
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 241, July 1978

THE ORDER AND SYMBOL OF A DISTRIBUTION
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ALAN WEINSTEIN

Abstract. A definition is given, for an arbitrary distribution g on a
manifold X, of the order and symbol of g at a point (x, £) of the cotangent
bundle T*X.

If X ■» R", the order of g at (0, Q is the growth order as t -* oo of the
distributions

f»(*)-#-^<-»»(*/V?)¡
if the order is less than or equal to N, the N-symbol of g is the family gT
modulo 0(t"-'/2).

It is shown that the order and symbol behave in a simple way when g is
acted upon by a pseudo-differential operator. If g is a Fourier integral
distribution, suitable identifications can be made so that the symbol defined
here agrees with the bundle-valued symbol defined by Hörmander.

Preface
Since the introduction of pseudo-differential operators, the analysis of

distributions on a manifold X has involved the geometry of the cotangent
bundle T*X. With the notion of wavefront set [6], one can localize a
distribution at a nonzero cotangent vector £ to obtain its "microgerm", just as
one localizes at x £ X to obtain the ordinary germ. On the base space, X, one
can go beyond the local level to the infinitesimal one; for a C00 function, the
result is its "jet", which can be thought of as a function on the tangent space
TXX. In this paper, we describe an analogous procedure for distributions:
given a distribution g on X and a cotangent vector £, we construct a jet-like
object called its symbol, which is a distribution on TXX depending on certain
parameters. (In [13], we show that the symbol may be thought of as an object
on T(T*X, thus completing the analogy with jets.)

In Chapter I, we define the symbol and the space in which it lies, we prove
the elementary properties of the symbol, and we give some examples. Chapter
II, written in collaboration with K. Sklower, establishes the relation between
our symbol and the wavefront set. In Chapter HI, we show that our symbol
construction contains the one given by Hörmander [6] for a very special class
of distributions-the Fourier integral distributions.

This last result was the basis for the whole paper. In lectures at the Nordic
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2 ALAN WEINSTEIN

Summer School in Grebbestad (1975), we gave an "analytic" description of
the line bundle in which Hörmander's symbol takes its values. This
description suggested the possibility that a general symbol construction
existed; it was found a few months later.

There are some precursors to our definition of the symbol, due to Calderón
[1] and Lojasiewicz [8], [9]. A similar localization process is used by Hör-
mander [4] and Melin [10]. I would like to thank L. Boutet de Monvel, B.
Fuglede, and G. Grubb for calling these references to my attention.

I would like to thank K. Andersson for the invitation to the Nordic
Summer School and for his encouragement. I would also like to thank K.
Sklower for his contribution to Chapter II, as well as his comments on the
rest of the manuscript. Y. Colin de Verdière and L. Hörmander have made
many valuable comments, especially pertaining to Chapter II.

The debt to [6], both in form and in content, should be evident to anyone
who is familiar with that paper.

Finally, I would like to express thanks to the National Science Foundation
for financial support (grant #MPS74-23180) during the early stages of this
research, and to N. H. Kuiper for the hospitality of the I.H.E.S., where this
paper was written.

I. Elementary Theory

1.0. Introduction. We present here the definition and elementary properties
of the symbol of a distribution. By "elementary", we mean that the analytic
machinery of Fourier analysis and stationary phase is not used. Except for
the calculation of examples, we do not even use integration by parts.

The chapter begins with the localization process (1.1) and enough of its
properties (1.2) to justify the local definition of the symbol (1.3). After
proving some further invariance properties (1.4), (1.5), we define the symbol
for vector-bundle-valued distributions on a manifold (1.6).

1.1. Localization and order of distributions. We begin by summarizing some
notation and basic facts from [11] concerning distributions on R". A subset A
of ^(R"), the compactly supported C°° complex valued functions oft R", is
called bounded if all the elements of A are supported in a fixed compact
subset K C R", and if the partial derivatives of each order of the elements of
A are uniformly bounded. The distribution space ^'(R") consists of those
linear functionals g: ^(R") -> C which are bounded on each bounded subset.
We write <g, u) rather than g(u) for the action of g £ ^'(R")- A subset
C C ^'(R") is called bounded if, for each bounded A C ^(R"), <C, A) =
{<£> M)láf G C, u E A) is bounded in C. Some proofs in this paper may be
simplified by the use of Theorem IX of Chapter III of [11], which states that a
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ORDER AND SYMBOL OF A DISTRIBUTION 3

sufficient condition for boundedness of C C fy'(R") is that<C, w> be boun-
ded for each fixed u E ^(R"); however, we will not use this fact in any
essential way.

We wish to localize a distribution g E ^'(R") at me origin and, simul-
taneously, at a "cotangent vector" £ E R"\ To do this, we will choose a real
valued function <p E C"(R") with <p(0) = 0 and d<p(0) = £ and consider the
asymptotic behavior as Tfoo of the family g¿ of distributions defined as
follows.

Definition 1.1.1. Let g E ^'(R") and let (p:R"^RbeaCw function with
<p(0) = 0. We define the distribution g* for t > 1 by

<g;, u> = <g, T^-'^yVr" jf» (1.1.1)

Example 1.1.2. If g is given by an ordinary (locally integrable) function
g(xs in the sense that

<g,u)=f g(x)u(x)dx, (1-1-2)

then we have

<£?;. "> = j g(x)Tn/2e-h,rMu{\Ñ x) dx=fg(^r \e-^x/VT)u(x) dx.

Thus, gy is given by the locally integrable function

g;{x) = {ge-^){x/\Pr). (1.1.3)

Even when g is not an ordinary function, we will still use the symbolic
notation (1.1.2) for <g, w), so (1.1.3) may be thought of as a general formula
for g¿. Note that the family g¿ is obtained from g by the successive action of
two one-parameter groups: multiplication by the rapidly oscillating (as rf oo)
function e~iT* and magnification by composition with the transformation
x \-> x/Vt . The choice of the square root in (1.1.1) turns out to be the best
adapted to a general theory. For certain problems, it may be useful to replace
Vt by t" for some a other than 1/2 (see, for example, [5]).

The idea of combining magnification with multiplication by rapidly
oscillating functions goes back at least as far as [4] (see also [1], [10]), where it
is used in the localization of subelliptic estimates for differential operators
with variable coefficients. Even earlier, Lojasiewicz [8], [9] studied the limiting
behavior of distributions under magnification.

To measure the growth rate of g*, we make the following definition.
Definition 1.1.3. If S is any vector space with a distinguished class of

subsets called "bounded sets", we denote by SN(&) the set of families
[1, oo) 3t h»gT E S for which the set {r~Ng'T\r > 1} is bounded. The
intersection C\NeRSN(&) is denoted by ^"^(S). If t l-»gT belongs to
SN(&), we write gT = 0(tn).
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4 ALAN WEINSTEIN

Lemma 1.1.4. For any real N and t0 > 1, the set {TNg*\r0 > r > 1} is
bounded in <$ '(R").

Proof. Since <jN£, u) = <g, TN+ñ/2e-Hlfí')u(Vr jc)> and g is bounded on
each bounded subset of ^ (R"), the conclusion of the lemma reduces to the
fact that {TN+n/2e-i7v<-x)u(Vr x)\t0 > t > 1, « E A} is bounded for each
bounded set yi.   □

Lemma 1.1.5. The truth of the statement "g¿ = 0(tn)" depends only on the
germs of g and <p at the origin.

Proof. Suppose that g agrees with h and <p agrees with \p on some
neighborhood <& of the origin, and that g¿ = 0(jN). Let A Q ^(R") be any
bounded set of test functions, supported in the compact subset K. If t0 is
large enough so that K Q r0%, then <g¿, w> = <A¿, w> for all u e A and
t > t0. Since g¿ = OCr"), the set {<j~Nh¡, u)\t > t0, u E. A) is bounded.
By Lemma 1.1.4, the set {(j~Nh¿, u)\r0 > t > 1, u E A) is bounded as well.
Since the union of two bounded sets is bounded,[<j~Nh^, u)\r > \,u E. A)
is bounded. A was any bounded set, so we have h¿ £ O (rN).   □

Lemma 1.1.6. For every g and cp, there exists an N such that g¿ = O (rN).

Proof. Suppose first that g is a measure. If A is any bounded set of test
functions, the set {e~iTv{x)u(Vr x)\t > 1, u E A] is bounded in the uniform
norm, so the set

{<T-n/2g9T, h>|t > 1, u E A] = {<g, e-'^x)u(V^x))\r >1,uEA]

is bounded because g is a measure, and we have g¿ = 0{j"^2).
For the general case, we may assume by Lemma 1.1.5 that g has compact

support. By the results of §111, 7 of [11], g has finite order m and is therefore a
finite sum of with derivatives of measures. Now if A is a bounded set, the set
of wth derivatives of the elements of {T~mt7_'T,p(-,r)w(VT x)\r > 1, u E A) is
bounded in the uniform norm. Repeating the previous argument and using
the fact that a finite sum of bounded sets is bounded leads to the conclusion
thatg^CKr"-"/2).   □

Definition 1.1.7. If the set S = {N\g¿ = 0(jN)} is of the form [a, oo), we
define the order of g at (0, <p) to be a, and we denote it by O(0<p)(g). If
S = (- oo, oo), we define O(0ci)(g) = - oo. If S = (a, oo), we define O(0<p)(g)
to be a+, where a+ is a "fictitious number" considered to be greater than a
but less than every number in (a, oo).

It follows from Lemma 1.1.5 and the proof of Lemma 1.1.4 that O(0(p)(g)
depends only upon the germs of g and <p at the origin. Furthermore,
0<P,<p)(8) < w/2 + m, where m is the distribution order of %g for any % = 1
near the origin, and O(00)(g) < n/2 + m/2.
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1.2. Change of phase function. Our first main result concerns the depen-
dence of g^ (and hence O(0 v)(g)) upon the choice of <p.

Proposition 1.2.1. Let ip(x) — «pOO + q(x) + r(x), where q is a homo-
geneous quadratic polynomial and r(x) vanishes to order at least 3 at the origin.
Then O(0((l)(g) < N implies

g;-e-%=0(rN-1''2).

Proof. By the quadratic homogeneity of q, rq(x/Vr) = q(x), so g¿+q is
equal to e~iqg^. We conclude that g¿+? = 0(tn); writing

o-T — p~%T =  ar —  aT       +  pT       — p~'1<rr
otp + q + r        v       oc otp + q + r        ötp + q    '    ötp + q        *"       £><p

~ g<p + q + r        &<p + q

and substituting <p + q for <p, we have reduced the problem to the case q = 0.
Assuming, then, that \p = cp + r, we have

T-"/2<g; - g;, «> = <g, {<?-*<»<*>••■'<*» - e-'^x)}u(V^x))

= ^g-M^){e-^) _ iju(v7a;)>
= <g,e-'^wt;;(Wx)>,

where

«£(*)- [e-'^/^)- l]t/(x).

It   suffices   to   show   that   j?^ = {ti/2ü„t(x)|t > 1, i/E/í}   is   bounded
whenever ,4 is bounded, for we will have

T-(N~i/2\g; - g;, «> = r^+I/2<g;, t>;> = <■-"<£, t'/2«;)

which, since g¿ = 0(tn), will be bounded for t > l,u E A.
To show that BA is bounded, we begin by choosing a function % E ^ (Rn)

which is identically 1 on the supports of all u in A. Then

«£(*) =[<?-''Tr(*/Vi) - l]9C(x)M(x).

Since the product of two bounded sets is bounded (by Leibniz' rule for
derivatives), it suffices to show the boundedness of

B%= {Ti/2^e-/rKvV?) _ 1]9C(X)|T > l}.

Since r vanishes to order at least 3 at the origin, Taylor's formula gives

r(x) = 2  rJk,(x)XjXkx„
j,k,l

with rjkl smooth. Hence, the typical element of B% may be written as

wt(x) = Ti/2|-e-'/v^2o„(vV?)w/ _ l]%(x).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 ALAN WEINSTEIN

Writing e~'y — 1 = yh(y), where h is C°°, we have

wT(x) = t'/2[t-'/22 rJU(x/^)xJxkxth

■{i/Vï 2 ^(x/V?)*^*,)]^*)
= 2 rJkl(x/VT)xjXkx,h(l/VT 2 rJkl(x/VT)xjXkx,)%(x).

Let AT be a closed ball about the origin containing the support of 9C. By
estimating the derivatives of 9C and rJk, on A", and the derivatives of h on the
compact set{^,rJkl(y)xjXkxl\x>y E K), we obtain estimates, uniform in t, for
the derivatives of wT(x), so B<,x is bounded.   □

Corollary 1.2.2. The order O(0v)(g) depends upon <p only through its
differential d<p(0).

Proof. Suppose that g¿ = 0(tn), and d<p(0) = ¿ty(0). Then 4>(x) = <p(x)
+ c7(x) + r(x), as in Proposition 1.2.1, and we have gj — e~'qg^ =
0(rN-^2),so

g¡ = e-'X + 0{rN~^2) = e-«0(rN) + 0{tn~^2) = 0(t").   D

Definition  1.2.3.  For g 6 ^'(R") and £ E R"*, we define the order
°(o.i)(c?) of g at (0, Ö to be O(0ip)(g), for any <p such that dq>(0) = £.

In computing O(0i)(g), it is often convenient to take <p to be the linear
function <p(x) = <£, x}; in this case, we will write g¡ for g¿.

Example 1.2.4. Let g be a C* function vanishing to order at least k at 0, i.e.
g(x) = 2|„|_ft ca(x)xa, where the ea's are continuous functions. We compute
O(o,o)(e?) by looking at

The continuous functions T*/2gJ(x) = 1,M=kca(x/VT )x" are uniformly
bounded on compact sets, so they are bounded in ^ '(Rrt)> and we conclude
that O(00)(g) < — k/2. If ca(0) =£ 0 for some a, i.e. if g vanishes exactly to
order k, we can conclude that O(00)(g) = — k/2. (Use a test function »
supported in a set on which 2|a|=/tca(0)xa > 0)

For £ ̂  0, we have

<£*> «>=/*( 77=" )e-ir<wVÎ>K(*) dx =/ e-/Vi <^>g( -*=- )«(*) dx.

Since | =5^ 0, we may integrate by parts k times with the operator L =
2£, 3/3x, to obtain
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ORDER AND SYMBOL OF A DISTRIBUTION 7

Now

LM t M -% ("}-j,2<lj4 v7 ) • <L*~4)W (i-2-2)
Since g vanishes to order at least k at the origin, Ljg vanishes to order at least
k — j there, and the estimate

(Z/g)(x/V7)= 0(r-(k-^2)

holds uniformly on bounded sets of x. It follows from (1.2.2) that, for any
bounded set A in ^(R"), the functions {rk/2Lk(g(x/Vr )u(x))\t > 1, u E
A] are uniformly bounded on R". Since the supports of these functions are
contained in a fixed bounded set, it follows from (1.2.1) that g¡ =
0(r-*/2-*/2) = 0(T~k), and Om)(g) < - k.

If we ignore the vanishing of g at the origin, we still have uniform
boundedness for {Lkg(x/Vr )u(x)\t > 1, u E A), and we conclude that
O(0i)(g) < - k/2. In particular, if g is C00 near the origin, we have O(0i) =
— oo. Now if g is Ck near the origin, it is the sum of a polynomial and a
function which vanishes to order k, so we may conclude that O(0i) < — k.
To summarize:

Proposition 1.2.5. Let g be equal to a C' function on a neighborhood of the
origin. Then O(0i)(g) = — I for £=£0, while O(00)(g) = — k/2, where k is the
order of vanishing of g at the origin.

Example 1.2.6. Letg(x) = 5(x,)5(x2) • • • 8(xr) for some r < n, i.e.

<á?> M> =/ "(°> 0, . . . ,0,xr+u. . . , xn) dxr+l ■ ■ ■ dxn.

Then we have

= r"/2f e-"V-i^u(0, 0,...,0,V^xr+l,...,V^xn)dxr+r-- dx„

= Tr'2f e-iVTV-i^u(0, 0,...,0,xr+l,..., xn) dxr+l ■ ■ ■ dx„.

