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A local method based on orbital specific virtuals (OSVs) for calculating the perturbative triples cor-
rection in local coupled cluster calculations is presented. In contrast to the previous approach based
on projected atomic orbitals (PAOs), described by Schütz [J. Chem. Phys. 113, 9986 (2000)], the
new scheme works without any ad hoc truncations of the virtual space to domains. A single thresh-
old defines the pair and triple specific virtual spaces completely and automatically. It is demonstrated
that the computational cost of the method scales linearly with molecular size. Employing the rec-
ommended threshold a similar fraction of the correlation energy is recovered as with the original
PAO method at a somewhat lower cost. A benchmark for 52 reactions demonstrates that for reac-
tion energies the intrinsic accuracy of the coupled cluster with singles and doubles excitations and
a perturbative treatment of triples excitations method can be reached by OSV-local coupled cluster
theory with singles and doubles and perturbative triples, provided a MP2 correction is applied that
accounts for basis set incompleteness errors as well as for remaining domain errors. As an applica-
tion example the interaction energies of the guanine-cytosine dimers in the Watson-Crick and stacked
arrangements are investigated at the level of local coupled cluster theory with singles and doubles
and perturbative triples. Based on these calculations we propose new complete-basis-set-limit esti-
mates for these interaction energies at this level of theory. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4789415]

I. INTRODUCTION

Coupled cluster (CC) theory is probably the most suc-
cessful post-Hartree-Fock method to treat dynamic electron
correlation; CC with singles and doubles excitations and a
perturbative treatment of triples excitations (CCSD(T)) pro-
vides chemical accuracy for single reference cases, provided
that either extended basis sets in conjunction with extrapo-
lation techniques are used, or explicitly correlated terms are
included that strongly reduce the basis set incompleteness
error.1–6 The success of CC theory originates from the ex-
ponential ansatz |�CC〉 = exp (T) for the CC wavefunction,
where T is the cluster operator, truncated, e.g., beyond dou-
bles excitations in the case of CCSD. This exponential ansatz
ensures that the method is size-extensive, and, more gener-
ally, introduces all excited determinants of full configuration
interaction (CI) beyond doubles (for the CCSD case) into
the wavefunction, with coefficients factorized into singles and
doubles amplitudes (disconnected products). From that angle,
CC theory is a full CI approximation, which imposes a spe-
cial tensor factorization on the CI coefficients of determinants
beyond the truncation level of T (in contrast to many other
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b)Electronic mail: juny@princeton.edu.
c)Electronic mail: gkchan@princeton.edu.
d)Electronic mail: fred.manby@bris.ac.uk.
e)Electronic mail: werner@theochem.uni-stuttgart.de.

tensor factorization schemes there is no contraction over aux-
iliary indices here). It is well known that connected triples
are still important to reach chemical accuracy, yet for exci-
tations beyond triples this factorization of the full CI coeffi-
cients works very well. Hence, it reduces the scaling of the
computational cost with molecular size N enormously from
factorial to polynomial, i.e., to O(N 7), when assuming that
the perturbative (T) correction7–9 is sufficiently accurate.

However, a scaling of O(N 7) is still very high, restricting
the application range of CCSD(T) to rather small molecules.
It is therefore tempting to impose a further tensor factorization
onto the CC doubles and triples amplitudes.

In quantum chemistry, matrix factorizations are fre-
quently used. Obvious examples are the Cholesky10–14 and
singular value decompositions,15 and density fitting.16–22

Also schemes defining new occupied and virtual orbital
sets, such as the projected atomic orbital (PAO) based lo-
cal correlation,23–27 the pair natural orbital (PNO),28–37 and
the orbital specific virtual (OSV)38, 39 methods can be inter-
preted as tensor factorizations. All these methods substitute
the delocalized occupied Hartree-Fock orbitals by (still mu-
tually orthogonal) localized molecular orbitals (LMOs), ob-
tained by a unitary transformation of the former. Yet they
differ in the handling of the virtual space: PAO methods de-
fine a single global set of virtuals (PAOs) and specify LMO-
pair- and triple-specific subsets thereof. PNO methods, on
the other hand, define a distinct adapted set of virtuals for

0021-9606/2013/138(5)/054109/10/$30.00 © 2013 American Institute of Physics138, 054109-1
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each pair. This has the advantage that a considerably smaller
number of PNOs than PAOs per pair is needed to reach the
same accuracy, but due to the huge total number of PNOs
it leads to complications in the integral transformation. OSV
methods represent a compromise: here each LMO rather than
each LMO-pair has its own adapted set of virtuals (OSVs).
This leads to important simplifications relative to the PNO
method, at the price of a less compact virtual orbital basis for
each pair. A direct comparison of the various schemes can
be found in Ref. 37. Hybrid PAO/OSV/PNO schemes, which
exploit and combine the advantages of the different schemes
and avoid the O(N 4) scaling of the OSV and PNO generation,
have also been proposed37 and are currently being efficiently
implemented.40 Similar methods are also being developed by
other groups.41

Recently, we presented an efficient implementation of
OSV-local coupled cluster theory with singles and doubles
(LCCSD).39 In the present work, we extend the method to
OSV-LCCSD(T). To this end, we adapt our previous PAO
based triples program42–44 according to the OSV-L(T) for-
malism. While a high-spin open-shell PAO-LCCSD(T) imple-
mentation is already available,45 the current work is restricted
to the closed-shell case.

II. THEORY

In this section, we briefly describe the OSV approach and
then provide the relevant OSV-L(T) equations for the closed-
shell case. In the following, indices i, j, k, l will denote LMOs,
a, b, c, d canonical virtual orbitals. These orbital spaces are
orthonormal and mutually orthogonal. For OSV orbitals, we
will employ indices r, s, t, u. As the name implies, OSVs are
specific for different LMOs. Where appropriate the respec-
tive LMO is indicated by a superscript, e.g., |ri〉 ≡ |φ(i)

r 〉, etc.
Electron repulsion integrals are written in the physicists’ no-
tation, i.e.,

〈rs|ij 〉 =
∫

dr1

∫
dr2 φr (r1)φs(r2)r−1

12 φi(r1)φj (r2). (1)

Since we are using a real spin-free formulation all indices re-
fer to spatial orbitals φr(r) and there is no antisymmetrization
of the integrals. In the following, εa are the eigenvalues of the
virtual block of the Fock matrix in the canonical orbital basis,
and fij are the elements of the occupied-occupied block of the
Fock matrix in the LMO basis.

