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ABSTRACT

The first Earth Trojan has been observed and found to be on an interesting orbit close to the Lagrange point L4. In the present study, we
therefore perform a detailed investigation of the stability of its orbit and moreover extend the study to give an idea of the probability of
finding additional Earth Trojans. Our results are derived using three different approaches. In the first, we derive an analytical mapping
in the spatial elliptic restricted three-body problem to find the phase space structure of the dynamical problem. We then explore the
stability of the asteroid in the context of the phase space geometry, including the indirect influence of the additional planets of our
Solar system. In the second approach, we use precise numerical methods to integrate the orbit forward and backward in time in
different dynamical models. On the basis of a set of 400 clone orbits, we derive the probability of capture and escape of the Earth
Trojan asteroid 2010 TK7. To this end, in the third approach we perform an extensive numerical investigation of the stability region
of the Earth’s Lagrangian points. We present a detailed parameter study of possible stable tadpole and horseshoe orbits of additional
Earth Trojans, i.e. with respect to the semi-major axes and inclinations of thousands of fictitious Trojans. All three approaches lead to
the conclusion that the Earth Trojan asteroid 2010 TK7 finds itself in an unstable region on the edge of a stable zone; additional Earth
Trojan asteroids may be found in this regime of stability.
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1. Introduction

The giant planets Jupiter and Neptune are known to host Trojan
asteroids, and Mars (Bowell et al. 1990) has also been found
to host several co-orbiting asteroids. These bodies move in the
same orbit as the planets, but about 60◦ either ahead or behind
the planet close to the so-called Lagrange points L4 or L5 (see
Fig. 1). It was a great surprise to discover the first Earth Trojan
2010 TK7 (Mainzer et al. 2011). Although many studies had
long demonstrated the principal possibility of their existence,
until this event all attempts at finding one had been unsuc-
cessful. Another small asteroid in the 1:1 mean motion reso-
nance (MMR) with the Earth had been found earlier in 1986,
by Duncan Waldron. However this asteroid (3753 Cruithne) was
later identified as a celestial body in a horseshoe orbit around
both equilateral Lagrange points of the Earth. It is thus not a
“real” Trojan in the sense of its original definition (the same is
true for the recently found asteroid 2010 SO16).

Many theoretical studies have established the stability of
the Lagrange points in simplified models, i.e. the studies of
Rabe (1967); Bien & Schubart (1984); Lhotka et al. (2008)
and Érdi et al. (2009) as well as many others. Ever since, ex-
tensive numerical studies have been undertaken to find the ex-
tension of the stability regions around the equilibrium points
of the planets, e.g. Schwarz et al. (2004), Dvorak & Schwarz
(2005), Robutel et al. (2005), Freistetter (2006), Dvorak et al.
(2007). Particularly important results have been provided by

Mikkola & Innanen (1992), Tabachnik & Evans (2000), Brasser
& Letho (2002) and Scholl & Marzari (2004). In Mikkola &
Innanen (1992) and Zhang & Innanen (1995) the authors found
that Venus, Earth, and Mars can host co-orbital asteroids up to
10 Myr. According to the investigation of Tabachnik & Evans
(2000), Earth’s Trojans are on stable orbits when their inclina-
tions are relatively low (i < 16◦); a second stability window
exists according to them for 16◦ < i < 24◦.

Morais & Morbidelli (2002) studied the orbital distribution
of the near-Earth asteroids (NEAs) that are found for part of their
orbit at the 1:1 MMR with the Earth. Schwarz & Dvorak (2011)
investigated the possibility of captures of asteroids by the ter-
restrial planets into the 1:1 MMR and found many temporary
captures including jumping Trojans (Tsiganis et al. 2000). As
we show 2010 TK7 also has such an interesting captured orbit.

In our investigations here – initiated by the finding of 2010
TK7 – we concentrate on Earth Trojans. We present three differ-
ent approaches to help us clarify the stability problem of these
asteroids. In Sect. 2 we perform analytical studies in a simpli-
fied model that is valid on short timescales. We investigate the
phase structure and the influence of additional perturbations in
the simplified model. In Sect. 3 we study in great detail the actual
orbit of 2010 TK7, together with 400 clone orbits, to help us as-
sess with greater certitude the probability of both the capture and
escape of this Trojan asteroid. To this end, we perform in Sect. 4
an extensive numerical investigation of the parameter space rel-
evant to determining the stable and unstable regions close to the
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Fig. 1. Geometry of the circular restricted three-body problem in a rotat-
ing coordinate system mass of the Sun µ0 and the Earth µ′; the unstable
equilibria L1,2,3 are located on the abscissa; the stable points L4 and L5

are found 60◦ ahead and behind the primary mass µ′. The color code
defines the areas of the equipotential. In the elliptic problem, the rotat-
ing coordinate system has to replaced by a non uniformly rotating and
pulsating reference frame.

equilibrium point L4
1 and show the interplay between secular

resonances and the stability of motion. Our summary and con-
clusions for the present study can be found in Sect. 5.

