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1. Introduction. Let X be a compact Hausdorff space and let B(X)
denote the Banach lattice of all real-valued bounded functions on X with
the supremum norm |-||. C(X) denotes the closed sublattice of B(X)
consisting of all real-valued continuous functions on X. Let A be a linear
subspace of C(X) which contains the unit function 1, defined by 1,(y) =1
for all ye€ X. Let N denote the set of all non-negative integers. Let p
be any fixed positive real number and let G be a subset of A separating the
points of X. Suppose that A contains the set {lg — g(¥)14]?; 9 G, y e X}.
For a bounded linear operator T of A into B(X) and a function ¢ge@G,
we define

1 (T, o)) = T(lg — 91:1*)y) (eX).
Let {L,; « € D} be a net of positive linear operators of A into B(X) and put

pP(g) = (L., 9) (eeD,geq),

whose norm is called the p-th absolute moment for L, with respect to g.
In [18] we proved the following convergence theorems, which may
play an important role in the study of saturation property for {L,}:

THEOREM A. Let U be a multiplication operator given by U(f) = hf
(f e A), where h is an arbitrary fixred non-negative fumction in B(X).
If lim, || (9)]] = 0 for all ge G and there exists a strictly positive func-
tion ue A such that lim,||L,(u) — Uwn)|| =0, then lim,||L.(f) — Uf)|| =0
for every fe A.

THEOREM B. Let T be a positive projection operator with T # I (iden-
tity operator), Ty) = 1; and L,T =T for every acD. If p*(T,g)cA
and Hm,||L,(p'?(T, g)|| = 0 for all g€ G, then lim,||L,(f) — T(f)|| =0 for
every f € A.

The purpose of this paper is to give a quantitative version of the
above theorems in which we estimate the rate of convergence of {L.(f)}
by using a modulus of continuity of f. Furthermore, a particular atten-
tion is paid to the degree of approximation by iterations of positive linear
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operators of A into itself (cf. [17]).

Finally the results are applied to various summation processes and
some ergodic theorems for positive linear operators from a quantitative
point of view. Concrete examples of approximating operators can be
provided by the multidimensional Bernstein operators and the semigroup
of Markov operators induced by them (cf. [12]). For the basic theory of
semigroups of operators on Banach spaces, one may consult the books of
Butzer and Berens [2] and Hille and Phillips [4]. Actually, the results of
the author [11], [13] ean be improved by means of the higher order
moments.

2. Degree of convergence. Here We assume that A contains the
set {lg —gW1s*9eG,yeX, p=1}. Let feBX). If {g9,9, -, 9.} is
a finite subset of G and § = 0, then we define

o(f; 9, *+*, 9, 0) = sup{[f(x) — fW); x, ye X, dz, y) <o},
where
d(z, ¥) = max{lg.(x) — gW;i=1,2, .-+, 7} .

This quantity is called the modulus of continuity of f with respect to

9 9 * -+, 9, ([17]).
In order to achieve our purpose it is always supposed that the fol-

lowing condition is satisfied:
(1) There exist constants C = 1 and K > 0 such that
o(f; 9y -+, 95 80) = (C+ KOO(f; 91y -+, 9, 0)
for all fe B(X), & &=0 and for all finite subsets {g,, g,, - -+, 9,} of G.

Now we have the following key estimate for positive linear function-
als on A.

LEMMA., Let L be a positive linear functional on A and ye X. Let
{9, 90 *++, 9,} be a finite subset of G, p=1 and 6§ > 0. Then for all
ge A, we have

ILe) — 9L < (CL(Ly) + a@)alf; g, -+, 95, 9)
where
ay) = minfsKL@(-, 1)), 5 K(L@(, Y) (L))
with
0, 9) = X 9.) ~ 0.0 (% yeX).
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Proor. Let xeX. If d(x, ¥) > 0, then it follows from (1) that
(2) lg(x) — 9(m)| = (C + K(d(z, 9)/0))w(g; 9, *++, 9., 0)
< (C + K(d(x, ¥)/0)" ) (g; gy ***, Gy, 0)
< (C+ 07K0(x, ¥)w(9; 9y, **+5 9 0)
If d(z, ¥) < 6, then (2) also holds since C = 1. Consequently, we have
lg — 91zl = w(g; 9y, -+ +, 9., ONCly + 677KO(-, ¥)) ,
and applying L to both sides of this inequality we get
(3) IL(g) — 9()L(A)| = ©(9; 9y *+, 9 O)CL(Ly) + 6 ?KL(O(-, ¥))) .
On the other hand, there holds
(4) lg — 9(1x| < w(g; 9y, -+ -, v O)(Cly + 07K(O(-, yN)'?) .

