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An asymptotic analysis of electron collection at high biasFp serves to determine the domain of
validity of the orbital-motion-limited~OML! regime of cylindrical Langmuir probes, which is basic
for the workings of conductive bare tethers. The radius of a wire collecting OML current in an
unmagnetized plasma at rest cannot exceed a value,Rmax, which is found to exhibit a minimum as
a function ofFp ; at Fp values of interest,Rmax is already increasing and is larger than the electron
Debye lengthlDe . The breakdown of the regime relates to conditions far from the probe, at electron
energies comparable to the ion thermal energy,kTi ; Rmax is found to increase withTi . It is also
found that~1! the maximum width of a thin tape, if used instead of a wire, is 4Rmax; ~2! the electron
thermal gyroradius must be larger than bothR andlDe for magnetic effects to be negligible; and~3!
conditions applying to the tether case are such that trapped-orbit effects are negligible. ©1999
American Institute of Physics.@S1070-664X~99!03801-X#

I. INTRODUCTION

A space tether is a cable that connects orbiting end
masses and is kept vertical by the gravity gradient force. If
conductive, its electrodynamic interaction with the iono-
sphere and geomagnetic field has potential applications that
range from power generation and propulsion1 to the use of
wave2,3 and particle emissions.4 The standard tether carries
insulation, and has end devices to establish and control elec-
trical contact with the ionospheric plasma. The bottleneck for
such applications is the efficient capture of ionospheric elec-
trons at the anodic end of the tether: the electron gyroradius
and Debye length are so small compared to any useful, three-
dimensional, passive anode that both magnetic guiding and
electric shielding greatly reduce collection. This has moti-
vated work on active contactors that create a plasma cloud to
bridge the ionosphere.5,6

Using uninsulated~bare! tethers, whose anodic segment
might itself capture electrons passively with no shielding or
magnetic effects, has been proposed as a simple alternative.7

An anodic segment in the kilometer range leads to quite
large ~in addition to effective! collecting areas; also, bare
tethers prove fairly insensitive to regular drops in plasma
density along an orbit.8,9 A National Aeronautics and Space
Administration ~NASA! experiment~Propulsive Small Ex-
pendable Deployer System! will test a bare-tether collection
in a 2000, Delta-2 rocket flight. The Marshall Space Flight
Center is considering the use of bare tethers in the Interna-
tional Space Station, for reboost or secondary power genera-
tion. As a power generator, for instance, a bare tether would
have a useful load and a cathodic contactor at its base, and
electron collection, if optimal, would extend roughly to the
upper (me /mi)

1/5'1/7 of the total length.
Note that each point of an electrodynamic bare tether

would collect current as if it were part of a cylinder uni-
formly polarized at the local tether bias.7 This is because of
the enormous disparity between tether thickness and collect-
ing length, which lie in the millimeter and kilometer ranges,
respectively. Bare tether applications rest on the assumption
that electron collection occurs in the optimal orbital-motion-
limited ~OML! regime of cylindrical probes. It is thus impor-
tant to determine its parametric domain of validity.

Since OML current is proportional to the perimeter of
the cross section, a large tether current may require a large
perimeter. If the crosswise dimension is too large, however,
the current will not reach the OML value because of electri-
cal screening effects related to a comparatively short Debye
length lDe . Here we determine the maximum radius of a
cylinder collecting OML current in an unmagnetized plasma
at rest, and how it depends on the ion temperatureTi and the
bias Fp ~Secs. II and III!. Values of the ratioeFp /kTe of
interest for tethers~Te;0.15 eV,Fp;400 V! are 102 times
larger than values previously explored numerically.

We also determine what would be the maximum width
of a thin tape, which has been proposed as a tether~Sec. IV!.
Next we consider how large the thermal electron gyroradius
l e has to be for magnetic effects to be negligible~Sec. V!;
again, if the crosswise dimension is too large, the current
would not reach the OML value because of magnetic guiding
effects due to a shortl e . Results are discussed in Sec. VI.

II. CIRCULAR CYLINDER AT REST IN AN
UNMAGNETIZED PLASMA

The electron currentI to a sufficiently long cylinder at
rest in a collisionless, unmagnetized, Maxwellian plasma of
density N` and temperaturesTe and Ti may be written in
dimensionless form asI 5I th times a function ofR/lDe ,
eFp /kTe , Ti /Te . Here, I th[2pRLeǸ AkTe/2pme is the
thermal or random current,lDe is AkTe/4pe2N`, andR, L,a!Electronic mail: jrs@faia.upm.es
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andFP are the probe radius, length, and bias. In general, the
determination of electron trajectories to obtain the current
requires solving Poisson’s equation for the potentialF(r ),

lDi
2

r

d

dr S r
d

dr

eF

kTi
D5

Ne

N`
2

Ni

N`
~lDi5lDeATi /Te!,

~1!

with boundary conditionsF5Fp.0 at r 5R, F→0 as r
→`.

Both the electric field2“F and the probe acting as a
sink of particles affect the densitiesNe and Ni , and thus
F(r ) itself. The basic problem in probe theory usually lies in
the attracted-particle densityNe . Actually, for the eFp

@kTi , kTe values of interest here, the repelled-particle den-
sity Ni is accurately given by the simple Boltzmann law,

Ni'N` exp~2eF/kTi !, ~2!

except near the probe, whereNi ~as the ion current itself! is
exponentially small anyway. Equation~2! makes convenient
to normalizeF and r with the ion parametersTi andlDi .

Since all electrons originate at infinity, and the Vlasov
equation conserves the distribution functionf ( r̄ ,v̄) along
electron orbits, we havef ( r̄ ,v̄)5 f M(v`) ~undisturbed Max-
wellian! if the r̄ ,v̄ orbit, traced back in time, reaches infinity;
otherwise, we havef ( r̄ ,v̄)50. Note next that both axial ve-
locity vz , and transverse energy~Fig. 1!,

me

2
v r

21
me

2
vu

22eF[ES 5
me

2
v`

2 2
me

2
vz

2D , ~3!

are also conserved along orbits; the valuesr̄ ,v̄ thus deter-
mine v` , and, consequently, thef M value, in terms of the
local potentialF[F(r ). The densityNe at each particular
radiusr may then be expressed as an integral of the undis-
turbed Maxwellian distribution function over appropriate ve-
locity ranges.10 A trivial vz integration, and a change of vari-
ablesv r , vu→E, J, yields

Ne

N`
5E E exp~2E/kTe!dEdJ

2pkTeAJr
2~E!2J2

, ~4!

where we introduced the angular momentumJ[mervu , and
defined

Jr
2~E![2mer

2@E1eF~r !#. ~5!

