
J
H
E
P
0
3
(
2
0
1
5
)
1
0
6

Published for SISSA by Springer

Received: December 19, 2014

Accepted: February 13, 2015

Published: March 20, 2015

The Orbifold Higgs

Nathaniel Craig,a Simon Knapenb,c and Pietro Longhid

aDepartment of Physics, University of California,

Santa Barbara, CA 93106, U.S.A.
bBerkeley Center for Theoretical Physics, University of California,

Berkeley, CA 94720, U.S.A.
cTheoretical Physics Group, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, U.S.A.
dNew High Energy Theory Center, Rutgers University,

Piscataway, NJ 08854, U.S.A.

E-mail: ncraig@physics.ucsb.edu, smknapen@lbl.gov,

longhi@physics.rutgers.edu

Abstract: We introduce and systematically study an expansive class of “orbifold Higgs”

theories in which the weak scale is protected by accidental symmetries arising from the orb-

ifold reduction of continuous symmetries. The protection mechanism eliminates quadratic

sensitivity of the Higgs mass to higher scales at one loop (or more) and does not involve

any new states charged under the Standard Model. The structures of the Higgs and top

sectors are universal and determined exclusively by group theoretical considerations. The

twin Higgs model fits within our framework as the simplest example of an orbifold Higgs.

Our models admit UV completions as geometric orbifolds in higher dimensions, and fit

naturally within frameworks of low scale gauge coupling unification.

Keywords: Discrete and Finite Symmetries, Global Symmetries, Large Extra Dimensions

ArXiv ePrint: 1411.7393

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2015)106

mailto:ncraig@physics.ucsb.edu
mailto:smknapen@lbl.gov
mailto:longhi@physics.rutgers.edu
http://arxiv.org/abs/1411.7393
http://dx.doi.org/10.1007/JHEP03(2015)106


J
H
E
P
0
3
(
2
0
1
5
)
1
0
6

Contents

1 Introduction 1

2 Orbifolding general field theories 4

2.1 Background and notation 5

2.2 Projecting onto invariant field configurations 6

2.3 Scaling of couplings 8

2.4 Additional symmetries in orbifold models 9

2.4.1 Exact and discrete 9

2.4.2 Accidental and continuous 10

2.5 An orbifold toolkit 13

3 The Orbifold Higgs 13

3.1 Setup and discussion 13

3.2 Abelian example 14

3.3 Nonabelian example: S3 17

3.4 The fundamental role of bifundamentals 21

3.5 A model-builder’s guide to the Orbifold Higgs 21

4 A Standard Model-like Higgs 22

4.1 The Z3 vacuum 22

4.2 Generalizations: ZΓ and S3 24

5 UV completions 25

5.1 Geometric orbifolds 26

5.2 Matter fields, hypercharge and unification 28

5.2.1 U(6)×U(4) 29

5.2.2 Pati-Salam unification 30

5.2.3 Trinification 31

6 Conclusions 31

A Another nonabelian orbifold: A4 34

1 Introduction

With the discovery of a Standard Model-like Higgs boson with a mass near 125 GeV [1, 2],

experiments are for the first time directly probing the scale at which the electroweak sym-

metry is broken. At the same time the LHC has imposed impressive constraints on new
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states near the weak scale, placing increasing stress on conventional paradigms for natu-

ral electroweak symmetry breaking. In light of LHC limits, a crucial question is whether

there still remains room for natural mechanisms to stabilize the weak scale. A particularly

interesting observation along these lines is that almost all constraints on conventional mech-

anisms for stabilizing the weak scale (such as composite Higgs models or supersymmetry)

hinge critically on the large production cross section for the colored partner particle(s) of

the top quark. The reason for this is simple: if the Higgs is to be protected by a symmetry

of some kind, then the top quark must also transform under this symmetry in order for

the symmetry to be compatible with a large top yukawa coupling. Popular realizations

such as supersymmetry or global symmetries commute with QCD, which ensures that the

top’s partner particle(s) must carry QCD quantum numbers as well. Given the strong con-

straints on colored particles from the LHC, it is particularly important to systematically

map out the exceptions to this ‘top partner theorem’, since the collider signatures of such

exceptions fall in a qualitatively different regime which is still largely unexplored.

There exist several known loopholes in the top partner theorem, all of which hinge

on accidental realizations of either a global symmetry (as in twin Higgs models [3] and

their relatives [4–7]), or supersymmetry (as in folded supersymmetry models [8]). The

question remains, however, whether these loopholes are theoretical curiosities or examples

of a very general framework for protecting the weak scale without introducing new states

charged under the Standard Model. In this paper we commence the systematic study

of loopholes using global symmetries, and show that all the essential features neatly fit

within the framework of field-theoretic orbifolds. As a consequence, we identify a large

class of models of which the twin Higgs is merely the simplest example. In all of our

models, a gauged symmetry group is broken by an orbifold projection, resulting in effective

theories including the Standard Model sector plus one or more hidden sectors. Crucially, the

effective theory exhibits a continuous accidental symmetry relating the Standard Model and

hidden sector(s), which suffices to protect the Higgs mass from large quantum corrections.

A central feature of this symmetry is that it only involves top partners that are neutral

under the Standard Model interactions, thus evading the top partner theorem. More

generally, all the important partner partners (such as gauge partners of SU(2)L) are neutral

under the Standard Model. We argue that concrete realizations of this idea are strongly

constrained by group theoretic considerations, and exploit this observation to initiate a

systematic classification of these models.

The most basic example of our class of models, consisting of a Z2 orbifold, coincides

with the well-known twin Higgs model. In this standard scenario [3] the physical Higgs

is one out of 7 goldstones arising from the spontaneous breaking of a global SU(4) to

SU(3), while the remaining 6 are eaten by gauging an SU(2) × SU(2) subgroup of the

global SU(4). One of these SU(2) nodes can then be identified with the Standard Model

weak gauge group, while the other is its ‘twin’ counterpart. Gauging the SU(2) × SU(2)

subgroup necessarily constitutes an explicit breaking of the SU(4) of which the Higgs is

supposed to be a goldstone boson. The Higgs may nevertheless be protected at one loop,1

1In fact, the protection mechanism in the case of the twin Higgs extends to all loops, but the theory still

requires a UV completion in the form of compositeness or supersymmetry around 5–10 TeV.
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if the following criteria are satisfied:

• The SU(4) is a symmetry of the quadratic and quartic parts of the tree-level Higgs

potential.

• The SU(4) is preserved in the quadratic part of the one-loop Higgs potential.

In the twin Higgs model, the first criterion is an ad hoc assumption, while the latter is

ensured by a discrete Z2 symmetry which interchanges both SU(2) nodes. Concretely, this

discrete symmetry ensures that gauge and yukawa couplings of both groups must be equal,

which implies that the leading contributions to the quadratic potential at one loop take

the form

V (hA, hB) ⊃ Λ2

16π2

[(
9

4
g2
A − 6y2

t,A

)
|hA|2 +

(
9

4
g2
B − 6y2

t,B

)
|hB|2

]
=

Λ2

16π2

(
9

4
g2 − 6y2

t

)(
|hA|2 + |hB|2

)
(1.1)

where the subscripts ‘A’ and ‘B’ denote the Standard Model and the twin sector respec-

tively. Equation (1.1) is manifestly SU(4) invariant, and as such the SM-like Higgs (as a

pseudo-goldstone of spontaneous SU(4) breaking) is insensitive to the cutoff at one loop.2

While in the twin Higgs paradigm both the Z2 and the accidental SU(4) are somewhat

artificial ingredients, we stress that both can be natural features from the viewpoint of

orbifold Higgs models. Specifically, by viewing the twin Higgs as the orbifold projection

SU(4)/Z2 → SU(2)× SU(2)×U(1) , (1.2)

the global Z2 follows automatically. The accidental SU(4) may or may not follow auto-

matically, depending on the spectrum of operators in the ultraviolet. As we will see, this

framework can be naturally extended to include both the top quarks and the Standard

Model SU(3) group. Even at the level of the twin Higgs, framing the model in terms

of a field theory orbifold is extremely useful. Among other things, it helps to answer

the question of how, precisely, the twin Higgs can be distinguished from composite Higgs

models at the group theory level: the global symmetry breaking pattern is approximately

SU(4)/SU(3), while the field content corresponds to SU(4)/Z2; this suffices to preserve the

SU(4) under modest radiative corrections, while eliminating partner states charged under

the Standard Model and introducing a custodial symmetry. It is in this SU(4)/Z2 that the

twin Higgs differs crucially from its composite Higgs cousins.

From a more formal point of view, the utility of orbifolds in controlling large quantum

corrections may not be so surprising. In particular, it is well known that in the large-

N limit the correlation functions of a daughter theory obtained by orbifolding a mother

theory must be identical to the correlation functions of the mother, up to a rescaling of

the coupling constants [9–11]. In the example of the orbifold Higgs, one might expect that

the Higgs two-point correlation function must be identical (up to possibly 1/N -suppressed

2Of course, here the uniform cutoff is merely a proxy for physical thresholds that respect the Z2 sym-

metry, as is expected of a UV completion such as compositeness or supersymmetry.
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corrections) to the two-point function in the mother theory, which does enjoy the full

protection of the global SU(4). Ultimately we will encounter important subtleties regarding

orbifold correspondence in these models, but the conceptual inspiration provided by orbifold

correspondence is extremely valuable. Given that the proof provided in [11] is valid beyond

the simple example of a Z2 orbifold, the orbifold interpretation of the twin Higgs opens up

new possibilities for generalizing beyond this simple case. In fact we will see that the twin

Higgs is merely the tip of the iceberg and that a large class of qualitatively new models

is waiting to be explored. In this respect, orbifold field theories provide a framework for

determining the complete generalization of the twin Higgs mechanism.

In this paper we elaborate on the schematic picture articulated in [12] and develop

the complete framework necessary to construct orbifold Higgs models. We proceed as fol-

lows: section 2 contains a model-independent analysis of a class of orbifolds by regular

embeddings of a generic discrete group G, providing a toolkit for the analysis carried out

in later sections. We pay particular attention to the breaking of gauge and global sym-

metries, the rescaling of couplings, and the consequent accidental symmetries of daughter

theories. In section 3 we analyze in detail a class of toy models resembling top-Yukawa

sectors. These examples feature all essential characteristics of phenomenological interest,

and we will easily analyze both abelian and non-abelian orbifolds, building on techniques

developed in section 2. In section 4 we then study the vacuum of orbifold Higgs models

and trace how a Standard Model-like pseudo-goldstone Higgs arises from symmetry break-

ing in sectors related by orbifold projection. Section 5 discusses realistic models, touching

upon another interesting aspect of field-theoretic orbifolds, namely their amenability to

higher-dimensional UV completions as geometric orbifolds. Finally, we discuss how phe-

nomenology implies a surprising connection to low scale unification and conclude with

discussion of future directions.

2 Orbifolding general field theories

A field-theoretic orbifold of a mother theory with a discrete symmetry G consists of project-

ing onto states invariant under G, a procedure also known as “gauging G”. At the lagrangian

level, the orbifold is realized by retaining field components which are G-invariant. In gen-

eral this procedure will break both global and gauge symmetries of the mother theory. In

this section we review the framework of field-theoretic orbifolds in detail and derive some

general results which we will use in later sections, greatly simplifying the tasks of carrying

out orbifolds and studying their low energy dynamics. The first main result of this sec-

tion are the general formulae (2.12), (2.13), (2.17) that provide a direct description of the

daughter theories arising from a given mother theory and discrete symmetry G.

The second main point is a general analysis of the accidental symmetries of the Higgs

potential in the daughter theory. As we recalled in the Introduction, the twin Higgs model

enjoys a realization as a Z2-orbifold. A considerable advantage of this realization is the

fact that the SU(4) accidental symmetry can arise naturally from the Z2 orbifold. In

section 2.4.2 we will show that this crucial feature extends to field-theoretic orbifolds by a

general discrete group G.
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As our objective is to establish the structure of an orbifold field theory for general group

G, the discussion in this section is necessarily somewhat technical. Readers exclusively

interested in the phenomenology of orbifold Higgs models may proceed directly to section 3.

