THE ORDER OF APPROXIMATION BY POSITIVE LINEAR OPERATORS

Toshihiko Nishishiraho

(Received June 15, 1987)

1. Introduction. Let X be a compact Hausdorff space and let B(X) denote the Banach lattice of all real-valued bounded functions on X with the supremum norm $\|\cdot\|$. C(X) denotes the closed sublattice of B(X) consisting of all real-valued continuous functions on X. Let A be a linear subspace of C(X) which contains the unit function 1_X defined by $1_X(y) = 1$ for all $y \in X$. Let N denote the set of all non-negative integers. Let p be any fixed positive real number and let p be a subset of p separating the points of p. Suppose that p contains the set p and a function p contains the set p and a function p contains the define

$$\mu^{(p)}(T, g)(y) = T(|g - g(y)1_X|^p)(y) \quad (y \in X)$$
 .

Let $\{L_{\alpha}; \alpha \in D\}$ be a net of positive linear operators of A into B(X) and put

$$\mu_{\alpha}^{(p)}(g) = \mu^{(p)}(L_{\alpha}, g) \quad (\alpha \in D, g \in G)$$

whose norm is called the p-th absolute moment for L_{α} with respect to g. In [18] we proved the following convergence theorems, which may play an important role in the study of saturation property for $\{L_{\alpha}\}$:

THEOREM A. Let U be a multiplication operator given by U(f)=hf $(f \in A)$, where h is an arbitrary fixed non-negative function in B(X). If $\lim_{\alpha} \lVert \mu_{\alpha}^{(\varphi)}(g) \rVert = 0$ for all $g \in G$ and there exists a strictly positive function $u \in A$ such that $\lim_{\alpha} \lVert L_{\alpha}(u) - U(u) \rVert = 0$, then $\lim_{\alpha} \lVert L_{\alpha}(f) - U(f) \rVert = 0$ for every $f \in A$.

THEOREM B. Let T be a positive projection operator with $T \neq I$ (identity operator), $T(1_X) = 1_X$ and $L_{\alpha}T = T$ for every $\alpha \in D$. If $\mu^{(p)}(T, g) \in A$ and $\lim_{\alpha} ||L_{\alpha}(\mu^{(p)}(T, g))|| = 0$ for all $g \in G$, then $\lim_{\alpha} ||L_{\alpha}(f) - T(f)|| = 0$ for every $f \in A$.

The purpose of this paper is to give a quantitative version of the above theorems in which we estimate the rate of convergence of $\{L_{\alpha}(f)\}$ by using a modulus of continuity of f. Furthermore, a particular attention is paid to the degree of approximation by iterations of positive linear

operators of A into itself (cf. [17]).

Finally the results are applied to various summation processes and some ergodic theorems for positive linear operators from a quantitative point of view. Concrete examples of approximating operators can be provided by the multidimensional Bernstein operators and the semigroup of Markov operators induced by them (cf. [12]). For the basic theory of semigroups of operators on Banach spaces, one may consult the books of Butzer and Berens [2] and Hille and Phillips [4]. Actually, the results of the author [11], [13] can be improved by means of the higher order moments.

2. Degree of convergence. Here we assume that A contains the set $\{|g-g(y)1_x|^p; g \in G, y \in X, p \ge 1\}$. Let $f \in B(X)$. If $\{g_1, g_2, \dots, g_r\}$ is a finite subset of G and $\delta \ge 0$, then we define

$$\omega(f; g_1, \dots, g_r, \delta) = \sup\{|f(x) - f(y)|; x, y \in X, d(x, y) \leq \delta\},\$$

where

$$d(x, y) = \max\{|g_i(x) - g_i(y)|; i = 1, 2, \dots, r\}.$$

This quantity is called the modulus of continuity of f with respect to g_1, g_2, \dots, g_r ([17]).

In order to achieve our purpose it is always supposed that the following condition is satisfied:

(1) There exist constants $C \ge 1$ and K > 0 such that

$$\omega(f; g_1, \dots, g_r, \xi \delta) \leq (C + K\xi)\omega(f; g_1, \dots, g_r, \delta)$$

for all $f \in B(X)$, ξ , $\delta \ge 0$ and for all finite subsets $\{g_1, g_2, \dots, g_r\}$ of G.

Now we have the following key estimate for positive linear functionals on A.

