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Accurate navigation to adesired goal requires consecutive estimates of spatial
relationships between the current position and future destination throughout the
journey. Although neurons in the hippocampal formation can represent the position of
ananimal as well as its nearby trajectories'”, their role in determining the destination of

the animal has been questioned®®. Itis, thus, unclear whether the brain can possess a
precise estimate of target location during active environmental exploration. Here we
describe neuronsin the rat orbitofrontal cortex (OFC) that form spatial representations
persistently pointing to the subsequent goal destination of an animal throughout
navigation. This destination coding emerges before the onset of navigation, without
directsensory access to adistal goal, and even predicts the incorrect destination of an
animal at the beginning of an error trial. Goal representationsin the OFC are
maintained by destination-specific neural ensemble dynamics, and their brief
perturbation at the onset of a journey led to a navigational error. These findings suggest
that the OFCis part of the internal goal map of the brain, enabling animals to navigate
precisely to achosen destination that is beyond the range of sensory perception.

We trained five rats on a 2-m-long linear maze with ten water delivery
sites or wells (Fig. 1a, Extended Data Fig. 1). The rats were required
to visit and lick two given wells alternately to obtain water rewards.
The licking of the animal was detected by infrared sensors on indi-
vidual wells, and water was delivered after the correct well was licked
for afixed amount of time (1s,1.5s or 2 s, consistent across trialsin a
session). After at least six consecutive correct choices, a new pair of
wells started to deliver water, enforcing the updating of goal locations.
The rats learned this task over 2 weeks. We implanted a tetrode drive
intothe ventraland lateral parts of the OFC (Extended DataFig.2) and
collected data from four rats across 18 sessions, each of which com-
prised 68-328 simultaneously recorded OFC neurons.

We found that most OFC neuronsincreased their spiking as the animal
approached the goal well, discriminating its location by changing firing
rates (Fig.1b-d). These neurons, however, showed less position-specific
firing to the wells that the animal ran over during navigation. These obser-
vations were confirmed by plotting firing rates along maze position
conjunctively with navigation phase (defined as positional fraction of
journey; Fig. 1le-g). As a population, 80.8% of OFC neurons (2,366 of
2,927) exhibited some degree of spatial tuning on the maze (z>2.57 in
spatial correlations compared to shuffled activity), but, in most them
(86.9%,2,056 0f2,366), the spatial tuning was also dependent on naviga-
tion phase (P< 0.05in spatial correlations compared to activity shuffled
across different navigation phases; Extended Data Fig. 3). We further
found that, during arandom foraging task in an open-field arena, OFC
neurons conveyed significantly lower spatial information than neurons
in area CAl of the hippocampus (Extended Data Fig. 4). These results
together suggest that most OFC neurons exhibit location-selective fir-
ingin conjunction with the demand and phase of goal-directed journey.

Next, we asked how accurately OFC neurons represent the well position.
We trained a decoder based on linear discriminant analysis (LDA) using
the populationactivity of OFC neuronsinthe timerange from 0.5 sbefore
to 3 s after lick onset. The trained decoder was then applied to predict
the well at which the animal was present (‘current’ well). The decoder
predicted the current well above the chance from1.7 sbeforeto 6 s after
lick onset (Fig. 1h, Extended Data Fig. 5). When the same decoder was
applied to the wells that were passed through by the animal, it showed
significantly lower performance (Fig.1h, Extended DataFig. 6). Thisresult
was also supported by poor performance of a decoder trained on the
instantaneous position of the animal during running (Extended Data
Fig. 6). We confirmed that the decoding of the current well was possible
irrespective of the approach direction of the animal or the starting well
(Fig.1d, i), suggesting that OFC neurons formalargely viewpoint-invariant
coding of spatial positions that are approached as navigational goals.

Persistent goal representationinthe OFC

We then asked when the goal well representation develops inthe OFC
during navigation. We examined the firing rates of individual OFC
neurons backwards in time towards the beginning of navigation and
discovered that the rates at this time already differentiated the iden-
tity of the goal well (Fig. 2a). To confirm this observation at a neural
population level, we projected the ensemble activity of OFC neurons
on the dimension with maximal goal well separability calculated by
LDA and found that the projected activity kept differentiating the next
destination throughout navigation (Fig. 2b).

Our findings of the OFC’s goal representation during navigation, as well
as its coding of the position of the animal during reward consumption
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Fig.1|Goal-specificfiring of OFC neurons. a, Schematic of the task. b, Firing of
tworepresentative neurons showing spike rasters and rates over position with
tworunningdirectionsinblack and grey (left) or over time fromlick onset (right).
¢, Firingacross trial blocks during running (speed >10 cms™) or licking. d, Left,
well-dependent firing across trial blocks. Middle and right, invariant firing to the
differenceinrunningdirection (middle) or starting well (right). e, Colour-coded
rate plotsalongthe positionand navigation phase of the animal. Shown areall
rewarded wells approached in the direction of the higher activity of the neuron.
f, Distribution of peak firing along navigation phase for all OFC neurons
encoding positionand navigation phase. *Outlier by generalized extreme
studentized deviate test (above the threshold of 607.22 neurons at P=0.05).

g, Piechartsshowing the numbers of neurons with spatial and/or navigation
phasetuning. h, Left, decoding of licking well (target) and other wells (other).
Middle, decoding of run-over well against distance (left) and time (right). Right,
comparison of decoding between licking and run-over well, showing individual
18 sessions (grey) and means (red). *P=1.96 x 10"*in two-sided Wilcoxon
signed-rank test. i, Decoding of licking well when the corresponding approach
directionwas excluded from the training of the decoder (left) or whenall trials
from the corresponding goal well pair were excluded from the training of the
decoder (right).Inc,d, handi, plots show mean (line) +s.e.m. (shaded).

(Fig. 1h), imply a transition of spatial representation in the OFC before
navigation onset. To identify such a transition, we took a decoding
approach by training a decoder for goal well identity based on neural
activity concatenated between the time segments at the beginning and
the end of navigation (Methods). In individual trials, the decoder that
initially indicated the start well of the trial exhibited an abrupt change
inrepresentation to the next goal well around the time of motion onset,
which was then largely maintained during the entire journey (Fig. 2c).
On the trial average, the activity of OFC neurons represented the well
atwhichthe animalwas present (current well) until 0.7 s before motion
onset (Fig. 2d, left). However, in contrast to the decay of the current
well representation, the activity representing the goal well became sig-
nificant from1.1sbefore motion onset (Fig.2d, e, Extended DataFig.7),
reaching a steady peak 2.5 s after the beginning of navigation (Fig. 2d,
left, Extended Data Fig. 5). The decoding probability plotted along
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Fig.2|Persistent goal representationinthe OFC. a, Firing of two
representative neurons aligned to motion onset (MO) and lick onset (LO) or
throughout navigation on normalized time (right). b, Same as a, except that
the plots are based on ensemble neural activity projected on the axis with
maximum goal well separability. ¢, Two representative trials showing the
position of the animal (black) and the decoded well (red; well with maximum
decoding probability). d, Decoding of goal well (blue) and current well (red),
together with the wells next to current goal (magenta) or before goal (cyan),
plotted over time from motion onset (left) or positional fraction of journey
(right). The inset on the top left shows the displacement of the animal’s
position.n=18sessions. e, Plot shows the times at which the decoding
probability of the goal well first exceeded that of the current well.
n=18sessions. f,Decoding of the goal well (asin d) compared to chance levels
calculated on five null hypotheses (see Methods).Ina, b, d and f, plots show
mean (line) +s.e.m. (shaded). AU, arbitrary units.

the positional fraction of navigation confirmed that the goal well was
persistently represented throughout navigation (Fig. 2d, right).

To confirm the decoder’s selective representation of goal well over
others, we assessed the representations of wells that were passed
through by the animal during navigation, particularly the wells that
immediately followed the start or preceded the goal along the journey.
We found that the decoding probabilities of these wells with the goal
well decoder were significantly lower than that of the goal well through-
outthe course of navigation (Fig. 2d). Additional analyses further con-
firmed that goal decoding was not due to other task-associated factors
(Fig.2f) and that the transition of representation from the current well
to the goal well did not involve sequential activation of neighbouring
positions*'°!! (Extended Data Fig. 8). These results together suggest
that the activity of OFC neurons switches their spatial representation
fromthestarting position of the animal to the next destination before
navigation onset, subsequently maintaining it throughout navigation.

We further investigated the goal representation in error trials. We
applied the goal well decoder trained on correct trials to neural activ-
ity at the beginning of error trials and found that it could decode the
subsequent incorrect destination of the animal as accurately as goal
wells in correct trials (Extended Data Fig. 5). The activity of OFC neu-
rons thus represents the next target well of the animal irrespective of
its correctness, reflecting the animal’s decision of goal destination.

Goal codingis orthogonal to OFC dynamics

Althoughourdecodinganalysisindicates a persistent goal representation
inthe OFC, firing rates of individual neurons changed markedly during
navigation (Fig. 1b), implying that the encoding of goal locations in the
OFCis not through the convergence of neural activity towards a point
attractor but likely by dynamic coding evolving over navigation (Fig. 3a).
Weimplemented a principal component analysis (PCA) to obtainreduced



dimensions of neural population activity in the OFC. We found that activ-
ity trajectories, averaged over trials based on subsequent goals, exhib-
ited similar dynamics while maintaining separation between each other
(Fig. 3b). To understand how the goals of individual trials are embedded
inactivity trajectories, we applied an LDA-based dimensionality reduction
approachtoobtainthebest projections of population activity for goal well
selectivity at different times of navigation (Methods, Extended DataFig. 9).
Thegoal wellseparation was largely maintained during navigation, albeit it
transformed fromacompacttoadistributed configuration as the animal
approached the destinations (Fig. 3c). We also found that the major axis
of goal well separation was nearly orthogonal to the direction of activity
trajectories (Fig. 3d), suggesting that goal locations are encoded largely
independently of the evolution of dynamics. We, therefore, asked whether
the dynamics ofindividual trials could be modelled independently of their
goal selectivity. First, the destination-specific activity extracted by LDA
was projected back to the original neuronal dimensions, forming time
courses of goal-dependent dynamics by minimising activity irrelevant to
goal coding (Fig. 3e, left). We then fitted afirst-order linear dynamic model
onneuralactivity trajectories of a2.5-s durationfrommotion onset to cap-
turetheglobal trend of dynamicsirrespective of destinations (Methods).
Finally, the constructed model was fed with the neural activity at motion
onset, generating simulated trajectories up to 2.5 safterwards. We found
thatthesimulatedtrajectories evolvedinasimilar manner asthe original
ones (Fig. 3e, right), which was confirmed by the improvement of goal
well decoding over the time course of navigation (Fig. 3f). We further
found thatour first-order model, trained on correct trials, was alsoable to
simulate the neural activities onerror trials, in which the activity evolved
toindicate theincorrectly visited destination of the animal (Fig. 3f). OFC
neurons thus encode the destination of the animal orthogonally to the
ensemble dynamics that evolve, at least in part, deterministically from
navigation onset.