A. The OSV approach

The OSV orbitals are typically generated by diagonaliza-
tion of the diagonal MP2 pair amplitudes,38, 39

T ii
ab = − 〈ab|ii〉

εa + εb − 2fii

(2)

as ∑
ab

Qi
arQ

i
bsT

ii
ab = t iir δrs, |ri〉 =

∑
a

|a〉Qi
ar . (3)

It is also possible to generate them by direct optimization
of a Lagrangian, e.g., the Hylleraas functional, as discussed
previously.46 In either case, the resulting unitary (orthogonal)
transformation matrices Qi transform from canonical virtuals

|a〉 to the OSVs |r i〉. The OSVs |r i〉 for a given LMO i form
an orthogonal basis, but the OSV sets for different LMOs are
in general mutually non-orthogonal, 〈r i|s j〉 �=0 for i �= j. If
determined using Eq. (2), the OSVs are equal to the PNOs
for the corresponding diagonal pairs. From here on we shall
consider only OSVs determined from Eq. (2).

Based on the magnitude of the eigenvalues t iir a certain
subset of OSVs (domain [i]) can be determined for each LMO
i. Alternatively, the MP2 correlation energy of the diagonal
pair,

εii =
∑
ab

〈ii|ab〉T ii
ab =

∑
r

kii
r t iir ; kii

r =
∑
ab

〈ii|ab〉Qi
arQ

i
br

(4)

can be used as a criterion:39 OSVs (ordered according to
decreasing t iir ) are added to [i] until the deviation between∑

r∈[i] k
ii
r t iir and the exact εii in Eq. (4) becomes smaller than

a certain threshold lOSV. This criterion will be used through-
out the current work. Here and in the following, in analogy to
the PAO method, we still denote these subsets of OSVs do-
mains, but point out that they do not originate from an ad hoc
assumption on the truncation of the virtual space.

In the truncated OSV basis, the doubles amplitudes in
canonical basis are approximated by the relation

T
ij

ab ≈
∑

rs∈[ij ]

Qij
arQ

ij

bsT
ij
rs , (5)

where the indices r, s run over the united domain [ij]
= [i] ∪ [j], and Qij are composite transformation matrices

Qij = (QiQj ), (6)

i.e., the two transformation matrices [Qi]ari , r i ∈ [i] and
[Qj ]arj r j ∈ [j] are concatenated side by side. We denote the
union of the OSVs |r i〉 and |r j〉 as a pair domain of virtual
orbitals

|rij 〉 =
∑

a

|a〉Qij
ar . (7)

It may happen that the OSVs |r ij〉 in a pair domain are (nearly)
linearly dependent, and singular value decomposition is used
to eliminate redundant functions (this is only done at interme-
diate stages when the amplitudes are updated in an orthogonal
basis, cf. Ref. 39). For a full set of non-redundant OSVs (i.e.,
if their number equals the number of virtual MOs), the trans-
formation in Eq. (5) is exact. However, for nonzero thresholds
lOSV, i.e., a truncated set of OSVs (less OSVs than canon-
ical virtuals) Eq. (5) is not a transformation, but a projec-
tion; the T

ij

ab on the lhs are then not equal to the true canoni-
cal amplitudes. For a thorough discussion of the transforma-
tion/projection relations between amplitudes and integrals in
canonical and local basis we refer to Refs. 37 and 47.

The orbitals |r ij〉 in the pair domains are non-orthogonal,
with the overlap matrix

Sij,kl
rs = 〈rij |skl〉 =

∑
a

Qij
arQ

kl
as . (8)

Sij, kl is a rectangular submatrix of the full OSV overlap matrix
S, where the rows run over the pair domain [ij], the columns
over pair domain [kl]. In a diagrammatic representation of the
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CCSD residual equations such overlaps pop up whenever a
particle line originating from an amplitude vertex on the bra
side is directly connected to the ket side, i.e., not connected
to a vertex corresponding to a fragment of the Hamilton
operator.

For the triples amplitudes we have, by analogy to Eqs. (5)
and (6),

T
ijk

abc ≈
∑

rst∈[ijk]

Qijk
ar Q

ijk

bs Q
ijk
ct T

ijk
rst . (9)

Here, the composite transformation matrices

Qijk = (QiQj Qk), (10)

now concatenate three OSV transformation matrices Qi, and
the r, s, t summations in Eq. (9) now run over the triples do-
main [ijk] = [i] ∪ [j] ∪ [k].

B. The OSV-L(T) equations

In order to compute the perturbative triples correction7–9

in a non-canonical local basis, the triples equations must
be formulated in an orbital-invariant way. Various and
quite different local correlation methods for the perturbative
triples correction have been proposed in the past,43, 48–51 the
later ones based on “divide-and-conquer,” and “cluster-in-
molecule” approaches. The OSV-L(T) method presented here
is based on the first, i.e., the PAO based local triples method
discussed in Ref. 43. Since the OSV-L(T) formalism is very
similar to that of the PAO-L(T) method we just give a short
overview, provide the relevant equations, and refer for further
details to Ref. 43. The triples amplitudes are obtained by solv-
ing the second-order triples equations

R
ijk

abc = 〈
�̃abc

ijk

∣∣f̂ T̂3|�0〉 + 〈
�̃abc

ijk

∣∣V̂ T̂2|�0〉 = 0, (11)

where f̂ and V̂ are the normal ordered Fock- and fluctuation
potential operators, and

T̂2 = 1

2

∑
ij

∑
ab

T
ij

abÊaiÊbj , (12)

T̂3 = 1

6

∑
ijk

∑
abc

T
ijk

abcÊaiÊbj Êck, (13)

are the doubles and triples excitation operators, written in
terms of spin-conserving one-particle excitation operators
Êai . |�0〉 is the Hartree-Fock reference determinant, and

�̃abc
ijk = 1

6

(
�abc̄

ij k̄
+ �āb̄c

īj̄ k
+ �ab̄c

ij̄k
+ �ābc̄

īj k̄
+ �ab̄c̄

ij̄ k̄
+ �ābc

ījk

+ �acb̄
ij k̄

+ �āc̄b
īj̄ k

+ �bāc
ij̄k

+ �b̄ac̄
īj k̄

+ �cb̄ā
ij̄ k̄

+ �c̄ba
ījk

)
(14)

are contravariant triply excited configuration state functions,
chosen as in Ref. 43. In Eq. (14), the orbital indices on the lhs
refer to spatial orbitals, those on the rhs to the corresponding
spin orbitals with either α or (when decorated with an over-
bar) β spin.

