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THE ORDER OF APPEARANCE OF THE PRODUCT
OF FIVE CONSECUTIVE LUCAS NUMBERS

DIEGO MARQUES — PAVEL TROJOVSKY

ABSTRACT. Let F}, be the nth Fibonacci number and let L,, be the nth Lucas
number. The order of appearance z(n) of a natural number n is defined as the
smallest natural number k such that n divides Fj. For instance, z(F,) = n =
z(Ly)/2 for all n > 2. In this paper, among other things, we prove that
n(n+1)(n+2)(n + 3)(n +4)

12

Z(LnL7L+1 Ln+2 Ln+3 Ln+4) =

for all positive integers n = 0,8 (mod 12).

1. Introduction

Let (Fy,)n be the Fibonacci sequence given by F, 1o = F,1q + Fy,, for n > 0,
where Fy = 0 and F; = 1. Let (L), be the Lucas sequence which follows
the same recursive pattern as the Fibonacci numbers, but with initial values
Ly = 2 and L; = 1. These numbers are well-known for possessing amazing
properties (for example consult [4]). The period k(m) of the Fibonacci sequence
modulo a positive integer m is the smallest positive integer n such that

F, =0 (mod m) and F,4+; =1 (mod m).

The study of the divisibility properties of Fibonacci numbers has always been
a popular area of research. Let n be a positive integer, the order (or rank)
of appearance of n in the Fibonacci sequence, denoted by z(n), is defined as
the smallest positive integer k, such that n | Fj, (some authors also call it order
of apparition, or Fibonacci entry point). There are several results about z(n)
in the literature. For example, z(m) < 2m, for all m > 1 (see [I5] and [10]
for improvements) and in the case of a prime number p, one has the better
upper bound z(p) < p + 1, which is a consequence of the known congruence
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F, (zy = 0 (mod p) for p # 2,5, where (%) denotes the Legendre symbol
of a with respect to a prime ¢ > 2. We will use Pochhammer polynomial
n®) =nn +1)(n+2)...(n + k — 1) for the simplification of notation in the

following text.

In recent papers, the first author [5]-[9] found explicit formulas for the or-
der of appearance of integers related to Fibonacci and Lucas numbers, such as
Cnt+1,C,Chi1Ch2C, 13 and C’fi, where C,, represents F), or L,,.

In this paper, we continue this program by studying the order of appear-
ance of the product of five consecutive Lucas numbers. Our main result is the
following.

THEOREM 1.1. Let n be any nonnegative integer. Then

n®), n=1 (mod 6);
in® n=210,14,18,22,30,34 (mod 36);
in®) n=3,5 (mod 6);
L,Lpi1LyyoLpi3l,iy) =< 3 ’ ’ '
& +1Lo+alntslnta) %n@), n =4 (mod 12);
In®) n=6,26 (mod 36);

LG(5)7 n=0,8 (mod 12).

—_

(1.1)

Remark 1. The completeness of cases in Theorem [[1] follows from the fact
that the first case and the third case together include all positive odd integers n
and the other cases include all nonnegative even integers n.

2. Auxiliary results

Before proceeding further, we recall some facts on Fibonacci numbers for the
convenience of the reader.

The p-adic valuation (or order) of 7, v,(r), is the exponent of the highest
power of a prime p which divides r. The p-adic order of the Fibonacci and Lucas
numbers was completely characterized, see [14], [16] and [12]. For instance, from
the main results of Lengyel [12], we extract the following result.

LEMMA 2.1. Let p be any prime. Forn > 1, we have

0 if n=1,2 (mod 3);

1 fn= ;
v (F,) = z'fn_3 (mod 6);

3 if n =16 (mod 12);

va(n)+2 if n =0 (mod 12),
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and for any prime p #5 and p > 2

v (Fy) = vp(n) + Vp(Fz(p)) if n=0 (mod z(p));
e 0 if n # 0 (mod z(p)).
LEMMA 2.2. Let p be any prime, let k(p) be the period modulo p of the Fibonacci
sequence. Forn > 1, we have
0, n=1,2(mod 3);
vo(Ly) =<2, n=3(mod6);
1, n=0 (mod 6),
and for any prime p > 2,

V(L) = vp(n) + I/p(Fz(p)), k(p) # 4z(p) and n = @ (mod z(p));
P 0, otherwise.