If £.+1 = • • • = |„ = 0, we have O(0,{)(g) = r/2, while if £r+1 through £„ are
not all zero we can integrate by parts as in Example 1.2.4 to conclude that
°(o,i)(g) - -«>■

The order O(0i)(g) appears to be a measure of the degree of singularity of
the distribution g at 0, as observed in the direction £. We will show in §2.2
that Om)(g) = - oo if £ =£ 0 and (0, £) does not belong to the wavefront set
(see [6]) of g.
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8 ALAN WEINSTEIN

13. Definition of the symbol. If Om)(g) < N, we will define the symbol of
order TV of g at (0, £) to be, essentially, the image of g¿ in
SN(<%'(Rn))/SAr~I/2(6D'(R'')), where d<p(0) = £. The following definitions are
designed to accommodate the dependence of g¿ on the quadratic part of <p.

Définition 1.3.1. For £ E R"*, we define $-(0i) to be the set of equivalence
classes [<p] of real valued C°° functions <p such that <p(0) = 0, d<p(0) = £, two
functions <pj and <p2 being considered equivalent if <p, — <p2 vanishes to order
at least three at 0. The equivalence class [<p] is called the 2-jet of tp.

Remarks 1.3.2. (a) If [q>] and [\p] are any two elements of $-(0{), there is a
unique homogeneous quadratic polynomial q on R" such that [\p] = [<p + q\.
Thus, $-(0{) is an affine space modeled on the vector space of quadratic
functions.

(b) We can identify the elements of $-(0f} with certain lagrangian subspaces
(see [6]) of the tangent space at (0, £) to the cotangent bundle T*R" «R"X
Rn*. In fact, given <p with dq>(0) = £, the graph {(x, d<p(x))\x E R"} of the
differential dtp is a lagrangian submanifold of T*R", passing through (0, £),
whose tangent space at (0, £) depends only upon the 2-jet [9]. Every
lagrangian subspace of Ti0£)T*Rn which is transversal to the "vertical"
T(0i()T$Rn arises in this way from an element of £(0i).

Definition 1.3.3. Let S be any module over ¿"(R"). For any £ E R"*,
we define the "twisted" space S(0i) to be the set of mappings [<p] h» g(9] from
^(0f{) to S such that

glv+q) = e~iqgW\ (1.3.1)
for each quadratic function q.

It follows from Remarks 1.3.2 that, for any [<p] E £(0i), the evaluation map
g[ ] h» g[(J>] is an isomorphism from £(0 £) to S. Any structure on S which is
left invariant by all operators of multiplication by e~'q, q quadratic, may be
carried over to a structure of the same type on S(0^}. For example, ë(0i) is
always a module over C°°(Rn). Furthermore, if S has an invariant class of
bounded sets, we can define the spaces SN{S{0£)).

Definition 1.3.4. For £ E R"\ we define the symbol space S${)(R") to be

Remark 1.3.5. S^tTT1) is naturally isomorphic to

s» {wfàvà/s»-x'2 (^W)(04)).
Definition 1.3.6. Given g E ^'(R") and £ E Rn* such that 0(O,£)(g) < N,

we define the symbol of order N o (¿¿¿g) of g at (0, £) to be the element of
S(ui{)(R") which assigns to each [q>] E ^(0{) the image in
SA,'(6D'(Tr))/SAr-1/2(öD'(Rn)) of the family g; of Definition 1.1.1.
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ORDER AND SYMBOL OF A DISTRIBUTION 9

It is Proposition 1.2.1 which makes this definition allowable. In computing
a(o{)(g) for a specific g, it suffices to determine the behavior modulo
sii- i/2(ßj) '(r«)) 0f the family g¿ for a particular <p with dtp(0) = £. In practice,
we usually use <p(x) = <£, x>, perhaps after a change of coordinates adapted
to the distribution g under study.

The next lemma is a trivial consequence of Definition 1.3.6.

Lemma 1.3.7. (a) // 0(Oi)(g) < N, then O(0i)(g) < N - 1/2 if and only if
<£)(£) = 0.

(b)//O(0ii)(g,) < NandOi0A)(gJ < N,then

°(o,o(gi + g2) = °mo(gi) + »&©(&)•
Example 1.3.8. Let g be a Ck+l function vanishing to order at least k at 0.

We may write g(x) = 2|a|_Acax" + h(x), where the ca's are constants and h
is a C*+1 function vanishing to order at least k + 1 at 0.

For £ = 0, we found in Example 1.2.4 that 0(OO)(g) < - k/2, so it is
natural to compute the symbol of order - k/2. But O(0 0)(h) < — k/2 —
1/2, so by Lemma 1.3.7 we have

g0T(x) = t-*/2 2   c„x°mod s-*/2-i/2 (<$'(R»)).
|o|-A

Thus, the symbol a^2(g) is essentially t~*/2 times the terms of degree k in
the Taylor series for g at the origin.

For £ ¥= 0, we have by Example 1.2.4 that O(0£)(g) < - k, so the natural
symbol to calculate is that of order — k; but O(0i)(A) < — k - 1 and

ö(o£)(   2   £,ax"] = -oo       (Proposition 1.2.5),
V|a| = * /

soa(ôj)(«) = °-
Example 1.3.9. Let g(x) = 5(x,) • • • 8(xr), as in Example 1.2.6. We saw

there  that  O(0£)(g) - r/2  if £r+1 = • • • = £„ = 0  and  O(0>i)(g) = -oo
otherwise. When £.+i ™ * * ' = £„ = 0, we have

<g(, "> = Tr^u(0,.... 0, x,+„ . ..,x„) dxr+l • • • dxn = Trl\g, u>,

so the symbol 0(r<{f)(g) is essentially t'/2 times g itself.
Example 1.3.10. Let n = \, g(x) = 8(m\x), m > 0; i.e. <g, «> =

(-lyV^.Then

<£, „> = T'/\g, e-hixu(V^x)) - T'/2(-l)M{*-fr€,1K(V7x)}(M)(0)

= TI/2{(iröm«(0) + Oít"1-'/2)}.

If £ *= 0, we have O(0>{)(5(m)) = w + 1/2, and {S(m)}£ = Tm+I/2(i8m*w>
mod 0(0, so the symbol of order m + 1/2 of 5(m) is essentially Tm+I/2
times (i£)m5(0).
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10 ALAN WEINSTEIN

If   £ = 0,   we   have   <(ô(m)}5, w> = tx/\- l)m{w(Vr x)}(m)(0) =
Tm/2+1/2(-l)m«(m)(0), so {8(m% = Tm/2+,/25('"), O^o,^"0) = m/2 + 1/2,
and the symbol of 5<m) at (0, 0) is essentially m/2 + 1/2 times 5(m) itself.

We leave it to the reader to verify that everything we have stated remains
true if m < 0, e.g. for the Heaviside function

8(-„w.{0    ;<0}.
In all the examples above, the symbol exhibited a certain homogeneity with

respect to t. We will now formalize this situation with some definitions.
Definition 1.3.11. For each real number N, we define an embedding

cN: ^'(R'Vi)-* S(o,{)(R") by assigning to each element h of ^'(R")^,«) the
image in

sN{^"\^/sN-^2{^f\^
of the family r \-^rNh.

Definition 1.3.12. Let 0(Oii)(g) < N, and suppose that o^4)(g) belongs to
the image of CN. Then we say that g is homogeneous of degree N at (0, £) and
we call Cñ\o"xi)(g)) E ^'(R")«).« tne homogeneous N-symbol of g at (0, £).

To establish that a given distribution g is homogeneous of degree N at
(0, £), it suffices to check that, for a particular <p with d<p(0) = £, g£ = r£y +
0(tn~]/2), where y is a fixed element of ^'(Rn). The element of €xR")(0ii)
which assigns y to [<p] is then the homogeneous A/-symbol of g at (0, £). For
instance, the computation of Example 1.3.10 shows that 5(m) is homogeneous
of order m + 1/2 [order m/2 + 1/2] at (0, £) if £ =£ 0 [£ = 0], and its
principal symbol is 5(0) [8(m)].

Here is an example of a nonhomogeneous distribution.
Example 1.3.13. Let g(x) = l/(x2 - ln(x2)) (g(0) = 0). For £ = 0, we

have

«M-i(-Ê-)-Vt  /      x2 — rln x2 + t In t
As t->oo, gj(x) approaches zero uniformly on compact sets, but more

slowly than any power of r. By testing gj against nonnegative functions, we
find that 0(O,o)( g) = 0, but g is clearly not homogeneous at (0, 0). (Note that,
by Example 1.2.4, 0 is the largest order which a continuous function can
have. Any continuous function vanishing at 0 and satisfying a Holder
condition of order a at 0 would have order < - a/2 at (0, 0).)

To give a description of the symbol, and also to analyze the case £ =£ 0, we
write

1     f    /        In x2 - x2/iw-8   -~    »if-  U/1In t   ,   ' In t
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Expanding this by the formula 1/(1 — a) = 1 + a + a2/{I — a), we get

*(v7)-¿(1 + ¿H-t))
+ ̂H-t)!s(tT)-

It follows, first of all, that g0T = g(x/Vr" ) = 1/ln t + 0(l/(ln t)2), so we
have found the symbol of gT at (0, 0), modulo l/(ln t)2.

For £ t^ 0, we look at

gfT=*>-/V^g(x/W)

= e-/vÇî, _L  +  _L^(lnjc2_xl\
InT      (In t)2 V T /

The first term is 0(t~°°) since £^=0. The last term is 0(1/(hit)3), since
g(x/Vr ) = 0(l/ln t). We conclude that g¡ = 0(l/(ln t)2) and that

r^-^Axl      modo[_L^]
(In t)2 \ (In t)3 /

Thus g¡ goes to zero at least "twice as fast" for £ ^ 0 as for £ = 0. (We have
not been able to determine the asymptotic behavior of

e-'V^lnx2/(lnT)2.)

1.4. Composition with diffeomorphisms. If 9: R" -» R" is a diffeomorphism
and g is an ordinary function on R", we have the change of variables formula

f g(9 (x))u(x) dx=J g(x)u(0 - ■ (x))Je , (x) dx,
where Je i is the absolute value of the Jacobian determinant
det(3(x, » 6~x)/dXj). If g is any distribution, the pullback g ° 9 is accor-
dingly defined by

<g°0,u> = <g,Jo->'(«°0~ly>- 0.4.1)

The following proposition shows that our symbols behave nicely under
pullback.

Proposition 1.4.1. Let 9: R" -h> R" be a diffeomorphism such that 9(0) = 0.
Then 0(O,ç)(g) < N implies

{g'0%.$-g¡' V-oíy-'/2),
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12 ALAN WEINSTEIN

where T09: R" -> R" is the derivative of 9 at 0.

Proof. If 9 is a linear mapping, it is easy to check that (g ° 9)^ „ is equal
to g¿ ° r0ô. On the other hand, the set of 9 for which the proposition is true is
closed under composition, so it suffices to consider the case where T09 is the
identity mapping.

We have

T-"/2<(g°0);„fl-g;,«>

"/ (8 ° 9)(x)e-iT(-i"e^x)u(V^x) dx - j g(x)e-i7*Mu(Vï x) dx

= f g(x)e-iT*(x)u(Vï 9 -• (x))jä-, (x) dx - ( g(x)e-iT*Mu(Vï x) dx

= f g(x)e-iT,fM{u(V^9-1 (x))Je-, (x) - «(Vtx)} ¿x.

The proof now follows the pattern established in Proposition 1.2.1. The
expression in braces in the last integral is equal to t>J(Vr x), where

ottT(x) - ii(vC0-'(x/Vi ))/,-. (*/V7) - "(x).
It suffices to show that the set BA = {t'/2i>J(x)|t > 1, u E A) is bounded
whenever A is bounded.

We will split up uj(x) as

©;(*) =[m(Vt"0-'(x/Vt")) - w(x)]ye-,(x/W)

+ «(*)[/,-. (*/W)-i] (1.4.2)
and analyze each of the bracketed expressions by Taylor's theorem. In fact,
we have:

where

Also,

and

u{y) = «(x) + 2  a/(x,y)(yj - xj) (1.4.3)
J-i

a/(x,y) - jf' -g- (x + f(v - x)) dt. (1.4.4)

^-.(x) = l + 2  9(x)x,, (1.4.6)
y-i
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From (1.4.5), we have

[*'-te)M£+J.M*)?)
= x,. + t-'/2 2   bJ-^)xjXk.

j,k~\ \   VT   '

Combining this with (1.4.3) gives

On the other hand, from (1.4.6) we have

Substituting (1.4.7) and (1.4.8) into (1.4.2) gives

(1.4.8)

rVV!<W

2

(1.4.9)

To show that the right-hand side of (1.4.9) is bounded, we choose a ball
K C R", centered at the origin, containing the supports of all u E A. Since
the bracketed expression in (1.4.9) is just k(Vt 9~1(x/Vt )) — u(x) it is zero
unless x or Vt0~'(x/Vt) belongs to K, i.e. unless x belongs to
K u Vt 0(1/Vt .rv). But this set is uniformly bounded for t > 1, since 0
satisfies a uniform Lipschitz condition on K. Let L be a compact set
containing K and all the Vt 9(1/Vt K) for t > 1; then the bracketed
expression in (1.4.9) vanishes unless x (and hence Vt 9~\x/Vt)) belongs
to L, and it follows from (1.4.9) that the support of T1/2t>J(x) is contained in
L.

The only expression on the right-hand side of (1.4.9) whose derivatives are
not uniformly bounded on L is a"(x, Vt 9~1(x/Vt )). But the integral
representation (1.4.4) shows that the derivatives of af(x,y) are uniformly (for
u £ A) bounded on L x L, and it is simple to check that the derivatives of
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14 ALAN WEINSTEIN

Vt 9 ~ '(x/Vt ) are uniformly (for t > 1) bounded on L. Applying the chain
rule, we are done.   □

If 9 is a diffeomorphism with 9(0) = 0, and £ E R"*, then £ ° T09 is also an
element of R"*. Combining the proposition just proven with Corollary 1.2.2,
we have the following invariance property of the order.

Corollary 1.4.2. Let 9: R" -» R" be a diffeomorphism with 9(0) = 0, g E
<3>'(R"), and i E R"'. Then O^.^g » 9) - Om)(g).

To state the invariance property of the symbol, we need to specify the
action of diffeomorphisms on the symbol spaces of Definition 1.3.4. First of
all, if 9: R^R" is a diffeomorphism with 0(0) = 0, then we let 9 act on
^ '(R") by h H> h ° T09. This action preserves bounded sets, so it lifts to an
action on SN(s£)'(Rn))/SN-i/2(GÙ'(R")). On the other hand, 9 induces a map
from J(0ii) to $.(0ji o T 9) by [<p] |-» [<p ° 9]. (This map depends upon the second
derivative of 9 at 0.) Composition with these actions of 9 gives a map from
S^^R") to S$¿ o ̂ (R"), which we denote by a(0O(9). (o(m(9) can actually
be identified with the symbol in our sense of the Schwartz kernel of the
operator ° 9.) Chasing through the definitions gives the following result.

Corollary 1.4.3 Let 0(O>i)(g) < N, 9:Rn^>Rn a diffeomorphism with
9(0) = 0. Then

0(o.^T09)(g °9) = om)(9)[am)(g)].

1.5. Multiplication by C°° functions, tensor products.

Proposition 1.5.1. Let p be a complex-valued C°° function vanishing'to
order > k at 0. Suppose 0(O,£)(g) < N. Then1

(a) Om)(pg) < N - k/2;
(b) if p(x) = 2|a¡ = ¿caxa + q(x), where q vanishes to order > k + I at 0,

then

°u/2(pg) = r W 2 vkiw       o-5-1)
(77ie symbol space S^^R") is a module over C°°(R"). See the discussion
following Definition 1.3.3.)

