Conversely, for such v ∈ Box (Σe) and ρi ⊂ σ(v), choose θi ∈ Hom(N,Q)

such that θi(bi) = 1 and θi(bi′ ) = 0 for bi′ �= bi ∈ σ(v). We consider the fol-
lowing morphism p : A∗(B)[x1, . . . , xn] −→ A∗(B)[x̃1, . . . , x̃l], where p is given
by:

xi �−→

⎧⎪⎨
⎪⎩

x̃i if ρi ⊆ link(σ(v)),
−

∑l
j=1 θi(bj)x̃j if ρi ⊆ σ(v),

0 if ρi � σ(v) ∪ link(σ(v)).

For any xi1 · · · xis in IΣ, also from Lemma 4.6, we prove that p(xi1 · · · xis) ∈
IΣ/σ(v). We also use the notations ybi to replace xi. The map p induces
a surjective map: SΣ −→ SΣ/σ(v) and a surjective map: Φ̃v : yv · SΣ −→
SΣ/σ(v)[deg(yv)]. Let yv · (

∑n
i=1 θ(bi)ybi + c1(ξθ)) belong to the ideal yv ·

I(PΣe). For θ ∈ M , we have θ = θv + θ′
v , where θv ∈ N(σ(v))∗ = M ∩ σ(v)⊥

and θ′
v belongs to the orthogonal complement of the subspace σ(v)⊥ in M .
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From (10), we have:

Φ̃v

(
yv ·

(
n∑

i=1

θ(bi)ybi + c1(ξθ)

))

=
l∑

i=1

θv(b̃i)yb̃i + c1(ξθv ) +
∑

ρi ⊂σ(v)

θ′
v(bi)

(
−

l∑
j=1

θi(bj)yb̃j

)

+ c1(ξθ′
v
) +

l∑
i=1

θ′
v(bi)yb̃i .

Note that (
∑l

i=1 θv(b̃i)yb̃i + c1(ξθv )) ∈ I(PΣe/σ(v)). From the definition of
ξθ̃ over X (Σe/σ(v)), ξθ′

v
= 0. Now, let θ′

v =
∑

ρi ⊂σ(v) aiθi where ai ∈ Q, then∑
ρi ⊂σ(v) θ′

v(bi) =
∑

ρi ⊂σ(v) aiθi(bi).We have:
∑

ρi ⊂σ(v) aiθi(bi)(−
∑l

j=1 θi(bj)

yb̃j ) +
∑

ρi ⊂σ(v)

∑l
j=1 aiθi(bj)yb̃j = 0, so we have Φ̃v(yv · (

∑n
i=1 θ(bi)ybi +

c1(ξθ))) ∈ I(PΣe/σ(v)). So, Φ̃v induces a morphism

Φ :
yv · SΣ

yv · I(PΣe)
−→

SΣ/σ(v)

I(PΣe/σ(v))
[deg(yv)].

Note that ΦvΨv = 1 is easy to check. For any [yv · ybi ] ∈ yv ·SΣ
yv ·I(PΣe)

, since

yv · (−
∑l

j=1 θi(bj)ybj +
∑n

j=1 θi(bj)ybj ) = yv · ybi , we have [yv · (−
∑l

j=1 θi(bj)
ybj )] = [yv · ybi ], we check that ΨvΦv = 1. So Φv is an isomorphism. From
Lemma 4.4, for any v ∈ Box (Σe), we have an isomorphism of Chow rings:

SΣ/σ(v)

I(PΣe/σ(v))
∼= A∗(PX (Σe/σ(v))). Taking into account all the v in Box (Σe)

and (9) we have the isomorphism:
⊕

v∈Box(Σe) A∗(PX (Σe/σ(v)))[deg(yv)] ∼=
A∗(B)[N ]Σ

e

I(PΣe)
. Note that both sides of (9) are SΣ/I(PΣe) = A∗(PX (Σe))-modu-

les, we complete the proof. �

Remark. In Proposition 5.2 of [BCS], the authors give a proof of Propo-
sition 4.7 for toric Deligne–Mumford stacks. We give a more explicit proof of
this isomorphism for the toric stack bundle.