The E-integral, which only covers positive values must be
carried out once forv r,0 ~incoming electrons! and again for
v r.0 ~electrons that have turned outwards at a radius be-
tween r and R!. The J-integral can be made to cover just
positive values by writingdJ→2dJ. The E2J domain of
integration in Eq.~4! is r-dependent because of both the
electric field and the sink effect of the probe:

~i! For an incoming electron of energyE.0 to actually
reachr, v r 8

2 must have been positive throughout the entire
ranger ,r 8,`. Using bothJ and ~5! in Eq. ~3!,

me
2r 2v r

25Jr
2~E!2J2,

and usingnow the fact thatJ is also conserved, its range of
integration at that energy will clearly be

0,J,Jr* ~E![minimum$Jr 8~E!;r<r 8,`%. ~6!

In general, the minimum occurs at a differentr 8 for each
energyE. If Jr* (E) differs fromJr(E), those electrons in the
range Jr* (E),J,Jr(E), for which v r

2 would actually be
positive, never reachr, and must thus be excluded from the
integral in ~4!; one says that there is an effective potential
barrier for r, at energyE.

~ii ! For anE-electron outgoing atr the J-range of inte-
gration will be

JR* ~E!,J,Jr* ~E!,

electrons in the range 0,J,JR* (E) having disappeared at
the probe.

Equation~4! may now be written as

Ne

N`
5E

0

` dE

pkTe
expS 2E

kTe
D

3F2 sin21
Jr* ~E!

Jr~E!
2sin21

JR* ~E!

Jr~E!
G , ~7!

half the first term in the bracket being then r,0 contribution.
The current itself is easily found to be

I 52RLeǸ A2eFP

me
3E

0

` dE

kTe
expS 2E

kTe
D JR* ~E!

JR~0!
. ~8!

We note at this point that, through its dependence onJr* (E)
@andJR* (E)#, the densityNe is a functional ofF(r ) and thus
cannot be known, for use in solving Eq.~1! for F(r ), before
the potential itself is found; this results in a complex, itera-
tive numerical solution of Poisson’s equation.11

A hypothetical potential with no barriers at all@Jr* (E)
5Jr(E) for 0<E,`, R<r ,`# would everywhere reduce
Ne in ~7! to a function of the local radius and potential,

Ne

N`
512E

0

` dE

pkTe
expS 2E

kTe
D sin21

JR~E!

Jr~E!
, ~9!

with Jr(E) given in Eq.~5!. This would allow a ready solu-
tion of Eq. ~1!. As we shall see, however, Eq.~9! does not
fully apply to the case of interest here, which corresponds to
the maximum possible current in~8!. Since we haveJR* (E)
<JR(E) from the definition ofJr* (E) in ~6!, current is maxi-
mum under the conditionJR* (E)5JR(E), for 0,E,` @no
potential barrier forjust radiusR; note that the second term

FIG. 1. Geometry of cylindrical probe and electron motion.
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in the bracket of~7! does reduce to a function of the localr
and F#. This is the OML current; withE;kTe!eFp , we
haveJR(E)'JR(0), Eq. ~8! giving

I OML'2RLN`eA2eFP /me

5I th3A4eFP /pkTe ~eFp@kTe!. ~10!

With the current known, however, there would be no need
for solving Eq.~1!, except for the very purpose of the present
work: determining the parametric domain for the OML re-
gime to hold. ForeFp@kTe , kTi , this problem comes out
to be reasonably simple.

Note that to haveJr* (E)5Jr(E) for the entire range 0
<E,` at a particularr, it suffices to haveJr* (0)5Jr(0)
@for E large enough one hasJr

2(E)'2mer
2E and thus

Jr* (`)/Jr(`)51#. From Jr
2(0)}r 2F(r ) it follows that the

condition of no potential barrier for a radiusr is

r 2F~r !<r 82F~r 8! ~r<r 8,`!.

In particular, the OML condition,JR* (E)5JR(E) for 0,E
,`, requires the potential to satisfy

R2Fp<r 2F~r ! ~R<r ,`!. ~11!

Condition ~11! can be conveniently illustrated by displaying
F versusFpR2/r 2 for potential profiles~Fig. 2!; ~11! shows
that the profile forR5Rmax ~the maximum radius for the
OML regime to hold, with other parameters fixed! would just
touch the diagonal in the figure, as in the case of profilec.
Profilesa and b would lie in the OML regime, whereasd
would not.

Finally, note that the extreme conditionJr* (E)5Jr(E)
for 0,E,`, R<r ,`, which led to Eq.~9!, would require
the potential to satisfy

d~r 2F!/dr>0 ~R,r ,`!. ~12!

Condition ~12!, which is, of course, more restrictive than
~11!, requires the ordinate-to-abscissa profile ratio in Fig. 2,
F/(FpR2/r 2), to monotonically decrease throughout when
moving to the right in the figure; only the hypothetical casea
satisfies~12!. Note, however, that ifd(r 2F)/dr is positive
just beyond some radiusr 0 , then we do have

Jr* ~E!5Jr~E!, for 0,E,`, r 0<r ,`, ~13!

andEq. (7) reduces to (9) for r.r 0. Casesb–d present this
property; r 0 would be the radius where the profile ratio
F/(FPR2/r 2) is minimum. For casec, which is reproduced
in Fig. 3, the corresponding profile point lies on the diagonal.

III. MAXIMUM RADIUS FOR OML VALIDITY

Figure 3 corresponds to the actual profile forR5Rmax,
at largeeFp /kTi ; this may be taken as an ansatz that is used
in solving Poisson’s equation and verified in the solution.
We carry out an asymptotic analysis of Eq.~1! for
eFp /kTi@1, following closely a classical study, which,
however, was developed for a monoenergetic attracted-
particle distribution function, and for the non-OML, small
lDi /R, regime.12 The profile presents several distinct re-
gions.