2.1 Background and notation

Much of the material in this subsection is a review of known results (see for example [11]),

nevertheless we take the opportunity to set our notation and emphasize a few points which

are crucial for our story. Given a theory with some gauge or flavor symmetry group G,

there can be several ways of taking the orbifold, depending on how G acts on G. We will

follow [11] and stick with the regular representation embedding.3 Recall that for a finite

group G = {g1, . . . , gΓ} of order |G| = Γ, the regular representation is Γ dimensional and

simply describes the action of G onto itself. Concretely, one has a set of Γ × Γ matrices

acting as permutations on the group elements of G, which are represented by Γ-dimensional

normalized vectors with a single nonzero entry. There are Γ such matrices, which we denote

by γs, with s = 1, · · · ,Γ. The regular representation is reducible and enjoys the well-known

decomposition

γs =
⊕
α

1dα ⊗ rsα (2.1)

where α runs over all the irreps of G and dα is the dimension of the irrep rα. This

decomposition enjoys the special feature that the multiplicity of each irrep in (2.1) equals

its dimension, which will be essential for the rest of our story. Moreover, note that the

famous identity Γ =
∑

α(dα)2 is a trivial consequence of (2.1).

With phenomenological applications in mind, we will restrict ourselves to embeddings

of G in G = SU(ΓN) for some positive integer N . In particular, let us consider

γsN := 1N ⊗ γs =
⊕
α

1Ndα ⊗ rsα =



. . .

rsα
. . .

rsα︸ ︷︷ ︸
Ndα times

. . .


. (2.2)

Fields Q and A in the fundamental and adjoint representations of SU(NΓ), respectively,

transform under G as

Q→ γsNQ A→ γsNA(γsN )† . (2.3)

The G-action is obviously reducible, and induces the following decomposition of the vector

space V of the fundamental representation

V =
⊕
α

Vα ⊗Rα (2.4)

3The word “embedding” is slightly inappropriate, but we will consciously abuse terminology and stick

to it. It would be more appropriate to say that we define a G-action on the vector spaces furnishing

representations of G.
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with

dimC(Vα) = Ndα , dimC(Rα) = dα , (2.5)

where G acts on the subspace Rα through the irrep rsα and leaves Vα invariant.

In order to capture all the details of orbifolding, it turns out to be useful to introduce

a multi-index notation, according to the patterns of symmetry breaking. Letting nG be the

number of irreps of G, we define the following multi-index A, for the vector space V :

A ∼ (α, a, a)


α = 1 . . . nG irrep of G in the decomposition of γ

a = 1 . . . dαN index for Vα
a = 1 . . . dα index for Rα

. (2.6)

Note that a will only be a relevant index if G is non-abelian. For example, taking G = ZΓ

there are Γ one-dimensional irreps, hence the multi-indices span

A = (α, a), α = 1, . . .Γ, a = 1, . . . N (2.7)

with a being suppressed because dα = 1, ∀α.

The discrete group G may be embedded in more than one gauge group, or both in

gauge and flavor groups. For example consider a flavor group SU(ΓF ) with F a positive

integer, and let W be the vector space of the fundamental representation. G acts reducibly,

inducing the decomposition W =
⊕

µWµ⊗Rµ. Correspondingly we introduce multi-indices

M ∼ (µ,m,m)


µ = 1 . . . nG irrep of G in the decomposition of γ

m = 1 . . . dµF index for Vα
m = 1 . . . dµ index for Rα

. (2.8)

Notice in particular that µ and m have the same span as α and a from the orbifolding of

the gauge group, while m does not.

2.2 Projecting onto invariant field configurations

Having specified how G acts on the fields in the class of theories of interest, we now turn

to describing the G-invariant degrees of freedom singled out by the orbifold.

Starting with gauge fields, their invariant components under the G-action must obey

A = γsN A (γsN )† ⇔ AγsN = γsN A (2.9)

The invariant gluons fall into two categories. The first type follows from a direct application

of Schur’s lemma:

A =
⊕
α

Aα ⊗ 1dα , (2.10)

since γsN has the block-diagonal form exhibited in (2.2). The second type takes the form

B~b =
⊕
α

1dαN ⊗
(
bα · 1dα

)
(2.11)

where bα ∈ R and
∑

α d
2
α · bα = 0 , ensuring that B~b is Hermitean and traceless, hence a

generator of SU(ΓN). Specifically, these are just those elements of the Cartan subalgebra

– 6 –
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of SU(ΓN) that commute with γsN . It is easy to see that there are precisely nG−1 invariant

photons of the B~b type, generating U(1)nG−1.

Overall, for the regular embedding-type of orbifold, the gauge symmetry breaks to

SU(ΓN) −→

(
nG∏
α=1

SU(dαN)

)
×
(

U(1)
)nG−1

. (2.12)

Note how the symmetry breaking pattern is fully determined by group-theoretical proper-

ties of the orbifold group: each non-abelian factor corresponds to an irreducible representa-

tion of G, with the dimensionality dα determining the corresponding rank. If G is abelian,

and therefore dα = 1 ∀α, then the rank of the daughter symmetry group as a whole equals

the rank of the mother symmetry group. For non-abelian G, the rank of the daughter

is always less than the rank of the mother. In what follows we will mainly focus on the

non-abelian factors in (2.12), while neglecting the abelian ones; the physical motivations

behind this choice are discussed in section 5. For later convenience we also express the

surviving gluons in multi-index notation, as degrees of freedom of the mother theory

A B
A = (A(α)) b

a δ β
α δ b

a . (2.13)

Turning to matter fields in a generic representation R of G, the projector onto the

invariant subspace reads

PR =
1

Γ

Γ∑
s=1

γsR (2.14)

where γsR is the matrix representation of gs. With an eye towards subsequent applications,

we will focus on a field in the bifundamental of SU(ΓN) × SU(ΓF ). With the regular

embedding described above, the G-action on such a field will be expressed by matrices4

γsN⊗F = γsN ⊗ (γsF )∗ (2.15)

with γsN and γsF the regular embeddings of G in the the two symmetry groups.

According to the orthogonality theorem for matrix elements of irreducible representa-

tions, we may write the bifundamental projector as

(
PN⊗F

) MB

A N
= δ β

α (1Ndα) b
a · δµν(1Fdµ)mn ·

(
1

Γ

∑
s

(rsα) b
a · (rs ∗µ )mn

)
=

1

dα
δ β
α δµν δ

b
a δ

m
n δ

µ
αδ

m
a δ

b
n

(2.16)

where in the first line we expressed the Kronecker-δ symbols as unit matrices to highlight

the fact that the span of the corresponding indices is actually α- (resp. µ-) dependent.

4For clarity on our conventions, in vector-matrix notation we take an anti-fundamental tensor to

transform as ψ 7→ γ∗ · ψ, such that contraction with a fundamental λ yields an SU(N) invariant

ψT · λ 7→ ψT · (γ∗)T · γ · λ. In our index notation we write ψA 7→ ψB(γ†) A
B = (γ∗)ABψ

B . This ex-

plains the appearance of complex conjugation in (2.15): in building a left-acting projection operator we

think of both groups SU(ΓN)× SU(ΓF ) as acting from the left.

– 7 –



J
H
E
P
0
3
(
2
0
1
5
)
1
0
6

Fd0 Fd1 Fd2 Fd��1

Nd0 Nd1 Nd2 Nd��1N�

F�

Figure 1. The orbifold breaking of a mother theory with a single bi-fundamental field into daughter

nodes. Here circles and squares represent gauge and global symmetries, respectively.

Although the notation of the second line is somewhat abusive, we will often make use of it,

keeping this remark in mind. From (2.16) we can write down in full generality the invariant

components of a bifundamental tensor Φ M
A

(φ(α))
(m,m)

(a,a) :=
(
PN⊗F

) MB

A N
Φ N
B =

1

dα
δµα δ

m
a

dα∑
a′=1

Φ
(α,m,a′)

(α,a,a′) , (2.17)

where the indices span

α, µ = 1, . . . , nG a,m = 1, . . . , dα a = 1, . . . , Ndα m = 1, . . . , Fdα . (2.18)

This is where the role of multi-indices as a valuable book-keeping device becomes manifest:

in expression (2.17) we can read off directly how invariant field components transform under

the symmetries of the daughter theory. In particular, besides the breaking of the gauge

symmetry described above in (2.12), we now find a similar breaking pattern for the flavor

symmetry as well

SU(ΓF ) −→

(
nG∏
α=1

SU(dαF )

)
×
(

U(1)
)nG−1

. (2.19)

This simple example is conveniently summarized in figure 1.

2.3 Scaling of couplings

The orbifold establishes a precise relation between the couplings of the mother theory

and those of the daughter theory. In this section we analyze the scaling of various types

of couplings of interest to us. We will mainly be interested in applications involving a

gauge theory with matter fields transforming as bi-fundamentals of two symmetry groups

in which G is embedded through the regular representation (or in slightly different setups

which happen to share the same conclusions).

From the general formulae (2.13) and (2.17) it is clear that each mother field will

descend to a daughter field for each irrep of G, labeled by α. Kinetic terms of the mother

theory’s lagrangian generally descend to unnormalized kinetic terms for daughter fields,

inducing a canonical rescaling of the field strengths; this is the underlying mechanism

driving a corresponding rescaling of all couplings.

– 8 –
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In particular, we can read off the scaling factors introduced by the projection:

• every bi-fundamental comes with a coefficient 1/dα

• gauge fields do not come with any multiplicative factor

• each trace contributes5 a coefficient dα.

With these in mind, it is easy to see how various operators in the mother theory project

down to the daughter:

Tr ∂Φ†∂Φ→ 1

dα
Tr ∂φ(α) †∂φ(α)

mTr Φ†Φ→ m

dα
Trφ(α) †φ(α)

λ
(
Tr Φ†Φ

)2 → λ

(
1

dα
Trφ(α) †φ(α)

)2

δTr Φ†ΦΦ†Φ→ δ

d3
α

Trφ(α) †φ(α)φ(α) †φ(α)

yTr ΦΨΨ′ → y

d2
α

Trφ(α)ψ(α)ψ′
(α)

1

g2
TrFF → dα

g2
TrF (α)F (α).

(2.20)

where Φ,Ψ and Ψ′ are bi-fundamental fields of the mother theory, while φα, ψα and ψ′α are

the corresponding daughter fields attached to the α-th node. Sums over repeated greek

indices are understood.

Finally, upon restoring the canonical normalization of the kinetic terms, the various

coupling constants in the daughter theory must therefore be rescaled as follows:

m→ m y → y√
dα

λ→ λ δ → δ

dα
g → g√

dα
.

(2.21)

The rescaling of the gauge and yukawa couplings may therefore be different for different

sectors in the daughter theory, a feature that will play a crucial role in the realization of

the accidental symmetry we are after. This is the subject of the next section.

2.4 Additional symmetries in orbifold models

Now that we have seen how various couplings rescale, we are in a position to try and say

something general about the symmetries of a daughter theory.

2.4.1 Exact and discrete

Our daughter theories can typically be described by a quiver structure (such as the one

in figure 1) involving gauge nodes with possibly different ranks, as dictated by the dimen-

sionality of G-irreps. This pattern extends to global symmetries as well. As a consequence

5The presence of δma in (2.17) is responsible for this factor.
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we can say that generally the daughter theory will enjoy a new kind of discrete symmetry

S~d, which is simply the symmetry group of the tuple of positive integers

~d = (d1, d2, . . . , dnG ) . (2.22)

For example, in the case that G = ZΓ, all dα are 1 and the symmetry group of the quiver is

simply S = SΓ. Another example is G = A4 for which there are three irreps of dimension

1, and one irrep of dimension 3, hence resulting in a quiver with an S3 symmetry group

permuting the three “sectors” corresponding to dα = 1.