4.2. The orbifold cup product. In this section, we consider the orbifold
cup product on A∗

orb(
PX (Σe)). First, we determine the 3-twisted sectors of

PX (Σe) which are the components of the double inertia stack I2(PX (Σe)) of
PX (Σe); see [CR2]. It follows that all 3-twisted sectors of PX (Σe) are:

(11)
∐

(g1,g2,g3)∈Box(Σe)3,g1g2g3=1

PX (Σe/σ(g1, g2, g3)),
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where σ(g1, g2, g3) is the minimal cone in Σ containing g1, g2, g3. For any
3-twisted sector PX (Σe)(g1,g2,g3) = PX (Σe/σ(g1, g2, g3)), we have an inclu-
sion e : PX (Σe/σ(g1, g2, g3)) −→ PX (Σe) because PX (Σe/σ(g1, g2, g3)) is a
substack of PX (Σe). Let H be the subgroup generated by g1, g2, g3, then the
genus zero, degree zero orbifold stable map to PX (Σe) determines a Galois
covering π : C −→ P1 branching over three marked points 0,1, ∞, such that
the transformation group of this covering is H . We have the definition below.

Definition 4.8 ([CR1]). The obstruction bundle O(g1,g2,g3) over PX (Σe/
σ(g1, g2, g3)) is defined as the H-invariant bundle:(

e∗T (PX (Σe)) ⊗ H1(C, OC)
)H

.

Proposition 4.9. Let PX (Σe)(g1,g2,g3) = PX (Σe/σ(g1, g2, g3)) be a 3-
twisted sector of the stack PX (Σe). Let g1 + g2 + g3 =

∑
ρi ⊂σ(g1,g2,g3)

aibi,
ai = 1,2, then the Euler class of the obstruction bundle O(g1,g2,g3) over
PX (Σe)(g1,g2,g3) is: ∏

ai=2

c1(Li)|PX (Σe/σ(g1,g2,g3))
,

where Li is the line bundle over PX (Σe) in Definition 4.3.

Proof. Let X (Σe) be the toric Deligne–Mumford stack corresponding to
the extended stacky fan Σe. Let σ(g1, g2, g3) be the minimal cone in Σ con-
taining g1, g2, g3. From (11), we have the 3-twisted sector X (Σe)(g1,g2,g3) =
X (Σe/σ(g1, g2, g3)) and PX (Σe)(g1,g2,g3) = PX (Σe/σ(g1, g2, g3)). Since e :

X (Σe)(g1,g2,g3) −→ X (Σe) is an inclusion, we have an exact sequence:

0 −→ T X
(
Σe/σ(g1, g2, g3)

)
−→ e∗T X (Σe)

−→ N
(

X
(
Σe/σ(g1, g2, g3)

)
/X (Σe)

)
−→ 0,

where N(X (Σe/σ(g1, g2, g3))/X (Σe)) is the normal bundle of X (Σe/σ(g1,
g2, g3)) in X (Σe).

Since X (Σe) = [Ze/Ge], the tangent bundle T (X (Σe)) = [T (Ze)/T (Ge)] is
a quotient stack. Ze is an open subvariety of An × (C×)m−n, so T (Ze) = On

Ze .
Now, from the construction of the line bundle Lk over X (Σe), we have
a canonical map:

⊕n
k=1 Lk −→ T (X (Σe)). Since, we have a natural map

T (X (Σe)) −→ N(X (Σe/σ(g1, g2, g3))/X (Σe)), we obtain a map of vector
bundles over X (Σe/σ(g1, g2, g3)):

ϕ :
⊕

ρk ⊂σ(g1,g2,g3)

Lk −→ N
(

X
(
Σe/σ(g1, g2, g3)

)
/X (Σe)

)
.