LEMMA. Let L be a positive linear functional on A and $y \in X$. Let $\{g_1, g_2, \dots, g_r\}$ be a finite subset of G, $p \ge 1$ and $\delta > 0$. Then for all $g \in A$, we have

$$|L(g) - g(y)L(1_x)| \leq (CL(1_x) + a(y))\omega(f; g_1, \dots, g_r, \delta),$$

where

$$a(y) = \min\{\delta^{-p}KL(\Phi(\cdot, y)), \delta^{-1}K(L(\Phi(\cdot, y)))^{1/p}(L(1_X))^{1-1/p}\}$$

with

$$\Phi(x, y) = \sum_{i=1}^{r} |g_i(x) - g_i(y)|^p \quad (x, y \in X).$$

PROOF. Let $x \in X$. If $d(x, y) > \delta$, then it follows from (1) that

$$|g(x) - g(y)| \leq (C + K(d(x, y)/\delta))\omega(g; g_1, \dots, g_r, \delta)$$

$$\leq (C + K(d(x, y)/\delta)^p)\omega(g; g_1, \dots, g_r, \delta)$$

$$\leq (C + \delta^{-p}K\Phi(x, y))\omega(g; g_1, \dots, g_r, \delta).$$

If $d(x, y) \leq \delta$, then (2) also holds since $C \geq 1$. Consequently, we have

$$|g - g(y)1_x| \leq \omega(g; g_1, \cdots, g_r, \delta)(C1_x + \delta^{-p}K\Phi(\cdot, y))$$
,

and applying L to both sides of this inequality we get

$$(3) \qquad |L(g)-g(y)L(1_x)| \leq \omega(g;g_1,\cdots,g_r,\delta)(CL(1_x)+\delta^{-p}KL(\Phi(\cdot,y))).$$

On the other hand, there holds

$$|g - g(y)1_x| \leq \omega(g; g_1, \dots, g_r, \delta)(C1_x + \delta^{-1}K(\Phi(\cdot, y))^{1/p}).$$

Now we extend L to a positive linear functional on the whole space C(X) and denote this functional by the same L. Then applying L to both sides of (4) and using Hölder's inequality, we obtain

$$|L(g) - g(y)L(1_{\scriptscriptstyle X})| \le \omega(g;g_{\scriptscriptstyle 1},\ \cdots,g_{\scriptscriptstyle r},\delta)(CL(1_{\scriptscriptstyle X}) + \delta^{\scriptscriptstyle -1}K(L(\varPhi(\cdot\,,y)))^{\scriptscriptstyle 1/p}(L(1_{\scriptscriptstyle X}))^{\scriptscriptstyle 1-1/p})$$
 ,

which together with (3) implies the claim of the lemma for p > 1. If p = 1, then (3) is obviously identical with the desired estimate. q.e.d.

We are now in a position to recast Theorem A in a quantitative form with the rate of convergence.

THEOREM 1. Let U be as in Theorem A and let u be a strictly positive function in A. Then for all $f \in A$ and for all $\alpha \in D$,

$$egin{aligned} \|L_{lpha}(f)-U(f)\| & \leq \|f/u\| \, \|L_{lpha}(u)-U(u)\| \ & + \inf \Big\{ K_{lpha}^{(p,arepsilon)} \Big(\|f/u\| \omega \Big(u;\, g_{{}_{1}},\, \cdots,\, g_{{}_{r}},\, arepsilon \Big| \Big|_{i=1}^{r} \, \mu_{lpha}^{(p)}(g_{{}_{i}}) \Big|\Big|^{1/p} \Big) \ & + \omega \Big(f;\, g_{{}_{1}},\, \cdots,\, g_{{}_{r}},\, arepsilon \Big| \Big|_{i=1}^{r} \, \mu_{lpha}^{(p)}(g_{{}_{i}}) \Big|\Big|^{1/p} \Big) \Big) \; ; \ & p \geq 1,\, arepsilon > 0,\, g_{{}_{1}},\, \cdots,\, g_{{}_{r}} \in G,\, \Big\| \sum_{i=1}^{r} \, \mu_{lpha}^{(p)}(g_{{}_{i}}) \Big\| > 0,\, r = 1,\, 2,\, \cdots \Big\} \; , \end{aligned}$$

where

$$K_{\alpha}^{(p,\epsilon)} = \|CL_{\alpha}(1_X) + \min\{\varepsilon^{-p}K1_X, \varepsilon^{-1}K(L_{\alpha}(1_X))^{1-1/p}\|$$
.

PROOF. Let y be an arbitrary point of X. Then for all $f \in A$ and all $\alpha \in D$, we have

$$|L_{\alpha}(f)(y) - U(f)(y)| \le |f(y)/u(y)| |L_{\alpha}(u)(y) - U(u)(y)|$$

 $+ \{|f(y)/u(y)| |L_{\alpha}(u)(y) - u(y)L_{\alpha}(1_{X})(y)| + |L_{\alpha}(f)(y) - f(y)L_{\alpha}(1_{X})(y)|\}.$

Now making use of Lemma with $L(\cdot) = L_{\alpha}(\cdot)(y)$, the second term on the right hand side is majorized by

$$(CL_{\alpha}(1_X)(y) + \alpha(y))(|f(y)/u(y)|\omega(u;g_1,\cdots,g_r,\delta) + \omega(f;g_1,\cdots,g_r,\delta))$$
,

and

$$a(y) \leq \min \left\{ \delta^{-p} K \left\| \sum_{i=1}^r \mu_{\alpha}^{(p)}(g_i) \right\|, \, \delta^{-1} K \left\| \sum_{i=1}^r \mu_{\alpha}^{(p)}(g_i) \right\|^{1/p} (L_{\alpha}(1_X)(y))^{1-1/p} \right\} \, .$$

