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The orbital-motion-limited regime of cylindrical Langmuir probes

J. R. Sanmartin®
ETSI Aeronaticos, Universidad Politenica de Madrid 28040, Madrid, Spain

R. D. Estes
Harvard—Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, Massachusetts 02138

(Received 29 June 1998; accepted 7 October 1998

An asymptotic analysis of electron collection at high biag serves to determine the domain of
validity of the orbital-motion-limited OML) regime of cylindrical Langmuir probes, which is basic
for the workings of conductive bare tethers. The radius of a wire collecting OML current in an
unmagnetized plasma at rest cannot exceed a VRIig, which is found to exhibit a minimum as

a function of® ,; at®, values of interestR 4 is already increasing and is larger than the electron
Debye length\ .. The breakdown of the regime relates to conditions far from the probe, at electron
energies comparable to the ion thermal enekdl,; Ryax is found to increase witf; . It is also
found that(1) the maximum width of a thin tape, if used instead of a wire,Rs,4; (2) the electron
thermal gyroradius must be larger than bBthndX . for magnetic effects to be negligible; at®)
conditions applying to the tether case are such that trapped-orbit effects are negligibl®990
American Institute of Physic§S1070-664X99)03801-X]

I. INTRODUCTION would collect current as if it were part of a cylinder uni-
éormly polarized at the local tether bisThis is because of
1the enormous disparity between tether thickness and collect-
ing length, which lie in the millimeter and kilometer ranges,
%?spectively. Bare tether applications rest on the assumption
that electron collection occurs in the optimal orbital-motion-
limited (OML) regime of cylindrical probes. It is thus impor-

A space tether is a cable that connects orbiting en
masses and is kept vertical by the gravity gradient force. |
conductive, its electrodynamic interaction with the iono-
sphere and geomagnetic field has potential applications th
range from power generation and propuldiom the use of
wave® and particle emissiorfsThe standard tether carries e ; : L
insulation, and has end devices to establish and control elefént t(.) determine its pargmetnc dgmam of Va“d'ty.'
trical contact with the ionospheric plasma. The bottleneck for Since OML current is proportional to the perimeter of

such applications is the efficient capture of ionospheric elec'Ehe cross section, a large tether current may require a large

trons at the anodic end of the tether: the electron gyroradiu%e”memr'tIf t_ne CIOSSWLthd'rSEAnI_S |0n| IS tgno large, ?O\ive\:e_r,
and Debye length are so small compared to any useful, threé-e current will not reach the value because ot electri-
dimensional, passive anode that both magnetic guiding an%l‘al screening effects related 'to a compargtlvely shqrt Debye
electric shielding greatly reduce collection. This has moti-length)‘De' Here we determine the maximum radius of a

vated work on active contactors that create a plasma cloud t%yllnder collecting OML current in an unmagnetized plasma

bridge the ionosphere® at rest, and how it depends on the ion temperafyrand the

Using uninsulatedbare tethers, whose anodic segment .b'?Sq)FE ISSetcst.h I ?ilg‘l\éal\t}e; oizhoeo ratm(bfi%k:.e of
might itself capture electrons passively with no shielding ornterest forte ergTe~0.15eV, @, V) are Imes

magnetic effects, has been proposed as a simple alterﬁativé"?‘rgs\r/ thaln vzlutes pr ewom;]sli/ expllc()jr%d r;rlljmenca}lly. idth
An anodic segment in the kilometer range leads to quite € aiso determine what would be the maximum wi

large (in addition to effectivg collecting areas; also, bare of a thin tape,.whlch has been proposed as a té@er. V). .
tethers prove fairly insensitive to regular drops in plasm Next we consider how large the thermal electron gyroradius

density along an orbft® A National Aeronautics and Space '© has to be for magnetic effects to be negligib&ec. \);

Administration (NASA) experiment(Propulsive Small Ex- again, if the crosswise dimension is too large, th_e cu_rr_ent
pendable Deployer Systenwill test a bare-tether collection would not reach the OML value because of magnetic guiding

in a 2000, Delta-2 rocket flight. The Marshall Space I:”ghteffects due to a shott. Results are discussed in Sec. VI.

Center is considering the use of bare tethers in the Interna-

tional Space Station, for reboost or secondary power generd- CIRCULAR CYLINDER AT REST IN AN

tion. As a power generator, for instance, a bare tether wouly NMAGNETIZED PLASMA

have a useful load and a cathodic contactor at its base, and The electron current to a sufficiently long cylinder at

electron collection, if optimal, would extend roughly to the (egt in a collisionless, unmagnetized, Maxwellian plasma of

upper (ne/m;)**~1/7 of the total length. densityN,, and temperature$, and T; may be written in
Note that each point of an electrodynamic bare tethegimensionless form ak=1,, times a function ofR/Ape,

ed,/kTe, T;/Te. Here, I \,=27RLeN, VkT/2mm, is the

dElectronic mail:  jrs@faia.upm.es thermal or random currenk,p is VkTe/4me’N.,, andR, L,
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The E-integral, which only covers positive values must be

carried out once fov, <0 (incoming electronsand again for

Lz v,>0 (electrons that have turned outwards at a radius be-

tweenr and R). The J-integral can be made to cover just

positive values by writingdJ—2dJ. The E—J domain of

integration in Eq.(4) is r-dependent because of both the

electric field and the sink effect of the probe:

- (i) For an incoming electron of enerdy>0 to actually

0 /’; reachr, vrz, must have been positive throughout the entire
T ranger <r’<w. Using bothJ and(5) in Eq. (3),

- , m2r2p2=J%(E)—J?,
FIG. 1. Geometry of cylindrical probe and electron motion.