OFC perturbation led to anavigational error

Finally, we asked whether the activity of OFC neurons causally influ-
encesthe destination of the animal. We first confirmed that pharmaco-
geneticinactivation of OFC neuronsresultedinasignificantincreasein
the animal’s incorrect choices of destination (Extended Data Fig. 10).
To address whether the effect of perturbation is specific to ongoing
navigation, we injected adeno-associated virus (AAV) encoding the
excitatory opsin bReaCh-ES-eYFP" followed by implantation of optic
fibresinthebilateral OFCinthreerats (Fig.4a). We chose the frequency
and power of stimulation that elicited reliable spiking in OFC neurons
without affecting the motion of the animal (Extended DataFig.10). When
laser pulses were applied for a40-s duration, the animals started making
more errors immediately after the onset of perturbation (Fig. 4b, c),
which gradually subsided after the termination of laser pulses.
Wethen asked whether the effect of perturbationis stronger during
the development of goal representationin the OFC. To explore this pos-
sibility, we applied laser pulses of 6-s duration either at motion onset or
atlick onset (Extended Data Fig.10) and found that the pulses applied
at motion onset caused more errorsin the subsequent navigation of the
animal (Fig. 4d). This deficit was largely recovered in theimmediately
succeedingtrial, suggesting that theimpairmentis not due to general
loss of goal memory. The activity of the OFC is thus crucial for deter-
mining the next destination of the animal, particularly at navigation
onset when a goal representation develops inits ensemble activity.

Discussion

In this study, we identified the OFC as a brain region that represents
the subsequent destination of an animal throughout navigation. Neu-
ral activity correlated with the goal-directed trajectories of animals has
been previously described in the rodent hippocampusinthe form of brief
sequential firing among place cells*®. However, this activity encodes not
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Fig.3|Orthogonal coding of spatial goals to evolving OFC dynamics.

a, lllustration of dynamic coding. Left, firing of three neurons aligned to
motion onset. Right, firing of the same neurons plotted onindividual axes of a
three-dimensional space, forming similarly shaped activity trajectories
separated fromeach other depending on future goals. b, Ensemble activity of
OFCneuronsinreduced dimensions using PCA plotted separately aligned to
motion andsubsequentlick onsets (left) orin normalized time (right). Shown
aretrial averages based ongoal wells. ¢, Ensemble neural activity inindividual
trials projected on the axes with maximal goal well separability using LDA,
calculated atindividual time points and reduced to two dimensions using
Isomap®’. Opaque circles with error bars denote mean +s.e.mfor each well.

d, Relationship between the evolution of dynamics and the goal well
separability. Top, asin a, along with the axis of maximum well separability (first
LDA dimension). Instantaneous velocities of neural trajectories are shown with
arrows. Bottom, plot shows angular differences (in degrees) between the
velocity vectors and the major LDA axis from individual 18 sessions (thin) and
means (thick). e, Plot shows three principal components (PCs) of neural activity
trajectories fromindividual trials extracted using LDA (Methods). Left, original
trajectories fromneural data, separately aligned to motion onsets (thin) and
lick onsets (thick). Right, simulated trajectories from the first-order linear
dynamic model fed with neural activity at motion onset. f, Top, goal decoding
fromthereal (original) and the simulated (model) trajectories. Bottom,
destination decoding between correct and error trials from the simulated
trajectories. Dashed linesindicate chancelevels.Inaandf, plots show mean
(line) +s.e.m (shaded). n=18 sessions. AU, arbitrary units.

onlyaparticularlocationof interest butalsoits nearby positions dueto the
sequential nature of hippocampalspatial coding®, and several studies have
castdoubtonitsroleindetermining the destination of animals®®. Studies
inhuman subjects, by contrast, described the activity modulationin the
hippocampus that depends onthe next destinationinstructed by agiven
cueB. Itisyet unclear whether this modulation represents the goal loca-
tionitselforitsassociatedinstructive cue or howit can be integrated with
ahippocampalspatial map to point to the exact goal position. Goal coding
inthe OFCis different. Theactivity of OFC neurons encodes accurate well
positions onthe maze and exhibits anabrupt transition of encoding posi-
tion from the location of the animal to its destination without relying on
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external sensory cues. This goal representation, developed before naviga-
tiononset, is then maintained throughout navigation without representing
nearby positions or trajectories.

The prefrontal cortex has been considered a key area for naviga-
tion'. Lesioning of its ventromedial region, including the OFC, has
beenreported toimpair accurate targeting to adestinationin humans
andrats™®, The activity of the OFCis modulated during goal-directed
motion'®?° or navigational planning®, and we discovered, in this study,
that it can form a representation of spatial goals. The decision of
navigational goal requires a choice among available positions. This is
consistent with a previously suggested role for the OFCin choice deci-
sions based on prior history of choices and subsequent outcomes® %,
Therepresentation of spatial goal, however, needs to satisfy additional
cognitive demand for navigation. Although accurate coding of spatial
position requires sensory and proprioceptive inputs, the emergence
of goal representation, as well as its persistence during navigation,
indicate suppression of these inputs along the goal-directed journey.
This resistance of goal representation to incoming inputs appears to
be achieved by dynamic coding. Unlike place cells' or grid cells*, OFC
neurons discriminate positions ina dynamic manner, whereby neural
activity changes during navigation while optimising the separation of
encoded destinations. Dynamic coding of behavioural variables has
been described in many brain regions and species® 2 and is thought
to minimize interference between orthogonal neural activity sub-
spaces®?’, Goal coding in the OFC might then be used in downstream
circuits toform goal-directed trajectories, enabling animals to navigate
from one location to another by relying on a cognitive map.
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Methods

Subjects

Allexperiments were approved by the local authorities (RP Darmstadt,
protocols F126/1009 and F126/1026) in accordance with the European
Convention for the Protection of Vertebrate Animals used for Experi-
mental and Other Scientific Purposes. Nineteen male Long-Evans rats
weighing 400-550 g (aged 3-6 months) at the start of the experiment
were housed individually in Plexiglass cages (45 x 35 x 40 cm; Tecniplast,
GR1800) and maintained on a 12-h light/dark cycle, with behavioural
experiments performed during the dark phase. For experimentsin the
linear maze, the animals were water restricted with unlimited access to
food and keptat 90% of their free-feeding body weight throughout the
experiment. For recordings in the open-field arena, the animals were
food restricted with unlimited access to water and kept at 85-90% of
their free-feeding body weight. Four of the rats had tetrodes implanted
in the OFC, and one had tetrodes implanted in the hippocampus.
Two rats had a silicon probe (Buzsaki64sp, NeuroNexus) implanted
in the OFC, which was used for recordings in a modified T-maze task
(Extended DataFig.5d). Sevenratsreceived AAVinjectionsinthe OFC—
four of them for designer receptors exclusively activated by designer
drugs (DREADD) experiments and three for optogenetic experiments.
Fiverats, used only for behaviour analysis, received ametal implant on
their skullto hold LEDs for position tracking. No statistical method was
used to predetermine the sample size.

Surgery, virus injection and drive implantation
Anaesthesiawasinduced by isoflurane (5% induction concentration,
0.5-2% maintenance adjusted according to physiological monitoring).
For analgesia, Buprenovet (buprenorphine, 0.06 mg ml™; WdT) was
administered by subcutaneous injection, followed by local intracu-
taneous application of either bupivacain (bupivacain hydrochloride,
0.5 mg ml™, Jenapharm) or ropivacain (ropivacain hydrochloride,
2 mg ml™, Fresenius Kabi) into the scalp. Rats were subsequently
placed in a Kopf stereotaxic frame, and an incision was made in the
scalp to expose the skull. After horizontal alignment, several holes
were drilled into the skull to place anchor screws, and craniotomies
were made for microdrive implantation. The microdrive was fixed
to the anchor screws with dental cement, and two screws above the
cerebellum were connected to the electrode’s ground. All animals
received analgesics (Metacam, 2 mg ml™ meloxicam, Boehringer
Ingelheim) and antibiotics (Baytril, 25 mg ml™ enrofloxacin, Bayer)
for atleast 5 d after the surgery.

For tetrode recordings, rats were unilaterally implanted with amicro-
drive that contained individually adjustable tetrodes made from 17-mm
polyimide-coated platinum-iridium (90-10%, California Fine Wire,
plated withgold toimpedances below 150 kQat1kHz). The tetrode bun-
dle consisted of 30-gauge stainless steel cannulae, soldered together
incircular orrectangular shapes. The drives wereimplantedin the OFC
ofthe left hemisphere in four rats with the following coordinates and
bundle designs: Rat 110 with a14-tetrode rectangular bundle (anterior—
posterior (AP): 2.75-4.5 mm, medial-lateral (ML): 1.5-2.5 mm along-
side the anteroposterior axis); Rat 175 with a 28-tetrode rectangular
bundle (AP: 2.75-4.9 mm, ML: 1.2-2.7 mm); Rat 182 with a 42-tetrode
rectangular bundle (AP:2.75-5 mm, ML:1.2-3.0 mm); and Rat 284 with
a42-tetrode circular bundle (AP: 2.75-5.25 mm, ML:1.0-3.5 mm). Tet-
rodes were implanted at an initial depth of 2 mm dorsoventral (DV)
from the dura and progressively lowered to the final depths of 2.5-
4.5 mm. For the recording from neurons in area CAl of the hippocampus
(Extended Data Fig. 4), a circular bundle of 14 independently mov-
able tetrodes was implanted in the right hemisphere (AP: =3.5 mm,
ML:3.5 mm). For the recording from neuronsin the OFC in a modified
T-maze task (Extended Data Fig. 5d), a silicon probe was implanted in
the right hemisphere (AP: 3.5 mm, ML: 2 mm). Experiments began at
least 1 week after the surgery to allow the animals to recover.

For optogenetic perturbation of OFC neurons, AAV1-CamKII-
bReaCh-ES-EYFP (agift fromK. Deisseroth)? was injected into three ites
inboth hemispheres ofthe OFC (AP, MLand DVinmm:3, 3,4.5;3.5,2.8,
4.25;4,2.5,4, respectively). The AAV was injected with aninfusionrate of
100 nl min™using a10-mINanoFil syringe and a 33-gauge bevelled metal
needle (World Precision Instruments). After injection was completed,
the needle wasleft in place for 10 min. The volume of 500 nlwasinjected
at each site. Two optic fibres (FP400URT, Thorlabs) were implanted
with their tips positioned at approximately 500 pm above the OFC
of both hemispheres (AP: 3.5 mm, ML: 2.8 mm and DV: 3.25 mm).
The opticfibreintheleft hemispheres had two tetrodes attached, with
their positions advanced approximately 750 pm from the fibre tip to
monitor the neural activity nearby. The virus injection and the optic
fibre implantation were performed in the same surgery, and experi-
ments started at least 4 weeks after the surgery.