Equation (11) straightforwardly leads to43

R
ijk

abc = V
ijk

abc + W
ijk

abc = 0, (15)

with

V
ijk

abc = P1

(∑
d

fcdT
ijk

abd −
∑

l

fklT
ij l

abc

)
, (16)

W
ijk

abc = P1P2

(∑
d

〈bc|dk〉T ij

ad −
∑

l

〈lc|jk〉T il
ab

)
, (17)

and with orbital index permutation operators

P1 = 1 + (jk)(bc) + (ik)(ac), P2 = 1 + (ij )(ab). (18)

The (T) correction to the CCSD energy is defined as

δE = 〈0|(T̂1 + T̂2)†V̂ T̂3|0〉, (19)

where T̂1 = ∑
ia t iaÊai is the spin-conserving singles excita-

tion operator. This leads to the energy expression43

δE = δE(S) + δE(D), (20)

with

δE(S) =
∑

i≤j≤k

(2 − δij − δjk)
∑
abc

X
ijk

abcP3t
i
a〈jk|bc〉,

δE(D) =
∑

i≤j≤k

(2 − δij − δjk)
∑
abc

X
ijk

abcW
ijk

abc,

(21)

using the additional orbital index permutation operator

P3 = 1 + (ij )(ab) + (ik)(ac), (22)

and defining

X
ijk

abc = 4T
ijk

abc − 2T
ijk

acb − 2T
ijk

cba − 2T
ijk

bac + T
ijk

cab + T
ijk

bca .

(23)

What we have derived so far is an orbital-invariant formal-
ism of the triples correction in an orthonormal orbital basis.
For a canonical orbital basis with a diagonal Fock matrix in
Eq. (16), Eq. (15) can directly be inverted, yielding (for a fixed
triple ijk) T

ijk

abc , then via (23) X
ijk

abc, and finally via (20) and (21)
the contribution of that triple to δE.

In a non-canonical orbital basis, Eq. (15) has to be
solved iteratively, which implies storage of the triples ampli-
tudes. Yet neglecting the internal couplings via the occupied-
occupied block of the Fock matrix allows for direct inversion
and calculation of δE in the pseudocanonical orbital basis for
each triple ijk separately without the necessity of storing the
triples amplitudes (cf. Sec. II E in Ref. 43): the pseudocanon-
ical basis is obtained by diagonalizing the external Fock op-
erator projected onto the ijk-specific virtual space; the corre-
sponding amplitudes then are computed by direct inversion,
i.e., as

T
ijk

ãb̃c̃
= −W

ijk

ãb̃c̃
/(εã + εb̃ + εc̃ − fii − fjj − fkk), (24)

where ã, . . . are indices of the pseudocanonical orbitals span-
ning the ijk-specific virtual space, εã, . . . the related orbital
energies of the projected Fock operator, and fii, . . . the di-
agonal elements of the internal Fock matrix in LMO ba-
sis. This specifies the so-called L(T0) approximation to the
full iterative L(T) correction. Treating the internal couplings
at the level of first-order perturbation theory [the L(T1)
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approximation43] also avoids storage of the triples ampli-
tudes, but is computationally still much more costly than the
L(T0) approximation. δE in the L(T1) approximation is iden-
tical to δE of the first iteration of the full L(T) correction.

The OSV-L(T) equations are now straightforwardly de-
rived by transforming Eqs. (15) and (21) from the canonical
to the OSV basis by employing the transformation relation
for integrals (3), and the converse transformation relations for
amplitudes (5) and (9). For example, from Eq. (17) we obtain

W
ijk
rst =

∑
abc

W
ijk

abcQ
ijk
ar Q

ijk

bs Q
ijk
ct

= P ′
1P ′

2

(∑
ur ′

〈st |uk〉T ij

r ′uS
ij,ijk

r ′r

−
∑
lr ′s ′

〈lt |jk〉T il
r ′s ′S

il,ijk

r ′r S
il,ijk

s ′s

)
, (25)

with P ′
1 and P ′

2 being analogously defined as the P1 and P2

in Eq. (18), but permuting in addition also the related primed
indices accordingly, i.e.,

P ′
1 = 1 + (jk)(st)(s ′t ′) + (ik)(rt)(r ′t ′),

P ′
2 = 1 + (ij )(rs)(r ′s ′).

(26)

Equation (25) is formally identical to Eq. (19) of Ref. 43. We
therefore do not provide the detailed OSV-L(T) equations ob-
tained by transforming Eqs. (16) and (21), but refer instead
to Eqs. (18), (28), and (29) of Ref. 43. Note the occurrence
of the overlap matrix Sij, ijk = Qij†Qijk. It is a rectangular sub-
matrix of the full OSV overlap matrix S, where the rows run
over the pair domain [ij], the columns over the triples domain
[ijk]. As discussed in our previous paper,39 the full OSV Fock
and overlap matrices are kept in memory in our program, and
appropriate submatrices extracted from it.

C. Local pair- and triples approximations

In the local CC method not all pairs or triples are treated
at the same level, but additional approximations are applied
to different classes of pairs or triples, depending on the mu-
tual spatial separation between the related LMOs.22–24, 52, 53

To this end, classes of strong, close, weak, and very distant
pairs are distinguished. Only strong pairs are treated at the full
LCCSD level, close and weak pairs only at the LMP2 level,
or optionally, at the level of the local random phase approxi-
mation (LRPA) (vide infra). Very distant pairs are neglected.
Only strong and close pairs enter the construction of the re-
stricted triples list for the L(T) calculation: by default, only
those triples are added to the list, which comprise at least one
strong, and at most two close pairs.43 It is also possible to lift
the restriction that one pair has to be strong, thus, extending
the triples list and the cost of the L(T) calculation. However,
as Table 3 in Ref. 43 shows, the effect on the triples energy is
small. Hence, in all test calculations presented in Sec. III the
default setting is employed.

The spatial separation between the LMOs specifying the
different pair classes can either be measured by a distance or a
connectivity criterion. The latter counts the number of bonds

between two LMOs. As in the previous PAO based method,
each LMO still specifies a subset of relevant atoms (obtained
from a Löwdin population analysis and truncation of the or-
dered atoms list beyond a certain population, as done in the
Boughton-Pulay (BP) procedure54). Hence, distances or num-
ber of bonds between two LMO are defined as the distances or
number of bonds between the closest atoms of the two respec-
tive subsets. Two atoms are considered to be bonded, if their
distance is smaller than 1.2× the sum of their atomic radii.