Proof, (a) We have

r-"/2<(pg)l, «> =/g(x)e-^(jrV(x)«(Wx) dx

= J g(x)e-ÍT<P(x)üuT(V^ x) ¿¡c

where v¿yx) = p(x/Vr )u(x). As usual, we need to show that (t*/2üJ|t >
1, u E A] is bounded whenever,4 is bounded. Writing/>(x) = '2\a\=kPa(x)xa,
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we have

\ Vt   / \a\-k      V Vt   /

so

\|o| = *        Wt    /       /

which is obviously bounded.
(b) By (a), it suffices to check (1.5.1) for the case wherep(x) = 2|0|_* caxa.

But, in this case (pg)^ is equal tor~k/2pg*.   □
Remark 1.5.2. With/? as in Proposition 1.5.1, we have by Example 1.3.8

that 0{m(p) < - k/2, and a¿{2(p) = r-k/%ahkcaxa (identifying €)'
with fy by choosing the 2-jet of the zero function in ^(o,o)(R"))- Therefore, we
may write (1.5.1) in the form

ofá>k/\pg) = Mft/0)Ko (*)) i1-5-2)
This suggests that Proposition 1.5.1 should be a special case of a result valid
for the product of two distributions, whenever that product exists. We suspect
that the correct expression should be a "convolution" of the form

*(0Lö(Si&) "/ (ff(ai)(£i))(*«w-i)(&)) <*»• (L5-3)

We are still far from making sense out of 1.5.3, much less proving it-here are
some of the difficulties.

(a) It is not clear at what orders the symbols are to be taken.
(b) To obtain the integrand, we must multiply elements of §(07)) and S(o,£-^>

to obtain an element of S(o;£)- Formally, this presents no problem since
addition of functions induces a natural operation from ^¿¿(R") X
$-(o,$_,,)(Rn) to £(0i)(R"). However, in multiplying the two symbols together,
we are essentially multiplying distributions, and it may be necessary to
assume, as an additional hypothesis, that this multiplication is possible.

(c) How does one make sense out of the integral in (1.5.3)? It is necessary
to understand the behavior of oi0()(g) as a function of £. Should it really be
considered as some kind of distribution in £?

Problem 1.5.3. It can occur that the product on the right-hand side of
(1.5.1) is zero, even if both factors "2¡a\=kcaxa and cr(o,£)(g) are nonzero. In
this case, we may conclude that O(0()(pg) < N — k/2 — 1/2. Find a formula
for o(p¿)k/2~l/2(pg). It will have to depend upon the terms of order k + 1 in
the Taylor expansion of p, as well as the "term of order A^ — 1/2 in the
asymptotic expansion of g£."

The order and symbol behave in a very simple way with respect to the
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16 ALAN WEINSTEIN

tensor product of distributions. We need only to describe some natural
mappings. We writ^ gl<8>g2, or gi(x)g2(v) for the tensor product, in
6D'(R"'+n0, of g, E ^'(R"') and g2 E ^'(R"2)- This operation induces in a
natural way products, which we also denote by <S>, from SN'(SB'(R"')) X
SWK^'(R"2))to SA,,+/V2(ßD'(R"'+"J)) and from

SN< (^'(R"'))/SN'~1/2 (^'(R"')) X 5^(ÖD'(R"2))/5N2_I/:2(6Ö'(R''2))

to
§N, + N2 (6j)VR"i-t-''2)) /SNi + N2~1/2 (6D'(R"'+"2)).

On the other hand, we have a natural identification of Rn* X Rn* with
(Rn<+n>)*, and the operation

(<¡p,(x),<p2O0) H- (<Pi(*) + <h(y))
then induces an injection of Jm)(R">) X J(0ri)(R"ï) into •V«,,,))^"1*"2)-
Putting all these mappings together, we obtain a mapping

S$o(R»0 x $&,<*•) ® S&t.,))(R"'+"0.
We leave the proof of the following to the reader.

Proposition 1.5.4. Let g, E ty'ÇR"'), O(0ji)(g,) < Nx\ g2 E ^'(R"2),
<W&) < AT2. 7Ä«i 0(O.(i),))(g, ® ga) < #, + N2, and

°&A"i)(gi®82) - °&>(si) ® «$,>(&)■ O-5-4)
Remark 1.5.5. Proposition 1.5.4 shows that, even if one is in the end

interested only in the behavior of distributions for £ ^ 0, it is still useful to
understand the case £ = 0.

Example 1.5.6. Let g £ ^'(R2) be the characteristic function of a region in
the plane bounded by a piecewise smooth curve. Suppose that the origin is at
a "corner" of this curve; i.e. the tangents to the two pieces of the curve at the
origin are neither parallel nor antiparallel. After applying a diffeomorphism,
an operation whose effect on the order and symbol is easily calculated from
Corollary 1.4.3 and Proposition 1.5.1, we may bring g locally into the form

8(xl,x2)=ll    0<xlt0<x2\
10,        otherwise     j '

i.e. g = 5(_I) ® ô(_1), where 5(_l) is the Heaviside function.
By the result mentioned at the end of Example 1.3.10, combined with

Proposition 1.5.4, we have

}Mti*iï)(g) =

0, £, = 0, £2 = 0,
-Ï.    £, = 0,£2^0or£,^0,£2 = 0,
-1,     £,^0,£2^0.
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For the symbols we have (modulo the usual identifications)

5(-»(8)5(-I), £, = £2 = 0, N = 0,
T-i/25(-0 g 5(0)( £, - 0, £2 * 0, N - -1/2,
T-./25(0) g, 5(-i)s ^ ^ o, £2 = 0, ¿V - -1/2,
T-'5(0) ® 5(0), ^0,^^0, N= -1.

Going back to the original g, we may conclude, for instance, that the order
with respect to a £ which is normal to neither of the incoming edges is — 1,
and that the symbol of order — 1 with respect to a suitably chosen element of
7(0i) is equal to r~ ' times the delta function at the origin.

It should be interesting to analyze cases where the boundary of the region
has more complicated singularities such as cusps.

1.6. Vector-valued distributions and distributions on manifolds. Let F be a
finite-dimensional vector space over C. The space ^'(R"; V) of F-valued
distributions on R" is defined as the dual space to the space ^(R"; V*) of
compactly supported C00 functions on R" with values in V*. There are
natural identifications

^'(R"; V) « <%'(R") ®c V,       <3)(Rn; V*) « ^(R") ®c V*.
Everything which we have done up to now may be repeated for vector-valued
distributions. Whenever the notation (R") occurs in the name of a space of
distributions or symbols we create a new space by tensoring with V and
replacing the notation (Rn) by (R"; V). A little extra must be said regarding
products. In Proposition 1.5.1, if g £ ty'ÇR"; V), we can allow/» to take
values in the space Hom(F, W), where W is another vector space; pg then
belongs to ^'(R"; W). In Proposition 1.5.4, if g, £ ^'(R"'; F,) and g2 £
^'(R"'; V2), g, <8> g2 belongs to ßD'(R"'+"2; V\ ® ^i)-

Next, we may replace R" by any of its open sets. Namely, if T C R" is
open, ^(Y) is the subspace of ^(R") consisting of functions whose support
is contained in T. The dual space 6D(CV) is denoted by ^'(Y); its elements
are called distributions on T. If °V Q <¥, the inclusion 6Ù(cV)->6Ù(Gti!>)
induces a restriction mapping from ^X0^) to ^'(Y). If T contains the
origin, we may define O(0t)(g) and a(o{)(g) for g £ fy'CY) as follows. Choose
aC function % on R" with support in T such that % = 1 on a neigh-
borhood of the origin. Now %g is the restriction of an element g E ^'(R");
we may define the order and symbol of g to be the order and symbol of g in
the usual sense. This is independent of % because the order and symbol
depend only upon local behavior (Lemma 1.1.5). Notice that, although g is
defined only on % the symbol a^t)(g) still lies in S$i)(R'1).

Of course, we can combine the two generalizations just made, defining

0(ó.(í„í2))U) -■
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18 ALAN WEINSTEIN

K-valued distributions on T and their orders and symbols.
If % and % are open subsets of R", and Vx and V2 are vector spaces, a

diffeomorphism
0: % X Vx -> % X V2

is called a bundle isomorphism if the first component of 0(x, v) depends only
on x, and the second component depends linearly upon v for each fixed x.
We may write, therefore, 0(x, v) = (9(x), p(x) ■ v), where 9 is a
diffeomorphism from % to % and/? is a C°° map from % to Hom(F,, V^.
Using 0 we may define a pullback operation

0*:6D'(%. ^)-*^'(cVi»^i)

in the following manner. If u E <$(%, F,), we define 0«m £ <$>(%, V¿ as
the function whose graph is the image under 0 of the graph of u; i.e.

(Q.u)(x)=p(9-l(x))-u(9-l(x)).

Now, for g £ ÖD'(%» ̂ 2>> we define 0*g by

<0*g,H> = <g,7fi-,-0,M>. (1.6.1)

(If Vx = F2 and/7 is the identity matrix, this reduces to (1.4.1).)
Combining Corollaries 1.4.2 and 1.4.3 with Proposition 1.5.1, we can

describe the effect of pullback by a bundle isomorphism on the order and
symbol.

Proposition 1.6.1. Let 0(x, t>) = (9(x),p(x)- v) be a bundle map from
% X Vx to % X V2, g E <%'(%; V), £ £ R"\ Suppose that % and %
contain the origin, and 9(0) = 0. Then:

(i)O(o.{o7-otf)(0*g)=O(O>î)(g);
(h) Om)(g)<N implies that am. 7-o9)(0*g) = o-(0ií)($)[a(0>í)(g)], where

a(o¿)(®)from

S(^)(R",F2)«Sfo,ö(R")®F2
to

Sfc . T09) (R";   K, ) « Sfo . ^ (R-) ®  K,
is the tensor product of a(0i)(ö): S^^R") -» S$¿ 0 ̂ (R") (see the discussion
before Corollary 1.4.3) with/>_1(0): V2 -> K,.

We can now go on to discuss distributions on manifolds. Let A' be a
paracompact C°° manifold, E^> X a complex vector bundle. A chart for E
consists of an open subset % ç X and a diffeomorphism

*:ir-|((îl)-»iVx V,
where T is an open set in an euclidean space, F is a vector space, the first
component of ^(v) depends only upon w(v), and the second component of
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^(v) depends linearly upon v for ir(\) fixed. We denote by \p: % -» T the
diffeomorphism for which the first component of ^ is \p ° it. Given charts ^a
and typ for E, the diffeomorphism

©/?*: U% n %) x va - ^(%a n %) x vp
defined by ^fß ° ^7 ' is a bundle isomorphism.

We may now define an E-valued distribution on A' to be a rule g which
assigns to each chart tya for E a distribution g„ E 6D'(%> Va) hi such a way
that, if ^a and ^ß are any two charts, then the pullback operator 0|a maps
the restriction of gß to ^(%a n %^) to the restriction of ga to ^„(^ n %p)-
The space of E-valued distributions on X is denoted by ty '(X; E).

There is also a global definition of distributions on manifolds. If E is any
vector bundle over X, we denote by tf)(X; E) the space of compactly
supported C00 sections of E; a subset A of tf)(X; E) is bounded if all its
elements are supported in a fixed compact set K and if, with respect to a
finite set of coordinate systems covering K, the partial derivatives of each
order of the elements of A are uniformly bounded. Let ÜXX be the bundle of
1-densities on X (see §3.3 or p. 14 of [2]). Each smooth section of E defines a
linear functional on ^(X, E* <8> 2XX) which is bounded on bounded sets; in
fact, if g is a section of E and u E fy (X, E* ® tixX), we may pair g with u to
obtain an element (g, u) of ty^X). Integrating (g, u) over X gives a
complex number < g, h>. We may define <>D '(^î £) to be the space of all
linear functionals on tf)(X; E* ® 0,) which are bounded on bounded sets. It
is not hard to check that this definition agrees with the previous one. (The
densities are implicitly contained in the previous definition because of the
Jacobian factor in the pullback formula (1.6.1).)

Now let g be an E-valued distribution onl.xa point of X, and £ E T*X a
cotangent vector at x. Given any chart tya for E such that \pa(x) = 0,
£ ° TQy¡i~x is a cotangent vector (0, £a) at the origin in R", so the order
0(O^(gj is defined. It is easy to check that £„ = £ß ° T09ßa, so by
Proposition 1.6.1 we have, restricting to the images of %a n %#,

0«W.)(&»)  =   °(O,i,o7-o^)(0|Q^)  =   O(0Aß)(gß).

This justifies the following definition.
Definition 1.6.2. Let g E <%'(X; E), x E X, £ E T*X. Then 0((g) is

defined to be O(0ia)(ga), where ^a is any chart for E such that ipa(x) = 0.
Next we define the space S^(X; E) in which the symbol o^(g) will lie.

The transformation laws in Corollary 1.4.3 and Proposition 1.6.1 show that
the symbol should live on the tangent space TXX and should have values in
the fibre Ex of E over x.

To construct the "twisted" spaces at £, we consider the space f((X) of
2-jets of real valued C00 functions «poní such that <p(x) = 0 and dcp(x) = £,
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two functions <p, and <p2 being considered equivalent if <p, — <p2 vanishes to
order at least three at x. As in §1.3, we can show that $ç(X) is an affine space
modeled on the vector space of quadratic functions on TXX, and that the
elements of %(X) can be identified with those lagrangian subspaces of the
tangent space T(T*X which are transversal to the fibre. Imitating Definition
1.3.3, we define, for each C00(rxA')-module &, the twisted space S¿ consis-
ting of the mappings [<p] \-*gM from %(X) to S such that gM+q - <?""%,]
for each quadratic function q (the "sum" [<p] + q refers to the affine structure
on %(X)).

Finally, we define S^ (X) to be

[^x^))/FrT7rmw)]f
and %%(X; E) to be %%(X) ® Ex.

Any chart ¥„ for E such that ^„(x) = 0 induces in a canonical way an
isomorphism o¿ka from %^(X; E) to S$£)(R"; Va). We leave it to the reader
to write down the explicit definition of this isomorphism and to check that, if
¥„ and ¥p are two such charts, then

Proposition 1.6.1 (b) now applies to justify the following definition.
Definition 1.6.3. Let g £ ^'(X, E), x E X, £ E T*X, 0((g) < N. Then

<>((g) e §f (X; E) is defined to be (o^J-^a^gJ], where tf„ is any
chart for E such that ^„(x) = 0.

Remark 1.6.4. If for some ^a with <^a(x) = 0, ga is homogeneous of degree
N at (0, £„) (see Definition 1.3.12), then this is true for all such a, and we say
that g is homogeneous of order N at £. In thiscase^ the homogeneous
A/-symbol of g is an element of the twisted space tf)'(TxX) ® Ex of mappings
assigning an Ex-valued distribution on TXX to each element of J((X).

Example 1.6.5. Let Y çz X be a submanifold of codimension r,8E fy'(X)
a smooth delta function along Y; i.e. given any chart \pa such that the image
of Y is defined by x, = • • • = xr = 0, 8a has the form

a(xr+i,   ..,xn)5(x,)- • • 5(xr),

where a is a smooth function.
Applying Example 1.3.9 and Proposition 1.5.1, we conclude the following

for x £ y and £ £ 7? X.
(i) 01(5) = - oo if £ does not belong to the conormal bundle of Y.
(ii) If £ does belong to the conormal bundle of Y, then 5 is homogeneous of

order r/2 at £; the homogeneous TV-symbol of 5 at £ assigns to certain
distinguished elements (see (iii) below) of fy((X) a smooth delta function
along TXY ç TXX which is invariant under translations in the direction of
T Y.
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(iii) The distinguished elements of ^(X) are the 2-jets of functions q> such
that d<p(x) = £ and <p is identically zero on Y. The corresponding lagrangian
subspaces of T((T*X) are those which have the maximal intersection (of
dimension n — r) with the tangent space at £ to the conormal bundle of Y.

In Theorem 3.3.7, we will see that this description of the symbol of a
smooth delta function remains valid for any Fourier integral distribution-the
conormal bundle of Y being replaced by an arbitrary conic lagrangian
submanifold of T*X.