Behavioural methods

Rats were trained in the 2-m-long linear maze with ten reward wells
distributed atan equal distance (20 cm) between each other. The train-
ing procedure consisted of three phases. In the first phase, 100 pl of
liquid reward (0.3% saccharin) was manually delivered at two specific
wells alternately. Most rats learned to lick wells within 2 d of training.
In the second phase, rewards were delivered only after the rat licked
the correct wells, but, here, a reward was delivered immediately after
the animal’s correct lick. The training duration for this phase lasted
for1-7 d, depending on the individual rats. In the final phase, a transi-
tion rule was introduced. Once the rat made at least six consecutive
correcttrials, rewards were delivered in anew pair of wells, whichwas
signalled by LEDs, positioned directly underneath all the ten wells on
the maze, together with the delivery of water rewards at the new well
pair. These LEDs thus did not give any position information, and the
new goal wells were pre-filled with water before the animal’sapproach.
The LEDs turned off once the animal consumed these rewards.
Furthermore, the animal was required to keep licking the correct well
for afixed amount of time, defined as lick threshold, for areward tobe
delivered. Of all the 18 neural recording sessions, the lick threshold was
set to 2 s for 12 sessions, 1.5 s for one session and 1 s for five sessions,
respectively (Extended DataFig.1). Thelick threshold was setto1s for
all DREADD-mediated silencing, optogenetic perturbation and modi-
fied T-maze experiments. The licking of the animal was continuously
monitored by infrared sensors (Turck) equipped on individual wells,
and, once the duration of the animal’s licking exceeded a pre-defined
threshold, atone was generated, followed immediately by the delivery
of water with a peristaltic pump (Cole-Parmer). The details of licking
behaviours are shownin Extended Data Fig. 1f-h, and the difference of
lick threshold did not affect the decoding performance significantly
(Extended Data Fig. 1i).

The behavioural analyses (Extended Data Fig. 1) started from the
first day of phase 3 training, and each session lasted for 30 min. Neural
recording sessions were carried out after the animals reached steady
levels of behavioural performance (with stable prior block error rates
over aperiod of three consecutive days—usually achieved within15 d of
training). Trials during the transition to anew well pair were discarded
from the analyses. Although one of the rewarded wells in one block
could berewarded againin theimmediately succeeding block, this did
not affect the learning rate of the animal compared to the blocks where
both goal wells were changed (Extended Data Fig. 1j). The number of
wellsusedineachrecording session was as follows (out of all ten wells):
tenwellsin one session, eight wellsin five sessions, seven wellsin eight
sessions and six wellsinfour sessions. The positionand head direction
of the animal were monitored with two-coloured LEDs on the head
stage at thesampling rate of 25 Hz. All the recordings were performed
under a minimume-light condition (no light source in the recording
room, with only weak ambient light coming from the adjacent room
from computer monitors).
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For optogenetic experiments, laser pulses (15-mswidth at 6 Hz) were
generated from a 561-nm DPSS laser unit (Dragon Laser) for a fixed
amount of duration of either 40 sor 6 s. The laser power at the fibre tip
ineach hemisphere was1.5 mW. The onset of laser pulses was manually
triggered based on the behaviour of the animal on the task, and the time
stamps of the pulses were recorded. Perturbation experiments were
performed after the animals reached steady levels of behavioural per-
formance (observed as stable prior-block error rates over 3 d; Extended
DataFig.10).

Histological procedures

Oncethe experiments were completed, the animals were deeply anaes-
thetized by sodium pentobarbital and perfused intracardially with
saline, followed by 10% formalin solution. The brains were extracted and
fixed in formalin for atleast 72 h at4 °C. Frozen coronal sections were
cut (30 pm) and stained using cresyl violet and mounted on glass slides.

Spike sorting and cell classification

Alldata processes and analyses were performed with MATLAB (Math-
Works). Neural signals were acquired and amplified using two or four
64-channel RHD2164 headstages (Intan Technologies), combined with
an OpenEphys acquisition system with the samplingrate at15 kHz. The
signals were band-passfiltered at 0.6-6 kHz, and spikes were detected
and assigned to separate clusters using Kilosort® (https://github.com/
cortex-lab/KiloSort) under the parameter settings of the spike thresh-
old at -4 and the number of filters at 2x the total channel number.
Each tetrode was independently grouped with ‘kcoords’ parameters,
and the noise parameter determining the fraction of noise templates
spanning across all channel groups was set to 0.01. The obtained
clusters were checked and adjusted manually based on autocorrelo-
grams and waveform characteristics in principal component space,
obtaining well-isolated single units by discarding multi-unit activity
or noises. Neurons with firing rates less than 0.5 Hz were excluded.
Spike times were converted into firing rates, except for the analyses for
the open-field experiment (Extended DataFig. 4) and the conjunctive
coding of spatial location and navigation phase (Fig. 1e, Extended Data
Fig.3). The firing rate estimation was performed by convolving spike
times by a Gaussian kernel with abandwidth of 250 ms.

Cell classification

Spatial selectivity. Firing rates of a neuron were assessed at in-
dividual spatial bins of 10 cm along the linear maze across trials.
For each spatial bin, random sampling was performed 100 times at
various epochs of the session, either when the animal was moving
(running speed >10 cm s™) or not moving (running speed <10 cms™),
obtaining 200 samples of firing rates per spatial bin (Extended Data
Fig. 3). By concatenating these samples across the bins, we created
the firing rate distributions of 200 pseudotrials along the maze and
evaluated the consistency of spatial tuning by computing pairwise
dot products between them. The average of the dot products was
considered as arepresentative value of spatial tuning of the cell. For
the corresponding null hypothesis, we shuffled the neural activity
between spatial bins for individual pseudotrials and calculated the
average dot product between them. This entire process of generation
of pseudotrials, as well as calculation of the average dot products for
thereal and shuffled data, was repeated 1,000 times. The difference
between the two distributions was quantified as follows:
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where i and o denote the mean and standard deviation, respectively.
Neurons with z-scores exceeding 2.57 (corresponding to P<0.0lina
two-tailed distribution) were categorized as spatially selective.
To consider a possible directional tuning of a neuron on the maze, we

restricted the analysis to the movement direction with a higher mean
firing rate for each neuron.

Among cells categorized as spatially selective, we asked whether
spatial tuning of these neurons also depends on the phase of navigation.
Toaddress this question, each navigation journey was discretized into
eight equidistant positional fractions, and the firing rates atindividual
fractions or phases were assessed together with the absolute positions
of the animalon the maze, by formingafiring rate matrix of phase and
position (forexample, Fig. 1e, Extended DataFig. 3). To assess whether a
neuron encodes phase and position conjunctively, the firing rate matrix
was mean centred (the mean navigation-phase-dependent firing rate
was subtracted from each column) and assessed for biasin firing rates
relative to navigation phases. This bias was estimated by calculating
the Frobenius norm of the mean centred matrix, which is defined as
the squareroot of the sum of squared matrix elements. The statistical
significance was assessed by calculating a distribution of Frobenius
norms from 1,000 shuffled datasets among eight navigation phases.
Neurons with the Frobenius norms exceeding the 95th percentile of the
shuffled distribution were considered to encode position and naviga-
tion phase conjunctively.

Two-dimensional firing rates and spatial information
calculation

Thearena (120 x 120 cm for OFC or 100 x 100 cm for CAl) was divided
into 5 x 5-cmspatial bins, and the number of spikes and the overall time
spent within individual bins during motion (>7.5 cm s™) was calculated.
Thefiring rate at each bin was estimated using an adaptive smoothing
technique that optimizes the tradeoff between spatial resolution and
sampling error®. In brief, for each spatial bin, an expanding circle was
constructed until the following criterion was satisfied:

a
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whereristheradius of thecircleinbins, n,..is the number of samples
occupied within the radius r, ngy., is the number of spikes within the
radius and ais a constant set to 200,000. Our positional sampling was
interpolated to 1-ms resolution. Hence, n,.. was the number of milli-
seconds the animal spent within a circle of radius r centred at the bin.
Firingrate (spikes per second) in a given bin was calculated as1,000 x
Ngpikes/ Moce- SPatialinformation for individual neurons in the OFC and
CAlwas obtained from the rate maps using the following formula®:
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where Nis the total number of spatial bins, p.is the probability of occu-
pying the ith bin, A; is the firing rate in the ith bin and A is the overall
average firing rate of the neuron. The same formula was used to calcu-
late spatial information of OFC neurons on the linear track.

Well selectivity

The neuron’s selectivity for goal well was assessed based on its firing
rates for each of 100-ms bins in the time range of —0.5 s to 2 s relative
to motiononset of navigation, whereas the selectivity for the animal’s
licking well (or current well) was assessed from its firing rates in the
timerange of —0.5 sto 2 srelative to the animal’s lick onset. Toaccount
for potential confounds of direction-specific firing, we used a two-way
ANOVA with the wellidentity and the direction of the animal’s approach
astwoindependent variables and the firing rate as adependent meas-
ure. We used the ‘anovan’ function of MATLAB and used the type-llsum
of squares for individual variables. Based on the Pvalues for the well
identity across all time points, we assessed the neuron’s selectivity to
goalwell and current wellindependently (a neuron can be categorized
as both goal well and current well selective).
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For the decoding analysis in Figs. 1, 2, we pre-selected neurons for
adecoder based on a criterion of P< 0.05 at least in one of the time
pointsintherange of —0.5 sto 2 srelative to the onset of either motion
orlicking. This procedure excluded neurons that were non-selective for
the well identity, reducing the number of uninformative dimensions.
For the visualization of neural activity trajectories in PCA-based
reduced dimensions in Fig. 3b, we used a more stringent criterion of P
values less than 0.01 over at least five consecutive time bins (500 ms)
for the goal well selectivity.

Although the well selectivity was separately assessed for the
current well or the goal well, we found that 83.03 +1.37% of the
goal-well-selective neurons (by the criterion of P < 0.05) were also
current well selective, and 69.38 + 2.55% of the current-well-selective
neurons were also goal well selective, suggesting overlaps of the two
populations (Extended Data Fig. 3).