Now we extend L to a positive linear functional on the whole space C(X)
and denote this functional by the same L. Then applying L to both sides
of (4) and using Holder’s inequality, we obtain

IL(g) — 9@ L)} = 0(g; 9y * - 19, 0)(CL(Ay) + 67 KIL(O(- , )N (L(15))~7),

which together with (8) implies the claim of the lemma for p > 1. If
p =1, then (3) is obviously identical with the desired estimate. q.e.d.

We are now in a position to recast Theorem A in a quantitative form
with the rate of convergence.

THEOREM 1. Let U be as in Theorem A and let w be a strictly posz-
tive function in A. Then for all fe A and for all a€ D,

ILLF) = U < I1ffull 1 L) = U@
+ int{Ke(Ifulo(ui g, -, 9, &5 @)

)

>0r=12-],

2(9,)

35

+a)<f;gu ‘89, & -

p2116>0,g1’ '..’ g"eG’

where
Kg9 = |[CL(Ls) + min{e K1y, e K(LoLo)) ] .

Proor. Let y be an arbitrary point of X. Then for all fe A and
all ¢ € D, we have

IL(f)Xy) — UNW)| = |FW)/u)! | L(u)(y) — Uu)y)|
+ {lF@)/u@)] | L(u)(y) — w() L)W + ILLOW) — @)L}
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Now making use of Lemma with L(-) = L,(-)(y), the second term on the
right hand side is majorized by

(CL(1x)(®) + a)(f@)/uW)lo; g, +++, 9., 6) + &O(f; 95, *+*, 94, 0)) »
and

aly) < min{&"’K

3 ()|, K|S 10| L@l

Therefore, putting & = &[>, & (g)||¥» > 0 and taking the supremum
over all y € X we arrive at

1Lolf) — UWDN = If/wll | Lolu) — Uw)|
+ K&”’"(Hf/ullw(u; g %5 G eHg‘i /Jé”’(gf)Hl/p>

),

which implies the desired result. q.e.d.

, 07K

+w(f; Gy s n e“g‘, ©E(9.)

REMARK 1. If A contains the set
F(G)=1{g%9¢€G,1=0,1,2 -+, ¢q

for an even positive integer ¢, then we have

Sy

= 55 (¢ hoar1L.to - v

and so Theorem 1 yields the estimate for ||L.(f) — U(f)] in terms of the
corresponding quantities for the test system F (G).

Concerning the degree of convergence in Theorem B we have the
following:

THEOREM 2. Let T be as wn Theorem B. Then for all fe A and all

a€D,
1/p
)

|>0,'r=1,2,---},

1L = TN S inf{Co%0(f; g, -+, 9 &[5 Ll (T, )

pz1l¢e>0,9,--,9,€G,

3 Lo(17(T, 9.)

where
(5) C?? = C + min{K/e?, K¢} .

Proor. Applying Lemma to L(-) = T(-}(y) with any fixed point y of
X, we get

(6) IT(F) — f1 < @(f: 0 -+, 9 Cly + a) ,
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where
1/p

@ = min{a-pxg w (T, g), a-lK@ § (T, g,.)) } .

Now let 4 be a positive linear functional on A with 4(15) = 1 and denote
an extension of 4 to the whole space C(X) by the same +. Applying
to both sides of (6) and using Holder’s inequality, we obtain

W (T — (NI = (C + ya)o(f; gy + -, 9, 0)

and

1/p

¥(@) < min{o K 3 (T, ), 37 K(Z w1 (T, 9)) | -

Take () = L,(-)(y), where y is an arbitrary fixed point of X. Then,
since L,T =T, we have
IT(f)(y) - La(f)(y)l é (C + M)Cl)(f, gy O 3) ’

where

, 5-1Kl

r i/p
3 L (T, 0))| 7}

Thus putting 6 = ¢|| >0, Lt (T, g.)||* > 0 and taking the supremum
over all y € X, we obtain
")

which establishes the desired result. g.e.d.