Therefore, putting $\delta = \varepsilon \|\sum_{i=1}^r \mu_{\alpha}^{(p)}(g_i)\|^{1/p} > 0$ and taking the supremum over all $y \in X$ we arrive at

$$egin{aligned} \|L_{lpha}(f)-U(f)\| & \leq \|f/u\| \, \|L_{lpha}(u)-U(u)\| \ & + K_{lpha}^{(p,\epsilon)}\Big(\|f/u\|\omega\Big(u;g_{\scriptscriptstyle 1},\;\cdots,\;g_{\scriptscriptstyle r},\;arepsilon\Big|_{i=1}^r \mu_{lpha}^{(p)}(g_{\scriptscriptstyle i})\Big|^{1/p}\Big) \ & + \omega\Big(f;g_{\scriptscriptstyle 1},\;\cdots,\;g_{\scriptscriptstyle r},\;arepsilon\Big|_{i=1}^r \mu_{lpha}^{(p)}(g_{\scriptscriptstyle i})\Big|^{1/p}\Big)\Big)\;, \end{aligned}$$

which implies the desired result.

q.e.d.

REMARK 1. If A contains the set

$$F_q(G) = \{g^i; g \in G, i = 0, 1, 2, \dots, q\}$$

for an even positive integer q, then we have

$$\left\|\sum_{i=1}^r \mu_{lpha}^{(q)}(g_i)
ight\| \leq \sum_{i=1}^r \sum_{j=0}^q inom{q}{j} \|g_i\|^{q-j} \|L_{lpha}(g_i^j) - U(g_i^j)\|$$
 ,

and so Theorem 1 yields the estimate for $||L_{\alpha}(f) - U(f)||$ in terms of the corresponding quantities for the test system $F_{\sigma}(G)$.

Concerning the degree of convergence in Theorem B we have the following:

THEOREM 2. Let T be as in Theorem B. Then for all $f \in A$ and all $\alpha \in D$,

$$\|L_{\alpha}(f)-T(f)\| \leq \inf\left\{C^{(p,\varepsilon)}\omega\left(f;g_1,\cdots,g_r,\varepsilon\left\|\sum_{i=1}^rL_{\alpha}(\mu^{(p)}(T,g_i))\right\|^{1/p}
ight); \ p\geq 1,\, \varepsilon>0,\, g_1,\, \cdots,\, g_r\in G,\, \left\|\sum_{i=1}^rL_{\alpha}(\mu^{(p)}(T,g_i))\right\|>0,\, r=1,\, 2,\, \cdots
ight\},$$

where

(5)
$$C^{(p,\varepsilon)} = C + \min\{K/\varepsilon^p, K/\varepsilon\}.$$

PROOF. Applying Lemma to $L(\cdot) = T(\cdot)(y)$ with any fixed point y of X, we get

$$(6) |T(f)-f| \leq \omega(f;g_1,\cdots,g_r,\delta)(C1_x+a),$$

where

$$a = \min \left\{ \delta^{-p} K \sum_{i=1}^{r} \mu^{(p)}(T, g_i), \, \delta^{-1} K \left(\sum_{i=1}^{r} \mu^{(p)}(T, g_i) \right)^{1/p} \right\} \, .$$

Now let ψ be a positive linear functional on A with $\psi(1_x) = 1$ and denote an extension of ψ to the whole space C(X) by the same ψ . Applying ψ to both sides of (6) and using Hölder's inequality, we obtain

$$|\psi(T(f)) - \psi(f)| \leq (C + \psi(a))\omega(f; g_1, \dots, g_r, \delta)$$

and

$$\psi(a) \leq \min \left\{ \delta^{-p} K \sum_{i=1}^r \psi(\mu^{(p)}(T, g_i)), \; \delta^{-1} K \left(\sum_{i=1}^r \psi(\mu^{(p)}(T, g_i)) \right)^{1/p} \right\} \; .$$

Take $\psi(\cdot) = L_{\alpha}(\cdot)(y)$, where y is an arbitrary fixed point of X. Then, since $L_{\alpha}T = T$, we have

$$|T(f)(y) - L_{\alpha}(f)(y)| \leq (C + M)\omega(f; g_1, \cdots, g_r, \delta)$$
,

where

$$M = \min \left\{ \delta^{-p} K \middle| \sum_{i=1}^r L_{\alpha}(\mu^{(p)}(T, g_i)) \middle| \middle|, \, \delta^{-1} K \middle| \sum_{i=1}^r L_{\alpha}(\mu^{(p)}(T, g_i)) \middle| \middle|^{1/p} \right\}.$$

Thus putting $\delta = \varepsilon \|\sum_{i=1}^r L_a(\mu^{(p)}(T, g_i))\|^{1/p} > 0$ and taking the supremum over all $y \in X$, we obtain

$$\|L_{a}(f)-T(f)\| \leq C^{(p,\epsilon)}\omega\Big(f;g_{\scriptscriptstyle 1},\;\cdots,\;g_{\scriptscriptstyle r},\;arepsilon \left\|\sum_{i=1}^{r}L_{a}(\mu^{(p)}(T,\;g_{\scriptscriptstyle i}))
ight\|^{1/p}\Big)$$
 ,

which establishes the desired result.

q.e.d.