Decoding analysis

We applied a decoder based on LDA that assigns individual class prob-
abilities by setting class boundaries between multivariate Gaussian
distributionsfitted to data. In brief, adataset from each recording ses-
sionwasdivided intoatraining dataset and atest dataset, and adecoder
was constructed from the training dataset by employing multiclass
one-versus-one LDA using the ‘fitcecoc’ function of MATLAB with aregu-
larization factor of 0.5 to reduce overfitting. We used uniform priors for
alldecoders. Next, we used the ‘predict’ function of MATLAB to obtain
decoding probabilities of individual wells from the test dataset. This
function uses analgorithm described by Hastie and Tibshirani** to com-
pute posterior probabilities from the pairwise conditional probabilities
obtained using multiclass one-versus-one decoders. The trials during
transition phases to new well combinations were excluded, and only
correcttrials were used for the decoder’s training. The unvisited wells
ineachsession were excluded in the calculations of both decoding per-
formance andits corresponding chance level. A population of neurons
used for arespective decoding analysis for current well or goal well were
pre-selected based on their well selectivity (using the method described
inthe previous section) because this procedure improved adecoder’s
performance with better generalization to test data (Extended Data
Fig. 7c, h), whichis likely due to the reduction of unnecessary dimen-
sions from uninformative neurons. For cross-validation of decoding
performance, the training data of a decoder comprised all trials except
thetrial tested withthe decoder as well as the one prior to this trial (that
is, leave-two-out cross-validation). Additional details specific to each
analysis are described in the following sections.

Current well decoding

Inthe decoding analysis of the animal’s licking well (Fig. 1h, i, Extended
DataFig. 5), the data used for the training of adecoder comprised fir-
ing rate vectors of neurons (pre-selected based on their current well
selectivity) atindividual 100-msbinsin the range of 0.5 sto 3 srelative
to lick onset, resulting in 36 rate vectors for the class label of licking
well. This relatively long range of data (-0.5 s to 3 s) was chosen for a
better generalization of well decoding over licking time (Extended
Data Fig. 5j). Then, by using this decoder, we obtained the decoding
probabilities of individual wells for all the 100-ms bins from-3sto 6 s
relative to lick onset (Fig. 1h, left) or from the beginning (motion onset)
to the end (lick onset) of navigation (Fig. 1h, middle). For computing
the decoding probability of the well that was run over by the animal,
werestricted the analysis on trials when the animal’s running speed at
the well exceeded 20 cm s™ina500-ms window.

Asacontrol analysis of decoding (Fig. 1h), we tested whether the well
decoding depends on the direction of the animal’s approach (Fig. 1i,
left). We trained adecoder from the datain which particular wells were
approached only fromone side of the linear maze and then tested the
decoding performance when the animal approached the same wells
from the other direction. We ensured that the decoder was trained

withmore thanten trialsin which the target well was approached from
one direction.

As another control analysis (Fig. 1i, right), we tested the possibility
that the well decoding might depend onits paired wells in individual
trial blocks. For this aim, we assessed the decoding performance of the
wells when they are approached from newly paired wells. We trained
adecoder with the data that excluded a trial block of a particular well
combination but included the blocks in which the same wells were
approached from other paired wells. We then tested the decoding
performance of the wells approached from the pairs not used in the
decoder’s training. The motivation behind this analysis is that, if the
wellidentity isencoded by OFC neurons based onits spatial location, it
shouldbe decodedirrespective of its paired wells (or the animal’s start
positions). The decoding was performed only when the target well was
approached by the animal more than ten times in the training dataset.

Goal well decoding
For the decoding of the animal’s goal well, we constructed a decoder
based on the assumption that the goal well should be represented
with the same pattern of neural activity between the beginning and
the end of navigation (Fig. 2b). We thus trained the decoder from the
data concatenated across two time ranges around motion onset and
lick onset. We found that adimensionality reduction procedure of the
neural activity by PCAimproved the subsequent decoding performance
(Extended DataFig. 7), likely because this decoding strategy entailed
the construction of high-dimensional hyperplanes by concatenating
two different time phases of the neural activity, and a dimensionality
reduction procedure helped to constrain the hyperplane in a small
number of crucial dimensions, thereby improving generalization of
the decoder. Beforeimplementing PCA, we used a soft-normalization
technique described by Churchland et al.>* to adjust the range of fir-
ing rates across the neural population that were pre-selected based
on their goal well selectivity (with the method described in the previ-
ous section). We then selected PCA dimensions that explain 85% of
the data variance across the entire time duration of a recording ses-
sion, obtaining the neural populationactivity in reduced dimensions.
For each trial, vectors of the population activity in 100-ms bins were
concatenated in the time range of —0.5 s to 0.5 s relative to motion
onset, together with that of 0.5 sto 1 srelative to the subsequent lick
onset at the destination, forming 27 vectors with the class label of goal
well. These time ranges were chosen to capture the neural dynamics
fromthe beginning to the end of navigation (Extended Data Fig. 7f).
The decoding was performed on the test datasetin the time range of
either from -2 s to 2.5 s relative to motion onset (Fig. 2d, left) or from
1s before motion onset to the subsequent lick onset at the goal well
(Fig. 2d, right). The trials in which the goal wells were immediately
adjacenttotheanimal’s current wells were excluded from the analysis.

Chancelevel calculation

We tested a possibility that the goal well decoding could be explained
by the neural activity encoding a task-relevant parameter other thanthe
spatial position of goal well. We calculated five chance levels for goal
well decoding, each of which corresponds to a specific null hypothesis
(Extended Data Fig. 5).

We first tested the possibility that the goal well was not decoded
based on its own identity. This possibility was tested by assessing the
decoding performance when the well identities were exchanged by
shuffling the class labels of training datasets.

We next asked whether the observed goal decoding can be explained
by the animal’s running direction, speed, acceleration or trajectory
length. To test these null hypotheses, we divided the training dataset
into multiple groups. For testing the effect of running direction, we
split the trials into two groups, each containing trials with the same
running direction on the linear maze. Similarly, for testing the effect
of trajectory distance, we divided the trials into groups of different
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trajectory lengths measured in terms of the number of wells between
animal’s current and goal location; for testing the effect of running
speed oracceleration, the trials were categorized into two groups (split
across the median; analysis with quartile splits was also performed
in Extended Data Fig. 5) according to the animal’s running speed or
acceleration at motion onset. We then trained adecoder based on the
training dataset with the class labels shuffled within individual groups.
This procedure provides an estimate of how much well decoding can
be possible with the neural activity difference resulting from a given
behavioural parameter (without using precise well labelling for the
decoder’s training), serving as an additional chance level.

The chance level calculation across all the sessions was imple-
mented as follows. We first performed the decoding of all trials in
a session using a decoder with shuffled class labels (as described
above) and took the mean of decoding probability of the goal well. This
process was repeated 100 times, resulting in a shuffled goal decod-
ing distribution in each session. Examples of goal decoding from
individual sessions and their corresponding chance levels (defined
as 95th percentile of the corresponding shuffled distribution) are
included in Extended Data Fig. 5. The subsequent computation of
chancelevel across all the 18 sessions canintuitively be considered as
aprocedure to obtain adistribution of the means of 18 independent
random variables. We randomly chose one sample from each of the
18 shuffled goal decoding distributions (with 100 samples each) and
took their average, obtaining arepresentative of the session-averaged
shuffled decoding probability of the goal well. This procedure was
repeated 1,000 times to obtaina distribution of the means of shuffled
goal decoding probability across the sessions. The chance level was
set at the 95th percentile of the distribution.

Theindividual chance levels are depicted in Fig. 2f. To calculate the
significance level of the decoding analysis in Fig. 2d, we used an aggre-
gate chance level by taking the maximum of the five chance levels at
each time point. For the decoding analysis of the animal’s licking well
(Fig.1h, i), we used only two null hypotheses by excluding the ones
for the animal’s running speed, acceleration and trajectory length, as
they are relevant only when the decoding includes a navigation phase.

Supervised dimensionality reduction with LDA

LDA was applied for adimensionality reduction procedurein Figs. 2b,
3¢, 3e,fand Extended DataFig. 9. In contrast to an LDA-based decoder
that calculates class boundaries (described in the previous section), the
LDA-based dimensionality reduction technique searches for asubspace
onto which the projected data exhibit the best separation between
categories. The detailed procedures of data matrix manipulations are
described step-by-step as follows.

LDAisasupervised linear dimension reduction technique that com-
putes asubspace with the maximum linear separability of dataaccord-
ing to class labels. Formally, for C classes, LDA computes at most C -1
eigenvectors corresponding to the eigenvalues of
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where S, is the average within-class covariance matrix, and Sy is the
covariance matrix of class means relative to the mean of all classes.
Projecting the dataonthe subspace constructed by these eigenvectors
results in the data with reduced dimensions by maintaining the maxi-
mum linear separability between classes. A subspace was calculated
at each time point without concatenating the data over time for the
analysesin Fig.3c, e, fand Extended Data Fig. 9.

Inthe analysisin Fig.2b, we projected the neural activity on the first
LDA dimension (correspondingto the largest eigenvalue) to show the
target-well-specific activity during the navigation. To find the common
LDA dimensions across navigation, we used the neural activity data
around the times of both motionand lick onsets of navigation (the same
approachasthegoalwell decoding described inthe previous section).

This procedure was also used to construct goal-well-specific neural
trajectories by reducing goal-irrelevantactivity (Fig.3c, e, f, Extended
DataFig.9).First, we carried out ageneral de-noising step by projecting
neural activity to PCA dimensions that explain 85% of data variance
(identical to the step described in the goal decoding section). Next,
we applied the LDA-based dimensionality reduction procedure atindi-
vidual time points of navigation. However, due to high-dimensional
input data with a small sample number, LDA might overfit the sub-
spacesresultingin poor generalization. We thus took two approaches
to prevent this problem: regularization and cross-validation. For the
regularization, we calculated the eigenvectors of the following matrix
with aregularization factor:

(S, +AN xS,

where / is the identity matrix, and A is the regularization factor set to
1 (different values of A are tested in Extended Data Fig. 9). For the
cross-validation procedure, we estimated LDA subspaces atindividual
time points of a particular trial from the training dataset excluding this
trial (that s, leave-one-out cross-validation).

Because this procedure generated different subspaces (or axes) for
individual trials, we projected the activity in the subspaces back to the
original neural space common to all trials. For example, supposing
that the data comprised d-dimensional neural data with Cclasses, the
processed neural activity ata given time point of a trial was computed
by using the following formula:

_ _ +
Xproc = Xorig ™ Wypgi) X MM™ + 1 00

where X, is a1x d vector of the original neural population activity,
W,i,i8@1x dvector of the mean neural activity of the training dataset,
Misadx (C 1) matrix representing a transformation to the subspace
computed by the regularized LDA based on the training dataset, M* is
the pseudoinverse of M and x ;. is alx d vector of the processed neu-
ral activity. This entire procedure resulted in de-noising of neural sig-
nals according to LDA-based classification while maintaining the
number of input dimensions (illustrated with examples in Extended
DataFig.9).