The origin of S~d should be clear: an SU(ΓN) symmetry of the mother theory has a

Weyl subgroup SΓN , which gets broken by the orbifold to(∏
α

SdαN

)
× S~d (2.23)

with each factor in the product being a Weyl subgroup of SU(dαN), and the S~d acting

by permutations of different sectors (with dα = dβ). Each symmetry of the mother thus

contains such an S~d subgroup. However, the daughter theory only has a single S~d acting

“diagonally”, i.e. permuting all nodes and bifundamentals at once (see figure 1). The

explanation comes simply from the projection of bi-fundamental fields: the δµα in (2.17) is

what singles out the diagonal

S~d ⊂ S
(N)
~d
× S(F )

~d
⊂ SU(ΓN)× SU(ΓF ) . (2.24)

The effects of S~d are also clear: labeling sectors of the daughter theory by α = 1, . . . , nG ,

for any two sectors α, β with dα = dβ, the quantum action will be invariant under switching

the labels (α) ↔ (β) on all involved daughter fields. To give an example, any two fields

φ(α), φ(β) descending from the same mother field Φ are guaranteed to have equal masses to

all orders in perturbation theory

mφ(α) = mφ(β) . (2.25)

In the special case where G = Z2, the S~d is precisely the Z2 symmetry that protects the

Higgs mass in the twin Higgs model.

2.4.2 Accidental and continuous

While for certain orbifolds (such as G = ZΓ) the manifest S~d constraint is a powerful one,

more general discrete groups will feature irreps of various different dimensions, curtailing

the effectiveness of S~d. Surprisingly, another less manifest, but farther reaching feature

of orbifolds plays an analogous role. In addition to the exact discrete symmetry, orbifold

models — with a caveat to be stated presently — also enjoy an accidental continuous

symmetry.

More precisely, in a generic mother theory with bi-fundamental scalars ΦM
A of SU(ΓN)×

SU(ΓF ), the scalar potential will feature the following operators

Φ† A
M Φ M

A ,
(
Φ† A

M Φ M
A

)2
, Φ† A

M Φ N
A Φ† B

N Φ M
B , (2.26)
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whose orbifold projections readily follow from (2.17):

Φ† A
M Φ M

A 7→
∑
α

(φ(α) †) a
m (φ(α)) m

a (2.27)

Φ† A
M Φ N

A Φ† B
N Φ M

B 7→
∑
α

1

dα
(φ(α) †) a

m (φ(α)) n
a (φ(α) †) b

n (φ(α)) m
b (2.28)

where daughter fields have been canonically rescaled. Now the r.h.s. of (2.27) can be seen to

enjoy a large, continuous symmetry. Note from (2.18) that the field φ(α) has (dαN) · (dαF )

independent components, then recalling the identity
∑

α d
2
α = Γ, we see that the r.h.s.

of (2.27) is in fact6 an invariant of

Sacc = SU(ΓNF ) . (2.29)

On the other hand (2.28) breaks Sacc. Hence the caveat is that Sacc is only realized in

those theories for which the single-trace quartic operator is either absent entirely or much

smaller than the double-trace quartic.

We refer to Sacc as an accidental symmetry, since it holds at tree level, and is neither

preserved by possible gauge interactions nor by possible single-trace quartics of (2.28).7 We

mention en passant that quite generally for the models we will consider, Sacc is a symmetry

of the whole quadratic action (not just for the scalars), although this fact will not play a

role in the rest of this paper. We now come to the most important feature of Sacc: while it

is natural to expect that it be broken by one-loop corrections of the form shown in figure 2,

surprisingly this is not the case for the two-point function! In fact, with gauge interactions

turned on, one would expect that φ(α) † φ(α) and φ(β) † φ(β) would get corrected differently,

in particular when dα 6= dβ. However at this point something special happens: The dα
dependence from the Casimir cancels against the dα dependence from the rescaling of the

gauge coupling in (2.21), up to a 1
N suppressed correction. Concretely, the contribution to

the one-loop effective potential from gauge loops is given by

Veff ⊃
3

16π2

nG∑
α=1

(dαN)2 − 1

2dαN

(
g√
dα

)2

|φ(α)|2Λ2

=
3

32π2
g2N

(
nG∑
α=1

|φ(α)|2
)

Λ2 − 3

32π2

g2

N

(
nG∑
α=1

1

d2
α

|φ(α)|2
)

Λ2 .

(2.30)

The first term in (2.30) is again manifestly SU(ΓNF ) symmetric, while from the second

term we find a parametrically small breaking of Sacc, of the order

δm2 ∼ 3g2Λ2

32π2

1

N

(
1− 1

d2
nG

)
(2.31)

6An alternative viewpoint is the following. The l.h.s. of (2.27) is an invariant of SU(Γ2NF ), the effect

of the orbifold is to reduce the number of Φ-components by a factor of Γ, naturally breaking the symmetry

to SU(ΓNF ).
7This is distinct from “accidental symmetries” in the context of the Standard Model, which are “sym-

metries” that arise only because the genuine symmetries of the theory forbid relevant or marginal operators

violating the accidental symmetries.
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(φ(α))† φ(α)

g√
dα

g√
dα

Figure 2. Example correction the |φ(α)|2 oper-

ator in the daughter theory. The rescaling of the

gauge couplings compensates for the dα depen-

dence in the Casimir.

A(α)

(φ(α))†

φ(α)

(φ(α))†

φ(α)

Figure 3. Example correction to the |φ(α)|4 in

the daughter theory. The diagram only exists if

the φ(α) on all ends belong to the same sector.

where dnG is understood to be the irrep of G of largest dimension, and we used the fact

that any group G always admits an irrep of dimension one. Amusingly, in the G = ZΓ

case (which includes the Twin Higgs), this term vanishes exactly, affording an even softer

breaking of Sacc.

The roots of this crucial result reach deep into the nature of field-theoretic orbifolds:

a general theorem asserts that in the large-N limit the correlation functions of a daughter

theory should be identical to those of the mother, up to the usual rescaling of the coupling

constants [9–11]. In particular, the different mass terms φ(α) †φ(α) of daughter fields should

all be expected to converge to the mother’s Φ†Φ operator in the large N limit, compatibly

with (2.30). For the sake of clarity, it should be noted that such correspondence does not

necessarily entail a full-fledged duality of the two theories.8 More precisely, the necessary

and sufficient conditions for an actual orbifold equivalence were worked out in [13], and

may be violated in some of our models. This nevertheless does not affect our conclusions,

which revolve around the dynamics of the daughter theories, rather than on their putative

equivalence to mother theories.

For the quartic potential the situation is different: although it is Sacc-invariant at

tree-level, the symmetry is radiatively spoiled for this operator. This can be easily seen:

noting that

(Φ†Φ)2 7→
(∑

α

φ(α)†φ(α)
)2

=
∑
α

(φ(α)†φ(α))2 +
∑
α 6=β

(φ(α)†φ(α))(φ(β)†φ(β))
(2.32)

at one loop the first sum in the second line gets corrections from gauge interactions as

illustrated in figure 3, while no such corrections occur for the second sum. This undemo-

cratic treatment of terms is what spoils the symmetry. This is not in contradiction with

the above statement about the large N limit of correlation functions, since the orbifold

correspondence derived in [11] only applies to single trace operators.

8We thank Aleksey Cherman for bringing this to our attention.

– 12 –



J
H
E
P
0
3
(
2
0
1
5
)
1
0
6

2.5 An orbifold toolkit

Our analysis of the relevant aspects of field-theoretic orbifolds is now complete. Before

turning to applications, let us recollect them in the form of a “toolkit”, of which we will

make extensive use later. The recipe goes as follows:

• Identify the irreps of G, hence the canonical decomposition of the regular represen-

tation (cf. (2.1)).

• Write down the daughter theory: typically it will consist of a quiver gauge theory

with nG disjoint nodes, each one carrying a structure similar to that of the mother

theory. Specifically

– gauge and global symmetries break according to (2.12),

– gauge fields are given by (2.13) and (2.11); matter fields by (2.17).

• Identify the symmetries of the daughter theory: these include both

– the exact discrete symmetry S~d
– the accidental continuous symmetry Sacc: with the caveat about the single-

trace quartic stated above, for a mother scalar field in the bifundamental of

SU(ΓN)× SU(ΓF ) one has Sacc = SU(ΓNF ).

3 The Orbifold Higgs

With all our tools sharpened, we are now ready to apply them to the orbifold Higgs. All

results will be obtained as straightforward applications of the machinery from section 2,

without the necessity to perform any further computations. In this section we focus on a

detailed analysis of orbifold Higgs toy models, consisting only of the gauge, top and Higgs

sectors. A discussion of additional features of the Standard Model which aren’t directly

relevant to naturalness will be postponed to section 5. Consequently, readers should not

be too distressed by the anomalous nature of the ‘model fragments’ discussed here, an evil

which will be easily cured by putting the rest of the Standard Model back in; we are merely

focusing on the Orbifold Higgs equivalent of “natural supersymmetry”.

3.1 Setup and discussion

The general mother theory of Orbifold Higgs models has gauge symmetry SU(3Γ)×SU(2Γ)

as well as an SU(Γ) flavor symmetry (the purpose of the latter will be clarified below in

section 3.4). The matter content consists of a scalar H and two fermions Q and U , all

of which are taken to be bifundamentals in such a way that a gauge-invariant Yukawa

interaction term HQU is allowed. The content of this theory is summarized by table 1 and

the corresponding quiver diagram in figure 4. For clarity, we will use multi-indices A,B

for SU(2Γ), C,D for SU(3Γ), and M,N for SU(Γ) throughout the rest of this section.
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H

U

Q

2 �

3 �

�

Figure 4. The quiver diagram of the mother

theory. The circles are gauge symmetries, the

square represents the flavor symmetry.

SU(3Γ) SU(2Γ) SU(Γ)

H 1 � �

Q � � 1

U � 1 �

Table 1. Matter content of the

mother theory.

With the discussion of section 2.4.2 in mind, we take the single trace quartic operator

in (2.26) to be absent in the mother theory,9 and consider the following tree level potential

V [Φ] = −m2H† A
M H M

A + λ
(
H† A

M H M
A

)2
+ y H M

A Q A
C U C

M , (3.1)

up to irrelevant operators. Considering then an orbifold projection by a generic G, it

follows directly from the analysis of section 2.4.2 that the Higgs sector of the daughter

theory enjoys the accidental symmetry (2.29). In the case at hand Sacc = SU(2Γ) (where

Γ = |G| as usual), a further important feature — on which we will further elaborate below

— is that Sacc is preserved at one loop in the quadratic action. We then come to the essence

of the Orbifold Higgs: the daughter theory naturally features all the crucial ingredients at

work in the Twin Higgs mechanism, with the immediate generalization that the physical

Higgs will be a pseudo-goldstone boson of the accidental SU(2Γ). Orbifold Higgs models do

in fact provide a neat classification of generalizations of the Twin Higgs: for every discrete

group G one can write down an orbifold Higgs model. The Twin Higgs fits within this

classification as the simplest example, with G = Z2.

In the remainder of this section we will illustrate the mechanism with two explicit

examples involving an abelian and a non-abelian orbifold group, respectively. We further

comment on the importance of the bifundamentals in section 3.4 and briefly recollect the

general results in section 3.5.

3.2 Abelian example

The simplest generalizations of the Twin Higgs involve G = ZΓ orbifolds. For ZΓ all

dα = 1, and (2.12), (2.17) immediately indicate that the daughter theory will simply

involve Γ copies of the Standard Model Higgs sector.