Then from the definition of the line bundle Lk over PX (Σe), we have the map:

ϕ̃ :
⊕

ρk ⊂σ(g1,g2,g3)

Lk −→ N
(
PX

(
Σe/σ(g1, g2, g3)

)
/PX (Σe)

)
,
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where N(PX (Σe/σ(g1, g2, g3))/PX (Σe)) is the normal bundle of PX (Σe/σ(g1,
g2, g3)) in PX (Σe). For any point map:

x : SpecC ↪→ X
(
Σe/σ(g1, g2, g3)

)
↪→ PX

(
Σe/σ(g1, g2, g3)

)
,

note that x∗ϕ̃ is an isomorphism, so ϕ̃ is an isomorphism. We have the exact
sequence:

0 −→ T
(
PX

(
Σe/σ(g1, g2, g3)

))
−→ e∗T (PX (Σe)) −→

⊕
ρk ⊂σ(g1,g2,g3)

Lk −→ 0.

Now, using the result in the proof of Proposition 6.3 in [BCS], we have:

dimC

(
Lk ⊗ H1(C, OC)

)H =

{
0 if ak = 1,

1 if ak = 2.

So, from Definition 4.8, we have:

e
(
O(g1,g2,g3)

) ∼=
∏

ai=2

c1(Li)|PX (Σe/σ(g1,g2,g3))
. �

4.3. Proof of Theorem 1.1. From the definition of the orbifold cohomol-
ogy in [CR1], we have that A∗

orb(
PX (Σe)) =

⊕
g∈Box(Σe) A∗(PX (Σe/σ(g)))

[deg(yg)]. From Proposition 4.7, we have an isomorphism between
A∗(PX (Σe))-modules:⊕

g∈Box(Σe)

A∗(
PX

(
Σe/σ(g)

))
[deg(yg)] ∼= A∗(B)[N ]Σ

e

I(PΣe)
.

So, we have an isomorphism of A∗(PX (Σe))-modules: A∗
orb(

PX (Σe)) ∼=
A∗(B)[N ]Σ

e

I(PΣe)
. Next, we show that the orbifold cup product defined in [CR1]

coincides with the product in ring A∗(B)[N ]Σ
e

/I(PΣe). From the above
isomorphisms, it suffices to consider the canonical generators ybi , yg where
g ∈ Box (Σe) and γ ∈ A∗(B). Since bi ∈ N , the twisted sector determined by
bi is the whole toric stack bundle PX (Σe), ybi ∪orb γ is the usual product
ybi · γ in the deformed ring because ybi and γ belong to the ordinary Chow
ring of PX (Σe).

For yg ∪orb ybi and yg ∪orb γ, where g ∈ Box (Σe). g determines a twisted
sector PX (Σe/σ(g)). The corresponding twisted sectors to bi and γ are the
whole toric stack bundle PX (Σe). It is easy to see that the 3-twisted sector
corresponding to (g, bi) and (g, γ) are PX (Σe)(g,1,g−1)

∼= PX (Σe/σ(g)), where
g−1 is the inverse of g in the local group. From the dimension formula in
[CR1], the obstruction bundle over PX (Σe)(g,1,g−1) has rank zero. So, from the
definition of orbifold cup product in [CR1] it is easy to check that yg ∪orb ybi =
yg · ybi , yg ∪orb γ = yg · γ.

For the orbifold product yg1 ∪orb yg2 , where g1, g2 ∈ Box (Σe). From (11),
we see that if there is no cone in Σ containing g1, g2, then there is no 3-twisted
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sector corresponding to the elements g1, g2, so the orbifold cup product is zero
from the definition. On the other hand, from the definition of the group ring
A∗(B)[N ]Σ

e

, yg1 · yg2 = 0, so yg1 ∪orb yg2 = yg1 · yg2 . If there is a cone σ ∈ Σ
such that g1, g2 ∈ σ, let g3 ∈ Box (Σe) such that g3 ∈ σ(g1, g2) and g1g2g3 = 1
in the local group. Using the same method in the proof of main theorem in
[BCS], we get: yg1 ∪orb yg2 = yg1 · yg2 . The theorem is proved.

5. The μ-gerbe

In this section, we study the degenerate case of toric Deligne–Mumford
stacks. In this case, N is a finite Abelian group, the simplicial fan Σ is 0. The
toric stack bundle is a μ-gerbe X over B for a finite Abelian group μ.