Linear modelling of neural dynamics

Aregularizedfirst-order linear dynamic model was used to simulate the
neural activity dynamics during navigation (Fig. 3e, f). Modelling of a
linear dynamic system can be considered amultiple linear regression
problemin the following form:

X=XA

inwhich the matrix Atransforms the activity vector to the correspond-
ing velocity vector. The regularized matrix Acan be obtained with the
following calculation:

A=X"X+ulyXTX

where X is adata matrix with the activity at different times or trialsin the
rowand the neuronalidentitiesin the column, X is the time derivative of
X,pisaregularization factorsetto 5 (different values of p were tested in
Extended Data Fig. 9) and / is the identity matrix. For example, in the
dataset with p trials, T time bins and d neurons, the matrix X is created
by concatenating all p x T data points, resulting in a pT x d matrix.
Time-derivative componentsx, inthe matrix X were computedas follows:

Xe=(Xp1=X,-1)/2

where x, . ;and x,_, are the activity vectors at the time step of ¢ + 1and
t-1, respectively. The neural data used for model construction was



pre-processed with the LDA-based de-noising approach described in
the previous section. To account for non-linear neural trajectories with
linear models, wefitted alinear dynamic model at every 500 ms of the
neural data. Individual trajectories were simulated using the following
equationinaniterative form:

sim_ y,sim sim
X=X XD X A

starting with the neural activity at motion onset:

sim _

data data
X1 = Xmotion onset A

Xmotion onset *

where x$™ is a simulated neural activity vector at time ¢ (relative to
motiononset),andx3%a " istheneuralactivity population vector
atmotiononset. We took aleave-one-out cross-validation strategy, in
whichallthe parameters for modelling, de-noising and dimensionality
reduction were obtained from the training dataset that excluded atest
trial simulated by amodel.

Goal decoding of the original and the simulated neural trajecto-
ries (Fig. 3f) was performed with the LDA-based decoding procedure
describedinthe previous section, except that the decoders here were
trained based onthe de-noised neural activity from-0.5sto 0.5 srela-
tive to lick onset at the goal well. This narrow duration of 1s was cho-
sento capture asnapshot of goal representation at lick onset without
generalising over time.

Statistical procedures
All statistical tests were two sided and non-parametric unless stated
otherwise.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability
The datasets used for the figures can be obtained from the authors.

Code availability

MATLAB codes for PCA, LDA (dimension reduction) and Isomap are
partof the dimensionality reduction toolbox written by Laurens van der
Maaten®. Other codes can be obtained from the authors.
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Extended DataFig.1|Behavioural performancein the navigation task.

a, Top view photo of the linear maze used in this study. b, Mean number of
errorscommitted per trial block during the first 15 days of training. Prior block
errors aredefined asincorrectlicking of wells that were rewarded in the
previousblock. Currentblock errors are defined asincorrect licks of the same
well fromwhich the animal obtainsits most recent reward in the block (by
failing to visitits paired well). Topological errors compriseincorrect licks of the
wellsimmediately nextto the correct target well (but if this erroneously licked
wellwasrewarded in the previous block, it was classified as prior block error.)
Thenear absence of topological errorsimplies that animals formarobust
spatial map that enables accurate estimation of well positions. ¢, Mean number
of successfully completed blocks per session. Asthe animals learned the task,
block transitions occurred quicker, resultinginasteady increasein the number
of successfully completed blocks before saturating after 8 days of training.
Inpanelsb-c,n=5rats for days1-12, 4 rats for day 13, and 3 rats for days 14-15.

d, Average error rates after consecutive correctlicks. Numbersin the
horizontal axisindicate the number of consecutive correctlicks prior to the
trial being evaluated (as shownin the schematic on top where blue circles
denote correct trials and white circles represent the trial whose outcome was
analysed. Dataare plotted separately for different stages of training. After five
andsix consecutive correcttrials, the probability of making anerrorinthe
subsequent trial wasreduced to 6.86% and 8.32%, respectively, and was not
significantly different across different stages of training (p = 0.0261,0.0006,
0.0416,0.0476,0.2074,and 0.0911in1-way ANOVA for error rates following 1-6
consecutive correcttrials, respectively; n =5rats). We thus introduced a block

change of well combinations only after the animal made atleast six consecutive
correcttrials. e, Prior block errors were not purely due to the animal’s habitual
behaviour. We analysed trialsinwhich the same well was rewarded in both
previousand currentblocks (well Ain the scheme) andits paired wellin the
previousblock (well Bin the scheme) was in the middle of journey toward the
other goal wellin the current block (well Cinthe scheme). The average number
of priorblockerrorsinthetrained animals proportionally increased as the
distance between well Band well Creduced. Dotted line represents the best fit
linear regressionline (slope: 0.206, p = 0.02 from two sided t-statistic with the
nullhypothesis of zeroslope.n=13,9,6,12sessions fromSratsford=4,3,2,1,
respectively).f-h, Plots showing the distributions of () lick durations, (g) time
latencies between the end of licking and the onset of motion, and (h) entire
times from lick onset to motion onset. Each distribution was further divided
into two plots accordingto thelength of lick threshold. The left plots are based
on12sessionswiththelick threshold of 2s as well as1session with the threshold
of1.5s,and theright plotsare on5sessions with the threshold of 1s. Dotted
lines represent the medians. i, Decoding probability of the well that was
approached and licked by the animal (as in Figure 1h) plotted according to
differentlevels of lick threshold (n =13 and 5 for the threshold of >1sand =1s,
respectively). Shown are means (line) +s.e.m (shaded). j, No significant
differenceinerrorrates between the two consecutive blocks withacommon
goalwell and those without it. Each dot represents the mean from anindividual
session (p=0.08intwo-sided Wilcoxon signed-rank test; n =18 sessions from
4rats).Errorbarsinpanelsc,d,and edenotes.e.m.
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expression of bReaCh-ES-eYFP (green) inbilateral OFC of the three animals
used for optogenetic perturbation experiments. Dotted white lines indicate
the positions of the optic fibres.

Extended DataFig.2|Tetrodelocationsand bReaCh-ES-eYFP expressionin
OFC.a, Nissl-stained coronal sections of allanimals recorded from OFC (4 rats)
withtetrode tracks marked witharrows. b, Coronal sections showing the
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Extended DataFig. 3 |Firing properties ofindividual OFC neurons.

a, Procedure for quantifying spatial selectivity (see Methods) of OFC neurons.
Colour coded firing rates during 200 pseudotrials and their shuffled
counterpartsare shownintop and middle panels, respectively. First 100
pseudotrials are during stationary periods (speed <10 cm/s) and the next100
areduring periods of motion (speed >10 cm/s). Panel on bottom shows the
distributions of mean spatial correlations obtained from 1000 original (light
grey) and shuffled (dark grey) sets of pseudotrials for this neuron. b, Top: three
representative neurons that conjunctively encode spatial location and
navigation phase. Bottom: three examples of spatially selective neurons that
were not influenced by navigation phases. Same convention asin Figure le.

¢, Cumulative frequency of spatial information calculated over firing ratesina
2D space of position x navigation phase (asin b) versus that taking into account
only positional differences (and hence averaged across phases) for all 2056
neurons representing position and navigation phase conjunctively. Spatial
informationin the conjunctive position x phase spaceis greater than the one
considering positional differences only (p =1.78 x10 % in two-sided Wilcoxon
ranksumtest).d, Peak firing rate of 10 representative neurons duringlicking.

Single dotsrepresentindividual trials, and the well identity is colour coded.
p-values calculated using one-way ANOVA. e, Well-specific but paired-well-
independent firingrate of four representative neurons (one fromeach animal).
Same conventionasin Figure 1d. f, Peak firing rate of 10 representative neurons
during-0.5to0 0.5 seconds relative to motion onset. Single dots represent
individual trialsand are coloured based on the identity of goal well. p-values
calculated using one-way ANOVA. g, Four representative neurons with goal-
well dependentbut start-wellindependent firing at motion onset. p-values
calculated using one-way ANOVA. h, Session-based summary of the numbers of
neurons categorized as active (average firing rate > 0.5), current-well selective,
and goal-well selectivite (see Methods), together with the number of
dimensions explaining 85% of the variance of goal-selective neurons (obtained
using PCA). i, Total numbers of active neurons (average firing rate > 0.5 Hz)
duringeach ofthe following behavioural phases; running, approach (duration
of 500 ms priorto lick onset), and well-licking. j, Firing rate plots of the same
representative neuronsasin Figure 2awith trials averaged (and coloured)
based on‘current’ well.In panels eand g, plots show means (line) +s.e.m.
(shaded).
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Extended DataFig. 4 |Lowspatialinformationin OFC neurons.

a-b, Colour-coded firingrate plots of representative OFC neurons and CA1l
neurons duringarandom foraging task in an open-field arena. ¢, Top: spatial
information of individual OFC and CAl neuronsinthe random foraging task.
Error bars denote s.e.m.Inset shows the distribution of spatial information of
the OFCand CAlneurons.***p =5.76 x10°, z=9.14 in two-sided Wilcoxon
rank-sumtest. Bottom: distribution of spatial information of individual OFC
neurons during the goal-directed navigation task on the linear maze. Solid and
dashed verticallinesindicate the median and mean, respectively.d, Stability of

Spatial correlation

spatial tuning during the session. Top: rate maps of two representative
neurons, each from OFC and CA1, duringthe firstand second halves of the
session. Bottom: histogram of spatial correlations of 70 OFC neurons and
65CAlneurons. Foreach neuron, rate maps were calculated separately for the
firstand second halves of the foraging sessions, and the correlation between
the two position-dependent firing-rate vectors was evaluated (spatial
correlation: OFC,0.19+0.02, CA1, 0.79 + 0.02; two-sided Wilcoxon rank-sum
test:z=9.72,p=2.45x1073).
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Extended DataFig. 5| Validation of goal-well decoding. a, Decoding of goal
well (blue), current well (red), and previous well (green), in the trialswhere the
animal’s next goal and previously-visited well were different due to error trials.
n=18sessions. MO: motion onset. b, Decoding of the wells during a 3-well task.
Bottom plot shows the decoding probabilities of the wells when the animal’s
nextgoaland the previous goal were different. The decoder indicated the
animal’s next destination but not the previous goal. ¢, Top: decodingon error
trials showing the probabilities of current well (red), the animal’s next
destinationvisited incorrectly (green), and the correct wellaccordingto the
taskrule (grey), plotted over time (left) or along positional fraction (right).
Bottom: decoding of the animal’s next destination at motion onset between
correct (blue) and error (green) trials. Dots representindividual 18 sessions.
p=0.372intwo-sided Wilcoxon signed-rank test.d, Top: schematic of the
experimental setup and the behaviour paradigm of a continuous alternation
task. The correct destination of individual trials switched alternately between
Goalland Goal 2. Forsuccessful task performance, rats needed to follow the
sequence of trajectories outlined by numbers1to 4. Two rats were trained with
the same strategy as described before’, and the performance of bothrats
reached over 95% accuracy. Bottom: decoding probability of goal well during
navigation. Decoding was performed by using adecoder based on quadratic-
discriminant analysis that was trained on OFC neural activity during the
concatenated time range from-1sto1lsrelative to motion onset (at the start
well) aswell as from-2sto2srelative to lick onset (at the goal well). Decoding
wasrestricted to correcttrials with trajectory paths1and 3inthe top
schematic. Eachtrial was decoded in aleave-one-out cross-validated manner.
Decoding performanceis plotted across four contiguous time phases: 1)
Ssduration prior to motion onset at the start well, 2) from motiononset to the
choice point, 3) from the choice point to lick onset at the goal well, and 4)
3sduration after lick onset. Due to trial-by-trial variability in the animal’s
behaviours, the second and third phases are plotted in normalized time for
each.Greylinedenotes aggregate chance level from well-based and speed-
based null hypotheses (see Methods; chance levels for goal distance and
directionwere not considered because they were identical between the two
goal-directed navigationsin the maze). The decoding probability of goal well
was significantly greater than chance starting from 0.6 s prior to motion onset

until 2.6 s after lick onset at the goal well (decoding probability at motion onset:

0.74+0.06,compared toitschancelevel of 0.58; n =4 sessions from 2 rats).
MO: motion onset, CP: choice point, LO: lick onset at goal well. e, Schematic of
chancelevel calculation (see Methods). All five parameters are tested for the
goal-well decoding, whereas only the direction and the random well selection
were considered for the current-well decoding. f, Decoding performance of
goalwellusing the following three kinematic variables together as predictors:

acceleration (calculated asinKropffetal®.), speed, and head direction (dotted
line). The decoder was separately trained and tested on individual time points.
The decoding performance based onthe activity of OFC neuronsisalso
included for comparison. Grey horizontal line denotes the times when the goal-
decoding performance of the neuron-based decoder was significantly better
thanthatbased on kinematic variables (p <0.05; two-sided Wilcoxon signed-
rank test followed by Holm-Bonferroni correction, n = 18 sessions). g, Top:
accelerationat motion onset atindividual trials from arepresentative session
plotted asafunctionofthedistance to the goal (measuredinawell-interval
unit). Theregression line best fitting the datais shownwith the dotted line. The
p-value of the regression slope is shown on top. Bottom: the regression slope
betweenthe accelerationat motion onset and the goal distance for all 18
sessions. Red asterisks denote sessions with statistically significant regression
slope (p=0.0015,0.0065,0.0885,0.3239,0.8152,0.1810, 0.0289,0.0024,
0.0744,0.0087,0.0008,0.0025,0.0042,0.0717,0.9600, 0.2889,0.9802,
0.9101, from the t-statistic with the null hypothesis of zero slope without
multiple comparison correction). h, Goal representationis largely
independent ofthe animal’s speed or acceleration. Top left: for testing the
effect of the animal’s speed at motion onset, we took an approach of grouping
based onthe animal’s running speed, whereby trials were divided into either
two or four groups. Top right: we used the same strategy for testing the effect
ofthe animal’sacceleration atmotion onset. In both cases, we obtained almost
the same chance levels between these two grouping strategies. Bottom left:
goaldecoding probability intrials with quick start using a decoder trained only
ontrials with slow start. Bottomright: datausedin trainingand testing of a
decoderwere swapped. i, Decoding probabilities of ‘current’ well at different
timepoints.Schematic ontop depicts the time durations used for the decoder’s
training (dark grey lines) with the class label of current well. Left: decoding of
current well using the same strategy as used for the goal-well decoding

(Figure 2d). Second left: identical to Figure 1h left butisincluded for
comparison. Third and Fourth: decoding of current well relative to lickend and
motion onset, respectively. The results together suggest that the current well
isonly weakly represented in OFC both at motion onset and during navigation,
irrespective of the decoding strategy. MO: motion onset, LO: lick onset, LE: lick
end. j, Decoding of current well asin Figure 1h, but with shorter durations of
training datadenoted in the schematic ontop.k, Decoding probabilities and
corresponding aggregate chance levels of the current (left 4 plots) or the goal
(right4 plots) well on arepresentative session from each rat. Same notations as
inFigure1hleftor 2d left (trial number for the current or the goal well decoding:
Rat110session2,n=137and 119; Rat175session 5, n =116 and 114; Rat 182
session5,n =149 and 146; Rat 284 session 5,n =133 and 133). In panels a-d, f,
and h-k, plots show means (line) +s.e.m. (shaded).
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Extended DataFig. 6 | Decoding of the animal’s position during motion
from ensemble activity of OFC neurons. a-b, Comparison of well
representation of OFC neurons during licking versus crossing. a, Schematic of
two different decoders. Left:adecoder was trained on the neural activity as
animals approached and licked atarget well (lick decoder). This decoder is the
sameasinFigurelh.Right:another LDA-based decoder wastrained onthe
neural activity as animals crossed a well without licking it (cross decoder).
Training and testing for this cross decoder were performedin a10-fold cross-
validated manner, inwhich the entire session was divided into 10 equal-
duration groups and the neural activity during well crossing from 9 groups
were used to trainadecoder, while the left-out group was used for testing.

b, Left: decoding probability of licking well based on the two types of decoders
trained during licking (red) or crossing (magenta). Middle two panels: distance
(left) and time (right) based decoding of crossing well based on the two
decoders. Thered traces areidentical to those in Figure 1h. Shown are means
(line) £s.e.m. (shaded).n =18 sessions. Right: decoding probability of licking
wellusing the decoder trained on the data during well licking, compared with
that of crossing well based on the decoder trained on the data during well
crossing. Results fromindividual sessions are shown insmall grey circles while
larger circles with error bars denote means +s.d. (decoding probability of
licking well: 0.67 +0.07; crossing well: 0.41+0.08; *p =1.96 x 10™*in two-sided
Wilcoxon signed-rank test), suggesting that well representation of OFC neural
populationis particularly strong during licking at goal wells. ¢, Top: decoding
probabilities of goal well and itsimmediately preceding ‘pre-goal’ well when
the animal crossed over the pre-goal well. The decoding of pre-goal well was
performed using a decoder trained on cross-over wells (as in a-b), whereas
goal-welldecoding was performed by adecoder trained ona2 s period prior to
lick onset at goal wells. Shown are means (line) +s.e.m. (shaded). Bottom:
decoding probabilities of pre-goal and goal wells at the time of crossing the
pre-goal well. Results fromindividual sessions are shown in small grey circles
whilelarger circles witherror bars denote the means +s.d (decoding
probability of pre-goal well: 0.37 + 0.08; goal well: 0.59 + 0.07; two-sided
Wilcoxonsigned-rank test: *p=1.96 x10™*).d, Schematic of the strategy to
decode the animal’sinstantaneous position from OFC neural population
activity. As the animal perform multiple trial types with various startand goal
positions duringasession, the entire time duration of the session was first
divided into 100 chunks of equal duration, and 10 groups were created by
sampling 10 chunks per group randomly (without repetition), which ensure
unbiased distributions of spatial binsamong groups. To decode the spatial
location, we then divided the animal’s position along the linear mazeinto5cm

spatial bins. Spatial decoding was carried out on each group using 10-fold
cross-validation, in which the neural activity during motion (speed >10 cm/s)
from9out of10 groups wasused to trainadecoder while that of the left-out
group was used for prediction of therat’s location. Two types of decoding
algorithms - LDA and Bayesian - were implemented. For LDA-based decoding,
wetrained aregularized LDA decoder (see Methods) with ensemble firing rate
vectors atindividual 100 ms bins using the class label of spatial bin occupied by
the animal. For Bayesian decoding, we first calculated mean firing rates of each
neuronatindividual positions, and then estimated the posterior probability of
theanimal’s positionata particular spatialbininal00 msbin using the
following formula, P(b,) = C( ny, (b’}(f)‘i)e’ii’\ilb;f. where b, is the k™ spatial bin,

Cisanormalizing constant, Nis the number ofneurons,b’)(f istheaverage
firingrate of thei™ neuron at the k™ spatial bin (calculated as the average
number of spikes per 100 ms), and s;is the number of spikes fired by the i*
neuronduringagiventime bin. For both decoding strategies, the spatial bin
with the highest probability was assigned as the decoded position. The
decoderswere trained on the activity of all neurons with mean firing rates
greater than 0.5Hz. e, Root mean squared decodingerror for each session
using the two decoding strategies (average root mean squared error for LDA
and Bayesian:39.51+1.06 cmand 56.41+1.49 cmrespectively comparedto the
well spacing of 20 cm shownin adotted vertical line; n =18 sessions).

f, Distribution of absolute decoding errors resulting from Bayesian (left) and
LDAbased (right) position decoding, shown as thin horizontal lines ranging
from25thto 75th percentile with ticks denoting the median. Eachline
represents datafromonesession. g, Decoded positions (vertical axis) duringa
20second period (horizontal axis) from four representative sessions. Positions
decoded using LDA and Bayesian are showninblue andred, respectively.

h, Mean decodingaccuracy, defined asafraction of correctly decoded
positions, for every spatial bin from representative sessions. Chance levels for
LDA decoders were obtained by shuffling class labels during the decoder’s
training. This procedure was repeated 100 times, generating adistribution of
mean accuracies across spatial bins. Chance level for each binwas setat 95th
percentile of this distribution. Similarly, for Bayesian decoding, chance levels
were assessed based on shuffled firing rates among spatial bins. i, Distribution
of decoded positions, shown as thin horizontal lines ranging from 5th to 95th
percentile with ticks denoting the median, against the actual spatial location
(vertical axis) occupied by the animal. Plots show the results of 4 representative
sessions with adecoding strategy based on either LDA (top row) or Bayesian
(bottomrow).
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Extended DataFig.7|See next page for caption.



Extended DataFig.7|Choices ofhyperparameters, decoding algorithm,
and datarange to optimize the goal decoding. a, Illustration of the impact of
dimensionality reductionongoal-well decoding. This strategy, as well as the
followings (band c), were aimed to reduce the decoder’s dimensionality, asa
decoderwithalarge number of parameters resultsin poor performanceona
testdatasetingeneral. Shownineach plot are the mean goal decoding
probability and the corresponding chance level based on the datafrom a
representative session (top) or across all sessions (bottom) (see Methods and
Extended DataFig. 5 for details). Weimplemented PCA toreduce the data
dimensions to different degrees of explained data variance, and assessed the
impact of dimensionality reduction on the performance of goal-well decoding.
Thedecoding performance was optimal when the number of chosen
dimensions explained 85% of the data variance, in terms of the maximum
separation from the corresponding chance level as well as asmall variance of
the decoding probability. The decodings were performed with a fixed
regularization value of 0.5 ongoal-well selective neurons. b, Illustration of the
impactofregularization. Shown are the decoding performances at three levels
of regularization values. We found that the regularizer value of 0.5 has the
maximum separation from the corresponding chance level aswell asalow
variance of the decoding probability. The decodings were performed with
reduced dimensions explaining 85% of the data variance on goal-well selective
neurons. ¢, lllustration of theimpact of pre-selection of goal-well selective
neurons. The decoding performance was assessed based on either goal-well
selective neurons (left) or allrecorded neurons (right). We found that the
pre-selection of goal-selective cells achieved better separation from the
corresponding chance level. The decoding was performed with the reduced
dimensions explaining 85% of the data variance and the regularization value set
t00.5.d, Plotsshow asummary of decoding performance at motion onset
relative to the corresponding chance level using different parameters
describedina-c.*p<0.05,**p<0.01,and ns (p > 0.05). Left: p=0.0936,0.0156,
0.0084,and 0.9479; Middle: p = 0.0429,0.0139,0.0096, 0.0065, and 0.0279.