2. A symplectic mapping model

The Hamiltonian describing the motion of 2010 TK7 in the spa-
tial elliptic restricted three-body problem (Sun-Earth-asteroid)
takes the form

H = HKep + T + µ′R(a, e, i, ω,Ω,M,M′; p′), (1)

where HKep denotes the Keplerian part, the function µ′R is the
perturbation due to the Earth with mass µ′, and the variable T
is the action conjugated to time (assuming that the mean mo-
tion n′ of the Earth is equal to one). Moreover, the parameters
a, e, i, ω,Ω,M are the semi-major axis, the eccentricity, the in-
clination, the perihelion, the longitude of the ascending node,
and the mean anomaly of the asteroid, respectively, while M′

denotes the mean anomaly of the Earth.
In contrast to the classical expansion techniques of the per-

turbing function R, we do not replace the remaining orbital pa-
rameters of the Earth p′ = (a′, e′, i′, ω′,Ω′) with their numerical
values but instead keep them as free parameters in the ongoing
calculations. The simple reason for this is we are able to inves-
tigate their influence on the dynamics of the massless asteroid
with time, i.e. to see their influence on the phase space geometry
later on. For the mapping approach, we set the system of con-
stants (gravitational constant G and the total mass of the system)
equal to unity such that G(µ0+µ

′) = 1, which also implies that a′

as well as a are close to unity and in these dimensionless units,
one revolution period of the Earth takes P = 2π. Furthermore, we

1 Both Lagrange points have in principal the same dynamical behavior,
as we know from earlier studies e.g. Nesvorny & Vokrouhlický (2009),
Zhou et al. (2009).

use as action-angle variables the modified Delaunay variables,
which are defined in terms of the classical Delaunay variables by

l = M, g = ω, h = Ω

L =
√

a, G = L
√

1 − e2, H = G cos(i)

as

λ1 = l + g + h, λ2 = −g − h, λ3 = −h

Λ1 = L, Λ2 = L −G, Λ3 = G − H

(and similar for the primed variables of the Earth). In this setting,
the Hamiltonian given in Eq. (1) becomes

H = − 1
2Λ2

2
+ T + µ′R

(

λ,Λ, λ′1; q′
)

, (2)

where we used the short-hand notation λ = (λ1, λ2, λ3) and
Λ = (Λ1,Λ2,Λ3). In addition we abbreviate the parameter vec-
tor q′ =

(

λ′2, λ
′
3,Λ

′
1,Λ

′
2,Λ

′
3

)

to define the vector of modified
Delaunay variables for the Earth. Next, we implement a sym-
plectic change of coordinates and momenta suitable to describ-
ing the motion of the asteroid close to the 1:1 MMR. We define
the resonant angle and conjugated momenta as

τ = λ1 − λ′1, T = Λ1, (3)

while the other variables transform by the identity

λ2 = ϕ, λ3 = θ, Λ2 = Φ, Λ3 = Θ,

and T ′ = Λ1 −Λ′1. We replace λ1 in Eq. (2) according to Eq. (3)
and implement the standard averaging procedure over the fast
angle λ′ via the formula

H̃ = − 1
2T 2
+

1
P

∫ P

0
µ′R
(

λ,Λ, λ′1; q′
)

dλ′, (4)

with P = 2π, to get the averaged Hamiltonian function of the
form H̃ = H̃(ψ,Ψ; q′) with ψ = (τ, ϕ, θ) and Ψ = (T,Φ,Θ).
Our aim is to construct a symplectic mapping that transforms the
state vector (ψk,Ψk) ≡ (τk, ϕk, θk, Tk,Φk,Θk) at discrete times k
(multiples of P) into the state vector (ψk+1,Ψk+1) at times k + 1.
For this reason, we define the generating function

Wq′ = Wq′
(

τk, ϕk, θk, Tk+1,Φk+1,Θk+1; q′
)

= ψk · Jk+1 + 2πH̃
(

ψk, Jk+1; q′
)

,

where the symbol · is the dot product. As shown and used in
Hadjidemetriou (1992), Hadjidemetriou (1999), Hadjidemetriou
& Voyatzis (2000) and Ferraz-Mello (1997) the generating func-
tion defines a mapping of the form

τk+1 =
∂Wq′

∂Tk+1
, ϕk+1 =

∂Wq′

∂Φk+1
, θk+1 =

∂Wq′

∂Θk+1
,

Tk =
∂Wq′

∂τk

,Φk =
∂Wq′

∂ϕk

,Θk =
∂Wq′

∂θk
· (5)

The system of Eq. (5) defines a symplectic change of coordinates
on the Poincaré surface of section obtained by the averaged sys-
tem defined by Eq. (4). The set of variables (Ψ, ψ) is related to
the mean orbital elements of the asteroid 2010 TK7 via another
generating function (not derived here), which defines the aver-
aging process given in Eq. (4). The system of Eq. (5) therefore
describes the evolution of the mean orbital elements of the as-
teroid at discrete times t = k · P. We note that the system is
implicit to preserving the Hamiltonian structure of the original
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Fig. 2. Phase portrait, projected to the (τ,T )-plane. The Earth is located
at (0, 1), the fixed points L4, L3 and L5 (corresponding to the equilibria
of the averaged system) are situated (60◦, 1), (180◦, 1), and (300◦, 1),
respectively. The projection of the mean orbit of the asteroid 2010 TK7

for ±6000 years is shown in red.

problem. For given initial conditions (ψk=0,Ψk=0), it can either
be iterated by solving the system of difference equations implic-
itly for (Ψk+1, ψk+1) or by using more sophisticated procedures
as described e.g. in Lhotka (2009).

A typical projection of the phase portrait onto the
(τ, T )-plane is shown in Fig. 2. The lines in black were obtained
by varying τ within the range (0◦, 360◦) along T = 1. The plot
also shows the mean orbit of 2010 TK7 in red, which should be
compared with Fig. 2 of Connors et al. (2011): while these au-
thors derive the red curve by numerical averaging, the averaged
orbit for our present approach is based on Eq. (5).