Let N = Zp
n1
1

⊕ · · · ⊕ Zpns
s

be a finite Abelian group, where p1, . . . , ps are
prime numbers and n1, . . . , ns > 1. Let βe : Z −→ N be given by the vector
(1,1, . . . ,1). NQ = 0 implies that Σ = 0, then Σe = (N,Σ, βe) is an extended
stacky fan from Section 2. Let n = lcm(pn1

1 , . . . , pns
s ), then n = p

ni1
i1

· · · pnit
it

,
where pi1 , . . . , pit are the distinct prime numbers which have the highest pow-
ers ni1 , . . . , nit . Note that the vector (1,1, . . . ,1) generates an order n cyclic
subgroup of N . We calculate the Gale dual (βe)∨ : Z −→ Z ⊕

⊕
i/∈{i1,...,it } Zni

pi
,

where DG(βe) = Z ⊕
⊕

i/∈{i1,...,it } Zni
pi

. We have the following exact sequence:

0 −→ Z −→ Z
βe

−→ N −→
⊕

i/∈{i1,...,it }
Zni

pi
−→ 0,

0 −→ 0 −→ Z
(βe)∨

−→ Z ⊕
⊕

i/∈{i1,...,it }
Zni

pi
−→ Zn ⊕

⊕
i/∈{i1,...,it }

Zni
pi

−→ 0.

So, we obtain

(12) 1 −→ μ −→ C× ×
∏

i/∈{i1,...,it }
μni

pi

αe

−→ C× −→ 1,

where the map αe in (12) is given by the matrix⎡
⎢⎢⎢⎣

n
0
...
0

⎤
⎥⎥⎥⎦

and μ = μn ×
∏

i/∈{i1,...,it } μni
pi

∼= N . The toric Deligne–Mumford stack is
X (Σe) = [C×/C× ×

∏
i/∈{i1,...,it } μni

pi
] = Bμ, the classifying stack of the group

μ. Let L be a line bundle over a smooth variety B and L× the principal C×-
bundle induced from L removing the zero section. From our twist, we have
L×X (Σe) = L× ×C× [C×/C× ×

∏
i/∈{i1,...,it } μni

pi
] = [L×/C× ×

∏
i/∈{i1,...,it } μni

pi
],

which is exactly a μ-gerbe X over B. The structure of this gerbe is a μn-gerbe
coming from the line bundle L plus a trivial

∏
i/∈{i1,...,it } μni

pi
-gerbe over B.
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For this toric stack bundle, Box (Σe) = N , so we have the following proposi-
tion for the inertia stack.

Proposition 5.1. The inertia stack of this toric stack bundle X
is pn1

1 · · · pns
s copies of the μ-gerbe X .

From our main theorem, we have the following proposition.

Proposition 5.2. The orbifold cohomology ring of the toric stack bundle X
is given by:

H∗
orb(X ,Q) ∼= H∗(B,Q) ⊗ H∗

orb(Bμ,Q),

where H∗
orb(Bμ;Q) = Q[t1, . . . , ts]/(tp

n1
1

1 − 1, . . . , t
pns

s
s − 1).

Let N = Zr, and β : Z −→ Zr be the natural projection. The toric Deligne–
Mumford stack X (Σe) = Bμr. Let L −→ B be a line bundle, then the toric
stack bundle X = B(L,r) is the μr-gerbe over B determined by the line bun-
dle L. We have:

Corollary 5.3. The orbifold cohomology ring of B(L,r) is isomorphic to
H∗(B)[t]/(tr − 1).

If the variety B is not a toric variety, then the toric stack bundle over B is
not a toric Deligne–Mumford stack. But, suppose B is a smooth toric variety,
then a μ-gerbe X can give a toric Deligne–Mumford stack in the sense of
[BCS].