~1! Both the quasineutral approximation,Ne'Ni , and
the no barrier condition~13! hold below point 0 in Fig. 3.
Condition~13! may be illustrated by considering ther-family
of straight linesJ25Jr

2(E) of the E2J2 plane in the range
r>r 0 : for r increasing, the corresponding line keeps moving
to the right for all positive energies~Fig. 4a!. The use of~2!
and~9! in Ne'Ni determinesF(r ); for r large enough, one
has F}1/r , as suggested in Fig. 3. ValuesF0 and r 0 for
point 0, lying on the diagonal, are then given exactly by

FIG. 2. Schematics of potentialF versusFPR2/r 2 for profilesa andb(R
,Rmax), c(R5Rmax), andd(R.Rmax), with Rmax the largest radius for the
OML regime to hold. The hypothetical profilea would have no potential
barriers.

FIG. 3. Potential profile forR5Rmax. The plasma is quasineutral below
point 1; below point 0 there are no potential barriers. The broad, ion-free
region above the thin layers at points 1 and 2 is free of space-charge effects
near the probe.
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@11exp~eF0 /kTe!erfc~AeF0 /kTe!#exp~eF0 /kTi !52,
~14a!

F05FPR2/r 0
2, ~14b!

~2! The quasineutral approximation remains valid from
point 0 up to a point 1 where2dF/dr→` ~Fig. 3!. Now,
however, there is anr-dependent energy range with potential
barrier. Since we haver 1,r 0 and r 1

2F1.r 0
2F0 , the r-lines

for points 0 and 1 must meet at some positive energy, as
shown in Fig. 4b. Also shown is the envelopeJ25Jenv

2 (E)
of the set ofr-lines between points 0 and 1, which is deter-
mined by the equationsJ22Jr

2(E)50, ]@J22Jr
2(E)#/]r

50, leading to the parametric representation

J25Jenv
2 ~r ![2mer

3edF/dr, ~15a!

E5Eenv~r ![2eF~r !21/2redF/dr. ~15b!

The envelope is tangent to eachr-line at theE, J2 point
given by Eqs.~15a!, ~15b!. Since E and J2 diverge with
2dF/dr in ~15a!, ~15b!, as r→r 1 , the envelope is
asymptotic to ther 1-line. Also, it is tangent to ther 0-line at
E50 ~Fig. 4b!; condition Eenv(r )50 in ~15b! corresponds
to a minimum ofr 2F, the profile becoming tangent to the
diagonal in Fig. 3 when approaching point 0 from above.
@The quasineutral solution below 0 has no such property,
thus breaking down at that point; however, using locally the
full equation~1!, together with~2! and~9!, suffices to round
the profile at 0, with no effect beyond its immediate neigh-
borhood.# A simple but accurate approximation forJenv(E)
can now be readily obtained from Fig. 4b, using ther 0- and
r 1-lines without the knowledge ofF(r ),

Jenv
2 ~E!5Jr 1

2 ~E!2
2me~r 1

2eF12r 0
2eF0!2

r 1
2eF12r 0

2eF01~r 0
22r 1

2!E
. ~16!

The valuesr 0 andF0 are taken from~14a!, ~14b! but r 1 and
F1 are yet unknown.

For any radiusr betweenr 1 andr 0 we would now have

Jr* ~E!5Jenv~E!, for E,Eenv~r !, ~17a!

5Jr~E!, for E.Eenv~r !. ~17b!

As r approachesr 1 , one hasEenv(r )→` in ~15b!; Eq. ~17a!
for Jr* (E) may then be used in Eq.~7! for Ne throughout the
entire range 0,E,`. Near r 1 the quasineutrality equation
giving F(r ) then reads as

Ne

N`
[E

0

` dE

pkTe
expS 2E

kTe
D

3F2 sin21
Jenv~E!

Jr~E!
2sin21

JR~0!

Jr~E! G
5expS 2eF~r !

kTi
D . ~18!

Note that neitherJenv(E) nor JR(0) involve the local values
of r or F. The derivative of~18! with respect toF at r 1 ,
where dr/dF vanishes,then reads as

E
0

` dE exp~2E/kTe!

2p~E1eF1!Te /Ti

3F2A Jenv
2 ~E!

Jr 1

2 ~E!2Jenv
2 ~E!

2A JR
2~0!

Jr 1

2 ~E!2JR
2~0!G

5expS 2eF1

kTi
D . ~19!

Using ~16! in Eqs.~18!, evaluated atr 1 , and~19! yields r 1

and F1 , thus fully determiningJenv(E). Figure 5a shows
eF0 /kTi(5eFPR2/kTir 0

2), eF1 /kTi , and s1[eFPR2/
kTir 1

2 as functions ofTe /Ti .
~3! Above point 1 in Fig. 3 there are two thin, non-

quasineutral layers that take the solution to a radiusr 2 a bit
closer to the probe, and to valuesF satisfying F1!F
!Fp , with ther-line moving far to the right in Fig. 4b. Note
that both eF0 and eF1 are of the order ofkTi whereas
eFp /kTi is very large (;103,104). If Fig. 3 were drawn to
scale, the near-vertical potential drop in the two thin layers,
down to point 1, would occur very close to theF-axis, and
point 0 would lie very close to the origin.

The structures of the two layers are considered in Ap-
pendix A. At the top of the second layer,F is found to
increase in Fig. 3 asF}(r 22r )4/3. The differencer 12r 2

vanishes withkTi /eFP , and is small for the highFP values
of interest. Definings2[eFPR2/kTir 2

2 we get, from Eq.
~A6! in Appendix A,

s25s1F112j2S 2s1
2

lm D 1/5S kTi

eFP
D 2/5S lDi

R D 4/5G ,
j2'3.45, ~A6!