M = minfoK |5 L(u2(T, 9.)

ILLF) = TN S Co%0(fi g +++, 90 o[ Ll (T, 9)

REMARK 2. If A contains F,(G) for an even positive integer ¢ and -
(7) T(gi):gl (geG,’LZO,l,z,"‘,q—l),
then we have
IS LT, 90)]| = 33 ITuto) — T

and so Theorem 2 gives an estimate for |L.(f) — T(f)| in terms of the
corresponding quantities for the test system G* = {¢% g€ G}.

In the rest of this section A is assumed to contain F,(G) for an even
positive integer q. Let T be a positive projection operator on A with
T + I, which satisfies (7) and L,T = T for every « € D. Suppose that each
L, maps A into itself and L, (g% = g° + &.(T(9%) — g% for all @D, ge@G,
where {£,} is a net of real numbers with 0 < &, < 1.

For fe B(X) and § > 0, we define
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¥(f, 0) = inf{Co0a(f; g1+, 0, 0e][33 (TtoD) — o)

1/q9
)i

>0,'r=1,2,---},

8>0; gy 00y greG,

where C@° ig given by (6) with p = q.
As a consequence of Theorems 1 and 2, we have the following corollary
which is more convenient for later applications.

COROLLARY 1. Let {k,; e D} be a net of positive integers and let

Lk« denote the k,-iteration of L, for each aa€D. Then for all fe A and
all e D,

ILe(f) — fll = T, A — A — &)Y £ U(S, (kaba)”™)

and
L) — TN S T, A — &)%) .

In [18; Theorem 3], we showed that if lim, ks, = 0, then {L%; a € D}
is saturated in A with order 1 — (1 — g,)*», or equivalently, with order
k.&,, and its trivial class coincides with the range of 7. Thus the above

corollary may give the optimal estimate for the order of approximation
by Lk,

3. Applications. Let A be a closed linear subspace of C(X). A
mapping L of A into itself is called a Markov operator on A if it is a
positive linear operator with L(1;) =1,. Let {a,.,acD meN} be a
family of non-negative real numbers with 3. ,a.., =1 for each aeD.
For examples of such families, see, for instance, [14] and [16]. Let
{tn; m € N} be a sequence of non-negative integers and {j,; m € N} a se-
quence of positive integers. Let {S;; v €I’} be a net of Markov operators

on A and {T,; m =1} a sequence of Markov operators on A. For any
fe A, we define

(8) SurlF) = 3 00nSin(f) (@€ D, VD)
and
(9) Toalf) = S aunTinf) (@eDkz 1),

which converge in A:. Let {W(t); £ = 0} be a family of Markov operators
on A such that for each fe A, the map ¢t - W(E)(f) is strongly continuous
on [0, ). For any fe A, we define

(10 Coll) = WO\ W + (Pt (¢ > 0,02 0)
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and
1) Roif) = & exp(—sy Wt + 00t 602 0),

which exist in A.

All the operators given above are Markov operators on A and our
general results obtained in the preceding section are applicable to them.
As illustrations of these general results we restrict ourselves to the fol-
lowing setting:

Let X be a compact convex subset of a real locally convex Hausdorff
vector space E with its dual space E*, and G = {v|y; ve E*}, where v|;
denotes the restriction of » to X. Note that Condition (1) holds for
C =K =1 (see, [11; Lemma 1]). Let T be a positive projection operator
of C(X) onto a closed linear subspace of C(X) containing 1, and G (which
is the case where A = C(X) and ¢ = 2).

For applications to Corollary 1 it is convenient to make the following
definition: Let {P;; » € 4} be a family of Markov operators on C(X) and
{3 » € 4} a family of non-negative real numbers. We say that {P)} is of
type [T; ;] if P,T=T and Py¢*) = g* + z(T(g®) — ¢°) for all €4 and
all ged.