Consider the standard multiplicative realization of ZΓ:

ZΓ = {1, ζ, . . . , ζΓ−1} , ζ = e2πi/Γ , (3.2)

9Note that a vanishing single trace quartic is strictly speaking an unnecessarily strong assumption: for

the orbifold Higgs mechanism to function, it in practice suffices that the single trace quartic enjoys a roughly

20% suppression with respect to the double trace quartic. We will further elaborate on this in section 4.
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where every ZΓ-irrep has dimension 1 and they read rsα = ζs α with s, α = 0, . . .Γ− 1. The

regular representation then takes the explicit form

γ1 =


1

ζ
. . .

ζΓ−1

 , γs =
(
γ1
)s
, s = 0, . . . ,Γ− 1 . (3.3)

For clarity, we also give the explicit form of the regular embedding of G into SU(2Γ) (an

analogous formula holding for SU(3Γ)):

γsN=2 =



1

1

ζs

ζs

. . .

ζs·(Γ−1)

ζs·(Γ−1)


. (3.4)

From the discussion of gauge symmetry breaking in section 2, the surviving gluons are

simply

A B
A = (A(α)) b

a δ β
α α, β = 0, . . . ,Γ− 1 a, b = 1, 2 ,

Ã D
C = (Ã(γ)) d

c δ δ
γ γ, δ = 0, . . . ,Γ− 1 c, d = 1, 2, 3 ,

(3.5)

and the corresponding gauge symmetry of the daughter theory reads10(
Γ−1∏
α=0

SU(2)(α)

)
×

Γ−1∏
γ=0

SU(3)(γ)

 . (3.6)

Matter fields are all bifundamentals, transforming under G as

H M
A 7→

(
γs ∗F

)M
N

(
γs2
) B

A
H N
B , (3.7)

Q A
C 7→ (γs ∗2 )AB (γs3) D

C Q B
D , (3.8)

U C
M 7→ (γs ∗3 )CD (γsF ) N

M U D
N . (3.9)

where γs2, γ
s
3 and γsF denote the regular embeddings of G into SU(2Γ), SU(3Γ) and SU(Γ)

respectively, and lower indices in matter fields are fundamental indices, while upper ones

correspond to anti-fundamentals. The invariant components follow directly from (2.17)

(h(α))a = H
(α,m)

(α,a) α = 0, . . . ,Γ− 1 , a = 1, 2 , m = 1 ,

(q(α)) a
c = Q

(α,a)
(α,c) α = 0, . . . ,Γ− 1 , a = 1, 2 , c = 1, 2, 3 , (3.10)

(u(γ))c = U
(γ,c)

(γ,m) γ = 0, . . . ,Γ− 1 , m = 1 , c = 1, 2, 3 .

10Recall the presence of extra U(1) factors in (2.12). We take them to be lifted by means of the Stueck-

elberg mechanism [14], see section 5 below.

– 15 –



J
H
E
P
0
3
(
2
0
1
5
)
1
0
6

h�0� h�1� h�2� h���1�

u�0� u�1� u�2� u���1�

q�0� q�1� q�2� q���1�

2 2 2 2

3 3 3 3

1 1 1 1

Figure 5. The daughter quiver theory of the ZΓ orbifold. Nodes are blind to each other with respect

to tree level gauge interactions, recall however that there will be cross-nodal quartic interactions for

the Higgs fields, descending from the mother theory quartic term. The SU(1) flavor node is trivial,

and is added to the figure for completeness only.

As a small aside, it is also instructive to take a look at explicit calculations, without

relying on (2.17); these turn out to be rather easy in the example at hand. For example,

from (3.3) and (3.7) the explicit transformation of the Higgs multiplet H M
A reads simply

ζs : H M
A 7→

(
ζs·α δ β

α δ b
a

) (
ζ−s·µ δµν δ

m
n

)
H

(ν,n)
(β,b)

(3.11)

from which one sees immediately that invariant components are indeed those with α = µ

(mod Γ), consistently with the prediction (3.10).

What kind of interacting structure does the daughter theory have? A glance at (3.10)

reveals that h(α) transforms as a doublet of SU(2)(α) and a singlet of all other daughter

gauge groups. Similarly (q(α)) a
c is in the 2⊗ 3 of SU(2)(α) × SU(3)(α) and a singlet under

everyone else, while (u(α))c is a 3 of SU(3)(α). Overall we find a daughter theory with

Γ sectors: each sector has gauge symmetry SU(2)(α) × SU(3)(α), together with matter

consisting of h(α), q(α), u(α) in the corresponding (bi)-fundamental representations. The

structure of this daughter theory is conveniently summarized by the quiver diagram of

figure 5, and fits nicely with the discussion below equation (2.17).

It furthermore follows from (3.10) that Yukawa and gauge couplings in the mother the-

ory generate corresponding interactions in the daughter theory, privately within each sector.

In ZΓ case the natural rescaling of couplings is trivial since all irreps have dimension one.

The quiver structure exhibits a discrete SΓ symmetry, acting on the quiver by permu-

tations of the nodes. This clearly coincides with S~d from section 2.4.1, and is therefore

also a symmetry of the potential. We recognize S~d = SΓ as the direct generalization of the

Z2 at the heart of the Twin Higgs (clearly, S2 ' Z2). As in the Twin Higgs, the role of

SΓ can be understood from a bottom-up perspective: its main role is to ensure that gauge

and yukawa couplings of all nodes are actually equal

y(α) = y(β) , g(α) = g(β) , ∀α, β (3.12)

This is both necessary and sufficient to ensure the radiative stability of the accidental

SU(2Γ) in the quadratic action:

V (1) ⊃ Λ2

16π2

(
−6y2 +

9

4
g2

2 + (4Γ + 2)λ

)(Γ−1∑
α=0

|h(α)|2
)
. (3.13)
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While in the Twin Higgs the crucial discrete symmetry was something of an ad-hoc as-

sumption, it is just a natural feature of the Orbifold Higgs!

3.3 Nonabelian example: S3

We now turn to the more involved non-abelian orbifolds. Here we analyze the simplest case

of S3, but our framework extends straightforwardly to other discrete non-abelian groups.

Another example, involving G = A4, has been relegated to appendix A.

Let us start by summarizing some basic facts about S3 and its representations. The

group elements read

g0 = e, g1 = (1, 2, 3), g2 = (3, 2, 1), g3 = (1, 2), g4 = (2, 3), g5 = (3, 1) . (3.14)

We will denote the three irreps

r0 : d0 = 1 trivial irrep

r1 : d1 = 1 sign irrep

r2 : d2 = 2 2× 2 matrices ,

(3.15)

in terms of which the regular representation decomposes as follows

γs = rs0 ⊕ rs1 ⊕ rs2 ⊕ rs2 . (3.16)

For additional clarity, the explicit form of the regular embedding of G = S3 into SU(12)

reads

γsN=2 =



rs0
rs0

rs1
rs1 (

rs2

)
2×2 (

rs2

)
2×2


, (3.17)

with a similar formula holding for SU(18).

The mother theory is once again summarized by table 1, where now Γ = 6 is fixed.

Following (2.12), the pattern of symmetry breaking is

SU(12) −→ SU(2)(0) × SU(2)(1) × SU(4)(2)

SU(18) −→ SU(3)(0) × SU(3)(1) × SU(6)(2)

SU(6) −→ SU(2)(2) (flavor) .

(3.18)

Note in particular that we have a residual SU(2) flavor symmetry, unlike in the abelian

case. For the sake of clarity, SU(12) multi-indices in this context take the following values:

A = (α, a, a) : α = 0, 1, 2 a =

{
1, 2 for α = 0, 1

1, . . . , 4 for α = 2
a =

{
0 for α = 0, 1

0, 1 for α = 2
(3.19)
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The SU(12) gauge fields (Ai) B
A surviving the orbifold are the block-diagonal ones

SU(2)(0) : (A(0),i0)
(0,b,0)

(0,a,0) a, b = 1, . . . , 2 i0 = 1, . . . , 3

SU(2)(1) : (A(1),i1)
(1,b,0)

(1,a,0) a, b = 1, . . . , 2 i1 = 1, . . . , 3

SU(4)(2) : (A(2),i2)
(2,b,b)

(2,a,a) a, b = 1, . . . , 4 a, b = 0, 1 i2 = 1, . . . , 15

(3.20)

Schur’s lemma requires the gauge fields of SU(4)(2) to be of the form

(A(α),i)
(2,b,b)

(2,a,a) = (A(α),i)
(2,b)

(2,a) δ b
a . (3.21)

Analogous statements apply to the surviving gluons of SU(18).

Turning to the flavor symmetry, the G-action on the SU(6)-flavor fundamentals reads

simply

(γsF ) N
M = (1F ⊗ γs) N

M = δ ν
µ δ n

m (rsµ) n
m

M = (µ,m,m) : µ = 0, 1, 2 m =

{
1 for µ = 0, 1

1, 2 for µ = 2
m =

{
0 for µ = 0, 1

0, 1 for µ = 2

(3.22)

We should then analyze projections of the matter fields. Starting with H, it transforms

under gs ∈ S3 as H M
A 7→ (γs2) B

A (γs ∗F )MN H N
B . Relying on (2.17), all that remains to

be done is to examine the invariant fields case by case, i.e. for α = 0, 1, 2.

α = µ = 0.

dα = dµ = 1 ⇒ a,m = 0, a = 1, 2, m = 1, (3.23)

so we are left with

(h(0))a = H
(0,m,0)

(0,a,0) in the � of SU(2)(0) , (3.24)

we suppressed the flavor index on the l.h.s. since it is fixed to m = 1.

α = µ = 1.

dα = dµ = 1 ⇒ a,m = 0, a = 1, 2, m = 1, (3.25)

so we are left with

(h(1))a = H
(1,m,0)

(1,a,0) in the � of SU(2)(1) , (3.26)

α = µ = 2.

dα = dµ = 2 ⇒ a,m = 0, 1, a = 1, . . . , 4, m = 1, 2, (3.27)

therefore the invariant combination is

(h(2)) m
a =

1√
2

(
H

(2,m,0)
(2,a,0) +H

(2,m,1)
(2,a,1)

)
, (3.28)
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mother theory d.o.f. SU(2)(0) SU(3)(0) SU(2)(1) SU(3)(1) SU(4)(2) SU(6)(2) SU(2)(2)

h(0) H
(0,m,0)

(0,a,0) � 1 1 1 1 1 1

h(1) H
(1,m,0)

(1,a,0) 1 1 � 1 1 1 1

h(2) 1√
2

(
H

(2,m)

(2,a,0) +H
(2,m,1)

(2,a,1)

)
1 1 1 1 � 1 �

q(0) Q
(0,a,0)

(0,c,0) � � 1 1 1 1 1

q(1) Q
(1,a,0)

(1,c,0) 1 1 � � 1 1 1

q(2) 1√
2

(
Q

(2,a,0)

(2,c,0) +Q
(2,a,1)

(2,c,1)

)
1 1 1 1 � � 1

u(0) U
(0,c,0)

(0,m,0) 1 � 1 1 1 1 1

u(1) U
(1,c,0)

(1,m,0) 1 1 1 � 1 1 1

u(2) 1√
2

(
U

(2,c,0)

(2,m,0) + U
(2,c,1)

(2,m,1)

)
1 1 1 1 1 � �

Table 2. Matter content of the daughter theory for the S3 orbifold.

h�0� h�1� h�2�

u�0� u�1� u�2�

q�0� q�1� q�2�

2 2 4

3 3 6

1 1 2

Figure 6. The daughter quiver theory of the S3 orbifold. The flavor nodes for the first two sectors

are trivial. Sectors are blind to each other with respect to tree level gauge interactions, recall

however that there will be cross-nodal quartic interactions for the Higgs fields, descending from the

mother theory quartic term.

in the � × � of SU(4)(2) × SU(2)(2). As expected from our general discussion of the

bifundamental orbifold (cf. figure 1), we find a nontrivial flavor symmetry on the α = 2

node (in the case at hand F ·d2 = 2), indeed this exotic node the Higgs sector consists of a

flavor doublet of quadruplets! The analysis for the Q and U fields is completely analogous

and the full matter content of the daughter is summarized by table 2 and figure 6. Just like

in the abelian case of section 3.2, the Yukawa and gauge couplings in the mother theory

generate corresponding interactions in the daughter theory, privately within each sector.