Remark 2. Since k(5) = 20 and z(5) = 5, we have k(5) = 4z(5) and so the
previous lemma yields v5(L,,) = 0. In fact, the same happens for the primes

13,17,37,53,61,73,89,97,109, 113,137,149, 157,173,193,197, . ..

which is the OEIS sequence A053028. We point out an interesting result of L a-
garias [I1] concerning the density of this set of primes.
LEMMA 2.3 (Cf. Lemma 2.1 [9]). We have

(a) F, | Fyn if and only if n'| m.

(b) Ly, | Fi if and only if n| m and m/n is even.

(¢) Ly | Ly, if and only if n | m and m/n is odd.

(d) Fop = F,L,.

(e) ged(Ly, Lint1) = ged(Li, Lypto) = 1.
LEMMA 2.4 (Cf. Lemma 2.2 of [9]). We have

(a) If F,, | m, then n | z(m).

(b) If L,, | m, then 2n | z(m).

(¢) If n | Fp,, then z(n) | m.
LEMMA 2.5. Let k,n,m be any positive integers. We have

(a) Ifn=0,3 (mod 6), then 2F,, | F,.

If n =2 (mod 4), then 3F,, | Fa,.

(b) If n =1,2 (mod 3), then 2F,, | Fs,,.

(¢) If n =6 (mod 12), then 6F,, | F,.

(d) If n =2 (mod 4), then 6F, | Fgy,.
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(e) If m{ Fin, then m 1 F,.

(f) If n =2,10,14,18,22,30 (mod 36), then L, Lyi+41 F§n<5>~
() Ifn =2 (mod 4), then Lyi21 Fi,e).

(h)

h) If1 <k <5, then vo(T]_o Lnti) < 3.

Proof.

(a) Using the identity Fs, = F,L, and Lemma 22 we clearly obtain the
assertion.

(b) Using the identity F3,, = F, (Lgn + (—1)"), see [4, p. 92], the fact that Lo,
is odd for n = 1,2 (mod 3) by Lemma [22] we clearly obtain the assertion.

(¢) Using the identity Fs, = F,,L, and Lemma we obtain the assertion.

(d) Using the identity Fg, = F3,Ls, = L3, F) (Lgn + (—1)"), see [4, p. 92],
and the fact that 6 | Ls, for n = 2 (mod 4), with respect to Lemma [2.2]
we have the assertion.

(e) Let us consider that m | F,,. Using the well-known property F,, | Fi, we
obtain m | Fy,.

(f) To prove the assertion it is suffice to show that v3(LynLnts) > v3(F1,)
for n = 2,10, 14, 18,22,30 (mod 36) (thus n = 2 (mod 4) and n # 6, 26, 34
(mod 36)). Using Lemmas T} 22 and the clear fact that 4 | 2n(®) for any
nonnegative integer n we obtain

wey= (PO Sy e
v3(n)+1, n=0 (mod4);
va(Fn) = {O,( ) n#0 Emod 4;,
hence
V3(LnLn+a) = v3(Ly) + v3(Lnta)
= (vs(n) +1) + (vs(n+4) +1)
=uv3(n) +vs(n+4)+2
and

1
1/3(F%n(5)) =3 <§n(5)> +1=u3 (n(5))
= I/3(TL) + V3(’I”L + 4) + 1,

as clearly v3((n+1)(n+2)(n+ 3)) =1 holds for n # 6,7,8 (mod 9) and
all cases from the assertion are in this form.
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(g) Forn =2 (mod 4) we have +n(®) /(n+2) = 1 (mod 2), hence the assertion
follows from Lemma (b).

(h) Since there are unique € and ¢ belonging to {0,...,5} such that
n+e¢=3 (mod 6) and n+46=0 (mod 6),

we have

k 5
2 <H Ln+i> < Z Vo(Lnsi) = va(Lnye) + vo(Lpis) =2+ 1=3.
=0

=0

Thus the lemma follows. O

Remark 3. The reader may be wondering why this paper deals with Lucas
numbers, but it does not study the Fibonacci case. The reason is exactly that the
previous item (h) does not hold for Fibonacci numbers. Actually, v, (Hf:o Frii)
can be sufficiently large which causes the substantial increasing in the number
of cases to be studied.