II. PSEUDODIFFERENTIAL OPERATORS AND THE WAVEFRONT SET

2.0. Introduciion.The notion of localizing distributions in the cotangent
bundle is closely tied to the action of pseudodifferential operators. Given a
distribution g £ ^'(X), the common zero set of the principal symbols of
pseudodifferential operators P for which Pg is smooth is a closed come subset
of t*X (the dot over the T indicates that the zero section has been deleted),
the so-called wavefront set WF(g) of g. For each £ £ t* X, the quotient of
^'(X) by those distributions whose wavefront set does not contain £ is called
the space of microfunctions at £; we denote it by <Dlti(Ar). Since the projection
into X of WF(g) is the singular support of g (see [6, Theorem 2.5.3]), it
follows that g is determined modulo S (the C00 functions) by its image in all
the 131li(Ar) as £ runs over f*X. With this observation, we can identify
^¡'(X)/&(X) with the global sections of the sheaf 9H(Ar) over t*X whose
stalks are the 91^ (X).

The present work on the symbol of a distribution was intended partly as an
attempt to obtain a "picture" of 911 (X) by representing its sections as
sections of a vector bundle over f*X. The vector bundles %N (X) (restricted
to f*X) and the order and symbol defined in Chapter I accomplish this task
to a certain extent. As we shall see in §2.2 below, 04(g) = — oo if £ £ T*X is
not in WF(g); it follows that 0( and a¿ are defined on tyii((X). The main tool
for proving this fact is our Theorem 2.1.2 relating the order and symbol of Pg
with that of g, where P is a pseudodifferential operator. This result may be
considered as a generalization of Proposition 1.5.1; of course the principal
symbol of P plays a crucial role.

Many of the details in the proof of Theorem 2.1.2 are due to K. Sklower,
who found and filled several gaps in my own proof and then wrote the first
draft of §2.1.

2.1. Action of pseudodifferential operators. This section was written jointly
with K. Sklower. We will follow the presentation of pseudodifferential opera-
tors given in §2.1 of [6].

A pseudodifferential operator of order m and type (p, 5) on R" is defined
by the formula
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Pg(x) = (27r)  "j e^Mx,£)g(£)d£ (2.1.1)

where

g(x)=jV'-«'*>g(x)¿x (2.1.2)

and the total symbol p(x, £) belongs to Hörmander's symbol class S™s(Rn X
R"*); i.e.

uniformly on compact sets of x, for each pair (a, ß) of multi-indices. We will
assume throughout this section that 0<5< 1/2 <p< 1 and p — 8 > 1/2.

The following definition is not quite conventional.
Definition 2.1.1. If P is a pseudodifferential operator with total symbol

p £ S™s, a principal symbol for P is an element/?, £ S™s such that/) — px £
om-l/2■V«

For example, we will speak of an operator as having principal symbol of
type (1, 0), or homogeneous principal symbol. In the latter case, there is an
unique function px(x, £), positively homogeneous of degree m in £, such that
p — pxE S™f1/2 for large £. We will refer to this/?,(x, £) as the homogeneous
m-symbol of P.

The integrals in (2.1.1) and (2.1.2) are absolutely convergent if g £ ^(R"),
in which case Pg is C00 but not necessarily compactly supported. If P is in
addition properly supported, i.e. the support of the Schwartz kernel of P has
proper projection into either factor R", then P maps ^(R") into ^(R"), and
this map is continuous since all the x-derivatives of p(x, £) have polynomial
growth. It follows that we have a transpose map P': ty'ÇR") -» ty'ÇR") given
by <P'g, "> = <g, Pu} for g £ ^'(R")« E ^(R").

Now it turns out (see p. 105 of [6]) that the restriction of P' to ^(R") is
itself a properly supported pseudodifferential operator with total symbol
q E Spm0(R" X R"*). By formula (2.1.6) of [6], we have q(x, £) = p(x, - £)
modulo 5™7"(p_5), so P' has a principal symbol of type (1, 0) or a homo-
geneous principal symbol if and only if P does. Finally, since P' maps ^(R")
continuously to fy (R"), we may extend P itself to ^ '(R") by the formula

{Pg, w> = <g, P'u)      g E 6D'(R"). " e ^(R")- (2.1.3)

The remainder of this section will be devoted to the proof of the following
theorem.

Theorem 2.1.2. Let P be a properly supported pseudodifferential operator of
order m and type (p, 8), where 0 < 8 < 1/2 < p < 1 and p — 8 > 1/2. Let
g £ ^'(R") and 0 ¥= £ £ Rn* such that O{0¡()(g) < N. Then:
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(a) Om)(Pg) < N + m;
(b) a^)m(Pg) depends only upon a^4)(g) and the behavior of the total symbol

p on a conic neighborhood of (0, £).
(c) If P has a principal symbol px of type (1,0), then

ON0%m(Pg)=px(0,Tt)oN0t0(g).

(d) If P has homogeneous m-symbol ph and g is homogeneous of order N at
(0, £), then Pg is homogeneous of order N + m at (0, £), and the homogeneous
N + m symbol of Pg at (0, £) equals ph (0, £) times the homogeneous N symbol
ofgat(0,§.

Our first step in proving Theorem 2.1.2 is to observe that we may assume g
to be compactly supported. In fact, let S Ç R" X R" be the support of the
Schwartz kernel K(x, y) of P, i.e.

Pg(x)=j K(x,y)g(y)dy.

Choose any compact neighborhood D of the origin in R"; since P is properly
supported, the set E = {y\(x,y) E S for some x £ £>} is also compact in R".
Now let % E ^(R") be identically 1 on a neighborhood of E u {0}. Then
%g agrees with g near the origin. On the other hand, g - %g vanishes on a
neighborhood of E, so Pg - P%g vanishes on D, and Pg agrees with P%g
in a neighborhood of the origin. Since the order and symbol are local
invariants, by Lemma 1.1.5 and its proof, the statement of Theorem 2.1.2
remains unchanged if we replace g by %g.

From now on, then, we assume that g is compactly supported and we
analyze the asymptotic behavior of (,(Pg)Tv, u), where u ranges over a
bounded subset of ^(R"). As usual, we will take <p(x) = <£, x> and write g¡
for g¿. By using formulas (2.1.3) and (1.1.1), we will be able to write

<(Pg)¡,u) = (g¡,v;}. (2.1.4)

The bulk of the proof will involve analyzing the family u¿.
First, we must obtain an explicit formula for u„T. We have

((Pg)¡, w> = (Pg, T"/2e-h«x>u(Vr~ x)>

= <g, P'[T"/2e-'T<^>M(Vr"x)]>.

A straightforward computation yields the Fourier transform formula

T"/2e-'T«-*>«(VT" x)(tj) = h (77 + t£/Vt"),

so we have
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<(Pg)¡, "> = <8, Í»"""/ e'<^>?(x, t,)« (r, + t£/Vf ) dq>

- <g, (2w)~"r"/2f e'^'-**>$(*, V7ij - t£)ô(ij) ¿n>

= <g, t"^"^ O)""/ e«***V(x, Vt"tj - t£)k(t,) dr¡),
so (2.1.4) holds if we define

t>;(x) - (2ir)""/ *'<"•*>?( ^r.Vî!,- r*)« (i,) <ft].       (2.1.5)

Our immediate goal will be to establish part (a) of Theorem 2.1.2 concer-
ning the order of Pg. Having done this, we will know that the symbol of Pg
depends only on the symbol of g and the principal symbol of P-using this
fact we can modify P to simplify the proof of the rest of the theorem.

We must prove that T~(JV+m)<(Pg)J, «> is bounded, uniformly for t > 1
and m in a bounded subset of ^(R"). Using (2.1.4), we can rewrite this as
(r~Ng¡, T_moJ>; since r~Ng¡ is bounded, we would be done if we could show
that T"mo„T is bounded. Due to the presence of x/Vr in (2.1.5), the supports
of the o¿ are not necessarily contained in a fixed compact set; what we can
do is to show that, for a fixed cutoff function %, T-m9Ct)J remains bounded.
This will leave the task of estimating <gfT, (1 — %)v„}; using essentially the
pseudolocal property of a pseudodifferential operator, we can show that this
is rapidly decreasing.

We will use, then, a function % £ ^(R") which is identically 1 in a
neighborhood of the origin, and we write

<r-Ng¡, r-mvruy = (T-Ng¡, t-"»9CuJ> + <g, T-W-"VJ>      (2.1.6)
where

/■;(x)=[l - 9C(Vt"x)]t"/2

•OpJ e«**-**>$(*, Vir, - t£)m(t,) th\. (2.1.7)

Now the statement 0(O>i)(Pg) < N + m will be established once we have
proven Lemmas 2.1.3 and 2.1.4 below. In fact, to show that the left-hand side
of (2.1.6) is bounded for t > 1 and u in a given bounded subset A C ^(R"),
we choose a function % £ ^(R") which is identically 1 on a neighborhood
of a compact set containing the supports of all m £ A, and we show that each
term on the right-hand side of (2.1.6) remains bounded. For the first term, we
use Lemma 2.1.3 together with the assumption that r~Ng¡ is a bounded
family of distributions. For the second term, we choose $ £ ^ (R") which is
identically 1 on the support of g, so that <g, t_a,_"V¿> = <g, T-Ar_m4>ruT>,
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and we apply Lemma 2.1.4 with / = — N — m.

Lemma 2.1.3. Let A be a bounded subset of ^(R"), % £ ^(R"). Then the
set

B = {T-m%v¿\uEA,T > 1}

is bounded in ^(R").

Lemma 2.1.4. Suppose that % is identically I on a neighborhood of a compact
set containing the supports of all u in the bounded set A, and that 4> E ^(R").
Then the set {t'$/-ut|k £ A, r > 1} is bounded in ^(R"). (/£ is defined by
(2.1.7).)

Proof of Lemma 2.1.3. It will suffice to show that B is C° bounded. In
fact, if we apply a differentiation 3/8x, to a typical element

"£(*) - T-m%(x)(2v)-"j <?'<"<*>$( -^r , VÎîj - t*)«(tj) <A|    (2.1.8)

of 5, the result is a sum of expressions of the same form with % replaced by
d%/dxj, u replaced by du/dxj (if **<**> js differentiated), or q replaced by
T~1/2dq/dx¡; the latter has the same T-order as q because 8 < 1/2.

To simplify notation we will denote by the letter C any constant which can
be chosen uniformly for all u £ A and all t > 1.

The convex hull of the support of % and the origin is compact, and
q E S£s, so we have

%(x)\q(x/Vr~, Vïij - t£)| < C(l + |Vr"r, - T£|)m (2.1.9)

Since A is bounded in ^(R"), it is also bounded in S(R"), so the w's are
uniformly rapidly decreasing, and we have

\û(v)\<C(l + \r,\yJ (2.1.10)
for eachy. (Here C depends ony.)

Applying (2.1.9) and (2.1.10) to (2.1.8) gives

/tn (i-r|Wr,-T£|) (l + MyJdn,

or

KWI < c/( \ +|^- -¿|) (l + hir^.
If/m > 0, we can replace this by

K(x)| < C/ (1 + H + |£|f(l + |i||)-'d!. (2.1.11)
Fory sufficiently large, this integral converges, and we have |h>J(x)| < C.
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If m < 0, we have a little more work to do because the integrand in (2.1.11)
becomes large as t -^ oo for rj = £Vt . We write the integral in (2.1.11) as
/, + I2, where Ix, is taken over {r,||rj - Vt £| > |Vr |£|} and I2 is taken over
{tj| |t? - Vt £| < \Vr |£|). Since m < 0, we have

Ix <CJ(± + |£|)   (1 + \i\)-'dn < 2C|£|"/ (1 + H)-Jdq,
which is finite if y is sufficiently large. The domain of integration in I2 has
volume Ct"'2, and the factors (1/t + |tj/Vt -£|)m and (1 + \y\\)~J in the
integrand are bounded respectively by T~m and (1 +  2Vr \£\)~J, so we have

72< CT-m+"/2(l +^V7|£|)"y.

Choosing y > —2m + n, we see that 72 is bounded. (We remark for later use
that I2 is actually rapidly decreasing.)   □

Proof of Lemma 2.1.4. We can reduce the problem to one of proving C°
boundedness, as in Lemma 2.1.3, if we replace the function 1 — %(x) by any
function T(x) which vanishes on a neighborhood of a compact set containing
the supports of all u E A and which is bounded, together with each of its
partial derivatives, on all of R". Thus, we are trying to prove that, as u ranges
over A and t over [1, oo), the functions

5uT(x) = Tl$(x)T(Vr'x)f ei<V~rr>-*x>q(x,Vr~-n - t£)h (ij) dr¡      (2.1.12)

form a bounded set in ^(R"). (Note that, in passing from (2.1.7) to (2.1.12)
we have ignored the constant factor (2tt)~" and have absorbed the t"/2 into
t', since / is to be arbitrary.)

To show that it suffices to prove C° boundedness, we note that ds^/dxj is a
sum of terms of the same form as ¿?(x), with $ replaced by d$/dxj, T
replaced by dT/dxj and / replaced by / + 1/2, or q(x,r¡) replaced by
iy\q(x, r¡) (which belongs to S™/1). The problem is reduced, then, to finding
an estimate for

jj(x) = tT(Vt x)f ei<V~T7>-rix>q(x, Wt|- t£)m(t,) dt\   (2.1.13)

which is uniform for t > 1, u £ A, and x in a compact ball B containing the
support of Í».

If / happens to be less than or equal to — m we can write

KT(*)I < T~mr(Vr"x) f ei<V~Tri-Ti-x>q(x, Vf r, - t£)«(tj) dq

and use the method of proof in Lemma 2.1.3 to show that the right-hand side
is bounded. The factor r(Vr x) poses no problem because T is bounded on
R".
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For general /, we must reduce to the case / < - m by integrating by parts
with respect to r, in order to lower the order of growth of q. This requires
special care because e/<^,,~TÍ"'c>w(Tj) rather than just s'OM—**) must
be antidifferentiated. We will use the laplacian

A„=-(32/3r,2+--- +373TJ2)
raised to the kth power, where k is to be chosen later. Solving the equation

Ag9_ *«**)£(,,)
by Fourier transforms, we find that e'^n'z^û(f\) = Ak[ei<n,z>bz „(r/)] where

KM = \y- *r*"O0- i2-1-14)
(We will use these formulas only when z lies outside the support of u.) It
follows that

ij(x) = tT(Vt"x) J ä\(ei^^-^x>'b^Z(rl))q{x, Vf r, - t£) dr\.
Now we can use the selfadjointness of A^, even though the integrand is not
compactly supported. In fact, if a(r¡) is rapidly decreasing and /3(tj) is slowly
growing, the equality fàa ■ ß dt] = /a • aß dr\ is true because the "boundary
term" is rapidly decreasing. Thus we have

sl(x) = T/+*I\Vf x)J e'<^-Ti'*>3v^0?)
•(**?)(*, Vf Tj-T£)dn. (2.1.15)

Now (2.1.15) is an expression of the same form as (2.1.13), with / replaced by
/ + k/2, q replaced by b/^q, and u replaced by bv; x,u- Since A*<? belongs to
S™f2kf', we can apply the case "/ < — m" if we know two things:

(i)l + k < - m + 2/cp;
(ii) {ôv?,.B| Vf > 1, u E A, T(Vf x) =¿ 0} is bounded in 6D(R").