FIG. 4. ~a! Straight lines of ther-family J25Jr
2(E) @Jr

2(E) defined in Eq.
~5!#, for the probe, point 0 in Fig. 3, and any two radiir 8.r beyondr 0 . ~b!
EnvelopeJenv

2 (E) ~dashed curve! for r-family lines J25Jr
2(E) in the range

r 1,r ,r 0 , and limit lines for points 0 and 1; the envelope is approximately
described by Eq.~16!. At the top of the thin layers, and for most of the broad
region above, in Fig. 3,r-lines lie far to the right, as indicated; as the probe
is approached, however, ther-line would move back to the left, finally
reaching the probe line.
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with lm given in Fig. 5b.
~4! In the broad region between the second thin layer and

the probe, we haveeF/kTi;F/F1 large~Fig. 3!; Ni /N` is
then exponentially small and may be neglected in Poisson’s
equation. Also,r-lines lie far to the right in Fig. 4b; we then
have both Jr* (E)5Jenv(E), and Jenv(E);JR(0)!Jr(E)
'Jr(0). We maythus simplify the expression forNe /N` in
Eq. ~18! and use it in~1!, which takes the form

lDi
2

r

d

dr S r
d

dr

eF

kTi
D'

Ne

N`
'

k

p

R

r
AFP

F
, ~20!

where

k[2E
0

` dE

kTe
expS 2E

kTe
D Jenv~E!

JR~0!
21 ~21!

is a function ofTe /Ti , given in Fig. 5b too. Introducing12

u[ ln
r 2

r
, ~22a!

g[Fp
As2

k

lDi
2

R2

kTi

eFP
G2/3 eF

kTi
, ~22b!

Eq. ~20! becomes

d2g/du25e2u/Ag. ~23!

Matching to the top of the second thin layer yields the
boundary conditions

g50, dg/du50 ~g;u4/3 as u→0!,

at u50 ~r 5r 2!.

This fully determinesg(u), which is a parameter-free func-
tion. Finally, onceg(u) is found numerically, settingF
5Fp at r 5R[Rmax in ~22a!, ~22b! yields a relation between
parameters, i.e., determinesRmax,

Rmax

lDi
5

Ap~s2eFP /kTi !
1/4

Ak@g~ ln AeFp /kTis2!#3/4
, ~24a!

with s2 given by Eq.~A6!, whereR5Rmax, ands1(Te /Ti),
andlm(Te /Ti) andk(Te /Ti) given in Figs. 5a and 5b, re-
spectively. SinceAeFP /kTis2[r 2 /R is large, one might
use boths2's1 and the asymptotic form ofg(u) at largeu,

g'c•~u2b!, c'2.0854, b'0.3511,

to get a simpler, approximate law forRmax,

Rmax

lDi
'

Ap~s1eFP /kTi !
1/4

Akc3/4~ ln AeFP /kTis12b!3/4
. ~24b!

The behaviorg'c•(u2b) shows that the high bias
makes space-charge effects negligible within some neighbor-
hood of the probe~even thoughR is not small compared with
lDe , lDi!. Using Eqs.~22a!, ~22b!, F(r ) takes the form of a
~logarithmic! solution to the two-dimensional~2D! Laplace-
equation, withNe2Ni thus ignored in Eq.~1!,

g'c•~u2b!→F'FPF12
1

ln AeFP /kTis12b
ln

r

RG .

~25!

This is fortunate because the approximation forNe /N` in
Eq. ~20! would actually fail near the probe: as one ap-
proaches it, moving toward the upper right corner in Fig. 3,
the r-line moves back to the left in Fig. 4b, to finally reach
the R-line at the probe.

Figure 6 showsRmax/lDi versuseFp /kTi for different
values ofTe /Ti , using ~24a!. The dependence on the re-
pelled particle temperatureTi is clearly a consequence of
eF0 andeF1 being of order ofkTi ; it is also related to the
well-known fact that the current to a probe, in the opposite,
thin sheath limit, depends on the repelled particle tempera-
ture. Note thatRmax goes through a minimum as the biasFp

increases, and exceedslDi at high enoughFp . Numerical
calculations for the rangeeFp /kTi,25 had shownRmax de-
creasing monotonically with increasing bias;11 our results are

FIG. 5. ~a! Dimensionless quantities eF0 /kTi(5eFPR2/kTir 0
2),

eF1 /kTi , andeFPR2/kTir 1
2[s1 , versusTe /Ti . ~b! Dimensionless quan-

tities k @defined in Eq.~21!# andlm ~l andm defined in Appendix A! versus
Te /Ti .
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in reasonable agreement with those calculations for moderate
eFp /kTi , although our analysis strictly is only valid for
very high bias. Usingg(u) and the approximations25s1 ,
Eq. ~24a! with Te /Ti fixed yields readily a minimum for
Rmax at uP[ ln AeFp /kTis1>1.76, or

eFP /kTi at minimum5exp~231.76!3s1~Ti /Te!;
~26!

a comparison to Fig. 6 proves that Eq.~A6! has an important
effect at moderate bias. Figure 7 showsRmax/lDe versus
eFp /kTe .

To understand how the minimum ofRmax arises in Fig.
6, note that the broad region described by~20! can be char-
acterized by the valuesr m , Fm of the profile point in Fig. 3
with tangent through the origin; this corresponds to maxi-
mum r 2F(r ), i.e., maximum exp(22u)g(u) @and to mini-
mum Ne /N` in Eq. ~20!#. With um>0.63, g(um)>0.86 of
order unity, we have

r;r m;r 1 , Dr;r 12r m;r 1 , F;Fm;FP /g~uP!,

leading to characteristic values for both sides of~20!,

lDi
2

R2g~uP!
;A kTi

eFP
Ag~uP!S ;

Ne

N`
D , ~208!

when r 1;r 0;RAeFP /kTi is used; relation~208! mirrors
Eq. ~24a!. Note that increasingFP would reduce the charac-
teristic electron density~i.e., the space-charge that keeps
Rmax low! through the factorAkTi /eFP on the right-hand-
side of ~208!, but it would work the opposite way through
g(uP) on both sides of it.

We have neglected collisions throughout. Collisions,
however, even if unfrequent, might trap electrons in bounded
orbits, thus creating additional space-charge that could affect
F(r ) and I. In Appendix B we establish under what condi-
tions this effect should be negligible, and show that these
conditions are satisfied in the tether case.

IV. THIN TAPE AT REST IN AN UNMAGNETIZED
PLASMA

In the OML regime, the current to a cylindrical probe
has the important property of being independent of the shape
of the cross section; it just depends on its perimeter, being
given, in general, by Eq.~10! with R replaced by
perimeter/2p ~see Appendix C!.13 The limits of OML valid-
ity, however, must be determined anew for every cross sec-
tion. For a thin tape, angular momentumJ is not conserved,
and there is no close-form expression such as~7! for Ne

@even though Eq.~4! would remain valid#. Nonetheless, we
find that the high bias condition (eFp@kTi) makes it pos-
sible to approximately reduce the problem to the case of the
circular cylinder.