and usingnow the fact that] is also conserved, its range of
integration at that energy will clearly be

and®; are the probe radius, length, and bias. In general, the 0<J<J}(E)=minimum{J,,(E);r<r’<o}. (6)
determination of electron trajectories to obtain the currenin general, the minimum occurs at a differarit for each

requires solving Poisson’s equation for the poteriigf), energyE. If J¥ (E) differs fromJ,(E), those electrons in the

A2, d [ ded| N, N range J¥ (E)<J<J,(E), for which v? would actually be
(f ar ﬁ) NN (oi=AoeVT; ITe), positive, never reach, and must thus be excluded from the
! * * (1) integral in (4); one says that there is an effective potential
barrier forr, at energ)E.

r dr

with boundary conditionsb=®,>0 atr=R, ®—0 asr (i) For anE-electron outgoing at the J-range of inte-
—00, gration will be

Both the electric field-V® and the probe acting as a . .
sink of particles affect the densitied, and N;, and thus r(E)<JI<J7 (E),

(I)(r) itself. The basic prOblem in prObe theory Usua”y lies in electrons in the range <0‘]<‘J,F(Q(E) ha\/ing disappeared at
the attracted-particle densiti.. Actually, for the e®,  the probe.

>le , kTe values of interest here, the repel|6d'partiC|e den- Equation(4) may now be written as
sity N; is accurately given by the simple Boltzmann law,

Ne = dE -E
N;~N,, exp(—e®/KT,), (2 N fo KT, ex kT,
except near the probe, whelkk (as the ion current itselfis * *
- : - e 3E)
exponentially small anyway. Equati@®) makes convenient x| 2 sin? —sin" ! =, 7)
to normalize® andr with the ion parameters; and\p; . J:(E) J:(E)

Since all electrons originate at infinity, and the Vlasov ha|f the first term in the bracket being tlxe< 0 contribution.
equation conserves the distribution functié(r,v) along  The current itself is easily found to be
electron orbits, we havé&(r,v)=fy(v.) (undisturbed Max-

wellian) if ther,v orbit, traced back in time, reaches infinity; |=2RLeN, /2eCI>prw d_E ex;<_—E JR(E) ®
otherwise, we havé(r,v)=0. Note next that both axial ve- Mg o kTg kTe/ Jr(0)°

locit , and t ig. 1), . . .

ocity vz, and transverse energifig. 1 We note at this point that, through its dependenceb(E)
[andJ%(E)], the densityN, is a functional of®(r) and thus
cannot be known, for use in solving B4, for ®(r), before

) the potential itself is found; this results in a complex, itera-
are also conserved along orbits; the valugs thus deter-  tje numerical solution of Poisson’s equatith.

mine v, ar_ld, consequently, thEM. value, in terms C_Jf the A hypothetical potential with no barriers at 407 (E)
local potential®d=®(r). The densityN, at each particular =J,(E) for 0<E<o, R<r<o] would everywhere reduce

radiusr may then be expressed as an integral of the undisNe in (7) to a function of the local radius and potential,
turbed Maxwellian distribution function over appropriate ve-

%2%2_ =_%2_%2
20r+2v9 edD—E—va 5> Uz (3

locity ranges'° A trivial v, integration, and a change of vari- ~ Ne Jw dE exp( - E) sin-1 Jr(E) )
ablesv,, vy,—E, J, yields N, o mKTe kT, J(E)’
N, exp(— E/kT,)dEdJ with J,(E) given in Eq.(5). This would allow a ready solu-
N , 4 tion of Eq. (1). As we shall see, however, E(R) does not
N, f f 2 kT I2(E) — I @ i q.(1). As w wever, E(9)

fully apply to the case of interest here, which corresponds to
where we introduced the angular momentlisamgrv,, and  the maximum possible current {8). Since we havelg (E)
defined <Jg(E) from the definition ofJ* (E) in (6), current is maxi-
5 ) mum under the conditiodk(E)=Jg(E), for 0<XE<® [no
Jr(E)=2mgrE+ed(r)]. () potential barrier fojust radiusR; note that the second term
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FIG. 3. Potential profile foR=R,,. The plasma is quasineutral below

point 1; below point O there are no potential barriers. The broad, ion-free

FIG. 2. Schematics of potentidh versus®,R?/r? for profilesa andb(R
region above the thin layers at points 1 and 2 is free of space-charge effects

<Rmnawy C(R=Rpa), andd(R>R,5,), With R4 the largest radius for the

OML regime to hold. The hypothetical profile would have no potential
near the probe.

barriers.

Condition (12), which is, of course, more restrictive than
(11), requires the ordinate-to-abscissa profile ratio in Fig. 2,
CD/(<I>pR2/r2), to monotonically decrease throughout when
moving to the right in the figure; only the hypothetical case
satisfies(12). Note, however, that iti(r2®)/dr is positive
just beyond some radiug,, then we do have

rosr<oo, (13

in the bracket of7) does reduce to a function of the loaal
and ®]. This is the OML current; wittE~kT.<ed,, we

haveJgr(E)=~Jg(0), Eq.(8) giving

IOMLQZRLNxe\ 2e¢)p/me
:IthX \/4eq)p/7TkTe (eq)p>kTe)

With the current known, however, there would be no need

for solving Eq.(1), except for the very purpose of the present )

work: determining the parametric domain for the OML re- @MdEQ. (7) reduces to (9) for>r,. Casesh—d present this

gime to hold. Fore®,>kT,, kT;, this problem comes out PropPeny: ro would be the radius where the profile ratio
®/(®pR?/r?) is minimum. For case, which is reproduced

in Fig. 3, the corresponding profile point lies on the diagonal.

to be reasonably simple.
Note that to havel; (E)=J,(E) for the entire range 0

<E< at a particulam, it suffices to havel} (0)=J,(0)