We can make (i) true simply by choosing k large enough, since p > 1/2. All
that remains, then, is to establish (ii). From (2.1.14), we have

¿vc,,u(v) = b-Vfx|-2¿«(y) (2.1.16)
Let 5 > 0 be the distance between the support of T and the union of the
supports of all u E A. Then we have the estimate \b^çXtU(y)\ < 8~k\u(y)\,
so the even's are supported in a fixed compact set and are C° bounded
there. Differentiating (2.1.16) gives similar estimates for the derivatives of
b\frx,u> with 8~~k replaced by 8~k~J if j derivatives are taken, so (ii) is
established, and our proof is complete.   □

We come now to the task of analyzing the symbol o^)m(Pg). Our first step
will be to prove part (b) of the theorem, i.e., that this symbol depends only on
the behavior of q in a conic neighborhood of (0, — £). We consider, then, a
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symbol q(x, rj) E S™s with the following property:

there is a neighborhood % of u in R",
a conic neighborhood T of — £ in R"*,
and a constant K > 0 such that
q (x, tj) = 0 whenever x E %,r¡ ET, and |r/| > K. (2.1.17)

We will show that, if A is a bounded subset of ^(R"), then the family
(g¡, o¿>, where t5J is defined by (2.1.5) with q replaced by q, is rapidly
decreasing, uniformly for u E A. The formula (2.1.6), together with Lemma
2.1.4, shows that, if we introduce a cutoff function % E ^(R") which is
identically 1 on a neighborhood of a compact set containing the supports of
all u £ A, then it suffices to show that (g¡, 9CûJ> is rapidly decreasing. Since
g¡ has polynomial growth in t, the problem comes down to showing that
%v¿ is rapidly decreasing.

Now we may choose e > 0 such that an e-neighborhood of — £ lies in T and
avoids the origin. For |tj| < eVf, therefore, tj/Vt —£ lies in T; for t
sufficiently large, Vf tj — t£ lies in T, and | Vf t¡ — t£| > K. Looking at the
x-variables, we find that for t sufficiently large and any x, either x/Vf
belongs to <& or %(x) = 0. It follows from (2.1.17) that the integral for
|ij| < eVf makes no contribution to %v¿, so it suffices to prove the fol-
lowing lemma.

«w-I '?(-7-» Vf ij r£j« (t)) dr\.

Lemma 2.1.5. Let % £ <$(R"), q(x, £) E 5pms(R" X R"*), 6>0,and/lç
^(R") a bounded subset. Then the family 9C(x)oJ is rapidly decreasing in
^(R") uniformly for u E A, where

eKv,x>q( _2L
'hj^-vre V  Vf

Proof. As in the preceding two lemmas it suffices to show that, for any
integer /, t'|ûut(x)| is uniformly bounded for x in the support of 9C. We use
the estimate

lAJWI <C( (1 + |Vf i, - T£|)m|»(T,)| dq.
^|i7|>Vrc

If m < 0 we simply have

\V(x)\<cf        \û(-n)\dn,
|7)|>"VTf

which is uniformly rapidly decreasing because ¿(rj) is. If m > 0 we have, for

M > i.
(1 + |Vf r, - t£|)W= t">( I +| -^- |+ |£|)

<T'"(l + |£| + |r/|)m<CT'"(H-|T,|)m,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ORDER AND SYMBOL OF A DISTRIBUTION 29

SO

\v;(x)\<Ct"[        (l-Hr,|)"ÏK(r,)|tfr,,

which is again rapidly decreasing.   □
Suppose now that P is altered by an operator whose total symbol vanishes

on a conic neighborhood of (0, £). By formula (2.1.6), P' is altered by an
operator whose total symbol q vanishes on a conic neighborhood of (0, — £),
plus an operator whose total symbol q lies in S~J°. By Lemma 2.1.5 and the
discussion preceding it, the operator corresponding to q has no effect on
o^n(g); the second operator is a smoothing operator and, likewise, has no
effect on the symbol.

Suppose, finally, that P has a principal symbol of type (0, 1). Applying our
formula about orders, for an operator of order m — 1/2, we assume that P
itself has a total symbol of type (0, 1) and proceed to establish the bounded-
ness of the family

Ar = T-*-m+1/2((iJg)T _ ç(0)  _ TQgry

If u is any test function, Fourier's inversion formula and some trans-
formations like ones we have done before yield

<AT,U> = <T-AgJ,T-'"+I/2(2^)-',

•/ e^x>)U -£r , Vf r, - r¿) - q(0, - t£) m(tj)öt).

By Lemmas 2.1.4 and 2.1.5, we will have ignored only rapidly decreasing
terms if we replace this family by

<T-"g;, (2ir)-nr-m+l/2v:),

where

« 00 at],v:(x) = %(x) f e^x>\q(   *     V?t¡ - i*) - q(0, - t£)

% E öD (Rn) being identically 1 near the origin and 0 < e. Once again, we are
left with the problem of showing that {T_m+l/2üuT|T > 1, u E A) is bounded;
as usual, it suffices to check C° boundedness because each derivative is a sum
of terms of the same form. (Or of simpler terms: If we apply 3|a'/3xa to
[q(x/ Vf, Vf t, - t£) - q(0, - t£)], we get

3|a|qr/3xa still belongs to S™s since 5 = 0, and we have gained a t~1/2, so we
can use Lemma 2.1.3.)
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To estimate T_m+1/2|üJ(x)| on the support of %, we use the mean value
theorem to estimate

A = k(x/Vf , Vf t, - t£) - q(0, - t£)|.
Let M, be the maximum value of S|(3ff/3x,)(x, tj)| for x E Supp %, |r/| < t;
Mt < C(l + t)m because 0 = 0. Let N, be the maximum value of
2|(3ff/3£y)(x, tj)| for x £ Supp %, |tj| < t; N, < C(l + 0m_1 because p =
1. The mean value theorem implies that A < M,|x/Vf | + N,\Vf r¡\ for
t = | Vf Tj| + |t£|, so we have

A < C[(l + Vf hi + T|£|)m|x|/Vf + (1 + Vf hi + T|£|)m_'Vf hi].

Since the integral is taken over |r/| < eVf , we have

A < C[(l + (6 + |£|)T)m|x|/Vf + (1 + (e + ßDTf-'Vf h|].
This implies

t—'/2A < C[(1/t + (e + |£|))m|x| + (1/T + (e + |£|))m|T,|]

<C[l/T + (e + |£|)]m[l + h|].
(We incorporate |x| into C in the last step.) On the support of 9C, therefore,
we have

t-+'/2|5;(x)| <C[ \ i + (e + |£|)]m[l + h|]|û(r,)| dq
^ij<cVt   L   t

<C[   [^+(£ + |£|)lm[l + hl]|«(7])|ar,.
^R" L  T J

At this point we can repeat the argument used at the end of the proof of
Lemma 2.1.3, breaking the integral into two parts if m < 0, to conclude that
T-w+I/2|tJ„T(x)| is bounded.

Since we have shown that T~N~m+l/2((PgJ¡ - q(0, r£)g¡) is bounded, and
we know that #(0, — t£) = p(0, t£), we conclude that

(Pg)¡~p(0,£)g¡=O(TN+m-1/2),

and the proof of Theorem 2.1.2(c) is complete. Part (d) follows from (c) and
Definition 1.3.12.

Remark 2.1.6. L. Hörmander has pointed out that our proof of Theorem
2.1.2 can be simplified by the use of the estimate in Theorem 2.6 of [5a]. (This
is a "Taylor's formula with remainder" for pseudodifferential operators.) K.
Sklower has carried out this simplification and has been able to extend
Theorem 2.1.2 to obtain formulas of "transport-equation" type for lower
order symbols of Pg at points where the principal symbol of P and some of
its derivatives vanish. Details will appear in Sklower's Berkeley Ph.D. thesis.
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2.2. The symbol and the wavefront set. A direct consequence of Theorem
2.1.2 is the following "regularity theorem".

Corollary 2.2.1. Let P be a properly supported pseudodifferential operator of
order m and type (1,0) which is elliptic at (0, £) in the sense that r~m(p(0, t£))
is bounded away from 0 for large t. Then

Om)(Pg) < TV + m => O(0ii)(g) < N.

Proof. Suppose Om)(g) = M > N. Then o$4)(g) ¥= 0; i.e. T~M+i/2g{ is
unbounded. By the elhpticity of P, T~M~m+m/2p(0,r£)g¡ is unbounded as
well. By Theorem 2.1.2

p(0, T£)gfT =(Pg)¡   (mod 0(TM+m~^2)),

so T-M~m+l/2(Pg)¡ is unbounded; i.e. o^m(Pg) ^ 0, and O(0A)(Pg) = M +
m > N + m, contradicting the hypothesis on Pg.   □

Corollary 2.2.2. IfgE ^'(R") and£i= 0, then O(0>i)(g) = - oo //(O, £) is
not in the wavefront set of g.

Proof. By the definition on p. 120 of [6], if (0, £) is not in the wavefront set
of g, there is a properly supported pseudodifferential operator P of order 0
and type (1,0), elliptic at (0, £), such that Pg is a C00 function. By Proposition
1.2.5, 0(O,i)(Pg) = - oo ; by Corollary 2.2.1, we have O(0i)(g) = - oo.   □

Remark 2.2.3. Y. Colin de Verdière and L. Hörmander [private communi-
cations] have pointed out that Corollary 2.2.2 can be proven directly. In fact,
if (0, £) £ WF(g), we can cut off g, without changing its germ at the origin,
so that g(£) is uniformly rapidly decreasing on a conic neighborhood 91 of £.
A formal computation shows that, for any test function u,

<gj, u) =jRJ(rî - V)û( -¡¿r- ) äq. (2-2.1)

We must show that this is rapidly decreasing in t.
For e sufficiently small, and |rj| < et, we have t£ — r; E 91 and |t£ — tj| >

Ct for some positive constant C. Now we break the integral in (2.2.1) into
two parts, <g£T, w> = Ix(r) + 72(t), where Ix is taken over |rj| < er and I2 over
h| > er. Since g is rapidly decreasing in 91 and u is bounded, Ix(t) =
0(t~°°). On the other hand, in I2, we have ij/Vf > eVf, so that «(rj/Vf )
is rapidly decreasing while ¿(t£ — tj) has polynomial growth. It follows that
I2(t) = 0 (t _ °°) as well. All these estimates can be made uniform for « in a
bounded set of test functions, so we may conclude that O(0,i)(g) = — oo.

It is natural to ask whether the converse to Corollary 2.2.2 is true; the
following example, due to Colin de Verdière [private communication] shows
that it is false.
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Example 2.2.4. Let g E ty'(R2) be the distribution whose Fourier trans-
form g is defined by

<g,v}=rv(t,tß)dt,

where ß is a constant between 1/2 and 1. We shall show that g is not C00 at
the origin, so that its wavefront set contains a point of the form (x, £), with
£ ¥= 0. On the other hand, we will show that 0(JC>i)(g) = — oo for all x and all
£ ^ 0. Thus, it is not even true that the set Sg = {(x, £)|£ ¥= 0 and 0(x>{)(g) >
-oo} is dense in WF(g). (This is the best we could have hoped for, since
WF(g) is always closed, while Sg might not be.)

Suppose, then, that g is C00 in a neighborhood of 0. Let ¥(x„ x¿ £ ^(R2)
be an even, nonnegative function, positive near 0, and having support so
small that (\p * i//)g is a C00 function. The Fourier transform <p = \¡> *\p is
then nonnegative and positive near £ = 0, while <pg — <p * g is rapidly
decreasing. But this is impossible because g is nonnegative and so its
convolution with <p could not be rapidly decreasing along the curve t h»
(t, tß) as t -> oo.

To show that OixA)(g) < - oo whenever £ ^ 0, one first does a formal
computation (left to the reader) which shows that it suffices to prove that, for
any u E ^(R2), the integral

7=r|û(vf£I--^,Vf£2--^-)|i// (2.2.2)
J*\   \ Vf Vf }\

is rapidly decreasing as t -» oo whenever (£,, £2) ==£ (0, 0). Making the substi-
tution t \-+ Vf / and using the fact that û is rapidly decreasing, we obtain,
for any N, an inequality of the form

J* (1 + I Vf £, - /| + I Vf £2 - t"/r11-^) '

Now one chooses a number 5 between 0 and 1/2 and writes the integral on
the right-hand side of (2.2.2) as a sum J, + l2, where lx is the integral for
\t - Vf £,| < t8 and l2 is the integral for |r - Vf £,| > t4. Then one can
show that

/=Í0(t4-^2) if£2^0, 1
1     \o(rs-N^-^)    if£2 = 0and£,*0j

and I2 m 0(ts/n~sn). It follows, since N is arbitrary, that Ix and I2 are
rapidly decreasing, so I is rapidly decreasing as well.
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III. The Symbol of a Fourier Integral Distribution
3.0. Introduction. Hörmander [6] defined, for any conic lagrangian

submanifold A C T*X and any real number m, a class Im(X, A) of distri-
butions on X, with wavefront set in A, called Fourier integral distributions.
For each h E Im(X, A) he constructed a principal symbol which is a section
of a certain complex line bundle over A.

Our starting point for the work described in this paper was a universal
construction of Hörmander's sumbol bundles in terms of the twisted distri-
bution spaces defined in §1.3. This suggested the idea that one might be able
to define Hörmander's symbol directly by means of a localization process
which passed from distributions on X to twisted distributions on the tangent
spaces of X. After some experimentation, we found the localization process
described in §1.1.

In this chapter, we show that our localization process does indeed give
Hörmander's principal symbol. We prove in §3.2 that, if h £ Im(X, A) with
homogeneous principal symbol in Hörmander's sense, then, at each £ £ A, g
is homogeneous in our sense (see Definition 1.3.12 and Remark 1.6.4) of
order m + n/A, and we compute the symbol in a special coordinate system.
In §3.3, wejfcowthat these symbols belong to a special 1-dimensional
subspace of %'(TXX) which depends only upon T(A. Finally, we show that
the collection of these 1-dimensional subspaces for all £ £ A can be identified
with Hörmander's symbol bundle 9HA, and we show that our symbol and
Hörmander's are equal. In case the principal symbol is not homogeneous, our
symbol at £, as a function of t, is equal to Hörmander's symbol at t£.

To compute our symbol we use, as did Hörmander, the principle of
stationary phase, but our calculations require some refinements of this
principle, since the presence of the homotheties in the x-variables prevents us
from applying the Morse lemma to the phase function. These refinements are
discussed in §3.1.

3.1. On the principle of stationary phase. The principle of stationary phase
in its basic form is an asymptotic expansion as / -> oo for the integral

1(0" [ e"eMu(x) dx, (3.1.1)

where Q (x) is a nondegenerate quadratic form on Rk and g(x) is a compactly
supported C °° function. We begin this section by reviewing the derivation of
this principle, following [2] and [6].

Writing Q(x) = \ (Ax, x>, where A is an invertible symmetric matrix, we
define Q by g(£) = \(A~X£, £>. Applying the Fourier transform inside the
integral in (3.1.1), one obtains

/(/) = (2TTtyk/2\detA\-l/2eli"/*)ssnAJ(t), (3.1.2)
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where

J(t)~fe-'êWû$)di
Using the finite Taylor expansion with remainder estimate

r-i   nsy

7 = 0       J-

we obtain from (3.1.3) the inequality

(3.1.3)

v-\

2
J-o'(0-2 /tí

■iß(i)
¿(£)¿£

-L/ |ß (£)'« (£)|¿£. (3.1.4)

Denoting by 0(2)) the second order differential operator obtained by subs-
tituting /3/3x,. for £y in ß(£), we obtain from (3.1.4)

¡Q(D) iJ

u\(0) <7^7 j \Q(D)*u(t)\dt.      (3.1.5)

To estimate the right-hand side of (3.1.5) in terms of u itself, we use the fact
that for any v and n,

(1 + |£|2)"/2 J

where A is the laplacian

-(32/3x2+... +32/3x2) = |Z)|2.

We denote by ||u||J„ the maximum of the Ll norms of all the partial
derivatives of v or order < m. Then, for n even, the integral on the
right-hand side of (3.1.6) is bounded above by An\\v\\J,, where An is a constant
which depends only on n (and, of course, k). If n is greater than k, the
right-hand side of (3.1.6) is integrable with respect to £, and we have

j\v(i)\di<Bn\\v\\\       (n>k) (3.1.7)

Combining (3.1.7) and (3.1.5) and writing S„(t) for the sum on the left-hand
side of (3.1.5), we have

|/(0- S,(t)\ < Cpr'\\Q(D)'u\\\
where k is the smallest even integer greater than k and C„ is a constant
independent of u. The right-hand side of (3.1.8) can always be estimated by a
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constant times i-"|l"llk+2„ (this is done, for example, in [6]) and this estimate
is hard to improve if the quadratic form Q is definite. If Q is indefinite,
however, then the operator Q(D)" is not elliptic, and the estimate in the form
(3.1.8) can be a real advantage.