Now we first consider the case where F = R", the r-dimensional Eu-
clidean space equipped with the metric

o(x, y) = max{le, — y[;1=1,2, .-+, 7}

for = (%, %, +++,2,) and ¥y = (Y, ¥ **+, ¥,). Let e, denote the i-th
coordinate function on X. Then w(f;e, :--, e, 0) reduces to the usual
modulus of continuity of f, given by

o(f, 8) = sup{|flw) — fW); », ye X, o, y) < 5} .

In view of Remarks 1 and 2, we have a quantitative version of the
Korovkin type convergence theorem due to Karlin and Ziegler [5; Theorem
1 and Remark 2] for multidimensional case.

Take X = I,, the unit »-cube, i.e.,

Ir:{(wu e e)eR0s0,51,1=1,2, .-, ’l‘}
and let F be the closed linear subspace of C(X) spanned by the set
{e{heé’z ‘oo ghr k; €10, 1},+=12, ---, 1"} .

Let {B,; » = 1} be the sequence of Bernstein operators on C(X) given by

12)  BO@ =3 - D flefn, -+, kifw) 1T (Z')aci-‘f(l — )
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for feC(X) and z = (x, %, * -+, x,) € X (see, e.g., [8]). It can be verified
that B, is a positive projection operator of C(X) onto F and {B,} is of
type [B;; 1/n]. Consequently, if I' = N\{0}, S; =B, and T, = B,, then
{S.r} and {T,,} are of types [B;1 — z,,] and [B; 1 — ¥,,], respectively,
where

=35 Gaml = 1) and You = 3 (L — LK),

and so Corollary 1 can be applied to these operators. In particular, con-
cerning the order of approximation by iterations of the Bernstein operators
we have the following estimates: For all feC(X) and all n = 1,

(13) |Bix(f) — fIl = A + min{r/4, r*/2Do(f, X — A — 1/5.)")"")
= (1 + min{r/4, r*/2DNw(f, (1./3.)")

and

(14) |B=(f) — BNl £ A + min{r/4, r*/2Dw(f, 1 — 1/5,)") .

Therefore, on account of (13) and (14), we have lim,_.%,/j, = 0 if and
only if lim,... ||Bi»(f) — f|l = 0 for every feC(,), and lim,.. ./, = + oo
if and only if lim,.. [|Bi»(f) — B(f)|| = 0 for every feC(,). Whenr =1
and j, = n for all » = 1, this result reduces to that of Kelisky and Rivlin
[6] (ef. [B], [9], [10]). For extensive approximation properties by iterations
of positive linear operators, we refer to [18]. If {7,} = {1}, then we can
sharpen (13) further as

I1B;,(f) — fIl = (1 + min{3r/16, (37/16)"*De(f, (1/5.)") ,

by taking the fourth absolute moment and making use of Theorem 1 (cf.
[14], [15], [16], where quantitative Korovkin type estimates can be treated
in the setting of an arbitrary compact metric space).

Statements analogous to the above-mentioned results may be derived
for the case where B, are the Bernstein operators on C(4,) with the
standard r-simplex

Ar:{(xv "'7wr)eRr;xi_2_Oyi:1y 27 “tty 7',.’171'}‘ te +xr§1}’
given by
(15) B.(f)(x) = . ! Flefn, -+, k./n)

20,k 4ok Sn
xnlf((k ksl - k) — By — by — -+ - — k1)
X higke .o a;’:_r(l — g, — e — x,)"""l'“"'_"r

for feC(4,) and « = (%, @, + -+, ©,) €4, (see, e.g., [8]). These can be ob-
tained in the following very general setting.
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Again let X be a compact convex subset of a real locally convex
Hausdorff vector space E and G = {v|y; ve E*}. Let A(X) denote the
space of all real-valued continuous affine functions on X. If L is a Markov
operator on C(X), then for a point x € X, a Radon probability measure
y, on X is called an L(A(X))-representing measure for x if

L@ = | fav,

for every fe A(X). Let M ={M,;n = 1} be a sequence of Markov oper-
ators on C(X), v* ={y,;xc X, n =1} a family of Radon probability
measures on X such that y,, is an M,(A(X))-representing measure for
%, P=(P,;). i=: an infinite lower triangular stochastic matrix, Y={y,; x € X}
a family of points of X, and p={p,; n=1} a sequence of functions mapping
X into [0, 1]. Then we define

virs = 0@, + A — p.(®))e, oM, ,
where ¢, denotes the Dirac measure at ¢, and also define the mapping