(10
JF(E)=J,(E), for O<E<co,

[for E large enough one haﬂf(E)%ZmerzE and thus
JF (0)/3,()=1]. From JZ(0)ecr?®(r) it follows that the  |iI. MAXIMUM RADIUS FOR OML VALIDITY
condition of no potential barrier for a radiugs
Figure 3 corresponds to the actual profile R Rpax,
at largee®,/kT; ; this may be taken as an ansatz that is used

rPd(r)<r’?d(r') (rs<r'<w).
In particular, the OML conditionJ%(E) = Jx(E) for 0<E in solving Poisson’s equation and verified in the solution.
<o, requires the potential to satisfy We carry out an asymptotic analysis of E@l) for
ed,/kT;>1, following closely a classical study, which,
R*®,<r?d(r) (Rsr<m). (1) however, was developed for a monoenergetic attracted-
Condition(11) can be conveniently illustrated by displaying particle d'smblﬁ'on functhn, and for the non-Ol\./IL', small
P versusd>pR2/r2 for potential profilesFig. 2); (11) shows )\.Di/R, regime:< The profile presents several distinct re-
that the profile forR=R,,x (the maximum radius for the glonsl. Both th ineutral imatioNL~N d
OML regime to hold, with other parameters fixedould just th (@) bo ! the qgi‘.smig rz; %pgrtlmma 10 teON' ‘I’:.an3
touch the diagonal in the figure, as in the case of prafile € no barrier cond It_)l‘i ) hold below point Uin Fg. 3.
Profilesa and b would lie in the OML regime, whereas Condition(13) may be illustrated by considering théamily
would not ’ of straight linesJ?=J?(E) of the E—J? plane in the range
. ) s _ =rq: for r increasing, the corresponding line keeps moving
Finally, note that the extreme conditialf (E) =J,(E) M=o 1 T o
. - to the right for all positive energie$ig. 4a8. The use of2)
f <E<w, R=sr< hich | EqH I
or 0 < r<ce, which led to Eq(9), would require and(9) in No~N; determinesb(r); for r large enough, one
has®x1/r, as suggested in Fig. 3. Valuds, andr for

the potential to satisfy
point O, lying on the diagonal, are then given exactly by

d(r?®)/dr=0 (R<r<w). (12
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2my(rled, —ried,)?
E R ng(E):Jrzl(E)_ 2 (De_ 2eb 1 (12— 1DE" (16)
I rie®,—roedy+(rg—ri)
r>% The values ; and®d, are taken fron{143a, (14b) butr, and
sy ®, are yet unknown.
For any radiug betweerr,; andry we would now have
(a) J? Jr(E):Jem(E)1 for E<Eenv(r)u (17a
=J,(E), for E>Egp(r). (17b)
.
’ Asr approaches,, one ha€,,,(r)—« in (15b); Eq. (178
E R n for 3F (E) may then be used in E€7) for N, throughout the
Y/ r<ns<n e_nt_ire range 8.E<e. Nearr, the quasineutrality equation
/ giving ®(r) then reads as
/ Ne Jw dE p( - E)
—_— — eX —_
®) ¥E N, Jo wkTe kT,
FIG. 4. (a) Straight lines of the-family J2=J2(E) [J3(E) defined in Eq. |2 i1 Jen(E) ~si Jr(0)
(5)], for the probe, point 0 in Fig. 3, and any two radii>r beyondr,. (b) J,(E) J,(E)
Envelopngm,(E) (dashed curvefor r-family IinesJ2=Jr2(E) in the range
r,<r<rg, and limit lines for points 0 and 1; the envelope is approximately —ed(r)
described by Eq.16). At the top of the thin layers, and for most of the broad =exX T (18
|

region above, in Fig. J-lines lie far to the right, as indicated; as the probe
is approached, however, theline would move back to the left, finally

reaching the probe line. Note that neithed,,,(E) nor Jz(0) involve the local values

of r or ®. The derivative of(18) with respect to® atr,
where dr/db vanishesthen reads as

foc dE exp(—E/KT,)
o 2m(E+edy)TL/T,

Jen(E) JR(0)
2NZE-2.E  NZE-%0
(2) The quasineutral approximation remains valid from 1 1

point 0 up to a point 1 where-d®/dr— (Fig. 3). Now, —ed,
however, there is andependent energy range with potential =exp( KT, )
barrier. Since we have,<r, andri®,>r2d,, ther-lines '
for points 0 and 1 must meet at some positive energy, a¥/sing (16) in Egs.(18), evaluated at;, and(19) yieldsr,

shown in Fig. 4b. Also shown is the envelope=J2 (E)  and @y, thus fully determiningen,(E). Figure 5a shows

of the set ofr-lines between points 0 and 1, which is deter-eq)oékTi(:e‘I)_pRz/kTifg), ed;/kT;, and o,=e®pR%
mined by the equationsg?—J*(E)=0, d[J?>—J?(E)]/or  KTiry as functions off/T;.

[1+expedy/kTy)erfa \edy/kT,) Jexpedy/kT;)=2,
(14a

®o=PRYrZ, (14b)

X

(19

=0, leading to the parametric representation (3) Above point 1 in Fig. 3 there are two thin, non-
quasineutral layers that take the solution to a radjua bit
J2=02.(r)=—mgr3edd/dr, (159  closer to the probe, and to valueb satisfying ®,<®
<®,, with ther-line moving far to the right in Fig. 4b. Note
E=Een(r)=—e®(r)—1/2redd/dr. (15D that bothed, and ed, are of the order okT, whereas

ed, /KT, is very large (-10°10%). If Fig. 3 were drawn to
scale, the near-vertical potential drop in the two thin layers,
down to point 1, would occur very close to tdeaxis, and
point O would lie very close to the origin.