Right:p=0.0084,and 0.3061; in two-sided Wilcoxon signed-rank test without
multiple comparison correction. n =18 sessions. Errorbars denotes.e.m.).

e, Comparison of decoding performance of goal well between two algorithms,
LDA (left) and asupport vector machine (SVM, right). For SVM we used abox-
constraint of 0.01. Plotted are the decoding accuracy of goal well. For LDA, the
predicted well was chosen as the one with the maximum probability. The two
algorithms achieved similar decoding performance (the meanaccuracy
relative to the chance level at motion onset: LDA 0.0365; SVM 0.0432).f, Left:
performance of decoders trained with different time ranges of neural activity.
Four different ranges of the datawere used asillustrated on top of each plot
(orange bars). We found that the goal decodingimproved by concatenating the
neural activity atboth motion onset and lick onset. Furthermore, the decoding
performance at motion onsetimproved asalonger time range of the datawas
used for thedecoder’straining. Interval 3is the same as in Figure 2d. Right:
summary of decoding performance at motion onset relative to the
corresponding chance level for the four different decoding strategies
describedinleft panel (n =18 sessions, errorbars:s.e.m.).*p<0.05,**p<0.01,
andns (p>0.05).p=0.0176,0.0642,0.0084,and 0.0016 in two-sided Wilcoxon
signed-rank test without multiple comparison correction. g, Plots showing the
times when the decoding probability of the goal well exceeded that of the
current well for each of the decoding strategies shownin panel (f) above. Grey
diamondsindicate datafromindividual sessions (n =18 sessions). Light vertical
dottedline denotes the meanacross sessions (interval1: 0.12+ 0.07 s before
motion onset;interval 2:1.24 + 0.15 s before motion onset; interval 3:
0.93+0.13sbefore motiononset;interval 4:1.12 + 0.14 s before motion onset).
h, Decoding probability of the well licked by the animal using only current-well-
selective neurons (solid; see Methods for definition), compared with that from
allneurons with the average firing rate greater than 0.5 Hz (dotted),
demonstrating theimproved decoding performance by the pre-selection of
current-well selective neurons. In panelsa-c, e, f(left), and h, plots show
means (line) +s.e.m. (shaded).
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Extended DataFig. 8| Non-sequential transition of spatial representations
inOFC. a, Schematic of the technique to quantify the sequenceness of spatial
representations. We here asked if OFC neurons exhibit sequential
representations of spatial positions during a transition of their encoding
position from the animal’s current location to its subsequent goal. We followed
thetechnique described by Kurth-Nelson*, and examined whether the
posterior decoding probabilities of wells obtained by the LDA decoder have
sequential peaks. Forexample, when the spatial representation of OFC neurons
switched from well 2 to well 6 prior to motion onset, we asked whether peaks of
posterior probabilities of wells 3,4, and 5 were observed insequential order. We
cantest this possibility by examining the time lags of cross-correlations of
decoding probabilities forindividual wells. In the example case, we asked if we
observed aconsistent time lag for the peaks of cross-correlations between
decoding probabilities of well pairs2and 3,3 and 4,4 and 5,or 5and 6. We
tested a possibility of both forward and reverse sequences (e.g., either from
well2towell 6 or fromwell 6 towell 2,in the example). To account for
autocorrelations, the difference between forward and reverse correlation is
reported. Chance levels of sequenceness were calculated using anon-
parametric method suggested by Kurth-Nelson et al*.. Briefly, the well
identities were shuffled to obtain all possible combinations, for each of which
the meansequenceness was computed. Forexample, the sequence of wells in
trials with the 4-well distance between the start and the goals can be shuffled in
120 different ways in total. Two of them represent the real forward and reverse
sequencesonthelinear maze, and the other 118 are considered shuffled
sequences. The maximum and minimum values from these shuffled sequences
constitute the two chance levels (positive and negative) across time lags.

b-f, Verification of the technique on simulated spike trains resembling
hippocampalreplay events. A virtual agent traversed a2 meter long linear maze
with 10 reward wells (well spacing of 20 cm) bidirectionally for 25 trialsata
uniformspeed of 25 cm/s. The agent travelled between the positions of 20 cm
and 180 cm, thereby encounteringwells2to 9inevery run. b, Top: gaussian
spatial tuning curves of 35 simulated neurons. Position and peak firing rate
were chosen from a uniformdistributionranging fromScmto185cmand 8 Hz
to20 Hzrespectively. Bottom: spike raster plot of all simulated neuronsinone
ofthe simulated journeys from 20 to 180 cm along the maze. Spikes were
generatedinindividual 100 ms bins assuming a Poisson process with the
neuron’s position-dependent mean firing rates. ¢, Plot shows spike rasters
duringonereplay event, out of 25 simulated events, in which each event
comprised sequential representation of well locations fromwell 2 to well 9. We
used a20-fold time compression to simulate replay events®®. Each well was
represented for 40 ms, and firing rates of neurons were stretched over 10 cm
fromthe centre of the welllocation. d, Posterior decoding probabilities of
colour-coded individual wells (decoded using LDA, see Methods) from the
representative replay eventinc. Prior to decoding, spike trains were smoothed

with 50 ms Gaussian kernel and binned at 10 ms. To classify a given well identity,
thedecoderwas trained onthe neural activity when the agent was within S5cm
ofthe corresponding well. e, Mean sequenceness across all simulated replay
events (n=25).Asexpected, the mean sequenceness exceeds the chance level
atatimelagof40 ms (dotted verticalline) corresponding to the average
duration of individual well representations during the simulated replays.
f,Meansequenceness during a different simulation where the running speed of
theagentwas doubled, resulting ineach well being represented for 20 ms
duringreplays following a20-fold compression. Our decoding strategy
followed by the sequenceness detection algorithm was still able to detect this
short-time sequential representation of positions, although inferring the
precise timescale of well transitions appears to be prevented by the width of
Gaussiankernelused for smoothing spike trains. g, Sequenceness algorithm
applied to the posterior probabilities from -2sto O s relative to motion onset
from two representative animals. Toidentify the sequential transition of
representation fromthe current to the goal well ata finer time scale, we binned
neural activity into 10 ms time bins. We analysed trials where the start and the
goalwere separated by 4-7 wells. Plots show the difference between forward
andreverse sequenceness for different trajectory lengthsindistinct shades of
blue along with their corresponding chance levels denoted by dotted lines. No
significant sequenceness was observed in the representative animals. h, For
clarity, the sequenceness for each trial was normalized so that the interval
between the corresponding positive and negative chance level lied within1and
-1, respectively. Using this normalization strategy, the sequenceness across
trials with different distances of journeys could be pooled together. No overall
significant forward or reverse sequenceness was observed in any of the four
animals used.i, Same asinhexcept that the sequenceness was calculated with
the middle wells of journey without the current and goal wellsin order to
exclude possible artefacts due to overrepresentations of these wells. For this
analysis, we only focused on trials where starts and goals were separated by 6-7
wells.j-m, Assequential transitions in neural states may occur atafiner time
scaleinthe order of afew tens of ms, we reanalysed our neural data by
convolving spike trains witha 50 ms Gaussian kernel (rather than 250 ms),
which matches the condition of our simulationsin b-f. j, Decoding probability
ofthe goal well relative to motion onset. Goal wellscanbe decoded greater
than chancelevels from1.4 s prior to motion onset.k, Plot shows instantaneous
firing rates of goal-well selective OFC cells. Firing rates were normalized to the
meansover the session. Unlike place cells that exhibit elevated instantaneous
firing rates during replay events, we did not find any increase ininstantaneous
firing rates prior to motion onset.I-m, the same plots asin h-iexcept for the
useof the 50 ms Gaussian kernel. Nosignificant forward or reverse
sequenceness was observed. In panels e-m, plots show means (line) +s.e.m.
(shaded).
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Extended DataFig.9|Choice of hyperparameters and LDA-based
denoising strategy for analysing destination-specific neural dynamics.

a, Plotsshowing neural activity trajectories fromindividual trials extracted
using LDA (asinFigure 3e) from three representative sessions. The trajectories
arecolour-coded based on the animal’s destination. Top: original trajectories
fromtheneural data, separately aligned to motion onset (MO; thin) and
subsequent lick onset (LO; thick). Bottom: simulated trajectories with a first-
orderlinear dynamic model based on the neural activity at motion onset.
Trajectoriesaligned to lick onset were omitted from the left panel (Rat175) to
facilitate visualization. b, Quantification of the accuracy of first-order linear
models. Top: schematic ofarandom walk model. At each time step, afirst-order
model predictsadisplacement vector based ontheactivity stateatagiven
time. Iterative additions of these displacement vectors to the neural activity at
motiononsetresultinapredicted neural activity trajectory. We hypothesized
thatafair nullmodel to test our first-order model would be a distance-matched
random-walk model, inwhich each displacement vector obtained fromthe
first-order modelis randomly rotated, thereby preserving the magnitude of
displacementat each time step. Middle: example trajectories generated by the
first-order model (left) and its distance-matched random-walk model (right)
using datafrom the same representative session as in Figure 3e. Bottom left:
average Euclidean distance between the modelled and the original trajectories
(dark, n=146 trials) fromthe representative session. The light shaded region
denotes the full distribution of distances between the original and the
simulated trajectories by 1000 random-walk models. Bottom right: normalized
average Euclidean distance between the original and the modelled trajectories
acrossall18 sessions. For each session, all the distances (both the modelled and
random trajectories) were normalized to the minimum distance generated by
therandom-walk models at the time point of 2.5 s after motion onset. Chance
level atagiventime point for each session was set at the smallest normalised
distances between the original and random-walk-model-generated
trajectories. ¢, Effect of regularization on LDA-based projections of neural
activity from arepresentative session (same asin Fig. 3). The plots show three
principal components (PC) of activity trajectories fromindividual trials
extracted using LDA with different regularization values (see Methods). The
trajectoriesare colour-coded based on the animal’s destination and are
separately aligned to motion onset (thin) and lick onset (thick). Insets show the
ensemble neural activity inindividual trials during one second after the motion
onset projected on the axes that maximize the goal separability. The ranges of
PCaxes are the same across the panels. Absence of regularization caused
overfitting, resultingin poor generalization and goal separability. In contrast,a
large regularization value (e.g., A4 =10) separated data primarily based on class
means withminimalinfluence of within-class covariance, resultingin
suboptimal separation. We thus chose anintermediate regularization value of