A well-established result is that, e.g. Morais & Morbidelli
(2002); Brasser & Letho (2002); Scholl et al. (2005), the influ-
ence of the other Solar system bodies, i.e. the direct influence
of the major planets, affects the motion of the asteroids on long
timescales. The mapping does not take into account these direct
effects. Thus, the mean orbit as shown in Fig. 2 can only been
seen as a first approximate solution of the problem. Moreover,
the simulations were performed using low order expansions of
the perturbing function, since we wished to maintain the depen-
dence of the model on the orbital parameters of the Earth. The
resulting mapping model is therefore only valid within a good
convergence regime of the Fourier-Taylor series expansions used
to approximate R in Eq. (1). In addition, since the orbital param-
eters of the asteroid 2010 TK7 may reach high values (as found
from numerical simulations), the error in the approximation of
the series expansions may exceed the cumulative effect of the
perturbation effects due to the Solar system and may also change
the picture dramatically on longer time scales. We are perform-
ing an ongoing investigation to estimate of the error terms and
higher order series expansions, together with their influence on
the long-term dynamics of the asteroid 2010 TK7.

3. The orbit of 2010 TK7

The Earth Trojan 2010 TK7 is fundamentally a NEA, and its
orbital elements (listed in Table 1) can also be found on the

Table 1. The Keplerian elements of 2010 TK7 given at epoch
JD 2455800.5.

Value 1-σ variation Unit

a 1.00037 2.546 × 10−7 AU
e 0.190818 9.057 × 10−7

i 20.88 7.274 × 10−5 deg
Ω 96.539 1.842 × 10−4 deg
ω 45.846 2.309 × 10−4 deg
M 217.329 1.848 × 10−4 deg

Notes. The elements and 1-σ variations are taken from the AstDyS (see
text). The covariance matrix is also taken from the same website.

Fig. 3. The initial conditions of clone orbits. Dots are for 400 clones,
and the nominal orbit is indicated by the red star. In two panels, we
show here only the inclination, ascending node, semimajor axis, and
eccentricity.

AstDyS (Asteroids – Dynamic Site) website2. At first glance,
this object has a large eccentricity (∼0.19), and it is reasonable
to suspect that it is on an unstable orbit. To check the orbital
stability of this object, we perform numerical simulations of the
orbit.

We adopt two dynamical models in our simulations. Both
models contain the Sun and eight planets from Mercury to
Neptune. They differ from each other in terms of the different
settings of the Earth-Moon system. In one model, the Earth-
Moon system is simply treated as one mass point with the com-
bined mass of the Earth and the Moon at the barycenter of the
system. In another model, the Earth and the Moon are regarded
as two separate objects as in reality. Hereafter, we denote the
former as the EMB model and the latter as the E+M model for
short. By comparing these two models, we may testify the reli-
ability of the model that we adopt in this paper and adopted by
Connors et al. (2011) in their numerical simulations.

Considering the uncertainties in the observations and in the
orbital determination, it is necessary to study clone orbits within
the error bars. In addition to the nominal orbit, 400 clone orbits
are generated using the covariance matrix given by the AstDyS
website. As listed in Table 1, the errors are very small, there-
fore the initial conditions of the clone orbits are very close to the
nominal orbit as shown in Fig. 3. We present in Fig. 3 the distri-
bution of a, e, i,Ω, and note that the other two elements M and ω
that are not illustrated here have similar distributions according
to the corresponding uncertainties listed in Table 1.

Starting from the initial conditions generated in the above
way, we integrate their orbits up to 1 million years (Myr) in
both directions (forward to the future and backward to the past).
We used the integrator package Mercury6 (Chambers 1999)
and verified some results using the Lie-integrator (Hanslmeier
& Dvorak 1984). The comparison between the results from

2 http://hamilton.dm.unipi.it
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Fig. 4. The temporal evolution of the nominal orbit in 1 million years,
both forward and backward. In four panels, we show the evolutions of
the semimajor axis (upper left), eccentricity (upper right), inclination
(lower left), and the resonant angle (lower right).

different integrators shows that the results are consistent with
each other.

For an asteroid on a Trojan-like orbit, the critical angle (res-
onant angle) is the difference between the mean longitudes of
the asteroid λ and the corresponding host planet (which here is
the Earth-Moon system) λ′, like the τ in Eq. (3). In the EMB
model, the resonant angle is λ − λEMB, while in the E+M model
we calculate the position and velocity of the barycenter of the
Earth-Moon system from the orbital elements of the Earth and
the Moon, and then compute the resonant angle in the same way
as in the EMB model. When the resonant angle λ−λ′ = λ−λEMB
librates around 60◦, i.e. 0◦ < λ − λ′ < 180◦ the asteroid is said
to be an L4 Trojan, when it librates around −60◦ (or equivalently
300◦), i.e. 180◦ < λ − λ′ < 360◦ it is an L5 Trojan, when the
asteroid librates with an amplitude larger than 180◦ it is on a
horseshoe orbit, and finally when λ − λ′ circulates, the asteroid
leaves the Trojan-like orbit.

In Fig. 4, we illustrate the temporal evolution of the nominal
orbit in the E+M model. The first impression obtained from its
behavior may be that it is a temporal Earth Trojan, i.e. judging
from the resonant angle it was not an Earth Trojan 0.055 Myr
before and will not remain on a Trojan-like orbit after 0.37 Myr.
It is an L4 Trojan for a time interval that is even much shorter,
less than 2000 years in the past and less than 17 000 years in
the future (as partly shown in Fig. 5). While it is a Trojan, the
semimajor axis a undergoes regular variations librating around
1.0 AU with a small amplitude, although the variations of both
eccentricity e and inclination i reveal the chaotic character of the
motion, which is illustrated in Fig. 4.