Here it is convenient to use elliptical coordinatesv and
w defined by~Fig. 8!

x5a cosv coshw, y5a sin v sinh w,

~0<v,2p, 0<w,`!.

Poisson’s equation then reads as

FIG. 6. Rmax/lDi versuseFP /kTi for several values of temperature ratio
Te /Ti , using Eq.~24a!.

FIG. 7. The same as Fig. 6, forRmax/lDe versuseFP /kTe .
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lDi
2

a2~sinh2 w1sin2 v ! S ]2

]w2 1
]2

]v2D eF

kTi

5
Ne

N`
2expS 2eF

kTi
D . ~27!

Note that the cofocal coordinate ellipsesw(x,y)5const ap-
proach circles asw increases; at large radial distances one
has

w5 ln
r

a
1 ln 22

x22y2

x21y2

a2

4r 2 1¯ .

One may reasonably use the approximationw5 ln(2r/a) for
w.w* , with w* 51.5, say. Note also that the limit ellipse
w50 in Fig. 8 is the segmenty50, 2a,x,a, which rep-
resents the cross section of a tape of width 2a and negligible
thickness.

Here, as in the case of a wire in Sec. III, the space-
charge will be ignorable within some neighborhood of the
probe, which, foreFP /kTi large enough, extends into the
region wherew-ellipses are near-circles, that is, beyondw
5w* . We may then argue that the potentialF will be nearly
independent ofv everywhere, i.e., F(w,v)'F(w) ~al-
though the electric field will be radial forw.w* only!. First,
boundary conditions refer to justw ~F5Fp at w50 and
F→0 asw→`!. Next, Poisson’s equation, as given by~27!,
becomes

S ]2

]2w
1

]2

]2v D eF

kTi
'0, ~28a!

for w,w* , where the space charge may be neglected, and

lDi
2

a2 sinh2 w S ]2

]2w
1

]2

]2v D eF

kTi
'

Ne

N`
2expS 2eF

kTi
D ,

~28b!

for w.w* (e2w.e2w* @1), with some overlapping range of
validity. In neither~28a! nor ~28b! doesv show up explicitly.

Finally, with the ansatzF(w,v)'F(w), the electron
density in Eq.~28b! for w.w* would itself be a function of
just w, Ne5Ne(w). This is because, at a point in that region,
incoming electrons, and outgoing electrons that did not reach
values w,w* , would find a radial field throughout their
motion and conserve the angular momentumJ; their contri-
bution toNe would be a function ofr, and thus, ofw. Those
outgoing electrons that had reached valuesw,w* and
missed the probe, would haveJ changed by a quantityDJ
that is easily shown to be small,DJ;J/ ln(eFp /kTi), as a
result of the shallow~logarithmic! character of the potential
in the vicinity of the probe, where the field is not radial; their
contribution toNe would be weakly dependent onv. On the
whole, we would thus haveNe'Ne(w), consistently with
the ansatzF(w,v)'F(w).

With F5F(w), andw' ln(2r/a) for w.w* , use of the
probe boundary condition in Eq.~28a!, which is also valid
for some range beyondw* , yields

F5Fp@12aw#, a5const, ~29!

→F'FpF12a lnS r

a/2D G , for w.w* . ~30!

In addition, Eq.~28b! for w.w* may be shown to be ex-
actly equivalent to~1!, whose solution, as in Fig. 3 of Sec.
III, will have an outer quasineutral region, two thin layers,
and a broad, ion-free, inner region. Now this solution, rather
than satisfying the boundary condition at the probe, must
match smoothly the behavior given in~30!, within the over-
lapping range of validity. Comparing Eqs.~25! and ~30!
shows that, beyondw* , the solution behaves as in the case
of a circular cylinder with an effective radiusR5a/2, the
coefficienta being as given in~25!.

This suggests that, with all other parameters given, the
maximum width of a thin tape in the OML regime relates
quite simply to the maximum radius of a circular cylinder,

2amax54Rmax. ~31!

Results for a wire in Figs. 6 and 7 are therefore applicable
here. Note that, although a tape allows twice as large a cross-
wise length as a wire, OML current is proportional to the
perimeter, and thus a tape would only increase the maximum
current by a factor 4/p, or 27 percent. A tape may be pref-
erable, however, for other reasons: a cylinder withRmax

might be too heavy and rigid;4 a tape may lead to a shorter
tether.8,9

One must still take into account the fact that the Laplace
potential~29!, for the regionw,w* , is quite different from
the potential~25!. It then comes out that a tape, contrary to a
circular cylinder, never collects the full OML current, al-
though this has no practical consequences. There are poten-
tial barriers in the vicinity of any flat collecting surface, the
effects being weak, however, in the case of a shallow 2D
Laplace potential.13 Using ~29! we find that potential barriers
around the tape lie in a thin region of thickness
;a/ ln(eFp /kTi) and that current reduction below the OML
value is of order@1/ln(eFp /kTi)#

2, or about 1 percent; we

FIG. 8. Coordinate ellipsesw(x,y)5const for the orthogonal coordinates
introduced in Sec. IV; they approach near-circles asw increases. The limit
ellipsew50 ~y50, 2a,x,a! represents the cross section of a thin tape of
width 2a.
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give details of these calculations in Appendix C. Equation
~31! should then properly read that current to a tape keeps
very close to the OML value fora<2Rmax.

V. CIRCULAR CYLINDER AT REST IN A MAGNETIZED
PLASMA

As in the previous section, there is no closed-form ex-
pression forNe in the presence of an uniform magnetic field
B, which allows for only two constants of the motion: energy
and canonical angular momentum. Overall use of these two
constants leads to the Parker–Murphy current law, which
takes the character of an upper bound at the high bias of
interest.14 For eFp@kTe and cylindrical geometry one has

I PM'I OMLAp/23 l e /R, ~32!

wherel e is the electron thermal gyroradius,

l e[AkTe /me/Ve}1/B ~Ve[eB/me!.

Equation~32! suggests that ifl e /R is large,I OML then lying
well below theI PM bound, the OML current should hardly be
affected by magnetic effects.