REMARK 2. If A contains $F_q(G)$ for an even positive integer q and $T(g^i) = g^i \quad (g \in G, i = 0, 1, 2, \dots, q - 1)$,

then we have

$$\left\| \sum_{i=1}^r L_{\alpha}(\mu^{(q)}(T, g_i)) \right\| \le \sum_{i=1}^r \|L_{\alpha}(g_i^q) - T(g_i^q)\|$$
,

and so Theorem 2 gives an estimate for $||L_{\alpha}(f) - T(f)||$ in terms of the corresponding quantities for the test system $G^{q} = \{g^{q}; g \in G\}$.

In the rest of this section A is assumed to contain $F_q(G)$ for an even positive integer q. Let T be a positive projection operator on A with $T \neq I$, which satisfies (7) and $L_{\alpha}T = T$ for every $\alpha \in D$. Suppose that each L_{α} maps A into itself and $L_{\alpha}(g^q) = g^q + \xi_{\alpha}(T(g^q) - g^q)$ for all $\alpha \in D$, $g \in G$, where $\{\xi_{\alpha}\}$ is a net of real numbers with $0 < \xi_{\alpha} < 1$.

For $f \in B(X)$ and $\delta > 0$, we define

$$egin{aligned} \varPsi(f,\,\delta)&=\inf\Bigl\{C^{(q,arepsilon)}oldsymbol{\omega}\Bigl(f;\,g_{_{1}}\cdots,\,g_{_{r}},\,\deltaarepsilon\Bigl\|_{i=1}^{r}\left(T(g_{_{i}}^{q})\,-\,g_{_{i}}^{q}
ight)\Bigr\|^{1/q}\Bigr)\,;\ arepsilon&>0,\,g_{_{1}},\,\cdots,\,g_{_{r}}\in G,\,\left\|\sum\limits_{i=1}^{r}\left(T(g_{_{i}}^{q})\,-\,g_{_{i}}^{q}
ight)\right\|>0,\,r=1,\,2,\,\cdots
ight\}\,, \end{aligned}$$

where $C^{(q,\epsilon)}$ is given by (5) with p=q.

As a consequence of Theorems 1 and 2, we have the following corollary which is more convenient for later applications.

COROLLARY 1. Let $\{k_{\alpha}; \alpha \in D\}$ be a net of positive integers and let $L_{\alpha}^{k_{\alpha}}$ denote the k_{α} -iteration of L_{α} for each $\alpha \in D$. Then for all $f \in A$ and all $\alpha \in D$,

$$||L_{\alpha}^{k\alpha}(f) - f|| \le \Psi(f, (1 - (1 - \xi_{\alpha})^{k\alpha})^{1/q}) \le \Psi(f, (k_{\alpha}\xi_{\alpha})^{1/q})$$

and

$$||L_{\alpha}^{k_{\alpha}}(f)-T(f)|| \leq \Psi(f,(1-\xi_{\alpha})^{k_{\alpha}/q})$$
.

In [18; Theorem 3], we showed that if $\lim_{\alpha} k_{\alpha} \xi_{\alpha} = 0$, then $\{L_{\alpha}^{k_{\alpha}}; \alpha \in D\}$ is saturated in A with order $1 - (1 - \xi_{\alpha})^{k_{\alpha}}$, or equivalently, with order $k_{\alpha} \xi_{\alpha}$, and its trivial class coincides with the range of T. Thus the above corollary may give the optimal estimate for the order of approximation by $L_{\alpha}^{k_{\alpha}}$.