Example. Let B = Pd be the d-dimensional projective space. We give
stacky fan Σ = (N,Σ, β) as follows. Let N = Zd ⊕ Zr and β : Zd+1 −→ N be
the map determined by the vectors: {(1,0, . . . ,0,0), (0,1, . . . ,0,0), . . . , (0,0, . . . ,
1,0), (−1, −1, . . . , −1,1)}. Then DG(β) = Z, and the Gale dual β∨ is given by
the matrix [r, r, . . . , r]. So, we have the following exact sequences:

0 −→ Z −→ Zd+1 β−→ Zd ⊕ Zr −→ 0 −→ 0,

0 −→ Zd −→ Zd+1 β∨

−→ Z −→ Zr −→ 0.

Then we obtain the exact sequence:

1 −→ μr −→ C× α−→ (C×)d+1 −→ (C×)d −→ 1.

The toric Deligne–Mumford stack X (Σ) := [Cd+1 − {0}/C×] is the canonical
μr-gerbe over the projective space Pd coming from the canonical line bun-
dle, where the C× action is given by λ · (z1, . . . , zd+1) = (λr · z1, . . . , λ

r · zd+1).
Denote this toric Deligne–Mumford stack by Gr = P(r, . . . , r). If the homomor-
phism β : Zd+1 −→ N is determined by the vectors: {(1,0, . . . ,0,0), (0,1, . . . ,
0,0), . . . , (0,0, . . . ,1,0), (−1, −1, . . . , −1,0)}, then DG(β) = Z ⊕ Zr. Compar-
ing to the former exact sequence, we have the exact sequence:

1 −→ μr −→ C× × μr
α−→ (C×)d+1 −→ (C×)d −→ 1.
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The corresponding toric Deligne–Mumford stack is the trivial μr-gerbe Pd ×
Bμr coming from the trivial line bundle over Pd. The coarse moduli spaces
of these two stacks are both projective space Pd. From the theorem of this
paper or the main theorem in [BCS], the orbifold cohomology rings of these
two stacks are isomorphic, although as stacks they are different.

Remark. Let H represent the hyperplane class of Pd, then H∗
orb(Gr,Q) ∼=

Q[H]/(Hd+1) ⊗ Q[t]/(tr − 1). We conjecture that the orbifold quantum coho-
mology ring of Gr defined in [CR2] is isomorphic to Q[H]/(Hd+1 − f(H,q)) ⊗
Q[t]/(tr − 1 − g(t, q)), where f, g are two relations and q is the quantum pa-
rameter. The orbifold quantum cohomology of trivial gerbe case has been
computed in [AJT], where f(H,q) = q and g(t, q) = 0.

Remark. We conjecture that the small orbifold quantum cohomology ring
of the nontrivial μr-gerbe and trivial μr-gerbe over the projective space Pd

should be different. This means that the orbifold quantum cohomology can
classify these two different stacks.

6. Application

In this section, we generalize a result of Borisov, Chen, and Smith [BCS]
to the toric stack bundle case.

Let X(Σ) be a simplicial toric variety, and let X (Σ) be the associated toric
Deligne–Mumford stack, where Σ = (N,Σ, β) is the stacky fan associated to
Σ. Let Σ′ be a subdivision of Σ such that X(Σ′) is a crepant resolution
of X(Σ). Suppose there are m rays in Σ′, let i : (C×)n −→ (C×)m be the
inclusion. From the following commutative diagram:

0 Zn−d Zn
β

i

N

id

0

0 Zm−d Zm
β′

N 0,

taking Gale dual we get:

0 N ∗

id

(Zm)∗ (β′)∨

DG(β′) 0

0 N ∗ (Zn)∗ β∨

DG(β) 0.

So, applying the Hom functor, we have the following diagram:

(C×)n i (C×)m

T
id

T.
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Let P −→ B be a principal (C×)n-bundle, we still use P to represent the prin-
cipal (C×)m-bundle induced by i, then they induce the same principal T bun-
dle E over B. So, EX(Σ′) −→ EX(Σ) is a crepant resolution. And, EX(Σ) is
the coarse moduli space of the toric stack bundle PX (Σ) from Proposition 3.3.
We have the following result.