In the calculations presented below, we employ the con-
nectivity criterion. The pair approximation is defined by the
three integers w, c, and k, as discussed in detail in Refs. 5 and
6. w and c specify the minimum number of bonds between
the two LMOs that form weak and close pairs, respectively.
Only strong pair amplitudes are optimized in the LCCSD step.
k = 1 flags that LMP2 close pair amplitudes enter the LCCSD
residuals for the strong pairs, while for k = 0 this is not done.
For example, wck = 321 means that in strong pairs the two
orbital domains are separated by at most one bond, close pairs
by two bonds, weak pairs by at least three bonds, and that
close pairs enter the LCCSD strong pair residuals.

It should be noted that the above selection of the pair
types is still based on ad hoc distance or connectivity criteria.
The effect of these criteria has been extensively investigated
in Refs. 5 and 6. An alternative possibility, which avoids any
distance criteria altogether, is to define the pair classes based
on energy thresholds, using the LMP2 pair energies. This will
be explored further in future work.

Our program recognizes individual molecules in inter-
molecular complexes or clusters. On that basis, also inter-
molecular pairs are identified. These can then either be spec-
ified independently as strong, close, or weak. This feature is
utilized in Sec. III C. In all calculations presented here, the
class of very distant pairs (which are entirely neglected) is
switched off and remains empty.

III. TEST CALCULATIONS

The OSV-L(T) method has been implemented in the
MOLPRO program package55, 56 on the basis of the PAO-L(T)
program described in Ref. 43. Density fitting is employed to
efficiently evaluate the required two- and three-external elec-
tron repulsion integrals, as discussed in detail in Ref. 22.

In the following, we present the results of some test cal-
culations to explore how the OSV-L(T) method performs in
comparison to PAO-L(T). The preceding LCCSD calcula-
tions are carried out with the OSV-LCCSD program reported
earlier.22, 39 In all calculations, the LMOs have been gener-
ated by using Pipek-Mezey localization.57 For basis sets aug-
mented by diffuse basis functions, the contributions of the
most diffuse basis functions of each angular momentum are
removed from the localization criterion. This improves local-
ization and is the recommended way to generate LMOs for
basis sets with diffuse functions.

A. Scaling behaviour with molecular size

As a first test system we employ the same linear
poly-glycine peptide chains (Gly)n ≡ HO[C(O)CH2NH]nH
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(n = 1. . . 4) as used already in Ref. 43 (structures and en-
ergies can be found in the supplementary material58). These
artificial systems quickly and systematically reach the asymp-
totic regime and are therefore well suited to explore the scal-
ing properties of a method. The calculations on (Gly)n were
carried out in the cc-pVTZ basis (with the related MP2FIT
fitting basis set of Weigend et al.59); the calculation of the
canonical (T) correction for n = 4 took already about three
weeks on four Intel Xeon cores X5690 @ 3.47 GHz. For the
local calculations, the wck = 321 pair approximation was
employed.

Table I compiles the canonical CCSD and (T) correla-
tion energies, along with the percentage thereof recovered by
the individual local methods. The timings and correlation en-
ergies for the preceding LCCSD calculation can be found
in the supplementary material.58 For the PAO-LCCSD(T)
calculations, standard BP domains with a completeness cri-
terion of 0.98 are used. For the OSV-LCCSD(T) calcula-
tions, three different settings for the threshold lOSV, i.e., lOSV

= 1.0 × 10−4, 3.2 × 10−5, and 1.0 × 10−5 are investigated.
Furthermore, for the local triples corrections the full iterative
L(T) treatment, the L(T1) variant, as well as the often used
L(T0) approximation are compared.

As expected, the OSV method performs very well for
the LCCSD correlation energy ECCSD: already a threshold of
lOSV = 1.0 × 10−4 recovers between 99.2% (n = 1) and
99.0% (n = 4) of the canonical correlation energy, which
is about the same amount as recovered by the PAO based

TABLE I. Canonical CCSD ECCSD and (T) correlation energies for (Gly)n

(n = 1. . . 4), and percentage thereof recovered by PAO-LCCSD(T) (with stan-
dard BP domains and completeness criterion of 0.98), and OSV-LCCSD(T)
with lOSV = 1.0 × 10−4, 3.2 × 10−5, and 1.0 × 10−5, respectively. The wck
= 321 pair approximation is used.

n = 1 2 3 4

ECCSD −1.024627 −1.786898 −2.549422 −3.312013
	E(T) −0.041638 −0.076421 −0.111313 −0.146228

lOSV/Eh LCCSD
1.0 × 10−4 99.17% 99.02% 98.96% 98.95%
3.2 × 10−5 99.66% 99.58% 99.55% 99.53%
1.0 × 10−5 99.88% 99.85% 99.83% 99.85%

PAO 99.15% 99.05% 99.01% 98.99%

lOSV/Eh L(T)
1.0 × 10−4 94.61% 93.23% 92.70% 92.42%
3.2 × 10−5 97.25% 96.13% 95.74% 95.51%
1.0 × 10−5 98.48% 97.63% 97.26% 97.06%

PAO 96.64% 95.86% 95.55% 95.39%

lOSV/Eh L(T1)
1.0 × 10−4 94.19% 92.83% 92.31% 92.03%
3.2 × 10−5 96.79% 95.69% 95.30% 95.08%
1.0 × 10−5 98.00% 97.17% 96.80% 96.61%

PAO 96.19% 95.42% 95.12% 94.96%

lOSV/Eh L(T0)
1.0 × 10−4 92.01% 90.78% 90.32% 90.08%
3.2 × 10−5 94.42% 93.44% 93.11% 92.92%
1.0 × 10−5 95.53% 94.80% 94.49% 94.30%

PAO 93.77% 93.09% 92.83% 92.69%

LCCSD with standard BP domains. We note that there is a
slight decrease in the fraction of the recovered correlation en-
ergy on going from n = 1 to n = 4. By decreasing the OSV
threshold to lOSV = 1.0 × 10−5 even 99.9% of the canonical
correlation energy is recovered.

The L(T) correction performs not quite as well, but still
recovers a large percentage of the canonical triples correction.
The somewhat less good performance of OSV-L(T) compared
to OSV-LCCSD is not surprising, since of course the OSV
basis is constructed by analyzing doubles, rather than triples
amplitudes. Nevertheless, with a threshold of lOSV = 1.0
× 10−4 between 94.6% (n = 1) and 92.5% (n = 4) of the
canonical (T) energy correction 	E(T) are recovered. Most of
the decrease of this fraction with increasing chain length oc-
curs between n = 1 and n = 2; apparently, the electronic struc-
ture of n = 1 is somewhat different from the larger molecules.
The fraction still slightly decreases from n = 2 to n = 4, but
this effect is further reduced if more pairs are treated as strong
or close (see below). In any case, taking into account that
	E(T) is more than an order of magnitude smaller than ECCSD

the effect of this decrease on the total energies is smaller for
the L(T) correction than for the LCCSD correlation energy.