Before turning to the symmetry properties of the daughter theory, let us provide a

simple check of our results. Rather than presenting the explicit computation of the matrix

elements of projectors (a straightforward but unenlightening exercise), we will be content

with a simpler, partial check. The Clebsch-Gordan decomposition for the S3 irreps can be

obtained by means of standard representation theory, and reads

r0 ⊗ rα = rα α = 0, 1, 2

r1 ⊗ r1 = r0 r1 ⊗ r2 = r2

r2 ⊗ r2 = r0 ⊕ r1 ⊕ r2 .

(3.29)
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This provides a simple way of counting the number of surviving Higgses: the tensor product

of gauge and flavor S3-representations decomposes into

γ2 ⊗ γF = 12 ⊗ γ ⊗ γ
= 12 ⊗

(
16 ⊗ r0 ⊕ 16 ⊗ r1 ⊕ 112 ⊗ r2

) (3.30)

meaning that the orbifold should preserve 6 · 2 Higgs degrees of freedom, which correctly

account for all 12 components predicted from our application of (2.17) above.

Just like in the ZΓ case, from the quiver structure in figure 6 we can immediately read

off both the exact discrete symmetry S~d and the accidental continuous symmetry Sacc:

the former is now the Z2 from permuting the α = 0, 1 sectors, the latter is an SU(12)

rotating the h(α). However in contrast to the ZΓ orbifold, the discrete symmetry alone is

not sufficient the guarantee the radiative stability of the full SU(12) accidental symmetry

of the quadratic action. Here the rescaling of the coupling constants, as dictated by the

orbifold, plays a crucial role. In the case of the S3 example, the couplings rescale as

y = y(0) = y(1) and y(2) =
y√
2

g = g(0) = g(1) and g(2) =
g√
2

(for both gauge groups).
(3.31)

Recall from the discussion of section 2.4.2 that the rescaling of the gauge couplings is just

right to ensure that the SU(12) accidental symmetry of the one-loop quadratic action is

only broken by a parametrically small amount. A similar argument holds for the yukawa

couplings

V (1) ⊃ − 3

8π2
y2Λ2

1∑
α=0

|h(α)|2 − 3× dα
8π2

(
y√
dα

)2

Λ2|h(2)|2

= − 3

8π2
y2Λ2

2∑
α=0

|h(α)|2.

(3.32)

Observe that the one loop correction from the top yukawa is the same for all sectors

of the quiver, regardless of their size dα. The last line in (3.32) is therefore manifestly

SU(12) symmetric.11 With (3.32) taken into account, the full quadratic one loop effective

action reads

V (1) ⊃ 1

16π2

(
−6y2 +

9

4
g2

2 + 26λ

)
Λ2

(
2∑

α=0

|h(α)|2
)

+
9g2

2

256π2
Λ2|h(2)|2 (3.33)

manifestly exhibiting the SU(12) symmetry, up to the last term which is parametrically

small and acceptable for a cutoff in the tens of TeV. As such, in the S3 orbifold Higgs

model it is fair to identify the Higgs as a pseudo goldstone boson of the full approximate

accidental SU(12) symmetry.

11A similar argument could be made for the single trace quartic, if one were to include it in the model.
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3.4 The fundamental role of bifundamentals

Before proceeding towards more complete models, we briefly comment on the essential role

of the flavor symmetry. Consider the abelian case for instance: had we not included the

flavor symmetry for the Higgs field, we would have got only HA = H(0,a) surviving in

the daughter theory. This would not only spoil the SΓ symmetry, but would also leave

us with far fewer degrees of freedom than needed for generalizing the twin Higgs model.

Conversely, had we included a third symmetry group acting nontrivially on H, we would

have introduced extra unwanted degrees of freedom in the daughter theory. To illustrate

this, notice that a straightforward generalization of (3.11) would read

gs : H MR
A 7→ ζs·(α−µ−ρ)H MR

A , (3.34)

such that the surviving fields would manifestly be those with α = µ + ρ (mod Γ). We

would then be left with Γ Higgs doublets for each node of the daughter quiver, instead of

just a single one.

These considerations — just direct consequences of standard representation theory —

clearly carry over to all matter fields of the mother theory. Hence, generally speaking,

in order to retain a number of degrees of freedom that is suitable for model-building, the

mother theory matter fields should all transform in bifundamentals of those gauge or flavor

groups on which G acts via the regular embedding. This fact carries important consequences

for models of phenomenological interest and we will return to this below in section 5. We

stress that, for the purpose of orbifolding matter fields, the distinction between flavor and

gauge symmetries is immaterial. In fact, in the context of grand unified theories we will

show that the flavor symmetry exploited in our toy models should be replaced by a gauge

symmetry.

We hope to have convinced the reader, by means of the analysis in sections 3.2 and 3.3,

of just how straightforward it is to “carry out” orbifolds in the regular representation with

bifundamental matter. Nevertheless, a generalization beyond bifundamentals — while

probably uninteresting for Orbifold Higgs models — is clearly possible, and in principle

straightforward to carry out: the main extra difficulty is that (2.16) would not be valid in

general, but this is easily fixed by the explicit knowledge of the irreps of G, which would

allow the construction of explicit projectors.

3.5 A model-builder’s guide to the Orbifold Higgs

Although straightforward applications of standard orbifold technology, some of the tech-

nicalities of the notation in section 2 may obscure the simple nature of Orbifold Higgs

models. Nevertheless the overall lessons are both general and simple, and in this section

we recollect them into a practical model-builder’s guide to Orbifold Higgs models.

Generally speaking, for any given G all that is needed to write down the daughter model

is really the tuple {dα}α of dimensionalities of G-irreps. These can be usually obtained by

means of standard representation theory, or simply from the math literature. Much of the

structure of Orbifold Higgs models is encoded into this simple data, as follows

• the model has one sector for each G-irrep
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• the α-th sector includes SU(2dα)×SU(3dα) gauge nodes, as well as an SU(dα) flavor

node

• each sector contains a single bi-fundamental fermion (q(α)), together with a flavor

dα-plet of scalars (h(α)) in the fundamental of SU(2dα), and another flavor dα-plet of

fermions (u(α)) in the anti-fundamental of SU(3dα)

• the gauge and yukawa couplings of each sector satisfy(
g(α)

g(β)

)2

=
dβ
dα

and

(
y(α)

y(β)

)2

=
dβ
dα

∀ α, β (3.35)

• the tree-level Higgs potential is (approximately) SU(2Γ) symmetric, this follows from

the orbifold picture — with the caveat that the single trace quartic operator in (2.26)

be subdominant or absent in the mother theory.

These basic properties then ensure that the accidental symmetry is automatically preserved

for the two-point function of the h(α) at one loop. Moreover it is guaranteed that the model

descends from an orbifold projection of a theory of the form shown in table 1, providing a

natural avenue to a possible UV completion. One last nice feature worth keeping in mind

is that every discrete group G has at least one irrep of dimension one, namely the trivial

representation: this means that every Orbifold Higgs model is guaranteed to contain at

least one sector which can be identified with the Standard Model. When the h(α) acquire

vacuum expectation values, the Standard Model-like Higgs may then be identified as a

pseudo-goldstone boson of the spontaneously broken accidental symmetry.

Finally we would like to stress that, while the examples considered in sections 3.2

and 3.3 are just the two simplest applications, the scope of applicability of our formalism

clearly extends well beyond them, and we hope these techniques will prove useful in future

investigations of related ideas.

4 A Standard Model-like Higgs

Thus far we have demonstrated that orbifolds of a mother theory can give rise to daughter

theories exhibiting an accidental symmetry of the collective Higgs sector. A parametrically

light Standard Model-like Higgs arises as a pseudo-goldstone boson of the spontaneous

breaking of this accidental symmetry, with the gauge bosons and fermions of the various

daughter sectors playing the role of partner states protecting the weak scale. Although the

general mechanism is clear, it is useful to see how orbifold Higgs theories can give rise to

a parametrically light Standard Model-like Higgs in an explicit toy example. The physics

of the G = Z2 case is identical to the twin Higgs [3], so to manifest the general features of

the orbifold Higgs, let us consider the case of G = Z3.

4.1 The Z3 vacuum

As we saw in section 3, the parent theory consists of an SU(9)× SU(6) gauge theory with

matter fields H,Q,U transforming under the gauge group and an SU(3) flavor symmetry
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as detailed in table 1. The tree-level potential for this toy model is simply

Vp = −m2 |H|2 + λ(|H|2)2 + δTr[H†HH†H] + y HQU (4.1)

where we include both a single-trace quartic δ and a double-trace quartic λ, with the

understanding that δ � λ for a viable model.

The daughter theory consists of an
∏2
α=0 SU(3)(α) × SU(2)(α) gauge theory (again

omitting U(1) factors). Each gauge sector labeled by α contains a Higgs doublet h(α),

SU(3)-triplet/SU(2)-doublet quark q(α), and SU(3)-triplet/SU(2)-singlet quark u(α). The

Standard Model weak and color sectors can be identified with, say, the α = 0 copy. The

Higgs potential is

Vd = −m2

(∑
α

|h(α)|2
)

+λ

(∑
α

|h(α)|2
)2

+δ

(∑
α

|h(α)|4
)

+y

(∑
α

h(α)q(α)u(α)

)
(4.2)

where we have taken care to group the fields in such a way as to emphasize the SU(6)-

symmetric form of the mass terms and double-trace quartic λ. Of course, this is merely the

tree-level quartic. As emphasized in section 2.4.2, radiative corrections to the mass terms

preserve the SU(6)-symmetric form,12 while radiative corrections to the quartics contribute

to both λ and δ. If δ � λ at tree level in the parent theory, these additional radiative

corrections to δ remain adequately small provided a modest hierarchy between the cutoff

and the weak scale.

The potential (4.2) possesses an absolute minimum with nonzero vevs for all three h(α),

namely |〈h(α)〉|2 = m2/(3λ + δ). This higgses the accidental SU(6) with order parameter

f2 =
∑

α |〈h(α)〉|2 = m2

λ+δ/3 . The vevs also higgs all three SU(2) gauge groups, such that

nine of the twelve real degrees of freedom in the h(α) are eaten. Of the remaining three

states, one corresponds to the radial mode of spontaneous SU(6) breaking, while the other

two are uneaten pseudo-goldstones of the same spontaneous breaking. However, at this

stage neither of the two goldstones may be identified with an SM-like Higgs; they are

maximally-mixed linear combinations of components of h(α) and, moreover, the weak scale

is not well-separated from the scale of SU(6) breaking since 〈h(0)〉 = v = f/
√

3. These

properties are clearly expected from the full discrete S3 symmetry of the daughter theory.

To obtain a realistic vacuum, the potential should be perturbed by terms that break the

daughter S3 (and hence also the accidental SU(6)). Such terms may be either soft (i.e. mass

terms) or hard (i.e. quartic couplings). While these terms are incompatible with the parent

symmetries, they may be introduced in geometric orbifolds as we will further discuss in the

next section. Soft breaking terms have the virtue of preserving radiative stability at the

cost of some amount of tree-level tuning, while hard breaking terms introduce additional

radiative sensitivity to the cutoff but no associated tree-level tuning.