This chaotic behavior is indicative of not only its sensitiv-
ity to the initial conditions but also the dynamical model. To
compare the motions predicted by the two models, i.e. the EMB
model and E+M model, we show as an example in Fig. 5 the
evolution of the resonant angle of the nominal orbit for both
models. Around the starting point, two curves representing the
motions in two models are almost the same, so that they over-
lap each other exactly. However, the difference between them
becomes distinguishable only after about 2000 years in both di-
rections. This difference on one hand arises from the different
settings of the models, and on the other hand, from the chaotic
character of the motion. In this sense, it is impossible to draw

Fig. 5. The resonant angle of the nominal orbit in two models. The dif-
ference between them is readily apparent very early in the simulating
process (∼2000 years) mainly due to the chaotic character of the mo-
tion (see discussion in text).

Fig. 6. The distribution of the time when clone orbits leave from the
current L4 region. The escape time from the tadpole region is given in
years on a logarithm scale.

any convincible conclusion about these two dynamical models
on long time scales by comparing merely the motions of an in-
dividual orbit in the two models. Hence we now turn to analyze
statistically the four hundred clone orbits.

As we mentioned above, 400 clone orbits are calculated in
both models and in both directions of time. At the starting mo-
ment t = 0, these clones are around the L4 Lagrange point as
the asteroid 2010 TK7, but during the course of their evolutions,
the objects may jump from the L4 region to the L5 region, or
move from tadpole to horseshoe orbit, and even escape from the
Trojan-like orbit (the 1:1 MMR). To examine the motion, we
check the resonant angle λ − λEMB at each step during our sim-
ulations. When for the first time λ − λEMB is larger than 180◦,
the object is assumed to have left the L4 region, and we denote
the time at that moment as t1. When λ − λEMB for the first time
reaches 360◦, the object escapes the 1:1 MMR, and we denote
this moment as t2.

The t1 and t2 of 400 clone orbits are summarized in Figs. 6
and 7. For t1, most of the clones will leave the L4 region about
1.5 × 104 years in the future, while the backward integrations
indicate that the clones “entered” the L4 region about 1.8 ×
103 years ago (Fig. 6).

In the backward integrations, the earliest escape from the
L4 region happens at t ∼ 1440 years in both the E+M and
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Fig. 7. The distribution of the time when clone orbits escape from the
1:1 MMR, both in forward and backward integrations. The escape time
is given in years on a logarithmic scale.

EMB models. However there are only a few such orbits. Most
of them escape in the time range between t ∼ 1680 years and
t ∼ 1820 years, which causes the peak centered on log(t1) = 3.25
in Fig. 6. From Fig. 5, we may derive the libration period of
the resonant angle to be around 350 years3, and we also note
that the shift in the orbit from the L4 to the L5 region hap-
pens when the resonant angle reaches a maximum in a libra-
tion period. The libration period and amplitude must be tuned
by other periodic effects (e.g. secular resonances). After a num-
ber of complete periods of evolution, the resonant angles of
some clone orbits reach their maxima, and they do not librate
back but escape from there towards the neighborhood of L5.
After another complete libration period, many more clone or-
bits escape in the same way as before. This is why the escapes
from the L4 region seem to happen more or less suddenly (at
t ∼ 1440 + 350 = 1790 ≈ 103.25 years). All clone orbits are in a
tiny region confined by the error bars, so that they suffer nearly
the same dynamical effects in a short timespan. For the clones
that remain in the region longer, the phase space occupied by
them increases in size, the clones thus suffer different dynamical
effects, and the clone escape times consequently diverge.

The distributions of t1 for the EMB model and the E+M
model in Fig. 6 match each other very well, hence we may draw
another conclusion here that the difference between these two
dynamical models is negligible, or in other words, the simplified
EMB model is a reasonable and reliable model for investigating
the Earth Trojans’ long-term dynamics. In particular, we note
that the asteroid 2010 TK7 and the clones all have very large li-
bration amplitudes around the L4 and/or L5 point (see for exam-
ple Fig. 5), i.e. they may approach the Earth-Moon system (the
mean longitude difference between them may be less than 20◦).
However, even when an Earth Trojan approaches the Earth and
comes within 10◦ away from the Earth in mean longitude, the
distance between the asteroid and the Earth is about 0.18 AU,
which is still about 70 times larger than the distance between
the Earth and the Moon. Taking into account the inclination of
the Earth Trojan’s orbit, the distance between the Trojan and the
Earth is even larger.

3 Owning to the large libration amplitude, this value is nearly 50 per-
cent longer than the synodic period of a tadpole orbit, which can be
estimated using the formula (27µ/4)−1/2 (Murray & Dermott 1999).
For an Earth Trojan, the mass ratio µ = 3.04 × 10−6 and the period
is ∼220 years.

As for the t2 distribution in Fig. 7, we see that the peak of
the escape time in the backward integrations occurs at ∼3.0 ×
104 years. As we mentioned above, the Earth Trojan 2010 TK7
should be a temporal Trojan. The capture of this asteroid onto the
1:1 MMR with the Earth most probably happened 30 000 years
ago. In the forward integrations, most of clones will escape from
the MMR after around 2.0 × 105 years. The total lifetime of this
asteroid in the 1:1 MMR is shorter than 0.25 Myr. Again, the two
models E+M and EMB produce nearly the same distributions.