To get more definite results, consider electron motion in
the presence of the electric field due to probe and plasma,
2“F(x,y) ~probe andz axes coincident as in Fig. 1!, and a
uniform magnetic fieldB in they-z plane, at an anglew with
the probe axis:

d2vx

dt2
1Ve

2F12 l e
2 ]2

]x2

eF

kTe
Gvx

5S vy

]

]x
2Ve cosw D ]

]y

eF

me
, ~33a!

d2vy

dt2
1Ve

2Fcos2 w2 l e
2 ]2

]y2

eF

kTe
Gvy

5S vx

]

]y
1Ve cosw D ]

]x

eF

me
1Ve

2vz sin w cosw.

~33b!

Equations~33a!, ~33b! were obtained by deriving the respec-
tive equations of motion and using the derivative along the
electron orbit,15

d

dt

]F

]x
5vx

]2F

]x2 1vy

]2F

]x]y
,

and similarly ford(]F/]y)/dt. UnlessB is small the motion
is w-dependent; it is rotationally symmetric forw50, and
free of magnetic force in~33b! for w5p/2.

For largeB, Eqs. ~33a!, ~33b! would describe gyromo-
tion, as represented by the first term in the bracket on the
left-hand-side, plus a small drift due to the electric field. We
now assume, on the contrary, thatB is sufficiently small~l e

large enough! to make such effects negligible. We first use
the B50 solution of Sec. III to determine how small the
magnetic field must be for gyromotion to be indeed negli-
gible throughout both the orbital motion from the two thin
layers to the probe, and the large potential rise inside those

layers ~Fig. 3!. In the broad region between the probe and
thin layers, the left-hand-side of Eq.~33a! takes the form

d2vx

dt2
1Ve

2F12
l e
2

R2

s1Ti /Te

g~uP!

r 1
2

r 2

3S x22y2

r 2

dg

du
1

x2

r 2

d2g

du2D Gvx , ~34a!

with r 2>r 1 and R<r ,r 1 . Gyromotion is negligible if
R2g(up)/ l e

2 is small; note thatg(up) is only logarithmically
large. Similarly, within the thin layers~r /r 1 very close to
unity! we haveNe2Ni;N` andrd2F/dr2@2dF/dr, and
the left-hand-side of~33a! becomes

d2vx

dt2
1Ve

2F12
l e
2

lDe
2

x2

r 2

Ne2Ni

N`
Gvx ; ~34b!

gyromotion is negligible here if (lDe / l e)
2 is small.

For magnetic effects to be fully ignorable, the drift~sec-
ond! term on the right-hand-side of Eqs.~33a!, ~33b! should
be small too. This easily leads to conditions
RAg(up) cosw/le!1 and lDe cosw/le!1 for the broad re-
gion and the thin layers, respectively. All this means, first,
that, for B-effects to be negligible, the ratiolDe / l e , in ad-
dition to the Parker–Murphy parameterR/ l e in Eq. ~32!,
must be small. Second,B-effects will be weaker for a mag-
netic field nearly perpendicular to the probe axis. Finally,
R/ l e-effects will be weaker forTe /Ti small @see Eq.~34a!#.

At the relatively high densities of theF-layer (N`

51011– 1012 m23), lDe / l e}B/AN` is indeed small, but it
reaches above unity at extreme altitudes. Experiments on
board an elliptical-orbit satellite16 and a rocket,17 covering a
broad range of altitudes, did show a current dependent on the
angle betweenB and a cylindrical probe~B-effects! whenN`

dropped low enough, at very low and high altitudes. In all
such experiments, probe bias was only moderately high,
however.

VI. CONCLUSIONS

Bare tether applications are based on the assumption that
the tether collects electrons in the OML regime of cylindrical
Langmuir probes. The definite and simple OML current law,
which allows for detailed design considerations, has opened
the way to a technology of electrodynamic tethers.7–9 Here,
we have determined the domain of OML validity in param-
eter space; we studied the surface bounding that domain as a
relation among the dimensionless numbers,

R/lDe , eFp /kTe , Ti /Te , and lDe / l e ,

for the very largeeFp /kTe values of interest and different
tether geometries.

We found that the ratiolDe / l e must be small for mag-
netic effects—which would break the OML law
otherwise—to be ignorable. This ratio is a property of the
plasma rather than a free design parameter. In the Earth’s
ionospherelDe / l e is small for N` above 1011 m23; this
breaks down at low, and sufficiently high, altitudes. Mag-
netic effects are weaker forB near perpendicular to the probe
axis.
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ForlDe / l e small we determined the maximum radius for
the OML regime to hold, giving

Rmax/lDe vs eFp /kTe , and Ti /Te .

Rmax exhibits a minimum as a function ofFp but, at the bias
of interest, is slowly increasing, and abovelDe in the iono-
spheric case (Ti /Te;1). ForlDe / l e small andR;lDe , we
haveR/ l e small too, a second condition required for mag-
netic effects to be weak. We also foundRmax/lDe increasing
with Ti /Te . If a thin tape is used instead of a wire~with all
others parameters equal!, the maximum valid width is found
to be 4Rmax. Trapped-orbit effects should be negligible for
bare tether conditions.

Important questions left out of this study are the possible
effects of a relative motion of plasma and probe, how the
current lags behind the OML current when the probe is too
thick, and the interference between two probes at a finite
distance. Work is in progress on these questions.

ACKNOWLEDGMENTS

We acknowledge fruitful comments from the referee.
The work of J. R. Sanmartı´n was supported by the

Comisón Interministerial de Ciencia y Tecnoloı´a ~Spain! un-
der grant No. PB94-0417-C03-01. The work of R. D. Estes
was partially funded by NASA Grant No. NAG8-1303.

APPENDIX A: THIN TRANSITIONAL LAYERS

Since2dF/dr ~andd2F/dr2! in the quasineutral solu-
tion below point 1~Fig. 3! tends to infinity asr→r 1 , one
must retain the left-hand-side of Eq.~1! in a narrow neigh-
borhood of that point. Throughout this layer, we have
Jr* (E)5Jenv(E), and may thus useNe /N` as given in~18!.
Expanding~1! aroundr 1 ,F1 , one finds

lDi
2 d2

dr2

eF

kTi
5m

r 12r

r 1
1

l

2 S e
F2F1

kTi
D 2

, ~A1!

wherem(Te /Ti) andl(Te /Ti) are given by

m[E
0

` dE exp~2E/kTe!

pkTe
F2A Jenv

2 ~E!