For simplicity, let us consider breaking the S3 and SU(6) by soft terms, which we

choose to be of the form ∆V = ρ2
(
|h(0)|2 − 1

2 |h
(1)|2 − 1

2 |h
(2)|2

)
. The specific form is chosen

12We emphasize that radiative corrections to the mass proportional to λ and δ both preserve the SU(6)

symmetry of the mass terms; as we will elaborate shortly, the smallness of δ is desired to keep the SM-like

Higgs quartic sufficiently small, rather than due to radiative considerations.
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merely to simplify expressions; any general S3-breaking mass terms would suffice. Under

this perturbation the vevs are

v2 ≡ v2
0 =

m2

3λ+ δ
− ρ2

δ
v2

1 = v2
2 =

m2

3λ+ δ
+
ρ2

2δ
(4.3)

while f has been kept fixed. Now arbitrary parametric separation between the weak scale

and SU(6) breaking, v � f , can be achieved by tuning ρ2/δ against m2/3λ, a tree-level

tuning of order 3v2/f2. As we will see, this is ultimately not a prohibitive tuning for realistic

theories, and indeed grows increasingly modest with larger values of Γ. Expanding in terms

of v/f , there is now a goldstone mode h ∼ −
(

1− v2

2f2

)
h

(0)
0 + 1√

2
v
f h

(1)
0 + 1√

2
v
f h

(2)
0 of mass

m2
h ∼ 3δv2. This state may be identified with the Standard Model-like Higgs, as it is

aligned with the weak vev up to O(v2/f2) corrections. Its mass and quartic are of suitable

size provided δ ∼ λSM , i.e., the radiatively-corrected single-trace quartic is of the order of

the Standard Model Higgs quartic. This is the reason for requiring δ to be small; if δ were

of order the double-trace quartic λ, the SU(6) would be badly broken and this would be

reflected in a large quartic coupling for h. The remaining goldstone is h′ ∼ − 1√
2
h

(1)
0 + 1√

2
h

(2)
0

with mass m2
h′ ∼ δf2, while the radial mode is hR ∼ v

f h
(0)
0 + 1√

2
h

(1)
0 + 1√

2
h

(2)
0 with mass

m2
hR
∼ 2λf2. Thus we arrive at a theory with a parametrically light SM-like pseudo-

goldstone Higgs, a second pseudo-goldstone mode primarily aligned with the non-SM weak

sectors and heavier by an amount ∝ f/v, and a heavy radial mode.

As in any global symmetry scheme for a light Higgs, the maximum value of v relative

to f is set by phenomenological considerations. The SM-like Higgs is rotated away from

alignment with the SM vacuum expectation value by an amount ∼ v2/f2, leading to Higgs

coupling deviations of the same order. The collective O(10%) precision of LHC Higgs

coupling measurement suggests v2/f2 ∼ 0.1. If the smallness of v is explained by soft

breaking of the S3 as described above, this corresponds to a modest ∼ 30% tuning in the

potential — exceedingly natural by current standards.

The sense in which the gauge bosons and fermions of the non-SM sectors play the role of

conventional partner particles despite not carrying Standard Model quantum numbers can

be made explicit by integrating out the radial mode and studying the induced couplings of

these states to the SM-like Higgs. Integrating out hR gives rise, for example, to interactions

of the form

L ⊃ −1

2
yfq

(1)
0 u(1) − 1

2
yfq

(2)
0 u(2) +

y2h2

4yf
q

(1)
0 u(1) +

y2h2

4yf
q

(2)
0 u(2) (4.4)

precisely the form of top partner couplings expected from a pseudo-goldstone Higgs, with

the wrinkle that the role of top partner is shared in part by top quarks of two different

sectors.

4.2 Generalizations: ZΓ and S3

Although we have focused here on G = Z3, the generalization to ZΓ is straightforward.

There are Γ − 1 uneaten pseudo-goldstone states; soft or hard breaking of the SΓ allows

v � f and one pseudo-goldstone to be identified with the SM-like Higgs. In the case of soft
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breaking, the tree-level tuning required for v � f decreases with increasing Γ [15], though

even for Γ = 3 the apparent tuning is nominal. The remaining Γ− 2 pseudo-goldstones are

heavier by an amount f/v and mostly aligned with non-SM weak sectors, while the roles

of partner states are played by admixtures of states in the various non-SM sectors.

More exotic cases such as G = S3 proceed along similar lines. Here there are modest

radiative perturbations to the structure of the potential since there are three sectors but

the exact discrete symmetry of the daughter theory is only S2. This is reflected in the

fact that radiative quartics in the SU(4) sector are half as large as those in the SU(2)

sector. The relative rescaling of gauge and yukawa couplings for sectors of different size

dα ensures that radiative corrections to the quadratic potential (proportional to y2 and

g2 at one loop) remain the same between sectors, but consequently implies that radiative

corrections to the quartic potential (proportional to y4 and g4 at one loop) differ. Similarly,

the 1/N -suppressed mass corrections introduce additional perturbations to the potential.

The quartic perturbation serves to align the SU(12)-breaking vev primarily with the SU(4)

gauge sector, while the mass perturbation may work in either direction depending on the

sign of the cutoff Λ2 for gauge loops and depends on the details of the UV completion.

In any event, numerically the quartic dominates to give the SU(4) gauge sector a larger

share of the SU(12)-breaking order parameter than the SU(2) gauge sectors. In contrast

to the ZΓ case, the breaking of the approximate global SU(12) symmetry does not lead to

the complete breaking of the gauged SU(4), but rather leaves behind an unbroken SU(3)

gauge group. This residual group may confine depending on the sign of the beta function

or be higgsed upon confinement and chiral symmetry breaking in the accompanying SU(6)

color group. There are now ten uneaten pseudo-goldstones, of which eight combine to

form an approximate two-Higgs-quadruplet model of the SU(4) gauge sector. Without

further perturbation of the potential, the remaining pair of pseudo-goldstones arrange

into maximally-mixed combinations of states in the two SU(2) gauge sectors. A further

perturbation of the potential by hard or soft S2-breaking terms results in one pseudo-

goldstone mode being identified with the SM-like Higgs. As in the case of ZΓ, the role of

the top partner is played by a collection of top quarks in the non-SM sectors, albeit now

including states charged under an SU(6) color group! For these states the multiplicity and

top yukawa scale precisely in tandem to cancel the quadratic sensitivity of the Standard

Model top loop: the color trace now gives a factor of six, but the top yukawa-squared is

scaled down by a factor of 2. While this example may seem baroque, it provides — to our

knowledge — the first concrete example of a natural theory based on symmetries where the

relative multiplicity and coupling of top partners is scaled in such a way as to preserve

cancellation of quadratic divergences at one loop.

5 UV completions

Up to this point we have focused on toy models to illustrate how the orbifold Higgs can

protect the weak scale from radiative corrections related to the top and weak gauge sectors

of the Standard Model. In this section we illustrate how these toy examples can be extended
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to complete models with all the features of the Standard Model. In general, any realistic

model building effort necessarily breaks up into two parts:

1. Write down the ‘core’ of the model which consists of the non-abelian gauge fields

and H, Q and U . As was discussed in section 3, this step is close to trivial and fully

specified by the choice of orbifold group.

2. Dress the core model with the hypercharge interactions and the remaining Standard

Model fields. Viable models typically include ingredients that do not transform as

irreducible representations of the mother symmetry. From the four-dimensional per-

spective these correspond to introducing incomplete multiplets, which naturally arise

in geometric orbifolds or deconstructions thereof. In this step the model builder will

have to make a number of choices, as we will see in the remainder of this section.

While detailed treatment of UV completions is beyond the scope of this work, here we

will discuss qualitative features of possible geometric constructions and summarize a few

possible options for incorporating Standard Model hypercharge.

5.1 Geometric orbifolds

As explained in the introduction, the orbifold Higgs boils down to a linear σ-model where

the Higgs is identified with a pseudo-goldstone boson of an accidental symmetry of the

quadratic action. This linear σ-model should be UV completed at a scale Λ, where the full

symmetry of the mother theory is assumed to be largely restored. Any hierarchy problems

in the mother theory above the cutoff may be solved in the usual ways, such as supersymme-

try or compositeness, without observable consequences below the cutoff. A straightforward

way to obtain such a UV completion is through the geometric interpretation of the orb-

ifold in a model with extra space-time dimensions [16].13 Not only does the geometric

orbifold naturally provide a justification for the presence of the accidental symmetries of

the low energy effective action, it also provides a mechanism for introducing incomplete

multiplets of the mother symmetry through states localized on lower-dimensional defects

of the higher-dimensional theory. This permits, for example, the introduction of first- and

second-generation Standard Model fermions without corresponding partners in other sec-

tors. Among other things, this alleviates the tension of the conventional twin Higgs with

cosmology by reducing the number of light species.

Ultraviolet completions of Z2 orbifolds in terms of the dimensional reduction of a

five-dimensional theory on an interval with non-trivial boundary conditions are well un-

derstood in the context of Scherk-Schwarz supersymmetry breaking [19] and GUT model

building [20–25]. A priori there are several ways in which orbifold Higgs models can be em-

bedded in these UV completions. Perhaps the simplest possibility is to consider a single Z2

which acts identically on both boundaries. This type of orbifold reduces the symmetries

sufficiently in a non-supersymmetric context. In supersymmetric models it is also suffi-

cient to reduce the gauge and global symmetries, but some additional soft supersymmetry

breaking is needed to fully break the N=2 bulk supersymmetry. In this case the low energy

13For reviews on the subject, see for instance [17, 18].
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theories are generalizations of the supersymmetric twin Higgs [26, 27]. Alternatively, one

could consider inequivalent orbifolds on both boundaries, which corresponds to a Z2 ×Z′2
orbifold. Note that the extra Z2 may be embedded trivially on the target space, leading to

an unreduced symmetry on one of the boundary manifolds. (See [28] for a recent example

in the context of the twin Higgs.14) A non-trivial Z2 × Z′2 orbifold is however especially

useful in supersymmetric models, where it can act on the SU(2)R symmetry as well as

gauge & global symmetries to fully break the N=2 supersymmetry without the need for

additional soft terms. In this case the low energy theories are generalizations of folded

supersymmetry [8]. For simplicity, we set aside supersymmetry and restrict ourselves to

simplest Z2 case with equivalent boundaries. As was mentioned before, any fields which

only fit in representations of the daughter but not in representations of the mother can be

localized on one of the boundaries. Since we choose to treat both boundaries on the same

footing by the Z2 orbifold, the choice on which brane to localize certain fields is arbitrary,

as long as all desired, purely 4D interactions are allowed by the construction. For book-

keeping purposes, it is however somewhat convenient to localize any extra Standard Model

and dark sector fields on their own, separate branes, but this is by no means essential.

For genuine ZΓ orbifolds (with Γ > 2), however, there is no geometric action on

R1,3 × S1 yielding fixed points, and one is forced to consider at least a six-dimensional

setup. A simple possibility is to consider R1,3×S2 with ZΓ acting by rotations on S2; the

poles of the 2-sphere are then the fixed orbifold points. More generally, Sn orbifolds may

be realized geometrically by exploiting the Sn action on an (n − 1)-sphere.15 Concretely,

considering the unit sphere in Rn,
n∑
i=1

x2
i = 1 (5.1)

we may take the Sn to act by a permutation on the ambient coordinates xi. Again we find

two antipodal orbifold points:

xi =
1√
n

and xi = − 1√
n
, ∀i . (5.2)

It is worth emphasizing that geometric completions provide a natural context for lifting

any unwanted U(1) gauge groups via the Stueckelberg mechanism, as alluded to in previ-

ous sections. This would consist of a generalized Green-Schwarz mechanism in a higher-

dimensional theory, and may give mass to both anomalous and non-anomalous U(1) gauge

fields [29–31] (for a nice discussion, see [32]). When U(1) factors are lifted in this way, they

leave behind U(1) global symmetries in the infrared, which in turn induce selection rules

governing yukawa couplings. Note that in all the cases we have considered, the top yukawa

is automatically compatible with such selection rules.