In our calculations, the time interval during which the
clones are L4 Earth Trojans is typically a little shorter than
∼17 000 years. As in the case of the lifetime of clones stay-
ing in the 1:1 MMR, there are 10 clones surviving 1 Myr in
the backward integrations in both models, while for the forward
integrations, 12 in the EMB model and 19 in the E+M model
stay in the MMR until the end of integrations. However, none of
the clones survive in both temporal directions. Simply put fewer
than 5 percent of the clones remain in the MMR up to 1 Myr.
Morais & Morbidelli (2002) calculated the probability of a NEA
being captured into the 1:1 MMR (“coorbital orbit” in their pa-
per), and they found that each episode of a NEA being coorbital
is on average 25 000 years and none lasts longer than 1 Myr.
Our result does not conflict with their conclusion, because our
calculations are for the individual asteroid 2010 TK7, and its ec-
centricity (∼0.2) is smaller than the typical eccentricity in their
samples (most of them have e > 0.28).

Some fluctuations in the distribution of t1 and t2 (by “fluc-
tuation” we mean more peaks that deviate from a normal distri-
bution) can be found in both models in Figs. 6 and 7. In these
figures, the time is given on a logarithmic scale to include a
wider time interval. If we plot the time linearly, these fluctu-
ations have a periodic character, implying that some periodic
mechanisms (e.g. secular resonances) affect the libration ampli-
tudes. However, the creation of a secular resonance map is com-
plicated and a task that leave to a future paper, although we show
our first results in Sect. 4.3.

4. Determination of the stable regions

As pointed out in the previous sections, the orbit of 2010 TK7
is not very stable. We now investigate how to determine the ex-
tent of the stable regions around the stable equilibrium points.
This can be done in a realistic dynamical model only with the
aid of numerical integrations where the stability of the orbits of
many fictitious Trojans is checked. The dynamical model used
was a “truncated” planetary system with the planets Venus to
Saturn (Ve2Sa). The simple reason for not taking into account
all the planets is that this would have required at least four times
longer CPU times on our computers. It is mainly due to the orbit
of the innermost planet Mercury which demands a step size of
one quarter of that of Venus4. Test computations of the selected
stable and unstable orbits showed that the qualitative behavour
of these orbits is not a different one, and consequently also the
extent of the stable region can be regarded as the “real” one. It
means that the gravitational perturbation of Mercury on a Trojan
for this study is negligible. The Moon was not explicitly included
in the integration but the barycenter of the Earth-Moon system
and their respective masses were taken as one body. As we have
shown in Chap. 3, there are only very small differences on long
timescales when one integrates the Trojan orbits in these mod-
els. In contrast Jupiter’s direct perturbation on an Earth Trojan is

4 The inclusion of Uranus and Neptune would not dramatically change
this integration time.
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Fig. 8. Stability diagram for Earth Trojans with i < 60 (y-axes) for dif-
ferent initial semimajor axes (x-axes) of the fictitious Trojans; the color
stands for the maximum eccentricity during the integration of 106 years.

very large and cannot be neglected especially for large librations
that bring the Trojan close to the Lagrange point L3.

The integration method was the Lie-series method that we
used quite often in previous similar investigations; e.g. for
Neptune (Zhou et al. 2009, 2011) and also for Uranus’ Trojans
(Dvorak et al. 2010). This method is based on the studies of
Hanslmeier & Dvorak (1984); Delva (1984), and Lichtenegger
(1984) and was slightly modified for our problem (see also Eggl
& Dvorak 2010). It has an automatic step-size control and turned
out to be fast and precise.

The initial conditions were chosen in the following way: for
the fictitious Trojans, the orbital elements M, Ω, and e were set
to the ones of the Earth. The perihelion was always ωEarth+60◦5,
the semimajor axes for the Trojan was set to slightly smaller and
larger values to cover the stable region (along the connecting line
between Sun and the Lagrange point). We started with integra-
tions in the plane of the orbit of the Earth and in additional runs
changed the inclinations up to i = 60◦.

To distinguish between stable and unstable orbits, we used
different indicators: the most straightforward method was to
check the eccentricity of the object because there was a sharp
cut for e > 0.3: any orbit that reached this value during the in-
tegration left the area around the Lagrange point (checked by its
distance to this point). In another test, we directly computed the
escape times and finally we also computed the libration width of
the Trojan, which is a well established check of the stability of
a Trojan. The length of integration time was thoroughly chosen;
although we had an available computer grid the main computa-
tions covered only 107 years but some tests were undertaken up
to 108 years.

4.1. The stable regions for different timescales

The stability diagram for a cut through the Lagrange point L4
is shown in Fig. 8, where we have plotted the maximum eccen-
tricity of the orbits of 100 massless fictitious Trojans for differ-
ent values of the semimajor axes (x-axes) versus the inclinations
(0◦ ≤ i ≤ 60◦) of the Trojan (y-axes). One can see that for small
inclinations, the stable region extends along the semimajor axes
between 0.991 ≤ a ≤ 1.009, then there is a decrease of the size
in the region visible up to about i = 20◦. Inside this region two
finger-like structures – slightly less stable regions – are visible
on both sides of the V-shaped structure centered at a = 1 for
15◦ ≤ i ≤ 20◦. An unstable strip then extends to about i = 26◦

5 Which means that the position was the Lagrange point L4.
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Fig. 9. Caption as for Fig. 8.

with some connection to a larger rectangular stable region with
0.997 ≤ a ≤ 1.003 and 26◦ ≤ i ≤ 40◦. Stable symmetric fingers
inside this region are clearly visible and build a continuation of
the unstable fingers around a ≃ 0.997 and a ∼ 1.003 for the
large stable area for i < 20◦. For larger inclinations on, i > 40◦,
the unstable regions extends for all values of the semimajor axes
with the exception of a small U-shaped stable window around
i = 50◦. We note that inside this unstable region (red to yellow)
sometimes small stable islands seem to appear on both sides of
the stable region i < 40◦ which – after a longer integration –
disappear.