Jr 1

2 ~E!2Jenv
2 ~E!

2A JR
2~0!

Jr 1

2 ~E!2JR
2~0!G , ~A2!

l[2expS 2
eF1

kTi
D1E

0

` kTi
2dE exp~2E/kTe!

4pTe~E1eF1!2

3F2Jenv~E!
3Jr 1

2 ~E!22Jenv
2 ~E!

~Jr 1

2 ~E!2Jenv
2 ~E!!3/2

2JR~0!
3Jr 1

2 ~E!22JR
2~0!

~Jr 1

2 ~E!2JR
2~0!!3/2G . ~A3!

Defining

r 12r

r 1
[bj[FA 2

ml

s1kTi

eFP

lDi
2

R2 G2/5

j, ~A4a!

eF2eF1

kTi
[A2mb

l
Y, ~A4b!

Eq. ~A1! becomes12

d2Y/dj25Y21j. ~A5!

As j→2`, the solution to~A5! must match smoothly
the quasineutral solution near point 1,2Y'A2j; this de-
termines uniquelyY(j), which is a parameter-free function.
As j→j2'3.45, Y(j) diverges asY'6/(j2j2)2, and Eq.
~A3! fails locally. At r'r 2 there is a new thin layer where
the left-hand-side of~1! keeps the form of~A1!, but the full
expressions~2! and ~18! for Ni and Ne must be retained,
except that Jr

2 in ~18! simplifies to Jr
2(E)'2mer 2

2(E
1eF). At the top of this second layer, one findsF(r )
}(r 22r )4/3.

Settingj5j2 in ~A4a! we haver 25r 1(12bj2). Defin-
ing s2[eFPR2/kTir 2

2, we then haves2>s1@112bj2#, or
finally,

s25s1F112j2S 2s1
2

lm D 1/5S kTi

eFP
D 2/5S lDi

R D 4/5G ,
j2'3.45. ~A6!

APPENDIX B: TRAPPED ORBIT EFFECTS

Our collisionless analysis clearly requires an overall
mean free pathlcoll

` for electron scattering by neutrals and
charged particles large compared with the characteristic
length of the collection process,r 0 . This condition, however,
may not rule out a secular collisional effect on the currentI.
In computing I, only E.0 electrons moving along un-
bounded orbits were considered; collisions, no matter how
unfrequent, could make that solution inconsistent because
the potentialF(r ) allows for bounded orbits.11,18 As current
is collected at a steady rate, electrons are knocked into those
orbits at a much lower rate. Calling ‘‘trapped’’ the bounded
orbits that do not hit the probe, and ‘‘nontrapped’’ those that
hit it, we writeNe5Neu1Net1Nen , all three types of orbits,
unbounded, trapped, and nontrapped, contributing toNe ; in
Secs. II and III we had setNe5Neu . Actually, electrons
knocked into nontrapped orbits are rapidly lost to the probe
and may be ignored: a steady regime~ñNen /r 0; a fraction
of ñNe /lcoll

` ! sets up in times;r 0 / ñ, whereñ is a charac-
teristic velocity, Nen /Ne thus vanishing with the ratio
r 0 /lcoll

` .
The case forNet is different. If there is no faster mecha-

nism for orbital loss,Net growth would be finally limited by
collisions knocking trapped electrons into unbounded or non-
trapped orbits; the ratioNet /Neu would involve no small
parameter, and might, in principle, have any value, and thus
affectF(r ) itself, andI. For probes of lengthL!lcoll

` , how-
ever, an orbital-loss mechanism faster than collisions does
exist: trapped electrons are unhindered to move along the
probe axis, and thus escape through the probe ends.11 With a
steady regime being established in times;L/ ñ, Net /Ne

would vanish with the ratioL/lcoll
` , leaving I unaffected.

Actually, as we shall now see, the current in our problem
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remains unaffected under the weaker conditionL
<lcoll

` (Coulomb)!lcoll
` (neutrals), which is typically satis-

fied in the tether case.
The local condition for maximum angular momentum at

given energy,J2,Jr
2(E), can be rewritten as a condition for

minimum E at givenJ,

E.UJ~r ![
J2

JR
2~0!

eFPR2

r 2 2eF~r !, ~B1!

with the first term of the effective potential energyUJ(r )
written conveniently. Bounded orbits lie around minima of
UJ(r ). The equation locatingUJ(r )-extrema at givenJ is

dF

d~FPR2/r 2!
5

J2

JR
2~0!

, ~B2!

where the left-hand-side is just the slope of the profile in Fig.
3, drawn for the no-Net case. This slope is small at the probe
and increases withr, diverging atr 5r 1 ; it then decreases to
unity at r 0 , with a further drop there~the full Poisson equa-
tion was needed atr 0 , in Sec. III, to locally rotate the
quasineutral profile in Fig. 3, making it tangent to the diag-
onal from below!. The slope increases again beyondr 0 , di-
verging asr→`.

The entire behavior ofUJ(r ) can be read off Fig. 3, the
J-term in ~B1! representing straight lines through the origin.
For J5JR(0), i.e., for the diagonal,UJ(r ) vanishes atr
5R, r 5r 0 , andr→`, and is negative elsewhere; there is a
maximum at r 0 , and minima at valuesr ,r 1 and r .r 0

where the profile is parallel to the diagonal, producing inner
and outer sets ofE,0 trapped orbits. ForJ.JR(0), UJ(r )
is positive at both probe and maximum, which lies between
r 1 andr 0 ; there are now inner trapped orbits withE.0. For
J,JR(0), themaximum stays atr 0 , until finally disappear-
ing with the approaching outer minimum.