3. The proof of Theorem [I.1]

Since there are at least two even numbers among n,n+1, n+2, n+3, n+4,
we conclude (using Lemma 23] (b)) that

Lnii | Fye for i=0,1,2,3,4. (3.1)

We will consider these cases:

e Let n = 1 (mod 6). Then ged(Ly, Lpts) = ged(Ly, Ly+a) = 1. This to-
gether with Lemma [2.3] (e) implies that the numbers L,,, Ly, 41, Ly+2, Lyt3
and L, 44 are pairwise coprime. Thus ([B]), together with Lemma 24 (¢),

leads to
#(LpLyps1LnpyoLniglyys) | 0. (3.2)

On the other hand, for i=0,1,2,3,4 clearly Ly, y; | LnLn+1LntoLlnislnta,
hence 2(n+1) | 2(LpLypt1LnyoLlnt3Lln14) with respect to Lemma 24 (b).

Since n, "TH, 2(n+2), "T% n + 4 are pairwise coprime, then

n+3

1
Zn%Z(n +2)

Combining ([B2]) and (B3)

Z(LnLn+1Ln+2Ln+3Ln+4) = n(5) .

(TL + 4) | Z(LnLn+1Ln+2Ln+3Ln+4). (33)
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e Let n =4 (mod 12). Using Lemma 23] (b) we clearly have that

Ln+i | Fipe (3.4)

for i = 0,1,2,3,4. Further gcd(Ly,, Ly, +3) = ged(Ly, Ly+4) = 1. This to-
gether with Lemma 23] (e) yields that the numbers L, L,11, Lnt2, Lnts,
and L,, 4 are pairwise coprime. Thus Lemma 24 (¢) implies that

1
2(LnLyi1Lnyolni3lyyy) | Zn<5>. (3.5)

On the other hand, for i=0,1,2,3,4 clearly Ly ; | LnLn+1LnioLlntsLnta,
hence 2(n+1) | 2(LyLypt+1Lny2Lpt3Llnya). Since n/2,n+1, (n+2)/2,n+3,
(n+4)/2 are pairwise coprime, then

n n+2 n+4
Z(n + 1) 5 (n + 3) B) | Z(LnLn+1Ln+2Ln+3Ln+4). (36)

Thus, combining ([B5) and ([B6) we have

2

1 1
Z(LnLn+an+2Ln+3Ln+4) € {gn(s), Zn(g))} .

Now, we show that
LnLns1LntoLnyalnrat Fi0.
In fact, by using Lemma 23] (b) we have
Ln t Fi,e for n=16 (mod 24),
Lyya 1 Fipe for n= 4 (mod 24).
Let n = 8 (mod 12). Using Lemma (b) we clearly have that
Lnti | Fine (3.7)

for i = 0,1,2,3,4. Further gcd(Ly,, Lnt+3) = ged(Ly, Lyys) = 1 and to-
gether with Lemma2.3] (e), we observe that the numbers L, Ly 41, Ly t2,
Ly,+3 and L, 4 are pairwise coprime. Thus Lemma [24] (¢) implies that

1
2(LnLyps1LpyoLpi3lygs) | En(5). (3.8)

On the other hand, for i=0,1,2,3,4 clearly Ly, y; | LnLn+1LntoLlntslnta,
hence 2(n + i) | z(LnLny1LlntoLlni3lnig). Observe that there exist
a,b,c,d € {0,1}, with a+b = c¢+d = 1, such that n/4% (n+1)/3 (n+2)/2,
n+3,(n+4)/(4° - 3%) are pairwise coprime, then

1
ﬂn(B) | 2(LpnLyps1LnsoLnislnis)/2. (3.9)
Thus, using (B.8) and ([39) we have
1
2(LnLny1Lny2lng3lnia) = ﬁn(5).
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e Let n =0 (mod 12). Using Lemma 23] (b) we clearly have that
Lowi | Fi o (3.10)
for i = 0,1,2,3,4. Furthergcd(%,LnJrg) =1 and ged(Ly, Lytg) = 1.
Hence using Lemma 2.5 (a) we obtain
LnLny1lnsolnislnga | 2F L6 [ Fr,e
and