Decreasing the threshold to lOSV = 3.2 × 10−5 recovers
97.2%–95.5%, which is slightly more than the fraction recov-
ered by PAO-L(T) with default domains. With a threshold of
lOSV = 1.0 × 10−5 finally, 98.5%–97.1% of 	E(T) is recov-
ered. On going from the full L(T) correction to the L(T1) or
L(T0) approximations further ≈0.5% or ≈2.5%, respectively,
of 	E(T) are lost. Nevertheless, considering the much smaller
size of 	E(T) relative to ECCSD our experience shows that this
is even for the L(T0) approximation still unproblematic for
most applications.

In order to check how the pair approximations affect the
triples energy, the weak and close pair criteria have been var-
ied, using the (T0) approximation and lOSV = 3.2 × 10−5 Eh.
The results are shown in Table II. The fraction of LCCSD
correlation energy is nearly independent of these parameters;
it slightly decreases if more strong pairs are fully optimized
in the LCCSD (i.e., with increasing parameter c). In con-
trast, the fraction of recovered triples energy increases if more

TABLE II. Dependence of the LCCSD and (T0) correlation energy contri-
butions relative to the canonical CCSD(T) values (in percent) on the choice
of the close and weak pair parameters wck (see text). The OSV threshold was
chosen to be lOSV = 3.2 × 10−5 Eh.

n = 1 2 3 4

wck LCCSD
321 99.66 99.58 99.55 99.53
431 99.64 99.52 99.52 99.50
541 99.64 99.52 99.52 99.50
421 99.66 99.57 99.54 99.52
521 99.66 99.56 99.54 99.52
wck L(T0)
321 94.42 93.44 93.11 92.92
431 94.72 94.02 93.82 93.70
541 94.72 94.13 93.96 93.86
421 94.79 94.10 93.90 93.78
521 94.79 94.21 94.04 93.94
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close pair amplitudes are included in the triples calculation
(parameter w). This effect increases with increasing chain
length of the peptides. As already mentioned, for (Gly)1 a
larger fraction of correlation energy is recovered than for the
larger molecules, both at the LCCSD level, as well as for
the L(T0) correction. This effect remains even with extended
strong and close pair lists. For the larger molecules, the de-
crease of the fraction of L(T0) with increasing chain length
is reduced if more pairs are included in the triples calcula-
tion: for wck = 321 the fraction decreases from n = 2 to
n = 4 by 0.52%, while for wck = 541 it decreases only by
0.27%. The last two rows in the table show that it is not nec-
essary to include more strong pairs in the LCCSD calcula-
tion (which would strongly affect the computational effort5);
it is sufficient just to use the LMP2 amplitudes (close pairs)
in the triples calculation in order to recover most of the effect
on the triples energy. But it should be noted that the number
of integrals 〈rs|ti〉 to be computed, stored, and processed in-
creases with increasing number of close pairs, and therefore
wck = 321 appears to be a good compromise in terms of
efficiency and accuracy.

Figure 1 displays the timings of the L(T) and L(T0) cal-
culations, respectively, for n = 1, . . . , 4, measured on seven
Intel Xeon cores X5690 @ 3.47GHz. Evidently, the compu-
tational cost of both the PAO-L(T) and OSV-L(T) implemen-
tation scale linearly with n, whereas the cost of the canoni-
cal (T) correction (also shown) just explodes beyond n = 2.
The L(T0) approximation is faster by a factor of 15–30 com-
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FIG. 1. Elapsed times for the full L(T) correction (upper panel, in min) and
the L(T0) approximation approximation (lower panel, in s) for the (Gly)n

(n = 1. . . 4) calculations. The elapsed times for the canonical calculations
are also shown, as much as visible on the respective scale. The calculations
were performed on seven Intel Xeon cores X5690 @ 3.47GHz with 512 MW
memory per process.

pared to the full iterative L(T) treatment. The slightly non-
linear scaling is probably due to the I/O overhead, caused by
less efficient caching of integrals for the larger cases. Com-
paring the timings of the OSV triples with threshold lOSV

= 3.2 × 10−5 to those of the PAO triples, which both recover
a very similar percentage of 	E(T), one can see that OSV-
L(T0) is slightly faster than PAO-L(T0), and that full OSV-
L(T) is significantly faster (by more than a factor of two) than
PAO-L(T). This factor of two in the latter case is most likely
due to somewhat more compact triples domains in the OSV
case (average triples domain: 95 OSVs) than in the PAO case
(average triples domain: 118 PAOs). This implies a factor of
about 1/2 in the size of the triples amplitudes block for a fixed
LMO triple. In less artificial systems involving, e.g., aromatic
rings, the ratio in the amount of non-vanishing triples between
OSV- and PAO-L(T) is even much smaller, as is demonstrated
in Sec. III C.

In any case, the OSV triples calculation with a threshold
of lOSV = 3.2 × 10−5 is certainly competitive to a default PAO
triples calculation, with respect to efficiency, as well as with
respect to accuracy.

B. A benchmark for reaction energies

In this section, we present benchmark results for reaction
energies of 52 reactions. The reactions and molecular geome-
tries are taken from Ref. 6, and this benchmark has already
been used in Refs. 6, 37, and 39. In order to facilitate the
comparison with those data, the same basis sets and reference
values as in Ref. 6 have been used. Table III shows results
relative to the canonical CCSD and CCSD(T) values obtained
with the VTZ-F12 basis set,60 while in Table IV the deviations
of the VTZ-F12 results from the canonical estimated com-
plete basis set (CBS) limits are shown. The CBS values6 have
been obtained by extrapolating CCSD(T)-F12b/VTZ-F12 and
CCSD(T)-F12b/VQZ-F12 results as described in Ref. 61. In
all local calculations, the pair selection criteria were wck

TABLE III. Maximum (MAX), mean absolute (ABS) and root-mean-square
(RMS) deviations (in kJ/mol) of OSV-LCCSD and OSV-LCCSD(T0) reaction
energies from the corresponding canonical CCSD and CCSD(T) results for
52 reactions, basis VTZ-F12 (wck = 321). 	MP2 = MP2−LMP2 is a MP2
correction that accounts for domain errors, see text. The reactions, basis sets
and reference values are the same as in Ref. 6.