ConsiderNet for the ranger 0<r ,`, where all bounded
orbits haveE,0. In the hypothetical case of a nonabsorbing
probe havingL/lcoll

` large,Net ~here effectively identical to
Net1Nen! would be limited by collisions that establish ther-
mal equilibrium in the bounded-orbit domain by knocking
electrons back into unbounded orbits; Eq.~4!, with dJ
→2dJ and both signs ofn r counted, would give

Net5Net~eq![E
2eF

0 dE

kTe
expS 2E

kTe
D E

0

Jr ~E! 2

p

dJ

AJr
2~E!2J2

5expFeF~r !

kTe
G21, ~B3!

while the second term in Eq.~9! for Neu ~arising from cur-
rent collection! would vanish, yielding the Boltzmann law
for Ne . For our absorbing probe the full equation~9! natu-
rally applies. Also,Net is reduced belowNet(eq) because,
first, nontrapped orbits in the bounded-orbit domain are un-
populated and, second, the population in the trapped subdo-
main does not reach equilibrium values, the steady electron
flux from trapped to nontrapped orbits requiring a net flux
from unbounded to trapped orbits.18 A value L/lcoll

` <1 fur-
ther reducesNet and, additionally, leads to a valueNet /Neu

<1.

Crucial points now are~1! there isno trapped-orbit sub-
domain atr 0 , and ~2! F(r>r 0) is determined by a local
relation ~quasineutrality!. Note that allE,0 electrons atr 0

haveJ<JR(0); for suchJ there is noUJ(r )-maximum be-
tweenr 0 and R, while, as seen in~B1!, UJ(R) is less than
UJ(r 0). All bounded orbits are thus nontrapped, a result giv-
ing Net(r 0)[0. With Neu(r 0) taken from~9!, quasineutrality
at r 0 still leads to Eqs.~14a!, ~14b!. For the Net(r .r 0)
space-charge to invalidate~9!, it had to substantially lower
the profile in Fig. 3 beyondr 0 , dropping locally below the
diagonal. The ratioNet /Ne , however, vanishes for bothr
5r 0 and r→`, and will have a maximum, at somer .r 0 ,
~moderately! small.

The results in Sec. III for both point 1 and the broad
region fromr 1 to R ~Fig. 3! remain valid too. Note that no
UJ(r ) has a maximum in this range, and that electrons in-
coming along unbounded orbits become highly energetic
pastr 1 , where the potential rises steeply~and rejects ions!.
With (me/2)n2'eFP@kTe near the probe andNe /N`!1
closer tor 1 , the characteristic mean free path for collisions
that populate inner trapped-orbits satisfies,lcoll(electrons)
@lcoll

` (Coulomb)>L. This results in a small ratioNet /Ne

locally.
In the tether case, electrons escape trapped orbits both

because of the finite collecting lengthL, and becauseFP ,
and the trapped-orbit estructure, vary along this length. Typi-
cal values areL/2;lcoll

` (Coulomb);1 km!lcoll
` (neutrals).

In the inner region, witheFP;100 eV, we would have
lcoll~neutrals!.30 km at altitudes exceeding 300 km.

APPENDIX C: POTENTIAL BARRIERS NEAR A THIN
TAPE

As seen in Sec. II, distribution function, transverse en-
ergy, and velocitynz are conserved along electron orbits in-
dependently of the conservation of angular momentum; they
are thus conserved for the tape of Fig. 8 and, in general, for
a cylinder of arbitrary cross section. At the probe, one would
have 1/2menP'

2 2eFP51/2men`'
2 , nPz5n`z , and

f ( r̄ P ,n̄P)5 f M(n`) if the n̄P'(nPx ,nPy) orbit, traced back
from r̄ P , reaches infinity. When this is the case for the full
range2p/2,cP,p/2 ~cP[angle betweenn̄P' and inward
normal! at eachnP' and each point on the probe surface, the
currentI comes out proportional to the probe area and inde-
pendent of its shape, with the current densityj 5I /(L
3perimeter) uniform over the probe,13

j 5
eN`me

2pkTe
E

2p/2

p/2

coscPdcPE
0

`

n`'dn`'

3An`'
2 1

2eFP

me
expS 2

men`'
2

2kTe
D . ~C1!

Equation~C1!, where thenPz-integration was already carried
out and we changed variables fromcP , nP' to cP , n`' ,
recovers the OML law. For the wire of Sec. II, with all points
on the probe surface equivalent, one findsusincPu'J/JR(0),
recovering the old OML condition too: maximumJ
@[JR* (E)#5JR(E)'JR(0)→maximumusincPu51.
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Attracted particles leaving~backward in time! a point of
a probe not convex enough, might actually return to it at
some other point, invalidating~C1!. ~For repelled particles,
all orbits from a nonconcave probe reach back to infinity;
this leads to the old result that current to a retarding probe is
independent of probe shape.19! Such an orbit must become
tangent from the inside to one of the equipotential lines, with
a radius of curvaturer~orbit!,r~equipot! at the turning
point, where we havemen'

2 /r(orbit)5eu“Fu and 1/2men'
2

'eF@kTe .13 For the potential given by Eq.~29! we find

r~equipot!5a
~sin2 n1sinh2 w!3/2

sinh w coshw
,

r~orbit!52a
12aw

a
Asin2 n1sinh2 w.

Since 1/2a[@ ln(eFP /kTis1)22b#21 is small, the condition
r(orbit),r(equipot) can only hold in a thin layer next to the
tape @0,w,1/2a sin2 n, or 0,y/a,1/2a(12x2/a2)3/2,
uxu,a#.

To determine how the potential barriers in this layer re-
duce the current, it will suffice to consider orbits leaving
backward in time, from a point in the segment 0,xPi,a of
the tape, at a small, upward glancing angle to either right or
left in Fig. 8. They-equation of motion,

menx

dny

dx
5e

dF

dw

]w

]y S dF

dw
52aFPD ,

may be readily integrated by using smalla, w, kTe /eFP ,
and ny /nx approximations leading tow'y/Aa22x2, nx

'n''nP''A2eFP /me. There is a glancing angle to the
right g r ~left g l! for the orbit to return to the tape atx
5a(x52a). The current densityj in ~C1! is then reduced
because thecP-range of integration is~weakly! reduced:

E
2p/2

p/2

coscPdcP52→2S 12
g r

21g l
2

4 D . ~C2!

Both g r and g l , and thus the reduction ofj, are
xPi-dependent; we findg r5g l5(p22)a/4 for xPi50, and
g r50, g l5pa/4 for xPi5a. The overall current reduction is
abouta2/8, or about one percent for theeFP /kTe values of
interest.
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