T,pin X"— X by (x, xz,--~,x")—>52.21pnjwj-

For a funection fe C(X), the n-th Bernstein-Lototsky-Schnabl function of
f ‘on X with respeet to v, P, Y and o is defined by
B.(f)(@) = B¢ry"(f)(x) = S Sorm, pd @ vili%
xn 1g§sa
(113], cf. [3], [19]).
Now take
im:]- (m:Oylyzy"')! Tm=Bm (m:]-rzr"')
and let {T,,; ac D, k = 1} be the family of operators given by (9). Then
we have the following:

THEOREM 3. Suppose that M,(g) =g for all n =1 and all gc A(X).
Then the following statements hold:
(i) If y, =z for every xc X, then for all feC(X), acD and all

k=1,
(16) | T i) — Fll = L)
where
Cap(f) = inf{(1 + min{e™, e Do (f; g1y * s 9o llBayilgs <=5 9 5
€>0,9, ", 0,€G lhoulgy --+, 9 >0,r=1,2 -},
with
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hei@y s 9)®) = 3% G 3 Phasi0i(®) 3, (00D — 030)) wEX).
(i) If p, =1y for all n = 1, then (16) holds for
hes@y 5 9@ = 35 Qe 3 Physs 33 (0 (0) — 036D wEX).

PROOF. Assume that y, = z for every x€X. Then, by [13; Lemma

4], it can be seen that for all ae D, k=1 and all g€G,
T.le) =1y, Tenl@) =g
and
1P (T, iy 9)(@) = T, 1(g7)(@) — 9°%(%)
=2 Caym g; D508 (v2,i(9°) — 9°(@)) (e X).

Therefore, the desired estimate (16) follows from Theorem 1 with & =
# = 1;. The proof of Part (ii) is similar. q.e.d.

COROLLARY 2. Let M be as in Theorem 3. Then the following state-

ments hold:
(1) If y, = x for every x€ X, then for all feCX) and all n =1,

(17) |B.(f) — fll = w.(f),
where

o,(f) = inf{(1 + min{e™, e H(f; 9y, -, 91y €0aG1y *++, 9.)) 5
> 0’ gy 2y grer an(glr 0ty gr) > O; r= 17 21 "'} ’

with
T 1/2
0.0y ***, 9,) = (sup{jzé,l 05404) g{ (v5,5(9%) — gi(x)); x € X}) .
(i) If p,= 1y for all n = 1, then (17) holds for
0@ -+, 9 = (sup {32 33 08D — G we X})

This corollary gives a quantitative version of the result (Jef. 19; Satz
1]) of Grossman [3] and it estimates the degree of strong convergence of
{B,} to I on C(X).
From now on we suppose that
M,=1 nzl), y,=2 (@eX)

L,=1; (n=1), and v,,=», @eX,nz=1),
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where v, is a representing measure for z (i.e., an I(A(X))-representing
measure for &) such that the map

2 vf) = | fiv.

belongs to A(X) for every fe(C(X). Thus each B, maps C(X) into itself
and B, is a positive projection operator of C(X) onto A(X) (cf. [3; Propo-
sition], [18; Remark 7]).

For any fe B(X) and § > 0, we define

Q2(f, 9) = inf{( + min{e™, e Do (f; gy - -+, 94, dellz@y -+, gD 5
E> 01 gy * greG’ ”T<gu cT gr)” > Oy r= 17 2’ "'} ’

where
TGy -0y g)(@) = g (gD — gix)) (e X).
Now take T, =B, (m =1,2, ---), and let {T,,;a€D, k =1} be the
family of operators given by (9). Then we have the following:

THEOREM 4. Let {m,; a € D} be a net of positive integers. Then for
all feCX), aeD and all £ =1,

NT25(f) — fll £ 2, A — x5
and
I T24(f) — B(OIl £ f, =257 ,

where
g .
xa,k = Z aa,m(l - Z pg',,,,ki)zm .
m=0 iz1

ProoF. By induction on the degree m of iteration of B,, it can be
verified that {B7} is of type [B;l— (1 — Xz 2™ (B, m=1,2, ---).
Therefore, {T, .} is of type [B;1 — x,,] and so the desired result follows
from Corollary 1. g.e.d.