Proposition 6.1. If the Chow ring of the smooth variety B is a Cohen–
Macaulay ring. Then there is a flat family S −→ P1 of schemes, such that
S0

∼= Spec(A∗
orb(

PX (Σ))) and S∞ ∼= Spec(A∗(EX(Σ′))).

Proof. We also construct a family of algebras over P1, such that the fiber
over 0 and ∞ are A∗

orb(
PX (Σ)) and A∗(EX(Σ′)), respectively. X(Σ′) is a

smooth variety, and {b1, . . . , bn, bn+1, . . . bm} generate the whole lattice N ,
then A∗(B)[N ]Σ is the quotient ring of the ring S := A∗(B)[yb1 , . . . , ybm ] by
the binomial ideal determined by (1). Let I2 denote this ideal. Let I1 denote
the ideal generated by c1(ξθj ) +

∑m
i=1 θj(bi)ybi for 1 ≤ j ≤ d, where θ1, . . . , θd

is a basis of N ∗. Since Σ′ is a regular subdivision of Σ, then there is a Σ′-
linear support function h : N −→ Z such that h(bi) = 0 for 1 ≤ i ≤ n, h(bi) > 0
for n + 1 ≤ i ≤ m. For any lattice points c1, c2 lying in the same cone of Σ,
h(c1 + c2) ≥ h(c1) + h(c2), and the inequality is strict unless c1, c2 lies in the
same cone of Σ′.

We describe the family over P1 − {∞}. Let Ĭ1 be the ideal in S[t1] generated
by c1(ξθj )t

h(bi)
1 +

∑m
i=1 θj(bi)ybit

h(bi)
1 for 1 ≤ j ≤ d. So, the choice of h implies

that
S[t1]

Ĭ1 + I2 + 〈t1〉
∼= S

〈c1(ξθj ) +
∑n

i=1 θj(bi)ybi : 1 ≤ j ≤ d〉 + I2

∼= A∗
orb(

PX (Σ)).

The sequence c1(ξθj ) +
∑n

i=1 θj(bi)ybi for 1 ≤ j ≤ d is also a homogeneous
system of parameters on S/I2. The Chow ring A∗(B) is a Cohen–Macaulay
ring, so S/I2 is also Cohen–Macaulay. So, the sequence is a regular sequence.
Therefore, the Hilbert function of the family S[t1/(Ĭ1 +I2)] is constant outside
a finite set in Q∗.

On the other hand, for the family over P1 − {0}, let Ĭ2 be the binomial
ideal in S[t2] given by

yc1 · yc2 =

{
yc1+c2t

h(c1+c2)−h(c1)−h(c2)
2 if ∃σ ∈ Σ such that c1 ∈ σ, c2 ∈ σ,

0 otherwise.

From the property of the function h, this product becomes (1) for the fan
Σ′ over t2 = 0. Hence, S[t2]/(I1 + Ĭ2 + 〈t2〉) ∼= A∗(EX(Σ′)). The sequence
c1(ξθj )+

∑n
i=1 θj(bi)ybi for 1 ≤ j ≤ d is a regular sequence on S/I2 and S/IΣ′ ,

and we have the same Hilbert function for S/(I1 + I2) and S/(I1 + IΣ′ ).
There exists an automorphism ϕ between these two families so that we

construct such a family over P1. The rest of the proof is the same as in [BCS].
We omit the details. �
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Remark. Ruan [R] conjectured that the cohomology ring of crepant reso-
lution is isomorphic to the orbifold Chow ring of the orbifold if we add some
quantum corrections on the ordinary cohomology ring of the crepant resolution
coming from the exceptional divisors. Let P(1,1,2) be the weighted projective
plane with one orbifold point whose local group is Z2. The Hirzburch sur-
face F2 is the crepant resolution of P(1,1,2). We can compute the quantum
correction of the cohomology ring of the Hirzburch surface and check Ruan’s
conjecture. This case has been done recently in [Per].

Acknowledgments. I would like to thank my advisor Kai Behrend for his
help in preparing this work. I also thank Kalle Karu for his advice in writing
the paper and Andrei Mustata, Hsian-Hua Tseng for valuable discussions.
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