The structures of the two layers are considered in Ap-
pendix A. At the top of the second laye® is found to

The envelope is tangent to eactine at theE, J? point
given by Egs.(15a, (15b. Since E and J? diverge with
—d®/dr in (159, (15b, as r—r,, the envelope is
asymptotic to the ;-line. Also, it is tangent to they-line at
E=0 (Fig. 4b; conditionE¢,(r)=0 in (15b) corresponds
to a minimum ofr2®, the profile becoming tangent to the increase in Fig. 3 a®o(r,—r)%3. The differencer;—r,

diagonal n Fig. 3 When approaching point 0 from above'vanishes withkT; /ed, and is small for the higb, values
[The quasineutral solution below 0 has no such property

thus breaking down at that point; however, using locally the?;ﬁl)n tiirisptb e?\%‘;gllzgaz_eq)PR [kTirz we get, from Eq.
full equation(1), together with(2) and(9), suffices to round '

the profile at 0, with no effect beyond its immediate neigh- 202\ Y8 KT, \ 28/ \py; | 45

borhood] A S|mpl_e but a_ccurate apprommatlo_n fag,, (E) o=0q| 1+2&, m) (@) (ﬁ) }
can now be readily obtained from Fig. 4b, using tle and
r,-lines without the knowledge ob(r), £,~3.45, (AB)
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FIG. 5. (a Dimensionless quantitiesefbo/kTi(:e(I)pRzlkTirg),
ed, /kT;, ande®pR?/kTiri=0, versusT./T; . (b) Dimensionless quan-
tities « [defined in Eq(21)] and\u (A and . defined in Appendix Aversus
TIT;.

with A given in Fig. 5b.
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is a function ofT,/T;, given in Fig. 5b too. Introducirg

)

u=in r (22a
[, Vmah kn e -
O T R edp| kT
Eqg. (20) becomes
d?g/du?=e""/\/g. (23)

Matching to the top of the second thin layer yields the
boundary conditions

g=0, dg/du=0 413

(g~u™* as u—0),

(r=ry).
This fully determinegy(u), which is a parameter-free func-
tion. Finally, onceg(u) is found numerically, settingb
=d, atr =R=Rp5in (223, (22b) yields a relation between
parameters, i.e., determinBs,,y,

Rmax V(o e®p KTV

Moi J[g(In Ve®,/kTioy) 1%
with o, given by Eq.(A6), whereR=R,,,, ando((T./T;),
and\u(T./T;) and «(T./T;) given in Figs. 5a and 5b, re-
spectively. Sinceyed,/kT,o0,=r,/R is large, one might
use botho,~ o1 and the asymptotic form aj(u) at largeu,

c~2.0854, b~0.3511,

at u=0

(249

g~c-(u—b),
to get a simpler, approximate law f&,,y,

Rmax V(oedp /KT)M

Noi \kc(In e KT,y —b)3*

The behaviorg~c-(u—Db) shows that the high bias
makes space-charge effects negligible within some neighbor-
hood of the probéeven thougR is not small compared with
Npe. Api)- Using Eqs(223, (22b), @ (r) takes the form of a
(logarithmig solution to the two-dimension&2D) Laplace-
equation, withN.— N; thus ignored in Eq(1),

(24b)

1 r

~C-(U—b)—DP=dp| 1—- In =|.
g=c (Umb) = = L o b ' R
(25

This is fortunate because the approximation f&/N,, in

(4) In the broad region between the second thin layer andtq. (20) would actually fail near the probe: as one ap-

the probe, we have®/kT,~®/d, large (Fig. 3); N;/N,, is

proaches it, moving toward the upper right corner in Fig. 3,

then exponentially small and may be neglected in Poisson’the r-line moves back to the left in Fig. 4b, to finally reach
equation. Alsor-lines lie far to the right in Fig. 4b; we then the R-line at the probe.

have bothJ}(E)=Jcn,(E), and Jgn,(E)~JIr(0)<J,(E)
~J,(0). We maythus simplify the expression féY./N., in
Eqg. (18) and use it in(1), which takes the form

)\%i d d e(I) Ne K R q)p
L et P et (20
rodr\ drkT/ N, wr )
where
_ = dE —E\ Jen,(E)
2, i ol o o

Figure 6 showsRy,a/Ap; versused, /KT; for different
values of T./T;, using (249. The dependence on the re-
pelled particle temperatur€; is clearly a consequence of
ed, anded, being of order okT;; it is also related to the
well-known fact that the current to a probe, in the opposite,
thin sheath limit, depends on the repelled particle tempera-
ture. Note thaR,,, goes through a minimum as the bidg
increases, and exceedlg; at high enough®,. Numerical
calculations for the range®,/kT; <25 had showrR,,, de-
creasing monotonically with increasing bigsour results are
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FIG. 6. Rnax/\p; versuse®p /KT; for several values of temperature ratio FIG. 7. The same as Fig. 6, f®a,/\pe Versuse®p /kT, .

T./T;, using Eq.(249.

in reasonable agreement with those calculations for moderate  We have neglected collisions throughout. Collisions,
ed,/kT;, although our analysis strictly is only valid for however, even if unfrequent, might trap electrons in bounded

very high bias. Usingy(u) and the approximation,= o, orbits, thus creating additional space-charge that could affect
Eqg. (249 with T/T; fixed yields readily a minimum for &(r) andl. In Appendix B we establish under what condi-
Rmax atup=In yed,/kT;o1=1.76, or tions this effect should be negligible, and show that these

conditions are satisfied in the tether case.
edp /KT, at minimum=exp(2X1.76 X o¢(T;/T);