1
Z(LnLn+an+2Ln+3Ln+4) | 67’1,(5) (311)

On the other hand, for i =0, 1,2, 3,4 clearly Ly ; | LnLn+1LnioLlnt3Lnta,
hence 2(n + i) | z(LnLny1LlntoLlni3lnig). Observe that there exist
a,b,c,d € {0,1}, with a+b = c¢+d = 1, such that n/(4%- 3°), n+1, (n+2)/2,
(n+3)/3% (n+ 4)/4° are pairwise coprime, then

1
ﬂn<5> | 2(Lyp L1 Lol i3lnys)/2 (3.12)

and therefore

1 1
Z(LnLn+an+2Ln+3Ln+4) € {ETL(B), 671(5)} .

We show that
LyLyi1LypioLyyslyia | Fa,6.

The proof will be based on comparing p-adic orders of
LpLpy1LpyoLlyy3l,+q and F%n(s) for all primes p.
Thus we shall prove that
Vo(F 1) = vp(Ln L1 Lo s 1) (3.13)
holds for all primes p.
Using Lemma [Z7] (h), Lemma 2T and the clear fact that

1
(5) =
L= 0 (mod 48),

we have .
VQ(FI%,”(S)) = 1y <En(5)> +2
= 1”®)-24+2>6
VQ(LnLn+1Ln+2Ln+3Ln+4)-
Now, we will consider p # 2. Suppose that vp(LyLyt1Ln+2Ln+3Llnya) # 0

(otherwise the desired inequality is directly proved). Since LT", Lpy1, Lo,

Ly+3 and L, 4 are pairwise coprime, p divides only one of L,,, L,,1+1, Ly+2,
Ly t3,Lyya, say p | Lyys for some 6€{0,1,2,3,4}. Thus p | Ly4s | Fie
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implying z(p) | 51, by Lemma 24 (c). Therefore using Lemma 221l and
Lemma 2.2 we obtain

VP(Ln+5)
vp(n+9) + VP(FZ(P))

Vp <%“(5)> +1p (Fap)
= 1 (F%n(s,)) .
Let n = 3 (mod 6). Using Lemma [2.3] (b) we clearly have that
Losi | Fioe for i=0,1,2,34, (3.14)

Vp(LnLnt1Lny2Lny3lnya)

IN

IN

Further gcd(%,LnJrg) = ged(Ly, Lyya) = ged(Lpt1, Lntga) = 1 and to-
gether with Lemma (e) the numbers L2" yLypi1,Lyto, Lyys and Ly gy
are pairwise coprime. Hence using Lemma 2] (a) we obtain

LnLn+1Ln+2Ln+3LTL+4 | 2F%n(5) | FQ%n(@'
In particular,

2
2(LnLyi1Lnyolni3lyyy) | §n<5>. (3.15)

On the other hand, for i=0,1,2,3,4 clearly Ly, y; | LnLn+1LntoLlntslnta,
hence 2(n + i) | z(LnLny1LlntoLlni3lnig). Observe that there exist
a,b,c,d € {0,1}, with a + b = ¢ + d=1, such that n/3% (n+ 1)/2%n + 2,
(n+3)/(3"-29), n + 4 are pairwise coprime, then

1
gn(B) | 2(LypLni1Lniolny3lnia)/2. (3.16)

Thus, using (3I5) and BI0) we have
1 2
Z(LnLn+an+2Ln+3Ln+4) € {gn(s), §n(5)} .

We show that
LnLn+1Ln+2Ln+3Ln+4 | F%n(fi)‘

The proof will be again based on comparing p-adic orders of
LnLn+1Ln+2Ln+3Ln+4 and F%n(fi)

for all primes p. Thus we prove that
v, (F%n@) > p(LnLns1 Lo Loy 3Lnsa) (3.17)

holds for all primes p. This relation clearly holds for p = 5 with respect
to Lemma 21 and Lemma Using Lemma (h), Lemma 1] and
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the clear fact that %nw) = 0 (mod 24) we obtain

1
VQ(F%n(@) =13 <§H(5)> +2= ug(n(5)) +2
2 5 > VZ(LnLn+1Ln+2Ln+3Ln+4).

When p # 2 and p # 5, the proof of (B.I7) can be done by the same way
as in the case n = 0 (mod 12).

e Let n =5 (mod 6). Using Lemma 23] (b) we clearly have that
Loti| Fipe for i=0,1,2,3,4.