If we have an integral of the form fe"f(x)g(x) dx, where / has only
nondegenerate critical points in the support of g, the usual approach is to use
the Morse lemma to find local coordinates in which / becomes quadratic. In
the next section, however, the presence of the homotheties involved in the
definition of the principal symbol will not allow us to make arbitrary
coordinate changes, so we must renounce the use of the Morse lemma. We
will sketch now an approach to the principle of stationary phase in which the
Morse lemma is not used, leaving out the details because we will treat a
similar but more complicated situation in the next section.

Suppose we wish to find an asymptotic expansion for the integral /(/) =
/e"/wg(x) dx, where we assume that/(x) has a nondegenerate critical point
at the origin and no other critical points in the support of g. We may write
/(•*) = Q(x) + R(x), where Q(x) is a nondegenerate quadratic form and
R (x) vanishes to third order at the origin. Now we write

I(t)=J ei,eMeiiRMg(x)dx

and think of <?"*wg(x) as the w(x) in (3.1.1). Since e"R(x)g(x) now depends
upon / as well as x, in order to have a good asymptotic expansion for I(t)we
must show that the error terms \J(t) — 5,(01 are bounded by powers of t
which go to — oo as v -> oo. Attempting to use the estimate

we find that the derivatives of order k + 2v of ei,R(-x)g(x) grow like tk+2v, so
(3.1.10) gives us an estimate \J(t) — 5,(01 < Dvtk+V, which is no good
because k + v does not go to — oo as v -» oo.

Actually, it is not surprising that this approach does not yet work, since it
remains to use the essential assumptions that R (x) vanishes to third order at
the origin and that Q (x) + R (x) has no critical points outside the origin.
Roughly speaking, since the integral (3.1.1) looks "mainly" at the behavior of
u near the origin, the degenerate behavior of R(x) at the origin might be
expected to overcome the presence of the high powers of t in its derivatives.
Of course, we must look at smaller and smaller neighborhoods of the origin as
t —> oo.

To implement these observations, we choose a cutoff function 9C(x) which
is 1 near the origin and supported in the unit ball, and we split I(t) as the
sum Ix(t) + I2(t), where

/, (t) =f ei^M%(txx)e"RMg(x) dx (3.1.11)
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and

hiO ŒJ e"ew(l - %(txx))e"Rix)g(x) dx, (3.1.12)

where the exponent A is to be chosen later. We form the usual asymptotic
expansion for 7,(0; since 9C(x) = 1 near the origin, its presence does not
affect the terms of this expansion. In analyzing the error terms, we use the
fact that |x| < t~x on the support of 9C(iAx). It turns out that this fact,
combined with the third-order vanishing of R at the origin, sufficiently
moderates the L1 norms of the derivatives of eUR(-x) provided that X > 1/4.
On the other hand, we must make X < 1/2, or else the derivatives of %(txx)
will grow too rapidly. With these two constraints on A, we find that the 5,(0's
do give an asymptotic expansion for Ix(t). Now we rewrite 72(0 as

j <,<•</«(! _ 9C(/Ax))g(x) dx.

Since/(x) has no critical points on the supports of [1 — %(txx)] g(x), we can
try to integrate by parts with respect to x in order to show that 72(/) =
0(r~°°). In fact, if X < 1/2, this procedure works and so the asymptotic
expansion for 7,(0 is also an expansion for 7(0-

3.2. Local calculation of the symbol. We begin by recalling the local
definition of Fourier integral distributions, following [6]. Let Y be an open
subset of R", $(x, 9) a real valued function on Y X RN which is positively
homogeneous with respect to the 9 variable. <I> is called a phase function over
Y if, when restricted to Y x R" (RN = {9 £ RN\9 ¥* 0}), it is C" and has
no critical points. An integral of the form

g(x) - Je1«* e)a(x, 9) d9 (3.2.1)

defines g(x) as a smooth function of x if the support of a has a proper
projection onto Y. It is shown in [6] that (3.2.1) defines g(x) as a distribution
on Y as long as a belongs to one of the symbol classes S^(Y X R*) defined
as follows: The complex-valued function a(x, 9) belongs to S^Y X RN) and
is called a symbol of order p if it is C °° and if, for any compact subset KolY
and any multi-indices a and ß, there is a constant CaßK such that

|(3/3x/(3/30)aa(x,0)| < Ca,A*(l + W~M
on K X R". Specifically, for a test function u E ^(Y), the integral

<g, w> =/ ei9(x-e)a(x, 9)u(x) dx d9

may be defined as a limit
lim f emx-e)a(x, 9)u(x)%(e9) dx d9

(3.2.2)

(3.2.3)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ORDER AND SYMBOL OF A DISTRIBUTION 37

where %(9) is 1 near 9 = 0 and has compact support; the existence of the
limit in (3.2.2) is proven by integrating by parts, using the fact that $(x, 9)
has no critical points, to reduce to the case where p <£ 0 so that the integral in
(3.2.2) is absolutely convergent. This proof gives another definition for <g, w>
and shows that it is independent of the choice of 9C.

It is known further that the singularities of g depend only on the behavior
of a and $ in a neighborhood of the fibre-critical set

2* - {(x, 0)|3<ï>/30,(x, 9) = 0,9^0; i = I,..., N]
and that the wave front set of g is contained in the image A^, C Y X Rn* of
2$ under the mapping

A*: 2* -> Y X R"*,       (x, 9) h- (x, </,*)
(i.e. A^x, 9) = (x, £), where £, = 3$/3x().

It follows from Corollary 2.2.2 that the order and symbol of g at (xq, £0) E
A4 depend only upon the behavior of a and O in a neighborhood of
A*'(x0, £o) £ 24 ç Y X R". In this section, we will calculate this order and
symbol under the following further assumptions:

A¿"'(x0, £0) consists of a single point (x0,90) E 2$;
the differentials of 3<J>/30,,..., d$/d9N are linearly inde-
pendent at (x0, 0q). (3.2.4(a))

We will use the invariance properties of Fourier integral distributions and
of our principal symbol to simplify the calculations. First of all, we may
assume that x0 = 0. Next, we may assume that the number N oí 9 variables is
the minimum necessary to represent g modulo distributions whose wave front
set does not contain (0, £0). By Theorem 3.3.4 and Lemma 3.3.5 of [6], this
means that the second partial derivatives 32i>/3ö,3ö, are all zero at (0, 90).
Combining this with assumption (3.2.4(b)), we conclude that the matrix
32<f>/30,3x, has rank N at (0, 90). It follows that N < n and that, after making
a linear transformation of the x-coordinates, we may assume that
32$/30,3x,(O, 90) is equal to 1 if 1 < i =j < N and is 0 otherwise. Finally,
the function x h» $(x, 90) has nonzero differential at x = 0, so may change
the x-coordinates once again, by a diffeomorphism whose differential at 0 is
the identity, so that $(x, 90) becomes the linear function <£0, x>.

To compute the order and symbol of g at (0, £0), we look now at the family
g¿, where <p(x) = <£0, x>.

<«£ "> - t"/2 f ei<b(x-e)a(x, 9)e-iT*Mu(Vr x) d9 dx,       (3.2.5)

or, substituting x/Vf for x,

<«;. "> =/ e'^x/V;^a(x/V^ , 9)e-^x^^u(x) d9 dx.   (3.2.6)
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Next, we substitute tö for 9 and use the homogeneity of $ to obtain

<g¿, uy . TNJ cfr[*(x/vi .»)-«p(V^)]a(x/Vf , tÖ)w(x) <# <&.    (3.2.7)

The substitution just made, together with the calculations which follow,
closely parallel the calculations on pp. 149-154 of [6], which are also aimed at
the determination of a principal symbol. (Reviewing the calculation in [6] is
recommended as preparation for reading ours.) The presence of the factors of
Vf in (3.2.7) makes our calculation more laborious; in particular, it prevents
the application of the Morse lemma to the phase function
$(x/ Vf , 9) — tp(x/Vr ). We use instead the method suggested in §3.1. Let
f(x, 9) = $(x, 9) - <p(x). Since (0, 9Q) E 2* and dx<S>(0, 90) = £0,/(x, 9) has
a critical point at (0, 90). By assumption (3.2.4(a)), this is the only critical
point of f(x, 9) for which x = 0. Since <p(x) is linear, the second derivatives
of /are the same as those of $; therefore, we have (d2f/d9¡dx¡)(0, 90) = 1 if
1 < / < N, and all the other second partial derivatives of/vanish at (0, 90).
In addition, f(x, 90) = 0. It is convenient to relabel the variables xl5..., x„
as V[,...,yN, zN+x,..., zn and to write ^ for 9 — 90; then we have

f(x,9)= 2 yj% + r( v, z, ¥),
j=\

where r vanishes to third order at (0, 0, 0) and r(y, z, 0) = 0. We now write
(3.2.7) as

<g¿( uy = tn f e/ví2^íe,TrO/v; ,z/v; ,*)

•a( v/Vf , z/Vf , t¥ + t0o)»(v, z)\ d-% dy dz.

(3.2.8)
In what follows, we will treat z as a parameter; the method of stationary
phase will be applied to the (v, ^) variables. As in §3.1, we choose a cutoff
function %(^) which is 1 for |^| < 1/2 and supported in the unit ball, and
we write

(g;,u) = rNf(I¡(z) + I¡(z))dz
where

I\ (¿) = f e<^2,*,|e/T,GvV; ,z/Vi .10^/Vf , z/Vf , t* + t0o)

■u(y, z)%(Tl/3<!r)} d* dy

(3.2.9)
and
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jr(z) = f ei*2yj*jf etrr(y/*,'/**)a(y/Vr , z/Vf , t¥ + t9q)

.u(y,z)[\-%(Tl/3*)]}d*dy.

(3.2.10)
We will begin by obtaining an asymptotic expansion for 7!T(z); after that, we
will show that /72 (z) dz is rapidly decreasing.

Let Q(y, *) = Sv/iy, Q(D) = -232/3v7-3^,.. The invertible symmetric
matrix with which Q is the associated quadratic form has determinant ±1
and signature 0; applying formulas (3.1.1) through (3.1.8), we find that

(3.2.11)|7[(z) - S;(z)| < C,T-("+"V2||ß(ß)V| 2N + 2'
where

and

wT(y,z, *) = e'^/^-'/^^y/Vf ,z/Vf ,t¥ + t90)
■ u(y, z)9C(T'/3^) (3.2.12)

S;(z)«(>Vf)' 2
A: = 0

J_
k\ Vf WT (0, z, 0).    (3.2.13)

The 2N + 2 derivatives and the integral in the norm on the right-hand side of
(3.2.11) are taken with respect to (y, ^). The result is a function of z.

Before making the numerous estimates which will be necessary to justify
our result, let us see where we are going by assuming that 7[(z) is asymptotic
to Sx(z) and that 72 (z) is rapidly decreasing. Then <g¿, u) will be asymptotic to

TNJ S{ (Z) dz = 7N(2lT)-NT-N/2J e*'(<WVÏ ,0)a(0; z/Vf , T0O)M(O, z) dz

which is in turn asymptotic to rN/2(2-n)~Na(0, 0, t90)Ju(0, z) dz. Suppose, for
simplicity, that a is, modulo lower order terms, homogeneous of order ¡i in 9,
then we find that g¿~ rlí+N/2(2m)-Na(9^8(y); i.e. g is homogeneous of
order p + N/2 at (0, £0), and its homogeneous ju + iV/2-symbol is
(2tr)~Na(90)8(y). According to Definition 3.2.2 of [6], n + N/2 is equal to
m + n/4, where m is the order of g in Hörmander's sense.

Before estimating the growth of the right-hand side of (3.2.11), we begin by
analyzing the terms in the expansion 57 (z) itself; i.e. we look at

77 (z) « T<-"+*V2{[é(7))]V}(0,z,0)

,/Tr(y/vÇ,2/VT,*)(-N + k)/2 \(y       32        |H w%)
•fl( -^r , -^ ,t¥ + tö0 ju(^, z)W z, 0). (3.2.14)
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(We may neglect % since it is identically 1 near y = ^ = 0.)
The term for k = 0 is

?o (*) - t-*/2o(0, z/Vf , t0o)k(O, z),
since r(0, z, 0) = 0. Taylor's formula gives

a(0, z, t90) - fl(0, 0, T0O) + 2 MÍO, z, t0o)
where

•'   daa,(O.z,T0o)=jf    -g.(0,/Z,TÖo) ¿ft.

Since a is a symbol of order ¡i, a,(0, z, t#0) = 0(t'1), uniformly in z, so we
have

7o (z) = T~N/2a(0, 0, t90)u(0, z) + 0(t-"/2+m-i/2)      (3.2.15)
uniformly in z for bounded sets of «'s.

To estimate 77 (z) for £ > 1, we use the following lemma.

Lemma 3.2.1. For any k > I, the order of growth of Tk(z) is at most

-(-$♦>-*• -f+"-f)
(uniformly in zfor bounded sets ofu).

Proof. The derivative

(2 3y^ ) ***/*-'/*-*)«0'/V? , z/Vf , T* + TÖ0)M(y, z)

is a sum of terms, each of which is a product of factors of one of the forms:
eiTr(y/vÇ .z/V; ,*). (3.2.16)

"'"'^IvW^^'7/^'^ (3-2-17)
T"lcl/2+l/" WW ^/w 'Z/W 'T*+ T*°);    (3-2-18)

Vf (* *)! (3.2.19)dy

where A, B, C, D, E are multi-indices. Each term contains one factor each of
types (3.2.16), (3.2.18), and (3.2.19), together with a number from 0 to 2k of
factors of type (3.2.17). The factors of type (3.2.16) and (3.2.19) are uniformly
bounded in z for bounded sets of u, so we may forget about them. The factor
of type (3.2.18) is of order at most ¡i — \C\/2; we will use only the fact that
this is at most p. The order of a factor of type (3.2.17) depends in a more
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complicated way upon \A\ and |2?|. Using the facts that r vanishes to third
order at (0, 0, 0) and that r(y, z, 0) is identically zero, we may conclude that a
factor of type (3.2.17), evaluated at (0, z, 0), is zero if \B\ = 0 and that its
order is at most

1/2,    if M| = 0 and \B\ - 2or \A\ - 1 and |5| > 2,
1,        if \A\ = 0and|/i| > 3,
0,        otherwise.

Suppose that a term contains s factors of type (3.2.17), with multi-indices
(Ax, Bx), . . . , (As, Bs).   Since   we   applied   the   differential   operator
(32/3yy3^)*,wemusthave2m < £and2|7i,.| < k.

Let a be the number of factors with 5, = 2 and let ß be the number of
factors with Bj > 3. Then 2a + 3ß < k, and the order of the product of these
factors is at most a/2 + ß. The maximum value of the linear function
a/2 + ß on the triangle defined by a > 0, ß > 0, 2a + 3ß < k must occur
at a vertex; it is k/3. Using the fact that a and ß must be integers, we can
improve this estimate to 0 if k = 1 and 1/2 if k = 2. Taking into account
now the factor of type (3.2.18) and the factor T-("+*)/2 in (3.2.14) gives the
estimate

- A//2 - k/2 + p + k/3 = - A72 + p - k/6
for the order of Tk(z); it can be improved to — 7Y/2 + p — 1/2 if k = 1 or 2.
D

Applying Lemma 3.2.1 and combining formulas (3.2.13), (3.2.14) and
(3.2.15) gives

S;(z) = nr-N/2(2ir)-Na(0, 0, t90)u(0, z) + 0(t-"/2+m->/2)    (3.2.20)

uniformly in z on bounded sets of w's.
We turn next to estimating the right-hand side of (3.2.11).