(26)

a comparison to Fig. 6 proves that E46) has an important

effect at moderate bias. Figure 7 sho®g,,/\pe Versus V. THIN TAPE AT REST IN AN UNMAGNETIZED

ed /kT,.
p e
To understand how the minimum &%, arises in Fig. PLASMA
6, note that the broad region described(B9) can be char- In the OML regime, the current to a cylindrical probe

acterized by the values,, @, of the profile pointin Fig. 3 55 the important property of being independent of the shape

with taggent through the origin; this corresponds tol maxi'of the cross section; it just depends on its perimeter, being
mum r CD(r),' I.e., maximum expf{2u)g(u) [and to mini- given, in general, by Eq.(10) with R replaced by
mum Ne/N., in Eq. (20)]. With uy=0.63,9(um)=0.86 of  yerimeter/2r (see Appendix €3 The limits of OML valid-

order unity, we have ity, however, must be determined anew for every cross sec-
F~Fo~Fy, Ar~r—ro~fy, ®~& ~dolg(up), tion. For a _thin tape, angular momen_tuhis not conserved,
and there is no close-form expression such(@sfor N
leading to characteristic values for both sideg20), [even though Eq(4) would remain valid. Nonetheless, we
find that the high bias conditione(p ,>kT,) makes it pos-
A3 KT N : - b
bi L Jg(up)| ~ =2 20 sible to approximately reduce the problem to the case of the
7 g(up) ; (20) : :
R°g(up) edp N, circular cylinder.

when ry~1,~Rye® /KT, is used: relation20') mirrors dI-]!_ereditbis cpnvenient to use elliptical coordinatesind
Eqg. (249. Note that increasing » would reduce the charac- w defined by(Fig. 8)

teristic electron densityi.e., the space-charge that keeps x=a cosv coshw, y=a sinuv sinhw,

Rmax low) through the factor/kT,/e®p on the right-hand-
side of (20'), but it would work the opposite way through
g(up) on both sides of it. Poisson’s equation then reads as

(O=v<27, O=sw<wx®),
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3 for w>w* (€2V>e?"">1), with some overlapping range of
Ya validity. In neither(283 nor (28h) doesv show up explicitly.
Finally, with the ansatzb(w,v)~®(w), the electron

2 density in Eq.(28b) for w>w* would itself be a function of
justw, No=Ng(w). This is because, at a point in that region,
1 incoming electrons, and outgoing electrons that did not reach

valuesw<w*, would find a radial field throughout their
motion and conserve the angular momentijntheir contri-
bution toN, would be a function of, and thus, ofv. Those
outgoing electrons that had reached valwesw* and
missed the probe, would havechanged by a quantitjJ
that is easily shown to be smalyJ~J/In(e®,/KT), as a
result of the shallowlogarithmig character of the potential
in the vicinity of the probe, where the field is not radial; their
contribution toN, would be weakly dependent an On the
whole, we would thus havé&l.~Ng(w), consistently with
the ansatzb (w,v)~®(w).

With ® =®(w), andw=In(2r/a) for w>w*, use of the
FIG. 8. Coordinate ellipsew/(x,y)=const for the orthogonal coordinates probe boundary condition in Eq283, which is also valid

P
introduced in Sec. IV; they approach near-circlesvaiscreases. The limit ~ 10f SOmMe range beyond™, yields
ellipsew=0 (y=0, —a<x<a) represents the cross section of a thin tape of

width 2a. (I):q)p[l_ C!W], a=const, (29)
r
~ — JR— *
—O~q,1-a In(a/Z) , for w>w*, (30
2 2 2
— Abi i (‘9_2+ ‘9_2) ﬂ In addition, Eqg.(28b) for w>w* may be shown to be ex-
a’(sinkf w+sin’ v) | ow? * dv?) kT, actly equivalent ta(1), whose solution, as in Fig. 3 of Sec.
N b I, will have an outer quasineutral region, two thin layers,
e . . . . .
N ex;{ W) (277  and a broad, ion-free, inner region. Now this solution, rather
% i

than satisfying the boundary condition at the probe, must
Note that the cofocal coordinate ellipsex,y) =const ap- match smoothly the behavior given (80), within the over-
proach circles asv increases; at large radial distances onelapping range of validity. Comparing Eq$25) and (30)

has shows that, beyond/*, the solution behaves as in the case
of a circular cylinder with an effective radiulR=a/2, the
A coefficienta being as given in25).

X“+y© 4r This suggests that, with all other parameters given, the

w>w*, with w* =1.5, say. Note also that the limit ellipse quite simply to the maximum radius of a circular cylinder,

r x2—y? a2
w=In a+|n 2—

w=0 in Fig. 8 is the s_egmer)t=0, —a<x<a, which_ rep- 28,10= 4R . (31)

resents the cross section of a tape of widéhahd negligible

thickness. Results for a wire in Figs. 6 and 7 are therefore applicable
Here, as in the case of a wire in Sec. Ill, the spacehere. Note that, although a tape allows twice as large a cross-

charge will be ignorable within some neighborhood of thewise length as a wire, OML current is proportional to the
probe, which, fored,/kT, large enough, extends into the Perimeter, and thus a tape would only increase the maximum
region wherew-ellipses are near-circles, that is, beyond current by a factor 4¢, or 27 percent. A tape may be pref-
=w*. We may then argue that the potentialill be nearly ~ erable, however, for other reasons: a cylinder WRRax
independent ofv everywhere i.e., ®(w,v)~®d(w) (al- Mmight be too heavy and rigitla tape may lead to a shorter
though the electric field will be radial far>w* only). First, tether®®

boundary conditions refer to just (®=®, at w=0 and One must still take into account the fact that the Laplace
®—0 asw—x). Next, Poisson’s equation, as given (@),  potential(29), for the regionw<w*, is quite different from
becomes the potential25). It then comes out that a tape, contrary to a

5 5 circular cylinder, never collects the full OML current, al-
(‘9_+ ‘9_) g% (283 though this has no practical consequences. There are poten-
Fw - v kT tial barriers in the vicinity of any flat collecting surface, the
for w<w*, where the space charge may be neglected, andaffects being vyeak, however, in_the case of a shallqw 2D
Laplace potential® Using (29) we find that potential barriers
B # P ed N —ed around the tape lie in a thin region of thickness
aZsnfw |\ 2w % kT, N. X KT, )’ ~a/In(ed,/kT)) and that current reduction below the OML
(28p  value is of order[l/ln(ede/kTi)]Z, or about 1 percent; we
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give details of these calculations in Appendix C. Equationlayers(Fig. 3). In the broad region between the probe and
(31) should then properly read that current to a tape keepthin layers, the left-hand-side of E¢33g takes the form

very close to the OML value foa<2R,,.- 2, . |§ o1 T T ri

dt? R g(up) r?