3. Applications. Let A be a closed linear subspace of C(X). A mapping L of A into itself is called a Markov operator on A if it is a positive linear operator with $L(1_X) = 1_X$. Let $\{a_{\alpha,m}; \alpha \in D, m \in N\}$ be a family of non-negative real numbers with $\sum_{m=0}^{\infty} a_{\alpha,m} = 1$ for each $\alpha \in D$. For examples of such families, see, for instance, [14] and [16]. Let $\{i_m; m \in N\}$ be a sequence of non-negative integers and $\{j_m; m \in N\}$ a sequence of positive integers. Let $\{S_7; \gamma \in \Gamma\}$ be a net of Markov operators on A and $\{T_m; m \geq 1\}$ a sequence of Markov operators on A. For any $f \in A$, we define

(8)
$$S_{\alpha,\gamma}(f) = \sum_{m=0}^{\infty} a_{\alpha,m} S_{\gamma}^{t_m}(f) \quad (\alpha \in D, \ \gamma \in \Gamma)$$

and

(9)
$$T_{\alpha,k}(f)=\sum_{m=0}^{\infty}a_{\alpha,m}T_{j_mk}^{i_m}(f)\quad (\alpha\in D,\,k\geqq 1)\;\text{,}$$

which converge in A. Let $\{W(t); t \ge 0\}$ be a family of Markov operators on A such that for each $f \in A$, the map $t \to W(t)(f)$ is strongly continuous on $[0, \infty)$. For any $f \in A$, we define

(10)
$$C_{\xi,\lambda}(f) = (1/\xi) \int_0^{\xi} W(t+\lambda)(f) dt \quad (\xi > 0, \lambda \ge 0)$$

and

(11)
$$R_{\xi,\lambda}(f) = \xi \int_0^\infty \exp(-\xi t) W(t+\lambda)(f) dt \quad (\xi, \lambda \ge 0) ,$$

which exist in A.

All the operators given above are Markov operators on A and our general results obtained in the preceding section are applicable to them. As illustrations of these general results we restrict ourselves to the following setting:

Let X be a compact convex subset of a real locally convex Hausdorff vector space E with its dual space E^* , and $G = \{v|_X; v \in E^*\}$, where $v|_X$ denotes the restriction of v to X. Note that Condition (1) holds for C = K = 1 (see, [11; Lemma 1]). Let T be a positive projection operator of C(X) onto a closed linear subspace of C(X) containing 1_X and G (which is the case where A = C(X) and Q = 2).

For applications to Corollary 1 it is convenient to make the following definition: Let $\{P_{\lambda}; \lambda \in \Lambda\}$ be a family of Markov operators on C(X) and $\{x_{\lambda}; \lambda \in \Lambda\}$ a family of non-negative real numbers. We say that $\{P_{\lambda}\}$ is of type $[T; x_{\lambda}]$ if $P_{\lambda}T = T$ and $P_{\lambda}(g^2) = g^2 + x_{\lambda}(T(g^2) - g^2)$ for all $\lambda \in \Lambda$ and all $g \in G$.

Now we first consider the case where $E = R^r$, the r-dimensional Euclidean space equipped with the metric

$$\rho(x, y) = \max\{|x_i - y_i|; i = 1, 2, \dots, r\}$$

for $x=(x_1, x_2, \dots, x_r)$ and $y=(y_1, y_2, \dots, y_r)$. Let e_i denote the *i*-th coordinate function on X. Then $\omega(f; e_1, \dots, e_r, \delta)$ reduces to the usual modulus of continuity of f, given by

$$\omega(f, \delta) = \sup\{|f(x) - f(y)|; x, y \in X, \rho(x, y) \leq \delta\}.$$

In view of Remarks 1 and 2, we have a quantitative version of the Korovkin type convergence theorem due to Karlin and Ziegler [5; Theorem 1 and Remark 2] for multidimensional case.

Take $X = I_r$, the unit r-cube, i.e.,

$$I_r = \{(x_1, \dots, x_r) \in \mathbb{R}^r; 0 \leq x_i \leq 1, i = 1, 2, \dots, r\}$$

and let F be the closed linear subspace of C(X) spanned by the set

$$\{e_1^{k_1}e_2^{k_2}\cdots e_r^{k_r}; k_i\in\{0,1\}, i=1,2,\cdots,r\}$$
.

Let $\{B_n; n \geq 1\}$ be the sequence of Bernstein operators on C(X) given by

(12)
$$B_n(f)(x) = \sum_{k_1=0}^n \cdots \sum_{k_r=0}^n f(k_1/n, \cdots, k_r/n) \prod_{i=1}^r \binom{n}{k_i} x_i^{k_i} (1-x_i)^{n-k_i}$$

for $f \in C(X)$ and $x = (x_1, x_2, \dots, x_r) \in X$ (see, e.g., [8]). It can be verified that B_1 is a positive projection operator of C(X) onto F and $\{B_n\}$ is of type $[B_1; 1/n]$. Consequently, if $\Gamma = N \setminus \{0\}$, $S_7 = B_7$ and $T_m = B_m$, then $\{S_{\alpha,7}\}$ and $\{T_{\alpha,k}\}$ are of types $[B_1; 1 - x_{\alpha,7}]$ and $[B_1; 1 - y_{\alpha,k}]$, respectively, where

$$x_{lpha,\gamma} = \sum_{m=0}^{\infty} a_{lpha,m} (1-1/\gamma)^{i_m}$$
 and $y_{lpha,k} = \sum_{m=0}^{\infty} a_{lpha,m} (1-1/(j_m k))^{i_m}$,

and so Corollary 1 can be applied to these operators. In particular, concerning the order of approximation by iterations of the Bernstein operators we have the following estimates: For all $f \in C(X)$ and all $n \ge 1$,