COROLLARY 3. For all feC(X) and all ne N,
(1Bi=(f) — fll = 2(f, A — @1 — E.lp?-nm)"")‘”) = Q(f, (i, E,lp?-nm)‘”) )
and

IBiz(£) — B(AIl = 2(f, A — 2 Pjm)™)

From this result we conclude that if lim,.. >z, D} . = 0, then
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limi, 3, p},. = 0 if and only if lim ||Bf(f) — fI| = 0

T—H00

for all feC(X), and ,
lim<, Ezjlp‘jinm = +oo if and only if lim ||Bj»(f) — B(f)|| =0

n—oo

for all f€ C(X). Also, by [18; Theorem 3(b)] we see that if lim, .o >z P} =
0, then {Bjr} is saturated in C(X) with order 1 — (1 — 3.,.., P} )", or
equivalently, with order 4, 3,z ¥} ., and its trivial class coincides with
A(X) (cf. [18; Theorem 4]). Therefore the first part of Corollary 8 seems
to be useful for the characterization of the saturation class of {Bjs} by
structural properties on the funections f.

If L is a Markov operator on C(X), then for any feC(X), we define

00lLi ) = U + D) S L) (n, ie N)

and
AL )= 1= SL(f) 0 <t<LieN),

which is a particular case of (8). Note that if {S,} is of type [B,; z;],
then {S,;} is of type [B;1 — Xin_ @ (1 — ;)'»]. Thus, in view of this
fact, making use of Corollary 1 we have the following quantitative ergodic
type theorem for iterations of the discrete Cesaro and Abel means of the
Bernstein-Lototsky-Schnabl operators.

THEOREM 5. Let m, 7 =1 be fixed, and set 8= G(m, j) =1 — >z, PL).
Then the following statements hold:

(i) Let {k,;ne N} be a sequence of positive integers. Then for all
feCX), neN and all i€ N,

llow(Bi; f) — BOI = 2(f, %)
where
(18) T = (81 — B")/((A — B)(n + 1))y~

(ii) Let {n,;0 <t <1} be a family of positive integers. Then for
all feCX), te(0,1) and all 1€ N,

lA(Bi; ) — BN < 2, 9.0 »
where
(19) ‘ Yo = (BA — DA — tR)™* .

In particular, for the sequence {B,; » = 1} of the Bernstein operators
on C(4,) given by (15) we have:
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COROLLARY 4. Let m, j =1 be fixed. Let x,; and y,, be given by
(18) and (19) with B = B(m, j) = (1 — 1/m)!, respectively. Then for all
feC,), n, 1€ N and all t€(0, 1), ‘

los(Bis £) — BOI = (1 + min{[3
= (1 + min{r/4, v*/2hw(f, 2., ,

S (e — )

=1

S (e — €)

’

D, .0

and
145B; £ = BN = (1 + min{|35 e — )], |3t — e
< (1 + min{r/4, r /2D (f, Y.0) -

We also note that the corresponding result of Corollary 4 holds for
the Bernstein operators on C(I,) given by (12). '

Finally, we restrict ourselves to the case where P = (p,;), >, is the
arithmetic Toeplitz matrix, i.e., p,;=1/nforn=1,1 <7< n,and p,; =0
otherwise. In [12] we showed that there exists a unique strongly con-
tinuous semigroup {S(t); ¢t = 0} of Markov operators on C(X) such that
for every feC(X) and every sequence {k,} of positive integers with
lim, .. k./n = t, ‘

2

Dot 3.

}Ligg | Ba=(Sf) — SN =0
and
kn 1
lim |\(1/Ck, + 1) 35 Bi) — | Sea(Hau =0
whenever ¢t = 0.
Now take W(t) = S() (t = 0) and let {C; ;; £ > 0, A, = 0} and {R; ;; & A = 0}
be the families of operators defined by (10) and (11), respectively. Then

we have the following quantitative ergodic type theorem for iterations
of continuous Cesdro and Abel means of the semigroup {S(¢)}.