+02

V. CIRCULAR CYLINDER AT REST IN A MAGNETIZED
PLASMA

X2_y2 dg XZ dZg
7 dutrZar
As in the previous section, there is no closed-form ex-with r,=r; and R<r<r,. Gyromotion is negligible if
pression foMN, in the presence of an uniform magnetic field Rzg(up)/lg is small; note thag(up) is only logarithmically
B, which allows for only two constants of the motion: energylarge. Similarly, within the thin layergr/r, very close to
and canonical angular momentum. Overall use of these twanity) we haveN,— N;~N., andrd?®/dr?s> —d®/dr, and
constants leads to the Parker—Murphy current law, whichhe left-hand-side o338 becomes
takes the character of an upper bound at the high bias of o2
interest:* For e®,>kT, and cylindrical geometry one has 2 Ux +Q§{ 1

2
o=l om\m/2X | /R, (32 <
. , gyromotion is negligible here ifNpe/l¢)? is small.
wherel is the electron thermal gyroradius, For magnetic effects to be fully ignorable, the dfiec-
le=VKTo/MJ/Qex1/B  (Q=eB/m,). ond term on the right-hand-side of Eq®83a), (33b should
be small too. This easily leads to conditions

Equation(32) suggests that if./R is large,l oy then lying Rm cosell,<1 and\p, cosell<1 for the broad re-

well below thel py bound, the OML current should hardly be 450 and the thin layers, respectively. All this means, first,

affected by magnetic effects. _ . that, for B-effects to be negligible, the ratidpe/le, in ad-
To get more definite results, consider electron motion inyition to the Parker—Murphy paramet&|, in Eq. (32)

the presence of the electric fie_ld fjue to p_robg and plasmay, st pe small. Secon®-effects will be weaker for a mag-

—V@(x,y) (probe andz axes coincident as in Fig)land & peic field nearly perpendicular to the probe axis. Finally,

uniform magnetic field in they-z plane, atan angle with g/ _effects will be weaker foff,/T; small[see Eq/(34a].

the probe axis: At the relatively high densities of thé-layer (N..

Uy, (349

12 x2 Ng—N;

NP TN, Uy; (34b)

d, , 7 ed =10"-102 m™3), Ape/l*B/{N.. is indeed small, but it
WJFQe[l_'e a2 KT.|Ux reaches above unity at extreme altitudes. Experiments on
¢ board an elliptical-orbit satellit€ and a rocket! covering a
d J ed broad range of altitudes, did show a current dependent on the
=| vy Qe COS ‘P) ay my’ (333 angle betweeB and a cylindrical probéB-effecty whenN..

) ) dropped low enough, at very low and high altitudes. In all
d Uy+Qz cof o—|2 J % v such experiments, probe bias was only moderately high,
dez e ® e ay? kT however.

J J ed ) )
=| vy @-i*ﬂe cos<p) o E+Qevz Sin ¢ COoS @. VI. CONCLUSIONS
(33H) Bare tether applications are based on the assumption that

) ) o the tether collects electrons in the OML regime of cylindrical
Equations(33a), (33h) were obtained by deriving the respec- |_angmuir probes. The definite and simple OML current law,
tive equat|or_155 of motion and using the derivative along theyhich allows for detailed design considerations, has opened
electron orbit; the way to a technology of electrodynamic tethersHere,

d od ~ 920D . 2P we have determineq the domain of OML_vaIidity in param-
dt ax % axZ TV axay eter space; we studied the surface bounding that domain as a

relation among the dimensionless numbers,
and similarly ford(od/dy)/dt. UnlessB is small the motion
is ¢-dependent; it is rotationally symmetric far=0, and Rihpe, €Pp/kTe, TilTe, andipelle,
free of magnetic force ii33b) for ¢=7/2. for the very largee®,/kT, values of interest and different

For largeB, Egs. (333, (33b) would describe gyromo- tether geometries.

tion, as represented by the first term in the bracket on the We found that the ratio.p./l. must be small for mag-
left-hand-side, plus a small drift due to the electric field. Wenetic effects—which would break the OML law
now assume, on the contrary, thais sufficiently small(l, ~ otherwise—to be ignorable. This ratio is a property of the
large enoughto make such effects negligible. We first use plasma rather than a free design parameter. In the Earth’s
the B=0 solution of Sec. Il to determine how small the ionosphere\p./l, is small for N,, above 16'm~3; this
magnetic field must be for gyromotion to be indeed negli-breaks down at low, and sufficiently high, altitudes. Mag-
gible throughout both the orbital motion from the two thin netic effects are weaker f@ near perpendicular to the probe
layers to the probe, and the large potential rise inside thosaxis.
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For\pe/le small we determined the maximum radius for ed—ed, 218
the OML regime to hold, giving KT = X Y,
I

Rmax/Ape VS €®,/kTe, and T;/T,.