For the aforementioned structures visible in the figure we
note that similar ones were discovered for the Trojan regions of
the outer planets in the papers of Michtchenko & Ferraz-Mello
(2002) and Nesvorný & Dones (2002) for larger eccentricities.
In our paper we investigated the stability for larger inclinations;
the different features inside stable regions for Earth Trojans are
comparable to the ones found by Zhou et al. (2009) for the
Neptune Trojan region. The instabilities inside the stable region
are caused by secular resonances – as shown in detail for the
Jupiter Trojans by Robutel & Gabern (2006). In our article we
only wish to emphasize – for the moment – the complicated
structures which are present. We are performing a detailed anal-
ysis of the resonances similar to that of Zhou et al. (2009) or
even the aforementioned article of Robutel & Gabern (2006) but
this is taking much more time.

We then extended the integration to 107 years in the same
dynamical model Ve2Sa. The region of small inclinations is still
stable with the same extension along the semimajor axes (Fig. 9).
New features, namely unstable vertical strips, appear for dif-
ferent values of a and increasing values of the inclination. For
a ≃ 0.997 and a ≃ 1.003, these regions were already visible as
being less stable in the former plot (Fig. 8) for small inclinations.
New unstable vertical fingers also appear also for a ∼ 0.995 and
a ∼ 1.005 and 10◦ < i < 16◦. Another new characteristic is the
appearance of unstable fingers for a ∼ 0.998 and a ∼ 1.002 with
i < 6◦. The V-shaped unstable region centered at a = 1 was al-
ready visible in Fig. 8, but its detailed structures could only be
established using a longer integration time.

In Fig. 10 the stable window for 28◦ < i < 40◦ was studied
separately (also for 107 years). One can again see that the most
stable regions visible through the dark blue – indicating small
e-max values – are close to the edges of a. These edges are quite
irregular and some smaller unstable islands appear inside; the
whole stable region is somewhat tattered. We do not show the
disappearance of the U-shaped island for i ∼ 50◦ for a longer
integration time.
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Fig. 10. Stability diagram for the window between 26 < i < 40 (y-axes)
for different initial semimajor axes (x-axes) of the fictitious Trojan; the
color stands for the maximum eccentricity during the integration of
107 years.

We note that we disagree, in some aspects, with the results
given by Tabachnik & Evans (2000) who claim that stable re-
gions for Earth Trojans are possible for 24◦ < i < 34◦; instead
we found the stable window is shifted outwards to larger inclina-
tions. We also disagree with Brasser & Letho (2002) who state
that orbits with an inclination of 12◦ < i < 25◦ are unstable.
In the last work, the authors quite nicely determine the secular
frequencies involved that lead to unstable motion. We already
started additional computations where the determination of the
resonances is undertaken, but the detailed analysis of these data
will be presented in a future article.

4.2. The libration amplitudes

To determine the libration width of the region, we chose for the
semimajor axes a grid of 0.995 ≤ a ≤ 1.005 for 50 different fic-
titious bodies equally distributed in the aforementioned interval
where the inclination was set to values 0◦ ≤ i ≤ 56◦. The inte-
gration time was only 106 years for this study. The colors (from
blue to yellow) indicate the amplitude of libration; we can see a
well defined stable region in the range 0.997 ≤ a ≤ 1.003 for
inclinations i ≤ 19◦. This rectangular region seems to contradict
the results shown in Fig. 8, but a closer look shows – through
the color of dark yellow – that the libration angle is in the order
of 170◦; thus, on the edge we have horseshoe orbits that enclose
both equilateral Lagrange points. An unstable strip is apparent
for 20◦ ≤ i ≤ 24◦ where 2010 TK7 is located close to a ∼ 1.0005
and i ∼ 21◦. We then see again a large almost rectangle stable
region for 25◦ ≤ i ≤ 39◦ in the same range of the semimajor
axes a as the first stable region of tadpole orbits for only slightly
inclined Trojan orbits. We note that the edges are sharp and no
horseshoe orbits are located there. From i = 40◦, no more sta-
ble orbits exist with the exception of a small stable window with
tadpole orbits for i ∼ 50◦; these orbits will be unstable for longer
integration times as indicated above.

To illustrate the diversity of orbits we depict three different
ones for an inclination i = 1◦ of the Trojans’ orbits: a tadpole or-
bit deep inside the stable region (Fig. 12 upper graphs), a horse-
shoe orbit close to the border of stability (Fig. 12 middle graphs),
and an escaping orbit outside the stable region after initially be-
ing in a horseshoe orbit (Fig. 12 lower graphs). In the left pan-
els of this figure, the semimajor axes display a periodic change
between a maximum and a minimum value close to the semi-
major axis of the Earth for the tadpole and the horseshoe orbit.
In the middle graph we present the typical behaviour of a body

Fig. 11. Libration amplitudes – defined as half of the total libration an-
gle – in the region close to L4; the color indicates the largeness of the
libration.