It is also possible to realize the physics of geometric orbifolds in a purely four-

dimensional context through dimensional deconstruction [33]. The bulk physics is re-

produced by some number of sites possessing the gauged parent symmetry group, while

14Note that strictly speaking the example in [28] is formulated in terms of Dirichlet/Neumann boundary

conditions rather than orbifold symmetries.
15We thank Duccio Pappadopulo for bringing this to our attention.
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defect physics is reproduced by a single site with only the daughter symmetries gauged.

For example, the simple [SU(6)× SU(4)]/Z2 orbifold can be reproduced by a simple two-

site model where one site consists of an SU(6) × SU(4) gauge group and the other of

an [SU(3) × SU(2)]2 gauge group, higgsed down to a diagonal [SU(3) × SU(2)]2 group

by the vacuum expectation values of scalars transforming as bi-fundamentals of the two

sites. Generically third generation fermions should be charged under the parent site, while

first- and second-generation fermions can be charged under the daughter site. Provided

the gauge couplings of the parent site are much smaller than the gauge couplings of the

daughter site, the gauge couplings of the diagonal massless [SU(3)× SU(2)]2 gauge bosons

will be largely inherited from the parent couplings. It is relatively straightforward to

generalize this construction to other abelian orbifolds, including orbifold reduction of su-

persymmetry [34]. However, to our knowledge only abelian orbifolds have been reproduced

by dimensional deconstruction; it should also be possible — and quite interesting — to

deconstruct non-abelian orbifolds as well.

5.2 Matter fields, hypercharge and unification

Once we committed to a choice of orbifold group and geometry, what remains to be done

is to add the hypercharge interactions and the remaining matter fields subject to consid-

erations of anomaly cancellation. For simplicity, in this section we restrict ourselves to

the Z2 orbifold with the understanding that the key features can be readily generalized to

generic G,16 in a rather straightforward manner, by means of the constructions discussed

in previous sections.

As mentioned above, Z2 orbifolds enjoy a natural geometric realization on R4×S1/Z2

and such constructions are automatically anomaly free provided the 4D low energy theory

is anomaly free [35]. To incorporate hypercharge interactions, first note that a U(1) gauge

symmetry of the mother theory would survive the orbifold intact (as is evident from (2.9))

and therefore it follows that all fields in the daughter theory would be charged under it.

This scenario is highly constrained by direct searches for states coupling through the Z;

heavy Z ′s; and heavy stable charged particles, and for simplicity we do not pursue this

option any further.

An attractive and viable alternative is for the hypercharge group to arise in the

daughter theory from orbifolding a non-abelian gauge group (recall the extra U(1) fac-

tors in (2.12), which we have thus far neglected), in which case the dark sectors do not

necessarily need to carry hypercharge quantum numbers. However in this scenario, the

fact that Q must be a bifundamental (for the reasons discussed in section 3.4) demands

that at least one of the generators contributing to hypercharge must be embedded in the

non-abelian groups from which the color and weak isospin groups ultimately descend.17 In

16With the obvious caveat that anomaly issues are quite different in 5 and 6 dimensions.
17This non-abelian hypercharge embedding also has implications for possible kinetic mixing between

U(1) factors in the daughter theory, which is tightly constrained if additional U(1) bosons remain massless.

In general, low-scale embedding of U(1) factors into non-abelian groups leads to vanishing kinetic mixing,

though in UV complete models splittings in unified multiplets may give rise to suppressed contributions [36].

While kinetic mixing is extremely small at the level of the daughter theories and may be rendered entirely
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other words, the phenomenology of these models enforces (partial) gauge coupling unifica-

tion! Interestingly, ultra low scale (∼ 10 TeV) gauge coupling unification may be achieved

rather easily in higher dimensional models [37, 38] In what follows, we merely assume gauge

coupling unification at a scale below the cut-off of the 5D model. With this assumption,

we sketch several possible ways by which a more complete model may be achieved, without

attempting to provide an exhaustive list. In particular, we restrict ourselves to the ‘mini-

mal’ setup, where only the third generation is required to reside in the bulk, while the first

two generations are confined on the Standard Model brane.

5.2.1 U(6)×U(4)

Consider a mother U(6) × U(4) gauge theory in the bulk, for which there are 4 U(1)’s

surviving the orbifolding procedure: two come from decomposing the unitary groups into

a product of the U(1) with a special unitary group, while the other two U(1)’s are of the

type in (2.12). Concretely, in a suitable choice of basis the generators read

T (6) =

(
13

13

)
T ′(6) =

(
13

−13

)

T (4) =

(
12

12

)
T ′(4) =

(
12

−12

)
(5.3)

where the subscripts on the generators denote which unitary group in the mother theory

they descend from. Needless to say, they only act non-trivially on the subspace on which

their corresponding gauge group in the mother theory acts. The following linear combi-

nation of generators reproduces the correct Standard Model hypercharge with zero charge

for the fields in the twin sector:

Y =
1

3
(T (6) + T ′(6)) +

1

4
(T (4) + T ′(4)). (5.4)

Note that to preserve charge quantization, we implicitly assumed gauge coupling unifi-

cation in (5.4). The remaining linear combinations may be lifted with the Stueckelberg

mechanism. Interestingly, in this model, the hypercharge assignments of all the bulk fields

are fully fixed by their representations under the U(6)×U(4) in the bulk. It is therefore not

possible to add the rest of the Standard Model to the bulk and we must localize these fields

on the Standard Model brane. The Standard Model sector is anomaly free by construc-

tion, but the twin sector is not. This can be addressed by defect-localizing some spectator

states charged under the dark gauge groups, without spoiling the one loop protection of

the Higgs.

Finally, observe that the T (6) generator trivially commutes with all other generators,

and plays the role of the baryon number in the mother theory. While Standard Model

baryon number in the daughter theory is violated, B + B′ is preserved, with B and B′

innocuous by lifting additional U(1) factors with the Stueckelberg mechanism, it would be interesting to

study kinetic mixing in UV complete theories with low-scale unified embeddings to see if constraints are

naturally satisfied for additional massless U(1)’s.
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the baryon number in Standard Model and the twin sector respectively. This implies that

neutron/anti-neutron oscillations are always forbidden. The proton on the other hand

may decay, but only to a final state carrying hidden sector baryon number. Generically,

we expect the lightest twin baryon to be heavier than the proton, in which case proton

decay is kinematically forbidden. Even if this is not the case, the proton decay to the

twin sector would occur through a dimension 12 operator, and since the proton degrees

of freedom are confined on the brane, the decay would have to occur through mixing

with the third generation. The high dimensionality of the operator in combination with

the CKM suppression ensures that the bounds on invisible proton decay from the SNO

experiment [39] are easily evaded, even if the dark baryons are lighter than the proton.

5.2.2 Pati-Salam unification

Another simple alternative is to consider a generalization of Pati-Salam unification [40].

Concretely, consider the orbifold

SU(8)× SU(4)× SU(4)/Z2 → [SU(4)× SU(2)× SU(2)]2 ×U(1)3. (5.5)

Each Pati-Salam factor in the daughter will then provide its own hypercharge gauge group

after the usual breaking to SU(3) × SU(2) × U(1), ensuring that the twin states are dark

under the Standard Model hypercharge. Also here the additional U(1) factors are lifted

with a Stueckelberg mechanism. The matter content of a single generation plus twin

particles fits in a

(8, 4̄,1)⊕ (8̄,1,4)→ (4, 2̄,1)sm ⊕ (4̄,1,2)sm ⊕ (4, 2̄,1)twin ⊕ (4̄,1,2)twin (5.6)

while two Higgs fields with opposite hypercharge plus their twin partners fit in

(1,4, 4̄)→ (1,2, 2̄)sm ⊕ (1,2, 2̄)twin (5.7)

In the Pati-Salam setup a two Higgs doublet model is therefore a natural possibility and in

this case and all third generation Standard Model representations may be put in the bulk.

Both the twin and the SM sectors are then anomaly free by construction.

Although the Pati-Salam gauge sector does not commute with baryon number, the

latter is nevertheless preserved in all low energy processes if the Pati-Salam symmetry

is broken down to the Standard Model by a GUT orbifold mechanism. For the hidden

sector decays, the argument from the U(4) × U(6) model can then be generalized to the

effective baryon number of the Pati-Salam setup.18 For low scale Pati-Salam models, there

furthermore are a number of interesting constraints from rare meson decays, which probe

unification scales as high as ∼ 103 TeV, if all generations reside in the bulk. (For a recent

update on these constraints, see [41] and references therein.) In the orbifold Higgs scenario

it however suffices that the only the third generation resides in the bulk, in which case we

expect the constraints on the unification scale to be substantially weaker. While we do not

attempt it here, a more detailed analysis of the flavor constraints would be interesting.

18If the dark baryons are lighter than the proton and if one allows for more than one generation in the

bulk, the proton decay rate may be enhanced to the extend that it could be experimentally accessible.
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5.2.3 Trinification

A final example consists of a similar generalization of trinification [42]. Concretely, consider

the breaking pattern

SU(6)× SU(6)× SU(6)/Z2 → [SU(3)× SU(3)× SU(3)]2 ×U(1)3 (5.8)

As in the Pati-Salam case, one copy of the trinification group will break to the Standard

Model group, and the other to its twin. This again insures a private hypercharge for the

Standard Model. In this a case full generation plus twin is contained in

(6, 6̄,1)⊕ (1,6, 6̄)⊕ (6̄,1,6) (5.9)

The trinification representations support a two Higgs doublet model in the bulk and both

the Standard Model and the twin sector are again anomaly free by construction. A slightly

unpleasant feature of this construction is that the lepton yukawa of the generation that

resides in the bulk is forbidden by the SU(6)×SU(6)×SU(6) gauge symmetry. This implies

that this yukawa must arise from a an irrelevant operator involving some boundary-localized

spurions that break the bulk gauge symmetry. The argument for the absence of proton

decay and neutron/anti-neutron oscillations is analogous to the argument given for the

U(4)×U(6) model.

Note that both the trinification and Pati-Salam setup each contribute one dark neutrino

to the hidden sector, as well as a dark sterile neutrino. To prevent the dark neutrino from

contributing to Neff one would have to ensure that it is lifted by the sterile neutrino,

sufficiently weakly coupled to fall out of thermal equilibrium at an early stage, or cooled

relative to the Standard Model bath by preferential reheating in the Standard Model sector.

6 Conclusions

In this paper we have constructed a general class of models where the Higgs is a pseudo-

goldstone boson in an orbifolded gauge theory. The key feature is the relation between a

theory and its orbifold-daughters, which imbues the orbifold daughter with the precise cou-

plings and discrete symmetries necessary to realize an accidental symmetry of the quadratic

action and identify the Standard Model-like Higgs as a corresponding pseudo-goldstone.

The components of an orbifold Higgs model that are relevant for naturalness are fully de-

termined by the group theoretical properties the orbifold group. As such, we provide a

complete classification of such ‘model fragments’ consisting out of the Higgs and the top

quarks: every orbifold group corresponds to a unique quiver which is fully specified by

the dimensions of the irreducible representations of the orbifold group. The twin Higgs

model fits in this framework as the particular case of a Z2 orbifold. Besides providing a

generalization of twin Higgs, a considerable advantage of the orbifold interpretation is a

natural explanation for the accidental symmetries playing a crucial role; such symmetries

(in particular SU(4)) would be an ad-hoc feature in a pure twin Higgs setup. While con-

tinuous symmetries of the quartic are also not guaranteed by the orbifold procedure, they

provide a clear indication of the dynamics required for a viable UV completion (namely
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dominance of the double-trace quartic in the parent theory). Another bonus –related to

the geometric interpretation– is an elegant mechanism for reducing tension with cosmolog-

ical observables, by localizing the light Standard Model degrees of freedom on the orbifold

fixed points.

The reader may reasonably complain that generalizations beyond the abelian orbifolds

are baroque and introduce numerous complications, including potential (modest) cutoff

sensitivity at one loop and possible cosmological complications from the abundance of

light non-abelian gauge bosons. While this may be so, the deeply valuable point is that

they provide proof of principle that partner states in natural theories of the weak scale may

take an entirely unexplored form. In the case of the S3 orbifold this is particularly clear:

the quadratic sensitivity of the top loop to higher scales is cancelled by a loop of Standard

Model-neutral top partners with twice the multiplicity and half the coupling-squared.