LCCSD LCCSD+	MP2

lOSV/Eh MAX ABS RMS MAX ABS RMS

1.0 × 10−4 12.5 3.3 4.3 5.2 1.1 1.4
3.2 × 10−5 4.3 1.4 1.8 3.3 0.6 0.8
1.0 × 10−5 3.0 0.7 0.9 2.4 0.5 0.7

PAOa 13.5 2.9 3.9 3.0 0.7 1.0

LCCSD(T0) LCCSD(T0)+	MP2

lOSV/Eh MAX ABS RMS MAX ABS RMS

1.0 × 10−4 14.9 3.3 4.3 4.6 0.8 1.2
3.2 × 10−5 6.8 2.1 2.7 2.6 0.7 0.9
1.0 × 10−5 3.8 1.2 1.5 2.9 0.7 0.9

PAOa 15.5 3.5 4.8 3.0 0.8 1.1

aPAO-LCCSD and PAO-LCCSD(T0) calculations as described in the text.
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TABLE IV. Maximum (MAX), mean absolute (ABS) and root-mean-square
(RMS) deviations (in kJ/mol) of OSV-LCCSD and OSV-LCCSD(T0) reac-
tion energies from canonical CCSD and CCSD(T) complete basis set esti-
mates, respectively, for 52 reactions, basis VTZ-F12 (wck = 321). 	MP2
= MP2/CBS[45]−LMP2/VTZ-F12 is a MP2 correction that accounts for do-
mains and basis set incompleteness errors, see text. The reactions, basis sets
and reference values are the same as in Ref. 6.

LCCSD LCCSD + 	MP2

lOSV/Eh MAX ABS RMS MAX ABS RMS

1.0 × 10−4 14.2 5.3 6.5 4.7 0.9 1.3
3.2 × 10−5 13.9 4.2 5.1 3.8 0.9 1.3
1.0 × 10−5 13.5 3.5 4.5 3.8 0.9 1.2

PAOa 18.9 5.2 6.6 5.1 1.2 1.7
Canonicalb 12.2 3.4 4.4 3.6 0.9 1.3

LCCSD(T0) LCCSD(T0) + 	MP2

lOSV/Eh MAX ABS RMS MAX ABS RMS

1.0 × 10−4 18.6 6.4 8.0 3.6 1.2 1.5
3.2 × 10−5 14.5 4.9 5.9 3.4 1.2 1.5
1.0 × 10−5 13.8 4.0 5.0 3.4 1.2 1.4

PAOa 21.0 5.9 7.4 5.3 1.3 1.8
Canonicalb 12.2 3.4 4.4 3.0 0.9 1.2

aPAO-LCCSD and PAO-LCCSD(T0) calculations as described in the text.
bResults of canonical CCSD and CCSD(T) calculations relative to the corresponding
CBS values.

= 321, as explained in Sec. II C. The cc-pVTZ/JKFIT62 and
aug-cc-pVTZ/MP2FIT59 fitting basis sets, respectively, have
been used for fitting the Fock matrix and transformed electron
repulsion integrals. In the PAO-LCCSD calculations, standard
BP domains with a completeness criterion of 0.985 have been
used. This is exactly as in Ref. 6, but note that in our previous
paper on OSV-LCCSD39 the PAO domains have been chosen
in a different way.

The first three columns in Table III demonstrate that
with decreasing threshold lOSV the OSV-LCCSD and OSV-
LCCSD(T) results converge monotonically towards the corre-
sponding canonical ones. The maximum errors for the OSV-
LCCSD(T) are up to 2.5 kJ/mol larger than those without
triples, but this difference decreases with decreasing thresh-
old. Even with the largest threshold (lOSV = 10−4 Eh), the
OSV results are slightly more accurate than the PAO-LCCSD
ones, but of course the PAO results could also be improved by
extending the domains.39, 63

In the last three columns of Table III, the MP2 correc-
tion is applied, i.e., 	EMP2 = EMP2 − ELMP2 is added to all
LCCSD or LCCSD(T) energies. As already found in previous
work,22, 39, 63 this very effectively reduces the domain errors,
and now the statistical data are nearly independent of the OSV
threshold used. Even with the largest threshold the maximum
errors are reduced to about 1 kcal/mol, and the root-mean-
square deviations are even 3-4 times smaller.

Table IV shows similar results, but in this case the
CCSD/CBS and CCSD(T)/CBS values are taken as the ref-
erence. As expected, the deviations from the reference values
are now larger, since they also include the basis set incom-
pleteness errors. As can be seen by comparison of the canon-
ical CCSD and CCSD(T) values in Table IV with the OSV-
LCCSD(T) values in Table III the basis set errors are about

as large as the local errors with the largest threshold (with-
out MP2 correction). This means that both sources of error
must be reduced simultaneously in order to reach the intrinsic
accuracy of the CCSD(T) method. The last three columns of
Table IV demonstrate that this is very effectively achieved by
adding the 	MP2(CBS) correction 	EMP2(CBS) = EMP2/CBS

− ELMP2, where EMP2/CBS is obtained by extrapolating
MP2/aug-cc-pVQZ (n = 4) and MP2/aug-cc-pV5Z (n = 5)
correlation energies to the CBS limit (using En = ECBS

+ A · n−3, where n is the cardinal number of the basis
set), while ELMP2 is computed with the same basis set as the
LCCSD(T) energies. This correction reduces both the basis
set incompleteness errors as well as the domain errors, and
chemical accuracy (<1 kcal/mol) is obtained, independent
of the OSV threshold used. The deviations of the local re-
sults from the reference values are only marginally larger than
those of the underlying canonical methods.

We note that similar accuracy can be achieved just with
the VTZ-F12 basis set by including explicitly correlated terms
in the wavefunction, as demonstrated in Refs. 6 and 37.
This eliminates the need to carry out canonical MP2 calcu-
lations with very large basis sets. These so-called LCCSD-
F12 methods very effectively reduce both the basis set
incompleteness errors, as well as the errors due to the do-
main approximation,6, 37, 64, 65 and near linear cost scaling
with molecular size can be achieved.66 An efficient OSV-
LCCSD(T)-F12 implementation will be presented elsewhere.

In conclusion, this benchmark demonstrates that the in-
trinsic accuracy of the CCSD(T) method can be reached using
OSV-LCCSD(T0) with a threshold lOSV = 3.2 × 10−5 Eh, pro-
vided that either the MP2 correction is applied or F12 terms
are included.