(13)
$$||B_{j_n}^{i_n}(f) - f|| \le (1 + \min\{r/4, r^{1/2}/2\})\omega(f, (1 - (1 - 1/j_n)^{i_n})^{1/2})$$
$$\le (1 + \min\{r/4, r^{1/2}/2\})\omega(f, (i_n/j_n)^{1/2})$$

and

(14)
$$||B_{i,j}^{i,n}(f) - B_{j}(f)|| \le (1 + \min\{r/4, r^{1/2}/2\})\omega(f, (1 - 1/j_n)^{i_n/2}).$$

Therefore, on account of (13) and (14), we have $\lim_{n\to\infty}i_n/j_n=0$ if and only if $\lim_{n\to\infty}\|B_{j_n}^{i_n}(f)-f\|=0$ for every $f\in C(I_r)$, and $\lim_{n\to\infty}i_n/j_n=+\infty$ if and only if $\lim_{n\to\infty}\|B_{j_n}^{i_n}(f)-B_i(f)\|=0$ for every $f\in C(I_r)$. When r=1 and $j_n=n$ for all $n\geq 1$, this result reduces to that of Kelisky and Rivlin [6] (cf. [5], [9], [10]). For extensive approximation properties by iterations of positive linear operators, we refer to [18]. If $\{i_n\}=\{1\}$, then we can sharpen (13) further as

$$\|B_{i_n}(f)-f\| \leq (1+\min\{3r/16,\,(3r/16)^{1/4}\})\omega(f,\,(1/j_n)^{1/2})\;\text{,}$$

by taking the fourth absolute moment and making use of Theorem 1 (cf. [14], [15], [16], where quantitative Korovkin type estimates can be treated in the setting of an arbitrary compact metric space).

Statements analogous to the above-mentioned results may be derived for the case where B_n are the Bernstein operators on $C(\Delta_r)$ with the standard r-simplex

$$arDelta_r=\{(x_1,\;\cdots,\;x_r)\in \pmb{R}^r;\,x_i\geqq 0,\;i=1,\;2,\;\cdots,\;r,\;x_1+\cdots+x_r\leqq 1\}$$
 , given by

(15)
$$B_{n}(f)(x) = \sum_{\substack{k_{i} \geq 0, k_{1} + \dots + k_{r} \leq n}} f(k_{1}/n, \dots, k_{r}/n) \\ \times n! / ((k_{1}! k_{2}! \dots k_{r}!)(n - k_{1} - k_{2} - \dots - k_{r})!) \\ \times x_{1}^{k_{1}} x_{2}^{k_{2}} \dots x_{r}^{k_{r}} (1 - x_{1} - \dots - x_{r})^{n-k_{1} - \dots - k_{r}}$$

for $f \in C(\Delta_r)$ and $x = (x_1, x_2, \dots, x_r) \in \Delta_r$ (see, e.g., [8]). These can be obtained in the following very general setting.

Again let X be a compact convex subset of a real locally convex Hausdorff vector space E and $G = \{v|_X; v \in E^*\}$. Let A(X) denote the space of all real-valued continuous affine functions on X. If L is a Markov operator on C(X), then for a point $x \in X$, a Radon probability measure ν_x on X is called an L(A(X))-representing measure for x if

$$L(f)(x) = \int_{x} f d\nu_{x}$$

for every $f \in A(X)$. Let $M = \{M_n; n \ge 1\}$ be a sequence of Markov operators on C(X), $\nu^{(M)} = \{\nu_{x,n}; x \in X, n \ge 1\}$ a family of Radon probability measures on X such that $\nu_{x,n}$ is an $M_n(A(X))$ -representing measure for x, $P = (p_{nj})_{n,j\ge 1}$ an infinite lower triangular stochastic matrix, $Y = \{y_x; x \in X\}$ a family of points of X, and $\rho = \{\rho_n; n \ge 1\}$ a sequence of functions mapping X into [0, 1]. Then we define

$$u_{x,n,
ho}^{(M,Y)} =
ho_n(x)
u_{x,n} + (1-
ho_n(x))arepsilon_{y_x} \circ M_n$$
 ,

where ε_t denotes the Dirac measure at t, and also define the mapping

$$\pi_{n,P} \colon X^n \to X$$
 by $(x_1, x_2, \dots, x_n) \to \sum_{i \geq 1} p_{ni} x_i$.

For a function $f \in C(X)$, the *n*-th Bernstein-Lototsky-Schnabl function of f on X with respect to $\nu^{(M)}$, P, Y and ρ is defined by

$$B_n(f)(x) = B_{n,P,\rho}^{(\nu^{(M)},Y)}(f)(x) = \int_{x_n} f \circ \pi_{n,P} d \bigotimes_{1 \le i \le n} \nu_{x,j,\rho}^{(M,Y)}$$

([13], cf. [3], [19]).