Further ged(Ly,, Lyy3) = ged(Ly, Lyys) = gcd(L"Q“,LnH) =1, and to-

gether with Lemma (e) the numbers L,,, %, Lyyo,Lyys and Lyyy

are pairwise coprime. Hence using Lemma [2Z5] (b) we obtain
LnLn+1Ln+2Ln+3Ln+4 | 2Fén(5) | FS%nw)

and then 5
2(LpnLypy1LnyoLnislyys) | 0. (3.18)

On the other hand, for i=0,1,2,3,4 clearly Ly y; | LnLn+1LntoLlntslnta,
hence 2(n + i) | 2(LnLn+1Lntolnislniq). Observe that there exist
a,b,c,d € {0,1} with a +b = c+d=1, such that n, (n+1)/(2%-3%),n+ 2,
(n+3)/2°% (n +4)/3% are pairwise coprime, then

1
67’1,(5) | Z(LnLn+1Ln+2Ln+3Ln+4)/2. (319)
Thus, using (3I8) and BI9) we have

1 2
2(LnLni1LnyaLnislnya) € {gn“’, §n<5>,n<5>} :

The fact that L, Lp+1LnyoLlnt3lnta | F%n(m holds can be proved in the
same way as in the case n = 3 (mod 6).
e Let n =6 (mod 36). Using Lemma 23] (b) we clearly have that

Loti| Fipe for i=0,1,2,3,4.
Further gcd(%,Ln+3) = gcd(L", L%“) = gcd(LnH, —L%“) = 1 and to-

2
gether with Lemma (e) the numbers %, Ly+1, Lnyo, Lyys and %

are pairwise coprime. Hence using Lemma 2] (¢) we obtain

LnLn+1Ln+2Ln+3Ln+4 | 6Fén(5) | F%n(“

and 1
Z(LnLn+an+2Ln+3Ln+4) | g?’l(5) (320)
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On the other hand, for i=0,1,2,3,4 clearly Ly y; | LnLn+1LntoLlnislnta,
hence 2(n+14) | 2(LyLpt1Lnt2Llntslnta). Since n/6,n+ 1,n+ 2,n+ 3,
(n+4)/2 are pairwise coprime, we have that

1
EH(ES) | Z(LnLn+1Ln+2Ln+3Ln+4)/2. (321)
Thus, using (3.20) and B21) yields
1 1
2(LnLys1Lnyolni3lygs) € {gn“), §n(5)} :
So, it remains to prove that
LnLnt1LntoLlnsslnts | Fipe).

Using Lemma[ZH5 (h) and the clear fact 2n(®) =0 (mod 12) by Lemma[2ZI]
we get

1
>5> VQ(LnLn+1Ln+2Ln+3Ln+4).

For p > 2 we can prove that vp(Ly,Lps1LnyoLnyslnya) < vp (F%n<5))
in the same way as in the case n =0 (mod 12).
Let n = 26 (mod 36). Using Lemma [Z3] (b) we clearly have that

Loti| Fipe for i=0,1,2,3,4.

Further gcd(%,LnJrg) = gcd(LT", L"2+4) = ged(Lpy1, L"2+4) = 1 and this
together with Lemma (e) implies that the numbers %,Ln+1,Ln+2,

Lyya
2

L3 and are pairwise coprime. Hence using Lemmal[ZF] (d) we obtain
LnLn+1Ln+2Ln+3Ln+4 | 6F%n(5) | Fn(5)

and
2(LpLys1LnioLnislnys) | n®. (3.22)

On the other hand, for i=0,1,2,3,4 clearly Ly, y; | LnLn+1LntoLlntslnta,
hence 2(n+14) | 2(LyLpt1Lnt2Llntslnya). Since n/2,n+1,n+2,n+ 3,
(n+4)/6 are pairwise coprime, we have that

1
En<5> | 2(LypLni1Lniolny3lnia)/2. (3.23)
Thus, (3:22) and ([323)) yield
1 1 1 2 b)
2(LypLps1Lpsolnyslnis) € {En(s)’ gn(5)7 571(5), gn(5)7 gn(5)7n(5)} )

So, it remains to prove that L, L, 11 LyyoLlny3lnya | F%n(5)7 but the proof
is the same as in the previous case.
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e n=2,10,14,18,22,30,34 (mod 36). Using Lemma[2:3] (b) we clearly have

fori=0,1,2,3,4:
x If n = 2,14,18,30 (mod 36), then L, ; | Fi,).
x If n =10, 22,34 (mod 36), then L, ; | Fipe.
It can be seen that:
« If n=2,14 (mod 36), then

ng( n+3) - ng( Ln+4) - ng( n+1, L7§+4) =1

« If n =10 (mod 36), then

ged(Le, Lyys) = ged(Le, Lyya) = ged(Lyg1, Lnya) = 1.