C. Intermolecular interaction energies

As an example for an application of the new method
we consider the intermolecular interaction energies of
the guanine-cytosine Watson-Crick (G-C/WC) and stacked
(G-C/S) dimers. The geometries were taken from the JSCH-
2005 benchmark set presented in Ref. 67, and are also pro-
vided in the supplementary material58 for convenience. The
aVTZ basis set (cc-pVTZ on hydrogen atoms, aug-cc-pVTZ
on all other atoms) was used (in conjunction with the corre-
sponding MP2FIT basis set of Weigend et al.59). The local
approximations (domains, pair lists, number of redundancies
in the pair specific virtual spaces) were determined at large
intermolecular separation and kept fixed, as recommended
for the treatment of intermolecular interactions.68, 69 For the
LCCSD(T0) calculations, the wck = 320 pair approxima-
tion was employed. All intermolecular pairs were specified
as close pairs and therefore enter the L(T0) calculation, but
not the preceding LCCSD calculation. In order to improve the
interaction energy contributions of close and weak pairs be-
yond LMP2 (the latter considerably overestimates these con-
tributions for the case of the stacked dimer, cf. Ref. 39), we
prefer to treat close and weak pairs at the level of the di-
rect local random phase approximation, d-LRPA. d-LRPA in-
cludes higher-order ring diagrams, yet disregards exchange-
type diagrams and thus contains exclusion principle violation
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TABLE V. Counterpoise-corrected LCCSD(T0)/aVTZ interaction energies in (kcal mol−1) for the Watson-Crick (G-C/WC) and the stacked (G-C/S) G-C base
pairs. All intermolecular pairs are specified as close pairs and enter the L(T0) calculation. Close and weak pair amplitudes are calculated using the local direct
random phase approximation, d-LRPA. For comparison, interaction energies for LMP2, d-LRPA, LCCSD, and canonical MP2 are included as well. Moreover,
	MP2 corrected LCCSD and LCCSD(T0) values are also given (see text). The individual BSSE estimates according to the CP correction are provided in
parenthesis.

LCCSD LCCSD(T0)
lOSV/Eh LMP2 d-LRPA LCCSD LCCSD(T0) +	MP2 +	MP2

Watson-Crick
1.0 × 10−4 − 27.42 (0.39) −26.60 (1.15) −26.25 (0.49) −26.53 (0.43) −28.52 −28.81
3.2 × 10−5 − 28.26 (0.86) −27.18 (1.88) −26.90 (0.97) −27.31 (0.92) −28.34 −28.75
1.0 × 10−5 − 28.71 (1.27) −27.49 (2.28) −27.26 (1.32) −27.74 (1.34) −28.25 −28.73

PAO − 28.52 (−0.01) −27.18 (0.19) −26.95 (0.15) −27.35 (0.09) −28.12 −28.52
Canonical − 29.70 (1.86)

Stacked
1.0 × 10−4 − 16.06 (1.46) −11.57 (2.73) −12.57 (1.44) −13.74 (1.36) −16.68 −17.85
3.2 × 10−5 − 17.58 (1.98) −12.52 (3.45) −13.67 (1.87) −15.10 (1.84) −16.25 −17.68
1.0 × 10−5 − 18.48 (2.42) −13.10 (3.93) −14.34 (2.25) −15.95 (2.27) −16.02 −17.62

PAO − 18.88 (0.36) −13.31 (0.60) −14.48 (0.41) −16.17 (0.32) −15.76 −17.45
Canonical − 20.16 (3.09)

diagrams. However, the effect of these missing exchange-type
diagrams must be very small when using d-LRPA just for the
treatment of close and weak pairs. The accuracy of such a
d-LRPA treatment for close and weak pairs was checked by
additional calculations with the intermolecular pairs specified
as strong pairs, and employing just the lowest OSV thresh-
old lOSV = 1.0 × 10−4. It turns out that the deviations be-
tween the full LCC and the approximate d-LRPA treatment
are rather small, amounting to 0.52, and to −0.24 kcal/mol
for the Watson-Crick, and the stacked dimer, respectively. For
a thorough discussion about utilizing d-LRPA in the context
of local coupled cluster calculations on intermolecular com-
plexes and clusters, we defer to a later publication.70

Table V compares the interaction energies obtained
with OSV-LCCSD(T0) for the three thresholds lOSV = 1.0
× 10−4, 3.2 × 10−5, and 1.0 × 10−5 to those calculated
with PAO-LCCSD(T0) and standard BP domains The corre-
sponding LMP2, d-LRPA, LCCSD, and canonical MP2 val-
ues are also included. For the hydrogen-bonded G-C/WC
dimer, all methods perform quite well, as expected. LMP2 just
overshoots slightly, and d-LRPA is in very good agreement
with LCCSD. The effect of the triples correction is pretty
small, i.e., less than 0.5 kcal/mol. For the π -stacked G-C/S
dimer, on the other hand, LMP2 overshoots the LCCSD value
by 3–4 kcal/mol, while d-LRPA underestimates it by about
one kcal/mol. The triples correction here amounts to about
1.5 kcal/mol.

The basis set superposition error (BSSE), calculated ac-
cording to the counterpoise procedure, is considerably larger
for the OSV than for the PAO based methods, as already ob-
served previously.39 This is of course not surprising, since the
selected OSV orbitals try to optimally reproduce the canon-
ical MP2 amplitudes. We note in passing that the OSV-d-
LRPA method has a larger BSSE than the other local meth-
ods, which might be related to above mentioned absence of
exchange diagrams (here, all the pairs are treated by dLRPA).
In any case, we would like to stress the point that in con-

trast to PAO-based methods, OSV-based methods should not
be employed for intermolecular interactions without BSSE
correction.

As already demonstrated in Sec. III B, the domain er-
ror of the local approximation virtually vanishes when adding
to the LCCSD energies the 	MP2 correction, evaluated in
the AO basis of the LCCSD calculation. The corresponding
LCCSD+	MP2 and LCCSD(T0)+	MP2 interaction ener-
gies are included in Table V, in addition. Evidently, these en-
ergies become virtually independent of the domain approx-
imation or the lOSV threshold: the LCCSD(T0)+	MP2 val-
ues range between −28.8 and −28.5, and between −17.9 and
−17.5 kcal/mol for G-C/WC and G-C/S, respectively. This is
consistent with the results for reaction energies in Sec. III B.