Now take

$$i_m = 1 \quad (m = 0, 1, 2, \cdots) , \qquad T_m = B_m \quad (m = 1, 2, \cdots)$$

and let $\{T_{\alpha,k}; \alpha \in D, k \ge 1\}$ be the family of operators given by (9). Then we have the following:

THEOREM 3. Suppose that $M_n(g) = g$ for all $n \ge 1$ and all $g \in A(X)$. Then the following statements hold:

(i) If $y_x = x$ for every $x \in X$, then for all $f \in C(X)$, $\alpha \in D$ and all $k \ge 1$,

$$||T_{\alpha,k}(f) - f|| \leq \zeta_{\alpha,k}(f),$$

where

$$egin{aligned} \zeta_{lpha,k}(f)&=\inf\{(1+\min\{arepsilon^{-1},\,arepsilon^{-2}\})\omega(f;\,g_{\scriptscriptstyle 1},\,\cdots,\,g_{\scriptscriptstyle r},\,arepsilon\|h_{lpha,k}(g_{\scriptscriptstyle 1},\,\cdots,\,g_{\scriptscriptstyle r})\|^{1/2})\;;\ arepsilon>0,\,g_{\scriptscriptstyle 1},\,\cdots,\,g_{\scriptscriptstyle r}\in G,\,\|h_{lpha,k}(g_{\scriptscriptstyle 1},\,\cdots,\,g_{\scriptscriptstyle r})\|>0,\,r=1,\,2,\,\cdots\}\;, \end{aligned}$$

with

$$h_{\alpha,k}(g_1, \dots, g_r)(x) = \sum_{m=0}^{\infty} a_{\alpha,m} \sum_{i>1} p_{j_{mk}i}^2 \rho_i(x) \sum_{n=1}^r (\nu_{x,i}(g_n^2) - g_n^2(x)) \quad (x \in X).$$

(ii) If $\rho_n = 1_x$ for all $n \ge 1$, then (16) holds for

$$h_{\alpha,k}(g_1, \cdots, g_r)(x) = \sum_{m=0}^{\infty} a_{\alpha,m} \sum_{i \in I} p_{j_{mki}}^2 \sum_{n=1}^r (\nu_{x,i}(g_n^2) - g_n^2(x)) \quad (x \in X)$$
.

PROOF. Assume that $y_x = x$ for every $x \in X$. Then, by [13; Lemma 4], it can be seen that for all $\alpha \in D$, $k \ge 1$ and all $g \in G$,

$$T_{lpha,k}(1_X)=1_X$$
 , $T_{lpha,k}(g)=g$

and

$$egin{aligned} \mu^{(2)}(T_{lpha,k},\,g)(x) &= T_{lpha,k}(g^2)(x) - g^2(x) \ &= \sum\limits_{m=0}^{\infty} a_{lpha,m} \sum\limits_{i\geq 1} \, p_{j_{mki}}^2
ho_i(x) (
u_{x,i}(g^2) - g^2(x)) \quad (x\in X) \;. \end{aligned}$$

Therefore, the desired estimate (16) follows from Theorem 1 with $h = u = 1_x$. The proof of Part (ii) is similar. q.e.d.

COROLLARY 2. Let M be as in Theorem 3. Then the following statements hold:

(i) If $y_x = x$ for every $x \in X$, then for all $f \in C(X)$ and all $n \ge 1$, $||B_n(f) - f|| \le \omega_n(f)$,

where

$$egin{aligned} \omega_{\scriptscriptstyle n}(f) &= \inf\{(1+\min\{arepsilon^{-1},\ arepsilon^{-2}\})\omega(f;\,g_{\scriptscriptstyle 1},\ \cdots,\ g_{\scriptscriptstyle r},\ arepsilon\delta_{\scriptscriptstyle n}(g_{\scriptscriptstyle 1},\ \cdots,\ g_{\scriptscriptstyle r}))\;;\ arepsilon>0,\ g_{\scriptscriptstyle 1},\ \cdots,\ g_{\scriptscriptstyle r}\in G,\ \delta_{\scriptscriptstyle n}(g_{\scriptscriptstyle 1},\ \cdots,\ g_{\scriptscriptstyle r})>0,\ r=1,\ 2,\ \cdots\}\;, \end{aligned}$$

with

$$\delta_n(g_1, \cdots, g_r) = \left(\sup\left\{\sum_{j\geq 1} p_{nj}^2 \rho_j(x) \sum_{i=1}^r (\nu_{x,j}(g_i^2) - g_i^2(x)); x \in X\right\}\right)^{1/2}.$$

(ii) If
$$\rho_n = 1_X$$
 for all $n \ge 1$, then (17) holds for
$$\delta_n(g_1, \dots, g_r) = \left(\sup \left\{ \sum_{j \le 1} p_{nj}^2 \sum_{i=1}^r (\nu_{x,j}(g_i^2) - g_i^2(x)); x \in X \right\} \right)^{1/2}.$$

This corollary gives a quantitative version of the result ([cf. 19; Satz 1]) of Grossman [3] and it estimates the degree of strong convergence of $\{B_n\}$ to I on C(X).