Lemma 3.2.2. |{7$^+,)(2 32/3yy3^y)VT}(y, z, *)| = 0(t"^), uniformly in
(y, z, -*)for bounded sets ofu, where m„ = v/3 + 2(N + l)/3 + p. D$+l) is
a differential operator of order < 2(N + 1) in the (y, ^) variables.

Proof. The procedure is like that in Lemma 3.2.1, but more complicated
because we are not setting y and ^ equal to zero. Instead, we use the presence
of the factor %(tx/3<&) to get the inequality |^| < t~1/3 on the support of wr.
As before, the quantity to be estimated is a sum of terms, each of which is a
product of factors of one of the forms (3.2.16) through (3.2.19), together with
a factor of the form

T\ñ/3 ffl (Ti/3n (3.2.21)
3*F V '

which has order \F\{3. The orders of the factors of type (3.2.16), (3.2.18) and
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(3.2.19) are as before; the factors of type (3.2.17) must be estimated anew.
We look then, at the function

fra(y z^.Ti-w/2ÜHr!V/jL  _j_ <A     (3222)Ja,b (v, z, *) 8^9** V Vf '  VÏ '    /        { }
restricted to the support of wT; i.e. we assume that v and z are bounded (since
m is to be restricted to a bounded set) and ^ = 0(t-1/3). For which values of
(A, B) can the order of fAB be positive? First of all, |^1| must be 0 or 1. If
\A\ = 0 and |2?| = 1, the derivative dr/d^B vanishes to second order at the
origin; when evaluated at (y/Vr , z/Vt , ty) it is of order at most —2/3,
since y/Vf, z/Vf, ^ are all at most 0(t-I/O). Thus the order of fAB is at
most 1 - 2/3 = 1/3 if \A\ = 0 and |5| = 1. Proceeding in the same way, we
get the following estimates for the order o\fAB:

1/3 il\A\ = 0 and|5| = l;
2/3 if |^| = 0 and ¡£¡ = 2;
1 if |^4| = 0 and|5|>3;
1/6 if |^| «1 and|ß| = l;
1/2 if |^|-1 and|/J|>2. (3.2.23)

Now we look at an entire term. Suppose that it contains s factors of type
(3.2.17) with multi-indices (Ax, Bx),..., (As, Bs). Let a be the number of
factors with B¡ = 1, ß the number of factors with B¡ = 2, y the number of
factors with B¡ > 3, and 8 the value of |F| in the factor of type (3.2.21). Since
we are taking 2(N + 1) + v ^-derivatives, we must have

a + 2ß + 3y + 5 < 2(/v" + 1) + v.
Looking at the chart (3.2.23), we find that the maximum order of our term is
a/3 + 2/3/3 + y + 5/3 + fi which is at most v/3 + 2(N + l)/3 + p.

Using Lemma 3.2.2, we see that the norm on the right-hand side of (3.2.11)
is of order at most v/3 + 2(N + l)/3 + p — N/3, since the norm is an
integral over a region whose volume is 0(t~n^3). The full right-hand side of
(3.2.11) is then of order at most —v/6 — 7^/6 + 2/3 + p, which goes to
— oo as v-> oo. By choosing v sufficiently large (> 2N + 7), we can make
this order < — /V/2 + jn — 1/2. Using this value of v and putting together
(3.2.11) and (3.2.20), we obtain

7,T(z) = T-N/2(2tryNa(0, 0, t90)u(0, z) + 0(t-"/2+*-1/2), (3.2.24)

uniformly in z on bounded sets of u's.
To complete our asymptotic evaluation of g¿, we will estimate /72(z) dz,

where 72 is defined in (3.2.10). It is convenient to undo some of the
transformations which were applied to (3.2.5); doing so, we arrive at the
expression
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fl¡(z)dz

= r"/2f e'rl*(y,z,e)-v(y<z))a,y! z> ^

•«(Vf y, Vf z)[l - %{t'/\9 - 90))] d^ldydz.    (3.2.25)
We will denote by 1 xh the gradient of any function h with respect to the

x-coordinates; h may depend as well upon some extra variables.
Since the quadratic part at (0, 0, 90) of the function

f(y,z,9) = $(y,z,9)-<p(y,z)
is equal to 2_y,(0, — 90j), it follows from the implicit function theorem that
there exists a number C > 0 and a smooth map (y, 9) = k(z) defined for
|z| < C such that the set of zeros of V(>,9)/ in {(y, z, 9)\ \y\ < C, |z| < C,
\9 — 90\ < C) coincides with the graph of k. Furthermore k(0) = (0, 90), and
the first partial derivatives of k vanish at 0. One may now conclude (as could
have been done much more simply if we had k = 0) the following:

Lemma 3.2.3. Let positive constants A and B be given. For sufficiently large r,
and (y, z, 9) in the set

ST = {(y, z, 0)1 \y\ < AT'"2, \z\ < At~"2, at"'/3 < \9 - 0O| < C }

we have the estimate | V(>,9)/| > 7>t~1/3 for some positive D.

Proof. It is sufficient to show that (y, z, 9) E ST is bounded away from
the zero set of V{y9)fby a quantity of order t~1/3, i.e. that |(y, 9) - k(z)\ >
Er~i/3 for some E > 0 and large t. But this follows from the inequalities
defining ST together with the fact that k vanishes to second order at z = 0.
D

Our argument now mimics, with flourishes, the one on page 152 of [6].

Lemma 3.2.4. There exists e > 0 such that, for all (x, y, 9), one of the
following inequalities holds:

I V0$| > e, (3.2.26(i))
\y\ > e   or   \z\ > e, (3.2.26(ii))

| V(,,z)/(y, z, 0)| > e(l + \9\),                   (3.2.26(iii))

\9 - 90\ < C. (3.2.26(iv))
Proof. Suppose the lemma were false. Then we could find a sequence

(yJ, zj, 9J) such that
(i')Vff$(y,z^)^0,
(ii')(y,z;')-+o,
(iiiOd + lö^-'V^/^z^^-^O,
(iv') \9J -9°\> C.
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The expression in (iii') can be rewritten as

V(^)*(y, z\ (i +1*>|)- V) - (i + ifir'v^o", zJ).
If |07| is very small, this is close to — V0v)(p(v-', zJ), which is in turn close to
V(ra)<p(0, 0) = £0, which is nonzero; we conclude from the limit (iii') that 9J is
bounded away from zero. Similarly, using (i'), (iii'), and the fact that V(y r9)$
is nowhere zero, we find that 9J must be bounded away from oo. Passing to a
subsequence if necessary, we may assume that 9J approaches a nonzero limit
9. (i') (ii') and (iii') imply that

Vly¡¡t9)f(0,0,9) = 0,
i.e. Vff$(0, 0, 0) = 0 and V^SiO, 0,9) =V(^)<p(0, 0) - £0. By our
assumption (3.2.4(a)), we must have 9 = 90; but this contradicts the
inequality |0 - 0O| > C which follows from (iv').  □

Using a "conic partition of unity", we may write a = ax + a2, where ax is
supported in the set where (3.2.26(h), (iii) or (iv)) holds and a2 is supported in
the set where (3.2.26(i)) holds. The Fourier integral distribution

J<?'*U9)û2(x,0)î/0
is a C00 function since a2 vanishes on a neighborhood of 2$, so its order is
— oo, and we may assume that a = ax, i.e. that it is supported where
(3.2.26(ii), (iii) or (iv)) holds.

Choose one more cutoff function ß(0) which is 1 in a neighborhood of
0 = 0O and supported in the set where |0 — 0O| < C. Then (3.2.25) gives

f r2 (z) dz = rx + j; (3.2.27)
where

jr = Tn/2j eh[*(y,z,0)-v(y,:)]a,y> z> T0)M(Vf y, Vfz)

•[1 - 9C(t'/3(0- 0o))][1 - Sl(9)] d9 dy dz

and 72 is the same as 7,T with 1 — Q replaced by ß. We assume now that u
ranges over a bounded set of test functions. Their supports are contained in a
set of the form {(y, z)\ \y\ < A, \z\ < A), so for t > (A/e)2, we have |,y| < e
and |z| < £. In the support of the integrands in Jx and J2, then, inequalities
(3.2.26(i)) and (3.2.26(h)) cannot hold. By the choice of fi, we find that
(3.2.26(iii)) holds on the support of the integrand in J\ and that (3.2.26(iv))
holds on the support of the integrand in J2.

We may estimate J\ just as Hörmander does on p. 152 of [6]. First we note
that, for t large, 1 — 9C(t'/3(0 — 0O)) is identically 1 on the support of 1 — 0,
so we may ignore the % factor. Now we may integrate by parts with respect
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to ( y, z). Let M be the vector field

-'•|vwr2v(,,,)/,
which satisfies Af-/= — i. The adjoint L of M is then equal to —M —
div M; the coefficients of L as well as all their partial derivatives are of order
0(1 + |0|-1) on the support of the integrand, by (3.2.26(iii)).

We obtain from (3.2.27), for every integer v,

jr _ T«/2 f eh\Q(.y,z,9)-<p(y,zj]

•T-'L"{a(y,z,T0)M(Vf v, Vfz)[l - ñ(0)]} dy dz d9.   (3.2.28)
The integrand in (3.2.28) can be bounded by a constant times r~"(\ +
|0|)-'(1 + |t0|)V/2, which is less than

t-/2(i + i0ir-(i + M)"-
For v sufficiently large, the factor (1 + ^D'*""" makes the integral absolutely
convergent and then the factor r~"/2 makes J\ rapidly decreasing, uniformly
on bounded sets of «'s.

For 72, we may integrate by parts with respect to (y, 0). This time, we let
M be -i\ V{y,9)f\~.2 V(y,9)f L its adjoint. The support of the integrand in 72
is contained in {(v, z, 0)| \y\ < At~1/2, \z\ < A^1'2, t_1/3/2 < |0 - 0O| <
C}. On that set, we have by Lemma 3.2.3 the estimate | V^^/l > Dt-1/3,
which gives us an estimate of 0(t"/3) for the coefficients of L". We have, for
every integer v,

Jl = T»/2 j eiTl<Hy,z,<»-v(y,z)]T-,Lr ^,y> ^ TÖ)„(Vf V, Vf z)

•[1 - 9C(t1/3(0 - 0O))]9C(0)} dy d9 dz.

(3.2.29)
The integrand in (3.2.29) can be bounded by a constant times t-»,+»73+jí+''/2
= t'1-"/6. Making v arbitrarily large, we see that 72 is rapidly decreasing.

We have now shown that J\ and Jl are rapidly decreasing; by (3.2.27), so is
/72 (z) dz. Using this fact, together with (3.2.8) and (3.2.24), we obtain our
final result:

<8;, «> = rN/2(2ir)-Na(0, 0, t0o) f u(0, z) dz + 0(rN/2+^1/2), (3.2.30)

uniformly on bounded sets of «'s, or
g; - rN/2(2TT)-Na(0, 0, T90)8(y) + 0(rN/2+^1/2).      (3.2.31)

We summarize the results of this section in the form of a theorem.

Theorem 3.2.5. Let g(x) be a Fourier integral distribution on R", (0, £) a
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point in its wavefront set. One can choose coordinates x = (y, z) on R" and a
representation

g(y,z)=f e^^a(y,z,9)d9
such that there is a unique value 0O of 9 for which $(y, z, 9) — <£, x> has a
critical point at (0, 0, 0O), and such that the quadratic part of $(y, z, 0) -
(£, x> at this critical point is 2y,(0, - 90j). Let N be the number of 9-variables
in this representation, p the order of a. Then 0(O,¿)(g) < N/2 + ft» and
a(0£)+>1(g)' evaluated at the 2-jet of <£, x>, is equal to

TN/2(2ir)-Na(0, 0, r90)8(y) + S"/2**-1^ (6j}'(R«)).

Corollary 3.2.6. In the setting of Theorem 3.2.5, suppose that a(y, z, 9) is
homogeneous of order p in 9, modulo symbols of order p — 1/2. Then g is
homogeneous of order N/2 + pat (0, £), and its homogeneous N/2 + p symbol
at (0, £), evaluated at the class of (£, x>, is equal to (2ir)~Na(0, 0, 90)8 (y).

33. Geometric description of the symbol. Let A ç T*X be a conic
lagrangian submanifold. We will denote by Jm(X, A) Q ^'(X) the space of
Fourier integral distributions of order m associated with A. (We reserve
Hörmander's notation Im(X, A) for 1/2-density valued distributions.) In this
section, we will give an invariant description of the symbol a^(g) for g £
Jm(X, A) and £ £ A. Specifically, Theorem 3.3.7 states that af+n/4(g) lies in
a certain subspace of 'è>™+n/4(X) which depends only on T¿A. In Theorem
3.3.8, we show that our symbol, modulo a natural isomorphism whose
construction we describe, is equal to the one defined by Hörmander in [6].
The geometric constructions here are closely related to those of Kostant [7]
and Guillemin [3] on symplectic spinors, but we do not use any metaplectic
structure.

We begin with some symplectic geometry in Tç(T*X), using the canonical
2-form fi expressed in local coordinates as 2¿£, A dx¡. Denote by £€(AT) the
set of lagrangian subspaces of r€(7'*Ar). The geometry of T* X picks out a
distinguished "vertical" element of t((X), namely T((T*X). We observed in
§1.6 that the subset £"(*) ç £((X) of "horizontals" could be identified with
the set $( of 2-jets of C°° functions cp on X such that d<p(x) = £. The
"difference" between any two elements of £," (X) can therefore be considered
as a homogeneous quadratic function on TXX. We will now generalize this
difference construction to define a quadratic form qXll when X E ñ" (X) and
H E £i(Ar). The domain of qX(i will be the projection V^ of p into TXX.

Let (e„ ..., e„) be a basis of TXX such that eN+x,..., e„ is a basis of V^,
(ex, . . . , e*) the dual basis in T*X. Identifying TXX with A (by projection)
and T*X with 7^(7?*:), we obtain a basis (/„ ...,/„, g„ ..., g„) of
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Té(T*X) such that (/„ .. . ,/„) spans A, (g„ ..., g„) spans T((T^X), Q(fj,fk)
= ti(gj, gk) = 0, and ü(gj,fk) = 8jk. Since the projection of /x is spanned by
eN+\> • • • ' en> it follows that p contains n — N vectors of the form

»,«/,+ 2  ajkgk       (j = N+l,...,n) (3-3.1)

and that p is contained in the space spanned by fN+x, •••,/„, g\, • ■ •> g„-
Since the vectors g,,.. ., gN are fí-orthogonal to this last space, they are
ß-orthogonal to p; since p is lagrangian, they are contained in jti, so
(g,,..., gN, vN+x, ..., v„) is a basis of ju. It follows that the coefficients aJk
for N + I < j, k < n are uniquely determined. Finally, the fact that ß(u,, vk)
= 0 implies that aJk = akj for N + 1 < j, k < n.

Now let z = zJV+1e^+1 + • • • + zne„ be an element of V^, and define
#Xil(z) to be \~2]tk=N+i ctjkZjZk. To see that this definition is independent of
the coordinates chosen, we may formulate it invariantly. Given z £ V^, we
lift it in any way we please to an element z' of ¡i. [In our coordinates, we get

z' =y\g\ + ■ • • +yNg\ + Zn+\Vn+i + • ' • + V»
for some (y„ ...,yN).] Project z' into T((T^X) along A to get z". [In our
coordinates,

z" = v,gi + • • • +yNgN + zN+x(vN+x -fN+x)+ • • ■ + z„(v„ -/„).

Finally, define qXii(z) to be \ ü(z", z'). [In our coordinates, we get

\Ü(z",z') =iS2(^,g, + • • • + yNgN + zN+x(vN+x -fN+i)

+ • • • + zn(vn -/«)> yigi + • • • +yNgN

+ Zjv+1%+1 + • • •  + z„vn)

= \ü{-zN+\fN+\- zj„,yxgx + • • •

+ yNgN + 2at+1%+1 + • • • + z„un)

1        "
=  -  9 2 ZjZkü(fj, vk)

1 "= - 9        2        zjzk(~akj)
* j,k = N+\

1 "
=   t" 2j ajkZjZk>

*  j,k = N+l

which agrees with the earlier definition.]
The symmetric bilinear form BXfl associated with qx¡í is given by

BXll(z, w) = ß(z", w')/2.