* If n = 18,30 (mod 36), then

(
ng( n+3) - ng(%, n+4) - ng( n+1, %) =1

« If n = 22,34 (mod 36), then
ged(Ly, Lts) = ged(Ly, 2254) = ged (Lyyr, 2254 = 1.
By Lemma 2.7 (a), (d) we obtain:
* If n=2,14,18,30 (mod 36), then
LpLni1LntoLlnislyts | 6F 1,60 | Foine-
x If n=10,22,34 (mod 36), then
LnLn+1Ln+2Ln+3Ln+4 | SF%n(E)) | FQ%n(E)).
Thus in all cases we have

2(LnLps1Lniolni3lnyis) | n®

(3.24)

On the other hand, for i=0,1,2,3,4 clearly Ly ; | LnLn+1LntoLlntsLnta,

hence 2(n+4) | 2(LpyLyy1LpyoLlnyslyys). Since:

x n = 2,14 (mod 36), then n/2,(n+1)/3,n+2,n+ 3,(n + 4)/2 are

pairwise coprime.

x n = 10,22,34 (mod 36), then n/2,n + 1,n+ 2,n+ 3,(n+4)/2 are

pairwise coprime.

x n = 18,30 (mod 36), then n/2,n+ 1,n+ 2,(n+3)/3,(n + 4)/2 are

pairwise coprime.
Thus:

* n = 2,14,18,30 (mod 36) implies 2n® | 2(LyLys1Ln+2Lyt3Llnya)-
% n = 10,22, 34 (mod 36) implies —n<5> | 2(LpLny1Lntolnislnia).

Summarizing, we have:
x n = 2,14,18,30 (mod 36) implies

k
2(LpLns1Lniolnislnis) € {gn@ ‘kefo,...,

* n = 10,22, 34 (mod 36) implies

1
Z(LnLn+an+2Ln+3Ln+4) € {in(s)vn(s)} .

s}
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To prove the assertion for this case we must prove that:

* LnLn+1Ln+2Ln+3Ln+4 | F%n(5) ifn= 10, 22, 34 (mod 36), and

* LnLn+1Ln+2Ln+3Ln+4 T F%n(5) and LnLn+1Ln+2Ln+3Ln+4 | F%n(5)

if n = 2,14,18,30 (mod 36).
First, we shall prove that
LyLpi1LyyoLlpishyiat F%n(s) for n=2,14,18,30 (mod 36).  (3.25)
In fact, if n = 2,30 (mod 36), then
Vg(LnLn+4) =3>2=1u3 (F%n(s)).
If n = 14 (mod 36), then

I/3(LnLn+4) = I/3(TL+4) + 2> I/3(7”L‘|‘4) +1
= Vg(n) + 7/3(77, + 4) =U3 (F%n(s)).
If n = 18 (mod 36), then

Vg(LnLn+4) = Vg(n) +2> Ijg(n) +1
= wv3(n)+rs(n+4)=uv; (F%Ms)).

In summary, LnLnt4 1 Fip) for n = 2,14,18,30 (mod 36).
Now, we shall prove that

LnLn+1Ln+2Ln+3Ln+4 | F%n(5)

for all n = 2,10, 14, 18,22, 30, 34 (mod 36). For that, we use the same
p-adic valuation argument as before. For p # 2 and p # 5, we proceed
exactly as in the case n = 0 (mod 12). For the case p = 2, we have

I/Q(F%n(sy)) = I/Q(TL) + VQ(’I”L + 2) + VQ(TL + 4) +1
>5>3> VQ(LnLn+1Ln+2Ln+3Ln+4)-

Therefore, the proof is complete. O
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