Fig. 12. The temporal evolution of three orbits: a tadpole (upper
graphs), a horseshoe, (middle graphs) and an escaping orbit (lower
graphs). In six panels we show the evolutions of the semimajor axes
(left graphs) and the libration angles (right graphs) over 5000 years.

in a horseshoe orbit in a rotating coordinate system (cf. Fig. 1).
Close to the turning point of the orbit, the Trojan finds itself in
the vicinity of the Earth, its semimajor axis is larger than that
of the Earth, and then – when the libation angle changes from
about 10◦ to 350◦ it reaches values smaller than aEarth; the Trojan
is now on the other side of the Earth. In Fig. 12 we show in the
lowest panels an unstable orbit that – after leaving the horseshoe
orbit – is chaotic with librations between 0◦ to 360◦.

4.3. Secular resonances

We now present our preliminary results about the secular res-
onances to understand the structure of the stability diagram
(Fig. 8). A secular resonance occurs when the precession rate
of an object ( ˙̟ or Ω̇) equals one of the eigenfrequencies of the
system (Murray & Dermott 1999). In a secular resonance, ei-
ther the eccentricity or the inclination displays long-term oscil-
lations. The eigenfrequencies of the system can be calculated by
means of a linear analysis (Bretagnon 1974) or numerically de-
termined (Laskar 1990).

The reality is more complicated than the model adapted in
the linear analysis. The secular perturbations among the plan-
ets modify the precession rates. Owning to their high masses,
the precession rates of the big planets are almost constant,
whereas the precession rates of the inner planets are strongly
influenced, in particular by Jupiter and Saturn. In Fig. 13, we
show the differences between Jupiter’s perihelion longitude (̟5,
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Fig. 13. The differences between the perihelion longitudes of the inner
planets and Jupiter. The abscissa is time and the ordinate is ̟k − ̟5,
with k = 2 for Venus (thin black curve) and k = 3 for the Earth (thick
red curve).

as usually denoted) and the those of Venus (̟2) and the Earth
(̟3) in our simulations. During the periods ∼0.05−0.35 Myr
and∼0.45−0.75 Myr,̟2 and̟3 obviously have nearly the same
precession rate as Jupiter. This complicates the secular evolution
of asteroids in this planetary system, as we see below.

At high inclinations the Kozai resonance causes large cou-
pled variations in the eccentricity and the inclination (Brasser
et al. 2004), which finally results in instability. At low and mod-
erate inclinations, the secular resonances ν3 and ν4 were found
to affect the Earth Trojans6 (Morais 2001; Brasser & Letho
2002). We note there are some disagreements in the locations
of these secular resonances between different papers. We pro-
pose to present a detailed resonance map in a separate paper.
Here we illustrate only the evolution of four typical orbits to
show the effects of secular resonances that contribute to form
the structures in the stability diagrams. Four orbits with a semi-
major axis a = 0.9995 AU and inclination i = 10◦, 22◦, 35◦, 42◦

in Fig. 8 are selected. The evolutions of the resonant angles are
presented in Figs. 14 and 15, respectively, and the eccentricities
are presented in Fig. 16. The orbits with i = 10◦ and i = 35◦ are
obviously in the stable windows, while the orbits with i = 22◦

and i = 42◦ are in the unstable gaps visible in Fig. 8.
Our preliminary calculations show that the most important

secular resonances affecting the Earth Trojans are ν2, ν3, ν4, and
ν5. According to the linear theory of secular perturbation, the
average temporal variation in the eccentricity of a celestial body
perturbed by a perturbing planet can be roughly approximated by

〈ė〉 = C sin(∆̟i) = C sin(̟ −̟i), (6)

where C is a negative constant determined by the mass of the
planet and the Laplace coefficients (Murray & Dermott 1999;
Li et al. 2006), ̟ and ̟i are the perihelion longitudes of the
celestial body and the planet, and ∆̟i = ̟−̟i with i = 1, ..., 5.
If 0◦ < ∆̟i < 180◦, 〈ė〉 is less than zero and if 180◦ < ∆̟i <
360◦ then 〈ė〉 is greater than zero.

We note that for the orbit with i = 10◦, from t = 0.05 Myr to
0.3 Myr, the angles∆̟2, ∆̟3, and ∆̟5 all librate around values

6 A Trojan precessing at the rate of the eigenfrequency g3 (or g4),
which is the precession rate of the Earth (or Mars), is in the ν3 (or ν4)
secular resonance.

Fig. 14. The evolution of apsidal differences between the Trojans and
the planets: ∆̟2 = ̟−̟2 (black), ∆̟3 = ̟−̟3 (red), ∆̟4 = ̟−̟4

(blue), and ∆̟5 = ̟ −̟5 (green). The upper panel is for i = 10◦ and
the lower panel for i = 35◦.

∼40◦ (see Fig. 14, upper panel). This libration affects (but not
increases, according to Eq. (6)) the eccentricity of the Trojan.
The overlap of these secular resonances introduces chaos into
the motion, as can be seen in the irregular eccentricity evolution
(black in Fig. 16). After t = 0.3 Myr, the ν2 and ν5 vanishes as
the corresponding resonant angles circulate, but ∆̟4 begins to
librate around a value larger than 180◦, i.e. the ν4 resonance ap-
pears. Although this ν4 resonance may increase the eccentricity
because ∆̟4 > 180◦, this eccentricity pumping effect is offset
by the ν3 resonance, which is always present for ∆̟3 < 180◦.