Adding instead the 	MP2(CBS) correction (cf. Sec. III
B) yields a good estimate for the LCCSD(T0) complete ba-
sis set limit. Based on an aVTZ/aVQZ extrapolation we ob-
tain, on the basis of the OSV-LCCSD(T0) calculations, inter-
action energies of −29.9 and −18.4 kcal/mol for G-C/WC,
and G-C/S, respectively. Adding furthermore to these values,
the small corrections obtained by comparison of the full LCC
vs. d-LRPA treatment of intermolecular pairs we finally ar-
rive at −30.4 and −18.2 kcal/mol for G-C/WC and G-C/S,
respectively. These values are to our knowledge the best es-
timates for the CCSD(T) basis set limit presently available.
They are in excellent agreement with corresponding inter-
action energies reported in a previous DFT-SAPT study71

(−30.5 and −17.8 kcal/mol), and compare quite well also
with the CCSD(T) CBS limits reported in Ref. 67 (−32.1 and
−19.0 kcal/mol). The latter are based on CCSD(T) calcula-
tions in small double-ζ basis sets.

Table VI compiles, for the individual OSV- and PAO-
L(T0) calculations on G-C/WC, some key numbers deter-
mining the efficiency of the method. Evidently, the average
and maximum triples domain sizes are considerably larger for
the PAO-L(T) method, i.e., the average domain size is about
twice as large, the maximum domain size even almost three
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TABLE VI. Average/maximum triples domain size, number of 3-ext inte-
grals and triples amplitudes (both in GW), overall number of read operations
(in GW), and elapsed times (in h) for the individual G-C/WC calculations,
performed on an AMD Opteron 6180 SE server with 128 GB memory and
eight scratch disks, forming two striped file systems.

lOSV/Eh [ijk]avg [ijk]max N(〈rs|ti〉) N (Wijk
rst ) Read ops. Elapsed time

1.0 × 10−4 92 153 8.2 9.9 3959.3a 2.1a

3.2 × 10−5 127 215 21.5 26.3 14242.8a 24.1a

1.0 × 10−5 163 286 45.8 56.5 29991.5b 86.2b

PAO 248 585 15.1 230.8 11408.6a 26.2a

aOn 7 cores, 1024 MW allocated memory per process.
bOn 4 cores, 2048 MW allocated memory per process.

times as large as for the OSV-L(T) method with lOSV = 3.2
× 10−5. Consequently, the number of non-vanishing triples
amplitudes, or, equivalently, the number of triples intermedi-
ates N (Wijk

rst ) is about an order of magnitude larger. On the
other hand, the number of required 3-ext integrals N(〈rs|ti〉)
is substantially smaller (15.1 vs. 21.5 gigawords (GW)). The
algorithm, as it is presently implemented, avoids storage of
any triples intermediates and thus is driven by the triples
ijk. Due to the permutation operators appearing in Eq. (25)
the 3-ext integrals are read many times. In order to avoid
excessive disk access, a rather sophisticated, internal cache
mechanism is employed. However, for calculations with a
large number of 3-ext integrals 〈rs|ti〉 per LMO i this internal
cache is easily overrun. Table VI shows the overall number
of read operations (in GW). These numbers are indeed huge!
For the OSV-L(T0) calculation on G-C/WC with lOSV = 3.2
× 10−5 an amount of about 14 terawords of 3-ext integrals
is read, somewhat more than for the PAO calculation, where
virtually no memory is left for the integral caching due to the
large memory requirements of the triples intermediates. For-
tunately, the external global system read buffer still caches
most of these integrals such that for a parallel calculation
on 7 cores the central processing units run at almost 100%
most of the time. Yet for the OSV-L(T0) calculation with lOSV

= 3.2 × 10−5 with its larger 3-ext integral file the disk reads
start to become a problem. Overall, the elapsed times for the
PAO-L(T0) calculation, and the OSV-L(T0) calculation with
lOSV = 3.2 × 10−5 are comparable, with the OSV-L(T0) cal-
culation being somewhat faster (26.2 vs. 24.1 h).

Taking into account the much more compact triples in-
termediates of the OSV-L(T) method on the one hand, and
the horrendous amount of read operations on the other hand,
an alternative algorithm driven by the 3-ext integrals could be
envisaged. Such an algorithm stores the triples intermediates
W

ijk
rst , but just passes once through the 3-ext integral list. For

the triples intermediates, on the other hand, in total six in-
put/output operations (three reads, three writes) are required.
Such an algorithm would save considerably in input/output
operations, particularly so for the OSV-L(T) method. The re-
quired memory to hold all required W

ijk
rst to which the actual

integral batch contributes, amounts to N (Wijk
rst )/Nocc, where

Nocc is the number of LMOs. Furthermore, running in paral-
lel on several cores the required memory can be distributed
evenly over the individual cores by a priori assigning individ-
ual triples to individual cores. Hence, the required memory

scales properly on parallel computers, and there is no need
for synchronization between the individual processes during
the evaluation of the triples intermediates. We will report in
detail elsewhere on such a new integral driven OSV-L(T)
algorithm.72

IV. CONCLUSIONS

In this work, we have extended the OSV approach from
LCCSD to LCCSD(T), which now constitutes an alternative
to the well-established PAO-LCCSD(T) method. In contrast
to the latter, no ad hoc truncations of the virtual space to do-
mains on the basis of locality is necessary. A single thresh-
old, lOSV, specifies the pair and triple specific virtual spaces
completely and automatically. By setting lOSV to a sufficiently
small value, the result of the full virtual space is approached
arbitrarily closely (although such a calculation would become
expensive). A disadvantage of the OSV approach is that BSSE
is not as completely avoided as in PAO methods, but turns out
to be of similar magnitude as in canonical methods.

Using a threshold of lOSV = 3.2 × 10−5, the OSV-L(T)
method and its L(T0) approximation recover a similar per-
centage of the canonical (T) correction as the correspond-
ing default PAO methods at a somewhat lower compu-
tational cost. This is particularly true for full OSV-L(T)
calculations, since the average number of OSVs per triple is
usually smaller than the average size of the triples domains in
PAO-L(T). The domain error in the OSV-LCCSD(T) calcula-
tions can be substantially reduced by adding a MP2 correc-
tion. If the 	MP2(CBS) correction is applied, the canonical
CCSD(T)/CBS values can be closely approached. This has
been demonstrated for a benchmark of 52 reaction energies.

As an application example, we present OSV-LCCSD(T0)
calculations on the Watson-Crick and stacked guanine-
cytosine dimers. In contrast to previous LCCSD calculations
on that system, the close and weak pairs are not treated at
the level of LMP2, but with d-LRPA. The latter includes
higher-order ring diagrams and generally provides more re-
liable intermolecular pair energies than LMP2. As new esti-
mates of the CCSD(T) basis set limit of the interaction en-
ergies of these complexes, we propose values of −30.4 and
−18.2 kcal/mol for the hydrogen-bonded and the π -stacked
dimer, respectively.
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