There are a large number of possible future directions:

• So far we only constructed a rough sketch of some UV completions in terms of higher

dimensional geometric orbifolds and it would certainly be worthwhile to map out the

possibilities in a more systematic fashion. In this work we for simplicity restricted

ourselves to flat extra dimensions, however warped constructions should be possible

as well. In fact, while this paper was in preparation, a first example of a holographic

UV completion19 of the twin Higgs already appeared [28].

A particularly intriguing property of the examples we constructed so far is the require-

ment of low scale gauge coupling unification to successfully embed the hypercharge

group, and it would be interesting to elucidate this apparent connection further. Of

particular interest are also explicit geometric and deconstructed realizations of the

non-abelian orbifolds.

• Our formalism is entirely transferable to supersymmetric theories, and a similar clas-

sification of orbifold supersymmetric models should be possible. The main difference

in this case is the presence of an R-symmetry, which will participate in the orbifold

projection. The simplest example of this mechanism is already known in the form

of folded supersymmetry [8], but even more interesting possibilities include simulta-

neous orbifolds of the weak gauge group and an R-symmetry. In a different vein, it

would be interesting to simply construct spontaneously broken supersymmetric UV

completions of the orbifold Higgs, along the lines of [27].

• Thus far we have restricted ourselves to the regular embeddings, however a priori

there are many other representations to choose from. For arbitrary representations

the necessary rescaling of the coupling constants is no longer guaranteed, however it

is easy to verify that for certain sub-representations of the regular representation, the

coupling constants do exhibit the correct scaling behavior. Moreover these alternative

19Their setup is slightly different from ours, in the sense that they make use of a set of generic Dirich-

let/Neumann boundary conditions to break the bulk symmetry, rather than of a particular orbifold projec-

tion.
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representations are expected to give rise to more exotic quivers than the ones dis-

cussed in this paper. Another direction would be to consider other geometric defects

such as orientifolds that arise in string theory and possess field theory analogues.

• Perhaps the most important opportunity lays in mapping out the detailed phe-

nomenology of this class of models across the experimental frontiers, from colliders

to dark matter to low-energy probes. The prime hallmark of orbifold Higgs models is

a modification of the Higgs couplings through mixing with the Higgs(es) in the dark

sectors, as is the case for the twin Higgs [43, 44].

Further innovations include additional confining sectors connected through the Higgs

portal [45], as well as additional pseudo-goldstone states near the weak scale that

couple to the Standard Model primarily through irrelevant operators. A ramification

of UV completions of the Orbifold Higgs (either in terms of extra dimensions or quiver

gauge theories) is that the higher KK-modes may be accessible, either directly at a

future high energy collider, or indirectly as portal between the Standard Model and

the dark sectors.

The LHC phenomenology would be similar to that of a hidden valley [46] through the

Higgs portal [47, 48]. Note that explicit UV completions may also provide a handle

via low-energy constraints not encountered at the level of the field theory orbifold.

For example, in the models explored here the daughter states (corresponding to

the untwisted sector of some geometric completion) introduce no flavor violation,

while introducing heavier modes in the twisted sector may mediate flavor-violating

processes at finite loop order.

The final frontier awaiting exploration is that of dark matter. Since the dark sector

and the Standard Model share baryon number, the Orbifold Higgs may naturally

harbor an asymmetric dark matter candidate [49] in the form of the lightest dark

baryon. Interestingly, the dark sector in an Orbifold Higgs model is generically a

factor of a few heavier than the Standard Model sector, such that these models may

automatically generate the right dark matter/baryon ratio in the universe.
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A Another nonabelian orbifold: A4

For completeness, in this appendix we work out in detail the A4 orbifold of a Yang-Mills-

Higgs model. The story runs parallel to the S3 case of section 3.3. A4 is the subgroup of

even permutations of S4; it is of order 12 and is generated by two elements

a = (12)(34) and b = (123) . (A.1)

There are four conjugacy classes

C0 = {e}, C1 = {b, ab, aba, ba}, C2 = {b2, ab2, b2a, ab2a}, C3 = {a, b2ab, bab2} (A.2)

we label group elements by an integer s, starting with s = 0 for e, then s = 1, . . . , 4 for

elements of C1 in the order displayed above, and so on.

The regular representation has dimension 12. The decomposition works out easily: the

trivial irrep has dimension d0 = 1, so 12 = 1 + d2
1 + d2

2 + d2
3 which entails d1 = d2 = 1,

d3 = 3 (up to a permutation). Correspondingly there are four irreps

r0 : d0 = 1 trivial irrep

r1 : d1 = 1 1-dim’l irrep

r2 : d2 = 1 1-dim’l irrep

r3 : d3 = 3 3× 3

(A.3)

whose matrix elements can be explicitly taken to be

r0 : rs0 = 1 ∀s

r1 : rs1 =


1 gs ∈ C0

ζ gs ∈ C1

ζ2 gs ∈ C2

1 gs ∈ C3

r2 : rs2 =


1 gs ∈ C0

ζ2 gs ∈ C1

ζ gs ∈ C2

1 gs ∈ C3

r3 : r9
3 = r3(a) =

−1 0 0

0 1 0

0 0 −1

 r1
3 = r3(b) =

 0 1 0

0 0 1

1 0 0


(A.4)

where ζ = e2πi/3.

The regular representation thus decomposes as

γs = rs0 ⊕ rs1 ⊕ rs2 ⊕ 3 · rs3 (A.5)
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The mother theory is once again summarized by table (1), where now Γ = 12 is fixed.

From the general discussion of section 2, the pattern of symmetry breaking is

SU(24) −→ SU(2)0 × SU(2)1 × SU(2)2 × SU(6)3 ,

SU(36) −→ SU(3)0 × SU(3)1 × SU(3)2 × SU(9)3 ,

SU(12) −→ SU(3)3 .

(A.6)

Multi-indices of SU(24) have therefore the following span:

A = (α, a, a) : α=0, 1, 2, 3 a=

{
1, . . . , 3 for α = 0, 1, 2

1, . . . , 9 for α = 3
a =

{
0 for α = 0, 1, 2

0, 1, 2 for α = 3
(A.7)

and so on for other symmetry groups.

The gluons (A(α),i) B
A surviving the orbifold are the block-diagonal ones

SU(N)0 : (A(0),i0)
(0,b,0)

(0,a,0) a, b = 1, . . . , N i0 = 1, . . . , N2 − 1

SU(N)1 : (A(1),i1)
(1,b,0)

(1,a,0) a, b = 1, . . . , N i1 = 1, . . . , N2 − 1

SU(N)2 : (A(2),i2)
(2,b,0)

(2,a,0) a, b = 1, . . . , N i2 = 1, . . . , N2 − 1

SU(3N)3 : (A(3),i3)
(3,b,b)

(3,a,a) a, b = 1, . . . , 3N a, b = 0, 1, 2 i3 = 1, . . . , 9N2 − 1

(A.8)

where Schur’s lemma requires that the gluons of SU(3N)3 be of the form

(A(3),i)
(3,b,b)

(3,a,a) = (A(3),i)
(3,b)

(3,a) δba . (A.9)

On the other hand, the G-action on the SU(12)-flavor fundamentals reads simply

(γsF ) N
M = (1F ⊗ γs) N

M = δ ν
µ δ n

m (rsµ) n
m with M = (µ,m,m)

µ = 0, 1, 2, 3 m =

{
1 for µ = 0, 1, 2

1, 2, 3 for µ = 3
m =

{
0 for µ = 0, 1, 2

0, 1, 2 for µ = 3

(A.10)

Turning to the matter fields, we employ once again formula (2.17). For example, the

transformation of H under gs ∈ G then reads H M
A 7→ (γsN ) B

A (γs ∗F )MN H N
B , and all we

need to do is examine the invariant fields case by case, i.e. for α = 0, 1, 2, 3.

α = µ = 0.

dα = dµ = 1, a,m = 0, a = 1, 2, m = 1 (A.11)

so we are left with

(h(0))a = H
(0,m,0)

(0,a,0) (A.12)

in the � of SU(2)0.

α = 1, µ = 2.

dα = dµ = 1, a,m = 0, a = 1, 2, m = 1 (A.13)

so we are left with

(h(1))a = H
(2,m,0)

(1,a,0) (A.14)

in the � of SU(2)1.
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α = 2, µ = 1.

This is very similar to the previous case, we find the invariant combination

(h(2))a = H
(1,m,0)

(2,a,0) (A.15)

in the � of SU(2)2.

α = µ = 3.

dα = dµ = 3, a,m = 0, 1, 2, a = 1, . . . , 6, m = 1, 2, 3 (A.16)

the invariant combination is then

(h(3)) m
a =

1√
3

(
H

(3,m,0)
(3,a,0) +H

(3,m,1)
(3,a,1) +H

(3,m,2)
(3,a,2)

)
(A.17)

in the �×� of SU(6)3 × SU(3)3.

Overall we found the following Higgs content:

mother theory d.o.f. SU(2)0 SU(2)1 SU(2)2 SU(6)3 SU(3)3

h(0) H
(0,m,0)

(0,a,0) � 1 1 1 1

h(1) H
(2,m,0)

(1,a,0) 1 � 1 1 1

h(2) H
(1,m,0)

(2,a,0) 1 1 � 1 1

h(3) 1√
3

(
H

(3,m,0)
(3,a,0) +H

(3,m,1)
(3,a,1) +H

(3,m,2)
(3,a,2)

)
1 1 1 � �

(A.18)

As a partial check, we may employ the Clebsch-Gordan decomposition of A4 irreps

(which can easily be worked out by standard representation theory, or found in the math

literature):

r0 ⊗ rα = rα α = 0, 1, 2, 3

r1 ⊗ r1 = r2 r1 ⊗ r2 = r0 r1 ⊗ r3 = r3

r2 ⊗ r2 = r1 r2 ⊗ r3 = r3

r3 ⊗ r3 = r0 ⊕ r1 ⊕ r2 ⊕ 12 ⊗ r3 ,

(A.19)

to study the tensor product of gauge and flavor G-representations. This is easily seen to

decompose into

γN ⊗ γF = 1N ·F ⊗ γ ⊗ γ
= 1N ·F ⊗

(
112 ⊗ r0 ⊕ 112 ⊗ r1 ⊕ 112 ⊗ r2 ⊕ 136 ⊗ r3

) (A.20)

meaning that the orbifold preserves 12N · F = 24 Higgs components, in agreement with

the above result. The same analysis carries over to Q and U , we omit the explicit tables

since the generalization is fairly obvious.

In this case we find a daughter theory with 4 sectors: as for G = S3, each sector has

gauge symetry SU(2 dα)(α)×SU(3 dα)(α), together with matter consisting of h(α), q(α), u(α)
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h�0� h�1� h�2� h�3�

u�0� u�1� u�2� u�3�

q�0� q�1� q�2� q�3�

2 2 2 6

3 3 3 9

1 1 1 3

Figure 7. The quiver of the A4 orbifold.

in the corresponding (bi)-fundamental representations. The stucture of this daughter the-

ory is conveniently summarized by the quiver diagram of figure 7.

Once again, the general discussion of section 2.3 implies that Yukawa, gauge, and

quartic couplings in the mother theory generate corresponding interactions in the daughter

theory, privately within each sector. This example features a nontrivial rescaling of the

couplings, for the sector corresponding to the 3-dimensional representation of A4.

The quiver structure exhibits manifestly the S3 symmetry of the daughter theory, which

acts by permuting the α = 0, 1, 2 sectors. Note however that the approximate continuous

symmetry protecting the Higgs mass is now an SU(24) rotating the 24 surviving Higgs

components.
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