1.d, Probability of goal-well decoding from neural trajectories extracted using
LDA withthree different regularization values. The decoding strategy was the
sameasin Figure 3f (also see Methods). Decoding performance, assessed asthe
difference between the mean goal decoding probability and the corresponding
chancelevel, was optimal at A =1, which was used in the rest of the analyses.
Shown are means (solid) +s.e.m. (shaded). n =18 sessions. e, Neural trajectories
fromarepresentative session simulated with afirst-order linear dynamical
model using three different regularization values. The ranges of axes are the
same across the panels. Without regularization, simulated trajectories
expanded quickly beyond the range of original neural activity, whereas a high
regularization value constrained the models to simulate relatively simple
trajectories. We found thatregularizer valuesbetweenland 5 obtained the
models thatsimulateactivity trajectories similar to the original data.

f, Probability of goal decoding from neural trajectories simulated with
differentregularization values. Optimal decoding performance was obtained
witharegularization value of either1or 5, and we thus chose p =5 for the rest of
the analyses. For theregularization of 1=S5,s.e.m.is not showninthe plot for
better presentation of other results, butitis shownin paneli(ii) and Figure 3f.
g, Demonstration of the advantages of performing LDA atindividual time
points based onsimulated data. Top: temporal evolution of two groups (red
and blue) of Gaussian distributed data evolving with first-order linear
dynamics. Datain progressive time steps are coloured with incrementally
lighter shades. Middle: data points projected to multiple LDA axes calculated at
different time steps, which preserves the dynamics while keeping the
separation between the two groups. Bottom: data projected toasingle LDA
axis calculated from the dataacross trial durations, which failed to preserve
boththe dynamics and the optimal group separation. h, Ensemble neural
activity fromarepresentative session extracted using different LDA-based
denoising strategies (see Methods): (i) Original neural activity, (ii) Neural
activity extracted using multiple LDA subspaces evaluated atindividual time
points, (iii) and (iv) Neural activity extracted by asingle LDA subspace
evaluated by concatenating two different time ranges of the neural activity
(orange lines). Only neural trajectories aligned to motion onset (MO) are
shown. Theranges of axes are the same across the plots. Insets provide
magnified views of compact neural activities. Although the activity extraction
withasingle LDA subspace failed to preserve the original neural dynamics (iii
andiv),implementation of multiple LDAs at individual time points succeeded
inextracting destination-specific trajectories by preserving the original
dynamics (ii). i, Probability of goal-well decoding based on the neural
trajectories extracted by individual strategies correspondingtoi-ivin

h, demonstrating the optimal decoding performance of the time-wise
LDA-based extraction method (iiin h).
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Extended DataFig.10 | DREADDs-mediated manipulation of OFC neurons
and additional analyses for optogenetic perturbation experiments.
a,Meannumber of errors per block committed by the animals injected with
AAV8-hSyn-hM4Di-mCherry (left, n = 4 rats; a gift from Bryan Roth; Addgene
viral prep #44362-AAV8) five days prior to the beginning of perturbation
experiments. The volume of 500 nL was injected at eleven sites in the OFC of
each hemisphere with the following coordinates (AP, ML, and DVinmm): 2.7,
3.5,5.2;3,2.5,4.6;3,3.8,4.4,3.6,2,4.2;3.6,3.6,4;4.2,1.4,4.2,4.2,2.4,4,4.7,1.6,
3;4.7,2.8,3.5;5.2,1.2,2.6;and 5.2, 2.6,2.6. To evaluate the effects of
manipulation, amicrodrive with two circular bundles of 6 movable tetrodes
eachwasimplanted bilaterally with the centres of the bundles positioned at
3.5mm (AP) frombregmaand1.5mm (ML) frommidline. Total errors and the
twomajor error types — prior block errors and current block errors (defined in
Extended DataFig.1)—are plotted. Shownare means +s.e.m.b, Top: coronal
section showing expression of hM4Di-mCherry inbilateral OFC. Bottom:
normalized firing rates of OFC neurons over time relative to the subcutaneous
injection of Agonist 21 (DREADDs Agonist 21 dihydrochloride, 7.04 mg/mL

[20 mM]; Hello Bio at adose of 6 mg/Kg). Means (solid) + s.e.m. (shaded) across
100 neurons.c, Average speed of the animals expressing hM4Di-mCherry
during motion (speed >10 cm/s) when injected with saline versus Agonist 21.
Black oblique lines represent paired sessions (see Methods). d, Plot shows the
number of errors per trial block in the saline (grey) or Agonist 21 (red) injected
sessions. The animals were injected with Agonist 21 followed by at least 45 min
waiting timeto allow the drug to reach the brain and take effect before starting
thebehaviour sessions. On control days, the equal volume of 0.9% saline
solution wasinjected. To evaluate theimpact of OFCsilencing, the same
sequences of well combinations were tested in a pair of saline and Agonist
21sessions. The two sessions were carried out on consecutive daysina
randomized order. All types of errors (left; ***p =3.08 x 10 * in two-sided
Wilcoxonsigned-rank test:z=-4.16) and the errors to the wells rewarded in the
previousblock (right; ***p =3 x10™*in two-sided Wilcoxon signed-rank test:
z=-3.61,) are shown separately.n =23 sessions from 4 animals injected with

AAV encoding hM4Di-mCherry. e, Mean number of errors per block committed
by the animalsinjected with AAV1-CamKII-bReaCh-ES-eYFP five days prior to
thestartof perturbation experiments. Shown are means £s.e.m. (n =3rats).

f, Average error rates following consecutive correct licksinablock one day
before and after the optogenetic perturbation experiments. The horizontal
axisindicates the number of consecutive correct trials prior to the trial being
evaluated. All the three animals made no errors after 4 consecutive correct
trials, and thus we performed optogenetic perturbations after the first four
consecutive correcttrialsinablock. Furthermore, after the termination of
perturbation, the animals still did not make any errors after four consecutive
correcttrials, suggesting that this criterion is most likely valid during the entire
course of perturbationexperiments. Shownare means +s.e.m. (n =3rats).

g, Average running speed of the animals expressing bReaCh-ES-eYFP during
thelaser pulses of 40-s duration (left; running speed: laseron 33.54 +1.18 cm/s,
laser off34.37 £ 0.68 cm/s; p = 0.38 in two-sided Wilcoxon signed-rank test;
n=12sessions; analyses were restricted during motion [speed >10 cm/s]) or 6-s
duration (right; running speed: laser on33.4 + 0.86 cm/s, laser of f
34.85+0.92cm/s; p=0.074 in two-sided Wilcoxon signed-rank test;
n=9sessions). Eachpointinthe plotsrepresents the average speed fromone
session. h, Histogram of the times of either laser onsets relative to lick onset
(left) or laser ends relative tolick end (right) in the experiments with

6 soptogenetic perturbationatlick onset. The vertical axisindicates the
number of laser events, and the horizontal axis represents time relative to lick
onset (left) and lick end (right). 98% (102 out 0f 104) of laser onsets occurred
afterlick onsetand 83.65% (87 out of 104) of laser pulses ended before lick end.
i, Histogram of the times of laser onsets relative to either lick end (left) or
motion onset (right) in the experiments with 6 soptogenetic perturbation at
motiononset. 91.79% (123 out of 134) of laser onsets occurred after lickend,
and 95.52% (128 out of 134) of laser pulses started within 100 ms relative to
motiononset. Three laser events that started 5 s after lick end, as well as six
laser events that started more than 6 s prior to motion onset, were excluded
fromthe plots.



Corresponding author(s):  Raunak Basu and Hiroshi T. Ito

nature portfolio

Last updated by author(s): Aug 23, 2021

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

El The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|X| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXO OO OO0 0 o]

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  OpenEphys GUI. Kilosort (https://github.com/Mouseland/Kilosort). MATLAB

Data analysis MATLAB. Dimensionality reduction toolbox (https://lvdmaaten.github.io/drtoolbox/)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The datasets and codes will be available from the authors.

>
Q
—t
(e
D)
o
@)
=
S
S
T
o
O
=
>
(@)
wv
e
3
=
Q
&=

L20Z Y210\




Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We did not use a statistical method to predetermine the sample size, but it is comparable to previous publications in the field.

>
Q
—t
(e
D)
o
O
=
S
=
3
o
O
=
>
(@]
wv
e
3
3
Q
s

Data exclusions  No animals were excluded from the analysis.
Replication All the analyses were consistent across the 4 rats recorded from OFC.
Randomization  Not applicable as the study did not involve a grouping of animals.

Blinding Not applicable as the study did not require a grouping of animals.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI D ChlIP-seq
Eukaryotic cell lines IZI D Flow cytometry
Palaeontology and archaeology IZI D MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern

MNXXOXKXX s
OOoOxXOOO

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 19 male Long-Evans rats (400 to 550 g, aged 3—6 months at the beginning of the experiment)
Wild animals The study did not use any wild animals.
Field-collected samples  The study did not involve field-collected samples.

Ethics oversight All experiments were approved by the local authorities (RP Darmstadt, protocols F126/1009 and F126/1026) in concordance with the
European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




	The orbitofrontal cortex maps future navigational goals

	Persistent goal representation in the OFC

	Goal coding is orthogonal to OFC dynamics

	OFC perturbation led to a navigational error

	Discussion

	Online content

	Fig. 1 Goal-specific firing of OFC neurons.
	Fig. 2 Persistent goal representation in the OFC.
	Fig. 3 Orthogonal coding of spatial goals to evolving OFC dynamics.
	Fig. 4 OFC perturbation impairs accurate navigation.
	Extended Data Fig. 1 Behavioural performance in the navigation task.
	Extended Data Fig. 2 Tetrode locations and bReaCh-ES-eYFP expression in OFC.
	Extended Data Fig. 3 Firing properties of individual OFC neurons.
	Extended Data Fig. 4 Low spatial information in OFC neurons.
	Extended Data Fig. 5 Validation of goal-well decoding.
	Extended Data Fig. 6 Decoding of the animal’s position during motion from ensemble activity of OFC neurons.
	Extended Data Fig. 7 Choices of hyperparameters, decoding algorithm, and data range to optimize the goal decoding.
	Extended Data Fig. 8 Non-sequential transition of spatial representations in OFC.
	Extended Data Fig. 9 Choice of hyperparameters and LDA-based denoising strategy for analysing destination-specific neural dynamics.
	Extended Data Fig. 10 DREADDs-mediated manipulation of OFC neurons and additional analyses for optogenetic perturbation experiments.