THEOREM 6. Let {m. & > 0} be a family of positive integers. Then
Jor all feC(X), £>0 and all ., 20,

1CE3() — BUNII = 2(f, exp(—nm/2)((1 — exp(—&))/&)™")
and
IR — BANI = 2(F, exp(—ame/2)(E/(& + 1)) .

PrOOF. From the proof of [12; Theorem 4], {S(¥)} is of type
[B;1 — exp(—t)]. Therefore, {C;;} and {R;;} are of types [B;;1 — (1/5)(1 —
exp(—¢&))exp(—n)] and [B;; 1 — (£/(¢ + 1))exp(—n)], respectively. Thus the
desired result follows from Corollary 1. q.e.d.
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Let {m.; & > 0} be a family of positive integers. Then, by [18; Theo-
rem 3(b)], we have the following result: If lim..,, m.(&—1+ exp(—¢)/e =0,
then {C{i} is saturated in C(X) with order 1 — ((1 — exp(—§))/&)™, or
equivalently, with order m.(¢ — 1 + exp(—&))/¢, and its trivial class coin-
cides with A(X). Also, if lim,... m,/(&+1) =0, then {R[}} is saturated in
C(X) with order 1 — (g/(¢ + 1)), or equivalently, with order m./(¢ + 1),
and its trivial class coincides with A(X). Concerning the direct estimates

of the degree of approximation for these processes we have, by Corollary
1, the following:

THEOREM 7. Let {m & > 0} be a family of positive integers. Then
for all feC(X) and all £> 0,

ICESN) — fll = 2(f, 1 — (X — exp(—&)/E"))
= Q(f, (me(g — 1 + exp(—8))/&)") = 2f, (m£)')
and
RS — FIF < 2f, U — (g/(e + 1)) < 2(f, (me/(€ + 1)) .

REMARK 8. Let u > 0 be fixed. Then the following statements hold:
(i) Let {k.; »€ N} be a sequence of positive integers. Then for all
feC(X), ne N and all ieN,

llows(Sw); £) — B £ 2(f, %,.0) »

where

L, = exp(—iuk,/2)(1 — exp(—u(n + 1))/ — exp(—u))(n + 1))*"*.

(i) Let {n;0 <t <1} be a family of positive integers. Then for
all feC(X), te(0,1) and all i€ N,

| A5:(Sw); ) — BN = 2(f, v..0)

where
Yo = exXp(—iun,/2)(1 — £)/(1 — t exp(—u)))"* .

Consequently, for {k,} = {n,} = {m: = {1}, Theorems 5 and 6 and Re-
mark 3 give quantitative versions of [18; Theorem 5] and they enable us
to estimate the rate of convergence.

REMARK 4. Let X be a compact connected Hausdorff abelian group
and let G be an independent subset of the character group of X. Then,
under the setting of complex-valued functions, Condition (1) holds for
C =K == (see, [1; Lemma 3]). Thus it should be possible to apply our
general results (which are valid for the case of complex-valued funections)
to this situation and we are able to derive a sharp improvement of the
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results of Bloom and Sussich [1]. Consequently, we have quantitative
estimates for the degree of approximation by various positive convolution
operators on C(T7), where T" is the r-dimensional torus. We omit the
details.

We also note that results analogous to those of this paper is obtained
for approximation processes in the sense of the author [13], whose results
can be actually improved by means of the higher order moments. As
illustrations of general results in this direction, for instance, concerning
the degree of almost convergence (F-summability) (in the sense of Lorentz
[T]) of {B»; n = 1} with a sequence {k,} of positive integers, we have the
following estimates for all fe C(X) and all » = 1:

sup{||1/m)" 33 BE(H - f

,meN} = 0(f, 2,

where
%, = (sup{(l/n)":gla — A - Vi) me N})m
< (sup{(l/n)nglki/i; me N})”Z .
In particular, if k, =1 for all n = 1, then
7, = (sup{(l/n)n:gl(l/z’); me N})m

= (v + log(n + 1)/m)'*,
where v = 0.5772156649015328- - - is Euler’s constant.

sup{||1/)" 3% BA() ~ B.(A)

;me N} < 0, ),

where
+m—1

Yo = (sup{(l/n)" Sa-1pme N})‘” .

g=
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