It follows that the null space of qXpi consists of those z E V^ having a lift z'
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such that z" = 0, i.e. such that z' E A. Thus we have

Lemma 3.3.1. The null space of qx¡l is the projection into V^ of X n n;
dim(A n p) equals the nullity of qx¡¡.

Suppose, now, that A is a second horizontal space. It has a basis of the form

fj-fj+t  bJkgk, (3.3.2)
* = i

where (bJk) is an n X n symmetric matrix. To compute qXll(z), we must find
vectors of the form

n

Vj=fj+ 2  äJkgk       (j = N + 1,.. ., n)
k"l

in p. To do this, we combine (3.3.1) and (3.3.2) to get
n

Vj=fj+ 2   (a¡k - bjk)gk       (j = N+l,...,n);
k-\

so we have

1       " I       N
93^.(0 =9      2      (ajk - bjk)zjzk = qXfl(z) - -z      2      bJkZjZk.

*  j,k = N+\ *  j,k~N+\

Using (3.3.2), we may recognize the last sum as qxx(z), so we have the
following result.

Lemma 3.3.2. Let X,X E £"(X), it £ t((X). Then qx¡1 = q^ + q^, where
q^ is understood to be restricted to V .

Since any quadratic form on V can be extended to TXX, and any
quadratic form on TXX can be realized as q^ for some A, Â being fixed,
Lemma 3.3.2 has the following consequence.

Corollary 3.3.3. Let p £ t((X). Then there exists an element X £ t"(X)
such that qX)l = 0, i.e. such that dim(A n ju) = dim V . IfX and X are two such
elements, then the restriction to V^ of q^ is identically zero.

We need one more preliminary notion.
Definition 3.3.4. Let If be a vector space V Q W a subspace. A

distribution 8 £ ^D '( W) is called a constant 5-function along V if, for some
(and hence every) linear coordinate system (x,,..., x„) on W such that V is
defined by x, = • • • = xk = 0, 5 is a constant multiple of 8 (xx) • • • 8 (xk),
i.e.

<5, «> = cf «(0,..., 0, xk+l,..., x„) dxk+x ■ • • dx„Jy

for some complex number C.
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The 5-f unctions along V form a 1-dimensional subspace of ^)'(rV) which
we will denote by AV(W). It is invariant under multiplication by C°°
functions on W which are constant along V.

Now we recall the definition of Ö)((X) from §1.6. Identifying the 2-jets
^¿(X) with the horizontal lagrangian subspaces £"(X), we may describe
%(X) as the set of maps_AM>gA from £%(X) to ^)'(TXX) such that
gl = e~iq^gx for each A and A in £"(X).

Definition 3.3.5. Let p E £è(X). We define %^(X) c %(X) to consist of
those maps A \-*gx which assign a constant 5-f unction along V^ Ç TXX to
each A E £" (X) for which dim(A n p) = dim V^.

Corollary 3.3.3 and the remark following Definition 3.3.4 have the fol-
lowing consequence.

Lemma 3.3.6. For each y¡. E £é(X), ty^ is a l-dimensional subspace of
%(X).

The symbol space S^ (X) as defined in §1.6 is naturally isomorphic to

SN (%(X))/SN->/2 (%(X)).

It contains as a subspace SN(%fl(X))/SN~l/2(%fl(X)), which we denote by
§£„(*)•

Theorem 3.3.7. Let A Ç T*X be a conic lagrangian submanifold, g a Fourier
integral distribution in Jm(X, A).

(i) ifO * £ £ T*X, £ E A, then 0((g) = - oo,
(ii) //£ E A, then 0((g) < m + n/4 (n = dim X)

and oj?+n/4(g) E S%f/4(X) where p = T(A. In particular, if g has homo-
geneous principal symbol in the sense of [6], then the homogeneous m + n/4
symbol of g lies in the l-dimensional space ^^(X).

Proof. Statement (i) follows from Corollary 2.2.2 and the fact (Proposition
2.5.7 of [6]) that £ g WF(g).

To prove statement (ii), we can assume ourselves to be in the situation of
Theorem 3.2.5. In fact, we may write g = g| + g2, where £ £ WF(g,) and g2
is as described in Theorem 3.2.5. By Corollary 2.2.2, g, does not contribute to
the order and symbol of g at £, so we may assume that g itself is in the form
given by Theorem 3.2.5. We will now use the coordinates, phase function, and
amplitude of that theorem.

We assume, then, that X = R", £ = (0, £) and A = A^,, where O has the
properties enunciated in the statement of Theorem 3.2.5. First of all, accor-
ding to the definition of Im(X, A) ([6, Definition 3.2.2]) the order of the
amplitude a must be p = m + n/4 — N/2. By Theorem 3.2.5, we have
O(0,£)(g) < N/2 + fi = m + n/4.

To prove that the symbol as given by Theorem 3.2.5 lies in S$i)ft(R"),
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where p = T(04)A<¡„ it suffices to show that the factor S(y) represents an
element of 6D('oi)/1(R"). To do this, we must determine what p is. We use the
coordinates (y„ . . . ,yN, zN+x, . . . , zn) on R" and dual coordinates
(iJi, • • •, %>¿W+i> • • • » Q on R"*. Writing (r/0, £0) for £, we have, modulo
functions vanishing to order > 3 at (0, 0, 0O),

*(y, z, 9) - 2rj0>y, + 2^z, + 2(0, - 90j)yr (3.3.3)
The terms of order > 3 in $ will not effect the computation of T(0í)(Aq), so
we may compute by pretending that 4> is given precisely by (3.3.3).

We have 3$/30,(y, z, 0) = yp so 2.J, is {(0, z, 0)|0 ¥= 0}. Now A«, is
defined by iy = 3$/3y,(0, z, 0) and ¿} = 3$/3z,(0, z, 0); i.e. iy - rj0, + (0, -
0O/) and ¿} = a0J. The tangent space p = T^A^, has as a basis, therefore, the
vectors (3/3tj,, ..., 3/3%, d/dzN+x,..., 3/3z„). The projection V^ into
T0R" has basis (3/3zA,+1,..., 3/3z„) and dimension n — N. Identifying
T0Rn with R", we find that a constant 5-function along V^ is simply a
constant multiple of 5 ( y).

We will be finished if we can show that the element A of ^^(R") at which
the symbol has been evaluated in Theorem 3.2.5 is in the special class
involved in Definition 3.3.5; i.e. we must show dim(A n p) = n — N. X is just
the tangent space at (0, r/0, f0) of the image d<p(R") of the differential of the
function q>(y, z) = <£, x> = "2-q0¡y¡ + 2^0jz,. Then d(p(R") is simply
{(y, z, t/0, f0)}, and its tangent space A at (0,0, rj0, f0) is spanned by
(3/3y,, ..., 3/3y;v, d/dzN+x,..., 3/3z„). Comparing this with the basis for
p given above, we find that the dimension of A n p is n - N.

Finally, the statement about homogeneous principal symbols follows from
Corollary 3.2.6.   □

In the rest of this section, we will relate our symbol to that of Hörmander.
To begin, we will identify the space AV(TXX) of constant 5-f unctions along
F,, C TXX with a space defined in terms of ii rather than V. The "test
functions" for ty'(TxX) have values in the space ÜX(TXX) of 1-densitites on
TXX. (See §1.1 of [2].) To apply an element of AVJJXX) to such a test
function, we should integrate it over V , but we can do so only if has values
in ß^F^). Specification of a constant 5-function along V^ amounts, therefore,
to specifying a linear map from tix(TxX) to ßii^). In other words, we have a
natural isomorphism

A^(r,J0«Q_I(7Jt*)®Q,(F;). (3-3.4)
Next we wish to analyze ßi(KM). The kernel of the projection of p onto V

is a subspace of T((T^X); when we identify T((T*X) with T*X, the kernel of
this projection becomes identified with the annihilator Vf Q T^X, which
may in turn be identified with (TXX/ V¿f. Thus, we have an exact sequence

o->(7yr/f;)«-»M->*;->ft
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inducing for each a an isomorphism ßa(/0 « tia(TxX/ V^)* ® ^(VJ. Now

ßa(7;^/KM)*«ß_„(r^/r(,)»ß.a(rJtA')®öa(K/l),
again by natural isomorphisms, so we have

or

^F,)«0-i>)®0.(W
To combine this with (3.3.4) in order to eliminate V , we must take a = 1/2,
in which case we obtain

Ay¿TxX) ^Çlx/2(p) ®V_X/2(TXX). (3.3.5)
Notice that although we have been working with ordinary distributions (i.e.
generalized functions), our geometric considerations have forced 1/2-densities
upon us.

Definition 3.3.5 gives us a natural isomorphism

%¿X)**\(TXX) (3-3-6)
which is independent of the choice of A E £," (X) with dim(A n ju.) = dim V^.
Combining (3.3.5) and (3.3.6) gives us a natural isomorphism

%,(*) « ß1/2(/i) ® o_I/2(7yr), (3.3.7)
so that the symbol o£,+n/\g) may be considered as lying in

sm+n/4 (ßI/2(M) ® ß_1/2(rJC*))/s",+,,/4-1/2 (ß,/2(M) ® 0.^(7^)).

Using the coordinates of Theorems 3.2.5 and 3.3.7 and following through all
the natural isomorphisms described above we find the symbol to be

am+n/A (g) _ TN/2(2*yNa(Qt 0, r90)\dVx • • • dqNdzN+x ■ ■ ■ dzn\"2

®\dyi---dyNdzN+x---dz„\-l/2- (3-3-8)

To compare our symbol with Hörmander's, we must first take into account
the fact that Hörmander is working with 1/2-density distributions. But either
symbol calculus can easily be extended to deal with vector-bundle-valued
Fourier integral distributions. If E is any complex vector bundle over X, we
may define Jm(X, A; E) to be

Jm (X, A) ® E C <%'(X) ® E = ^'(X; EY>

any element of Jm(X, A; E) is thus locally a sum of products of elements of
Jm(X, A) with smooth sections of E. With respect to a local trivialization of
E, an element of Jm(X, A; E) is just a dim ¿T-tuple of elements of Jm(X, A),
so Theorem 3.3.7 remains true if we replace Jm(X, A) by Jm(X, A; E),
%,(X) by %,(*, £) = ^(X) ® £",, and S^V) by S^+n/4(^; £) =
S^+"/4(a:) ® E.
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If we take E to be Q,X/2(TX), (3.3.7) becomes %tll(X; ÜX/2(TX)) « ß,/2(/0-
Hörmander's space Im(X, A) is just our Jm(X, A; ÜX/2(TX)). If we compute
the symbol of the distribution h which is, in our local coordinates,

g\dyx • • • dyNdzN+x • ■ • dz„\l/2,
(3.3.8) becomes

<,?+»/* (h) = t^2(2^)-^(0, 0,r90)\dqx • • • dV„dzN+x ■ • ■ dzn\x/1.  (3.3.9)
If a is homogeneous (modulo lower order terms), the homogeneous m + n/4
symbol of h at £ is

(2*yNa(0,0,90)\dqx • • • dqNdzN+x ■ • • dz„\1/2 £ ßl/2(/x)- (3.3.10)
To compare our symbol with Hörmander's, we will treat first this homo-

geneous case, for it is only there that Hörmander's symbol is well defined at
points of T*X. (In general, it is defined as a function on each ray of T+X,
modulo functions of lower growth order.) Now Hörmander's symbol lies in
the tensor product ß1/2(jti) ® Lß, where L^ is the fibre over £ of the flat line
bundle L defined on p. 148 of [6]. (Theorem 3.3.3 of [6] shows that Lß can be
defined in terms of ju, alone.) To compare the two symbols, we must identify
Lp with C. By the original definition of L, such an identification arises every
time we choose a phase function for A near £. But there is a natural (up to
equivalence) choice for a phase function near £-the "minimal" one, in which
the number of phase variables is equal to the dimension of T¿A n T^(T*X).
This gives us a natural identification of Lß with C and, hence, of Qx/2(n) ®
LM with ß1/2(/i). (This natural trivialization of each fibre of L does not define
a trivialization of L itself because it is not continuous from fibre to fibre.)

Using Definition 3.2.2 with the convention mentioned after Theorem 3.3.4
and the construction on p. 148 of [6], we find that Hörmander's symbol for h
at £ has the value

(27On/4-"/2a(O,O,0o)co, (3.3.11)

where u is the pullback to (i of a 1/2-density on r(0>0>fl^2# which Hörmander
denotes by "Vdc". Because of the special form in our coordinates of the
quadratic part of our phase function, all the Jacobian determinants involved
in the definition of dc and u are equal to ±1, and w is equal to
\dqx ■ ■ • dqNdzN+x ■ ■ ■ dz„\l/2.

Comparing (3.3.10) and (3.3.11) we find that if we define an isomorphism

<%,(*; ßl/2(7*)) X ßI/2(,0 ® £,„ (3.3.12)
by combining all the isomorphisms already mentioned with a multiplication
by (2ir)n/4+N/2, then the image under ¿M of our symbol is equal to Hörman-
der's.
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To handle the nonhomogeneous case, we must look at Hörmander's
symbol along the ray {t£} as t -» oo. If we denote by t/i the image of ¡i under
the differential at £ of multiplication by r from T*X to T*X, then there is a
natural pullback ß,/2(T/i) -» Q1/2()i) which maps
\dqx • ■ ■ dqNdzN+x ■ ■ ■ dzn\x'2 at rp to T^rfrj, • • • dqNdzN+x • ■ ■ dzn\l/2.
This factor of tn/2 matches exactly the factor of tn/2 in (3.3.9), and we have
the following result.

Theorem 3.3.8. Let £ E TfX be a cotangent vector, /x Ç T((T*X) a
lagrangian subspace. There is an isomorphism tß from the space
fyc^X; ÜX/2(TX)) of "twisted constant 8-functions along the projection V^ Q
TXX with values in ÜX/2(TXX)" to Hörmander's symbol space ßi/2(fO ® 7^; tM
transforms symbols in the following sense.

Let AC T*X be a conic lagrangian submanifold containing £ with T(A = ¡i,
h a Fourier integral distribution in Im(X, A) Q ^'(X; 9,X/2(TX)). For each
t > 0, let aT((h) E üx/2(rp) ® LT¡1 be the value at t£ of Hörmander's principal
symbol for h (t¡i = Tr(A). Then 0((h) < m + n/4, and

o^+n/4(h)T=(l-]mr(aTt(h)))       (modulo O(rm+n/4-1/2))        (33.13)

where

mT:ßl/2(T/i)®7<rM-»ÖI/2(/i)®LM

is the pullback map induced by multiplication by t.
h is homogeneous of order m + n/4 at £ if and only ifa(h) is homogeneous in

the sense that mTaT((h) = Tm+n/4a((h); in this case, the homogeneous m + n/4
symbol of h at £ is equal to ¿7 '(fl{(A)).

Theorem 3.3.8 has a geometric complement, the details of which are
presented elsewhere [13]. The spaces ^)¿(Ar; E) can be considered as the
fibres of a smooth, infinite-dimensional vector bundle ty'(X, E) over T*X.
Over T*X, we also have the "lagrangian grassmannian" bundle t(X)
-» T*X whose fibre over £ is the manifold t((X) of lagrangian subspaces of
ri(7'*Ar). The space ^¡'^(X; E) is a subspace of the fibre at jti of the pulled
back bundle 1*(§>'(X; È)). In [13], we show that the spaces %^(X; E) form
a smooth subbundle of l*(^)'(X; E)), and that the maps t^ give a smooth
bundle isomorphism from {^^(X; ^ix/2(TX))}liee(X) to Hörmander's
"universal symbol bundle" {ßi/2(/0 ® ^¡¡.^^xy We can consider the spaces
tf)'itl(X; ÜX/2(TX)) as giving a new realization of Hörmander's symbol
bundle.
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