(Adb)

Eq. (A1) become¥
Rmax €xhibits @ minimum as a function df, but, at the bias

of interest, is slowly increasing, and abokg, in the iono- d?Y/dg?=Y?+¢. (A5)
spheric caseT/Tg~1). For\pe/le small andR~\p., We
have R/l small too, a second condition required for mag-
netic effects to be weak. We also fouRyg,,,/\pe iNcreasing
with T; /T,. If a thin tape is used instead of a witeith all
others parameters equahe maximum valid width is found

to be &R, Trapped-orbit effects should be negligible for the left-hand-side of1) keeps the form ofA1), but the full

barel tethetr ctond|t|(z_ns. left out of this stud h ibl expressiong2) and (18) for N; and N, must be retained,
" rtnpo][ an qlu;a_s |onst_e ouf OI IS Stu ()j/areb € Eoss'theexcept that J? in (18) simplifies to J?(E)~2mr3(E
etiects of a refative motion of plasma and probe, now the, ed). At the top of this second layer, one finds(r)

current lags behind the OML current when the probe is toooc(r )4
thick, and the interference between two probes at a finite zéetting.g— £, in (Ada) we haver,=r,(1— B&,). Defin
= =r, ) -

distance. Work is in progress on these questions. ing ozze®pR2/kTir§, we then haver,= o[ 1+ 28£,], or

As ¢— —oo, the solution to(A5) must match smoothly
the quasineutral solution near point Y~ \/—&; this de-
termines uniquelyy (&), which is a parameter-free function.
As é—&,~3.45,Y(¢) diverges asy~6/(é—&,)?, and Eq.
(A3) fails locally. Atr~r, there is a new thin layer where

finally,
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APPENDIX B: TRAPPED ORBIT EFFECTS

APPENDIX A: THIN TRANSITIONAL LAYERS Our collisionless analysis clearly requires an overall
mean free path\, for electron scattering by neutrals and
charged particles large compared with the characteristic
length of the collection process,. This condition, however,
may not rule out a secular collisional effect on the curient
In computing I, only E>0 electrons moving along un-
bounded orbits were considered; collisions, no matter how
unfrequent, could make that solution inconsistent because
O—D,\? the potentiakb(r) allows for bounded orbits:'® As current

) ’ (A1) is collected at a steady rate, electrons are knocked into those

Since—d®/dr (andd?®/dr?) in the quasineutral solu-
tion below point 1(Fig. 3 tends to infinity ag —r,, one
must retain the left-hand-side of E(L) in a narrow neigh-
borhood of that point. Throughout this layer, we have
JF (E)=Jen,(E), and may thus usH/N.. as given in(18).
Expanding(1) aroundr,®,, one finds

, d% ed ri—r \

e

MigrkT M T 2T, _ _
) orbits at a much lower rate. Calling “trapped” the bounded
whereu(T/T;) andA(T/T;) are given by orbits that do not hit the probe, and “nontrapped” those that
= dE exp(— E/KT,) JZ.(E) hit it, we write Ng=Ng,+ Ng;i+ Ngp, all three types of orpits,
,u,Ef KT 2 ZE -2 (E unbounded, trapped, and nontrapped, contributinydpin
0 e fl( )~ Jen (E) Secs. Il and Ill we had sei.=N,,. Actually, electrons

knocked into nontrapped orbits are rapidly lost to the probe

— A /% , (A2) and may be ignored: a steady regifiéN.,/ro~ a fraction
Jr,(E)—JRr(0) of TNe/\5;) sets up in times-ry/%, where? is a charac-
) teristic velocity, N.,/N. thus vanishing with the ratio
p( ed, +fw KT dE exp(—E/KT,) Fo/NS,
=—exp — — '
KT; 0o A4nTE+ed,)? The case folN, is different. If there is no faster mecha-
nism for orbital lossNg; growth would be finally limited by
302 (E)—232,,(E - : :
rl( ) eno(E) collisions knocking trapped electrons into unbounded or non-
X| 2den (E) J2(E)=J2% (E))32 trapped orbits; the ratidNg;/Ng, would involve no small
(97 (B) =32, (E)) e rafidle:/Ne
parameter, and might, in principle, have any value, and thus
SJEI(E)—ZJZF;(O) affect®(r) itself, andl. For probes of length <\¢,;, how-
—Jr(0) Z(E)=320)%|" (A3) ever, an orbital-loss mechanism faster than collisions does
( fl( ) exist: trapped electrons are unhindered to move along the

Defining probe axis, and thus escape through the probe €ntith a

5 1255 steady regime being established in timed /7, Ngi/Ng
rl—l’ _ _ 2 O-lkTi )\Di
P Vo er, R

£ (Ada) would vanish with the ratid-/\,, leaving | unaffected.

Actually, as we shall now see, the current in our problem
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remains unaffected under the weaker conditidn Crucial points now arel) there isno trapped-orbit sub-
<\ (Coulomb)< )\ (neutrals), which is typically satis- domain atro, and (2) ®(r=r) is determined by a local
fied in the tether case. relation (quasineutrality. Note that allE<0 electrons at

The local condition for maximum angular momentum athaveJ<Jg(0); for suchJ there is noU,(r)-maximum be-
given energy,J?<J3(E), can be rewritten as a condition for tweenry andR, while, as seen ifB1), U,(R) is less than

minimum E at givenJ, Uj;(rg). All bounded orbits are thus nontrapped, a result giv-
2 ed.R? ing Net(fo)EO- With Ng(ro) taken from(9), quasineutrality
E>UJ(r)52——Z— ed(r) (B1) at rq still leads to Eqs.(149, (14b). For the Ng(r>rg)
Jr(0) T ’ space-charge to invalidat®), it had to substantially lower

the profile in Fig. 3 beyond,, dropping locally below the
diagonal. The ratidNg;/Ne, however, vanishes for both
=rg andr—o, and will have a maximum, at sonme>r,
(moderately small.
do _ J? The results in Sec. lll for both point 1 and the broad
d(®pR?/r?)  J3(0)’ (B2) region fromr, to R (Fig. 3) remain valid too. Note that no
o .. Uy(r) has a maximum in this range, and that electrons in-
where the left-hand-side is just the slope of the profile in F'g'coming along unbounded orbits become highly energetic