Similar evolution occurs for i = 35◦ (see Fig. 14, lower
panel). However, in this case, before t = 0.1 Myr, ν3 and ν5
librate around high values, resulting in eccentricity excitation in
this period (blue in Fig. 16). The ν4 resonance does not occur at
all, while ν3 and ν5 are absent for about 0.1 Myr from 0.4 Myr to
0.5 Myr. Most of time, the resonant angles are smaller than 180◦

and the eccentricity remains low.
The situation is quite different for i = 22◦ (see Fig. 15,

upper panel). The ν4 resonance exists with the resonant angle
around 180◦ until the Trojan is expelled from the 1:1 MMR
at t ∼ 0.63 Myr. No other secular resonances are present un-
til t ∼ 0.35 Myr, and the Trojan’s eccentricity varies in corre-
spondence with the circulation of the main secular angles ∆̟k

(k = 2, 3, 5). The most significant eccentricity excitation occurs
when the ν3 resonance sets in at t ∼ 0.35 Myr. In this secular
resonance, the eccentricity reaches 0.25 at t = 0.55 Myr (red in
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Fig. 15. The evolution of apsidal differences between the Trojans and
the planets: ∆̟2 (black), ∆̟3 (red), ∆̟4 (blue), and ∆̟5 (green). The
upper panel is for i = 22◦ and the lower panel is for i = 42◦.

Fig. 16. The eccentricity evolution for four orbits. The solid curves rep-
resent the orbits with initial inclination i = 10◦ (solid black), 22◦ (dash
red), 35◦ (dot blue), and 42◦ (dash-dot green), respectively. The vertical
dash and dot lines mark the moments when the orbits escape from the
1:1 MMR for i = 22◦ and i = 42◦, respectively.

Fig. 16), where the Trojan may approach Venus closely, destabi-
lizing the Trojan orbit.

For i = 42◦ (see Fig. 15, lower panel), the resonant angles
of ν2, ν3, and ν5 librate around high values, resulting in a quick
excitation of the Trojan’s eccentricity to 0.45 (red in Fig. 16).

Such a high eccentricity leads to its orbit crossing with Venus
and Mars, and the Trojan finally becoming unstable.

On the basis of these results for typical orbital evolutions,
we argue that the secular resonances ν2, ν3, ν4, and ν5 are all in-
volved in determining the Trojans’ stability. The resonances ν3
and ν5 play more important roles than the others.

5. Conclusions

We have investigated in full detail the stability of the recently
found Earth Trojan asteroid 2010 TK7 in different dynamical
models. We derived a symplectic mapping based on the spatial
elliptic restricted three-body problem to see the location of the
mean orbit in the context of the phase space structure. We tested
the validity of the simplified model with numerical integrations
and found good agreement of the model on short timescales. We
included the influence of the additional planets as well as the
Moon to see their influences on the mean orbit of 2010 TK7.
We then performed a detailed numerical study to propagate the
orbit of the Earth Trojan asteroid both forwards and backwards
in time, together with 400 clone orbits to incorporate the possi-
ble errors in the orbital parameters induced by the observations.
From our detailed study we were able to state the probability
of both the capture and escape of an Earth Trojan and estimate
the length of the time that the asteroid will stay close to the
Lagrangian point L4 of the Earth. To this end, we investigated
in full detail not only the regime of parameters and initial condi-
tions close to the asteroid actually found but instead on a grid of
initial conditions and the parameter space (a, i) using thousands
of simulations, based on fictitious Earth Trojans. With these re-
sults we were able to define the region of stability and instability
on both short and long timescales.

The main results of the present study can be summarized as
follows: we can confirm the result of Connors et al. (2011) that
the asteroid 2010 TK7 lies in the tadpole regime of the Sun-Earth
system. The orbital parameters indicate that the asteroid most
probably became an L4 Trojan some 1800 years ago and will ei-
ther jump into the L5 neighbourhood or enter a horseshoe orbit
about 15 000 years in the future. Before it moved into its cur-
rent tadpole orbit, this asteroid was captured into the 1:1 MMR
around 30 000 years ago, and it may stay in the resonance for an-
other 200 000 years. The total lifetime of the asteroid (being in
the 1:1 MMR) is less than 0.25 Myr. As a NEA, the closest ap-
proach of this asteroid to the Earth will be larger than 70 times
the Earth-Moon distance when it is on a Trojan-like orbit. On
short timescales, it is possible to predict the orbit in the spa-
tial elliptic restricted three-body problem (Sun-Earth-asteroid)
whereas on intermediate timescales the influence of the Moon
has to be taken into account. In addition, on longer timescales
the influence of the other planets in our Solar system cannot be
neglected, since the asteroid is on a chaotic orbit with close en-
counters to the unstable equilibrium L3. We expect the discov-
ery of further interesting objects in the vicinity of the L4 or L5
equilibria of the Sun-Earth system. The long-term integrations
show: for low inclinations, the stability region extends in terms
of semi-major axis up to ±.01 AU. The size of it decreases with
increasing inclination up to a threshold at about i = 20◦. Another
stability window opens up between 28◦ and 40◦ but disappears at
larger angles. The preliminary results of our frequency analysis
indicate that the ν2, ν3, ν4, and ν5 secular resonances are deeply
involved in the motion of the Earth Trojans, and we have illus-
trated this with several examples.

From a qualitative point of view, our simulations have indi-
cated that 2010 TK7 is situated within an unstable region where
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all sorts of orbits such as horseshoes, tadpoles, and jumping ones
are possible. We show – which is well confirmed – that the Earth
Trojan moves on a temporary captured orbit. On the other hand,
it is unclear why no other Trojans of the Earth have been found
up to now because there are large stable regions for small incli-
nations, and for larger inclinations Trojans may also exist over
very long timescales.

Acknowledgements. Z.L.Y. thanks the financial support by the National Natural
Science Foundation of China (No. 10833001, 11073012, 11078001).
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