3, drawn for the ndN; case. This slope is small at the probe pastr,, where the potential rises steefignd rejects ions
and increases with, diverging atr =r,; it then decreases to \yjiih (My/2)12~ed kT, near the probe antll,/N,.<1

unity atro, with a further drop theréthe full Poisson equa-  ¢|oger tor, , the characteristic mean free path for collisions
tion was needed ato, in Sec. Ill, to locally rotate the i populate inner trapped-orbits satisfias,(electrons)

quasineutral profile in Fig. 3, making it tangent to the diag'»)\fo”(Coulomb)?L. This results in a small ratioly,/N,
onal from below. The slope increases again beyand di- locally.

verging asr —o. _ In the tether case, electrons escape trapped orbits both
The entire behavior 0ll,(r) can be read off Fig. 3, the o556 of the finite collecting length and becausép,

J-term in (B1) representing straight lines through the origin. 5 g the trapped-orbit estructure, vary along this length. Typi-

For J=Jg(0), i.e., for the diagonallU,(r) vanishes ar o aiyes ard /2~ 1%, (Coulomb)~1 km<\Z,(neutrals).

=R, r=ro, andr—c, and is negative elsewhere; there is an the inner region, withed®,~100 eV, we would have

maximum atro, and minima at values<ry andr>ro _(neytral3>30 km at altitudes exceeding 300 km.
where the profile is parallel to the diagonal, producing inner

and outer sets dE<<0 trapped orbits. Fod>Jg(0), U,(r)

is positive at both probe and maximum, which lies between

r, andrg; there are now inner trapped orbits wH» 0. For APPENDIX C: POTENTIAL BARRIERS NEAR A THIN
J<Jr(0), themaximum stays at,, until finally disappear- TAPE

ing with the approaching outer minimum. As seen in Sec. I, distribution function, transverse en-

.COHSIde'Net for the rangeo=r<ce, where all bounded ergy, and velocityv, are conserved along electron orbits in-
orbits haveE<<0. In the hypothetical case of a nonabsorb|ngdeloendenﬂy of the conservation of angular momentum; they
probe having-/\¢y large, Ne, (here effectively identical to  are thus conserved for the tape of Fig. 8 and, in general, for
Nett Ner) would be limited by collisions that establish ther- 5 cylinder of arbitrary cross section. At the probe, one would
mal equilibrium in the bounded-orbit domain by knocking paye 1UMgrd, —edp=1/2mev,,  vp,=v.,, and

electrons back into unbounded orbits; E@), with dJ  f(, 3)=1f,,(v.) if the Vp1 (Vpx, vpy) OTbI, traced back

with the first term of the effective potential enerdyy(r)
written conveniently. Bounded orbits lie around minima of
U,(r). The equation locating) ;(r)-extrema at giverd is

—2dJ and both signs of counted, would give fromTp, reaches infinity. When this is the case for the full
_ range— 7/2< yp< 72 (yp=angle betweemwp, and inward
0o dE E\ [3(E) 2 dJ )
Nei= Net(eq)zf KT ex P f - norma) at eachvp, and each point on the probe surface, the
—ed Rle e/Jo T \J(E)-J currentl comes out proportional to the probe area and inde-

pendent of its shape, with the current densijty /(L
ed(r) . .
=ex -1, (B3) X perimeter) uniform over the prodé,

KT,
| : g - eNum, [ -
while the second term in Eq9) for N, (arising from cur- i= kT COS Ypdifp | v, dvy,
rent collection would vanish, yielding the Boltzmann law e J—mi2 0
for Ne. Fpr our absorbjng probe the full equati¢® natu- ,  2edp merol
rally applies. Also,N; is reduced belowN.(eq) because, X\/ve + - exp — KT |- (C)
e e

first, nontrapped orbits in the bounded-orbit domain are un-
populated and, second, the population in the trapped subd&quation(C1), where thevp -integration was already carried
main does not reach equilibrium values, the steady electroout and we changed variables fropp, vp, t0 ¢p, v, ,
flux from trapped to nontrapped orbits requiring a net fluxrecovers the OML law. For the wire of Sec. Il, with all points
from unbounded to trapped orbi$A value L/Ngy=<1 fur-  on the probe surface equivalent, one finsis p|~J/Jx(0),
ther reducedN,; and, additionally, leads to a vallé&,/N., recovering the old OML condition too: maximund

<1. [=J%(E)]=JRr(E)~Jr(0)— maximunjsin ¢p|=1.



Phys. Plasmas, Vol. 6, No. 1, January 1999

Attracted particles leavin¢backward in timga point of

a probe not convex enough, might actually return to it at

some other point, invalidatingC1). (For repelled particles,

all orbits from a nonconcave probe reach back to infinity;Both v,
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w2 ,}/2_'_ ~y2
f cos z//pd¢//P=2—>2(1—rT' . (C2
— /2

and vy,, and thus the reduction of, are

this leads to the old result that current to a retarding probe igp;-dependent; we find, = y,=(7—2)a/4 for xp;=0, and

independent of probe shap®.Such an orbit must become

v, =0, y,= mald for xp;=a. The overall current reduction is

tangent from the inside to one of the equipotential lines, withabout«?/8, or about one percent for theeb /k T, values of

a radius of curvaturep(orbit)<p(equipo} at the turning
point, where we haven,v?/p(orbit)=e|V®| and 1/2n?
~ed>kT, . For the potential given by Eq29) we find

(sir? v+ sint? w)3?

p(equipo}=a sinhw coshw '
. - W . .
p(orbit)=2a Jsir? v+ sint? w.

Since l/2v=[In(e®Pp/kToy)—2b] ! is small, the condition

p(orbit)<p(equipot) can only hold in a thin layer next to the s

tape [0<w<1/2a sir v, or 0<y/a<1/2a(1-—x?a?>%?,
|x|<al.
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