From now on we suppose that

$$M_n=I$$
 $(n\geqq 1)$, $y_x=x$ $(x\in X)$ $ho_n=1_X$ $(n\geqq 1)$, and $u_{x,n}=
u_x$ $(x\in X,\, n\geqq 1)$,

where ν_x is a representing measure for x (i.e., an I(A(X))-representing measure for x) such that the map

$$(x
ightarrow
u_x(f) = \int_{\mathcal{X}} f d
u_x$$

belongs to A(X) for every $f \in C(X)$. Thus each B_n maps C(X) into itself and B_n is a positive projection operator of C(X) onto A(X) (cf. [3; Proposition], [13; Remark 7]).

For any $f \in B(X)$ and $\delta > 0$, we define

$$\Omega(f, \delta) = \inf\{(1 + \min\{\varepsilon^{-1}, \varepsilon^{-2}\})\omega(f; g_1, \dots, g_r, \delta\varepsilon \| \tau(g_1, \dots, g_r) \|^{1/2}); \\
\varepsilon > 0, g_1, \dots, g_r \in G, \|\tau(g_1, \dots, g_r)\| > 0, r = 1, 2, \dots\},$$

where

$$au(g_1,\;\cdots,\;g_r)(x) = \sum_{i=1}^r \left(
u_x(g_i^2) \,-\,g_i^2(x)
ight) \quad (x \in X) \;.$$

Now take $T_m = B_m$ $(m = 1, 2, \dots)$, and let $\{T_{\alpha,k}; \alpha \in D, k \ge 1\}$ be the family of operators given by (9). Then we have the following:

THEOREM 4. Let $\{m_{\alpha}; \alpha \in D\}$ be a net of positive integers. Then for all $f \in C(X)$, $\alpha \in D$ and all $k \geq 1$,

$$||T_{\alpha,k}^{m_{\alpha}}(f) - f|| \le \Omega(f, (1 - x_{\alpha,k}^{m_{\alpha}})^{1/2})$$

and

$$||T_{\alpha,k}^{m_{\alpha}}(f)-B_{\alpha}(f)|| \leq \Omega(f, x_{\alpha,k}^{m_{\alpha}/2}),$$

where

$$x_{\alpha,k} = \sum_{m=0}^{\infty} a_{\alpha,m} (1 - \sum_{i \ge 1} p_{j_m k i}^2)^{i_m}$$
.

PROOF. By induction on the degree m of iteration of B_n , it can be verified that $\{B_n^m\}$ is of type $[B_1; 1-(1-\sum_{j\geq 1}p_{nj}^2)^m]$ $(n, m=1, 2, \cdots)$. Therefore, $\{T_{\alpha,k}\}$ is of type $[B_1; 1-x_{\alpha,k}]$ and so the desired result follows from Corollary 1.

COROLLARY 3. For all $f \in C(X)$ and all $n \in N$,

$$\|B_{j_n^i}^{i_n}(f)-f\| \leq \varOmega(f,\,(1-(1-\sum\limits_{m\geq 1}p_{j_nm}^2)^{i_n})^{i_n})^{1/2}) \leq \varOmega(f,\,(i_n\sum\limits_{m\geq 1}p_{j_nm}^2)^{1/2})$$
 ,

and

$$\|B_{j_n}^{i_n}(f) - B_{\scriptscriptstyle 1}(f)\| \le \varOmega(f, (1-\sum_{} p_{j_n m}^{\scriptscriptstyle 2})^{i_n/2})$$
 .

From this result we conclude that if $\lim_{n\to\infty}\sum_{m\geq 1}p_{j_nm}^2=0$, then

$$\lim_{n \to \infty} i_n \sum_{m \geq 1} p_{j_n m}^2 = 0$$
 if and only if $\lim_{n \to \infty} \|B_{j_n}^{i_n}(f) - f\| = 0$

for all $f \in C(X)$, and

$$\lim_{n o \infty} i_n \sum_{m \geq 1} p_{j_n m}^2 = + \infty$$
 if and only if $\lim_{n o \infty} \|B_{j_n}^{i_n}(f) - B_{\scriptscriptstyle \rm I}(f)\| = 0$

for all $f \in C(X)$. Also, by [18; Theorem 3(b)] we see that if $\lim_{n\to\infty} \sum_{m\geq 1} p_{j_nm}^2 = 0$, then $\{B_{j_n}^{i_n}\}$ is saturated in C(X) with order $1-(1-\sum_{m\geq 1} p_{j_nm}^2)^{i_n}$, or equivalently, with order $i_n \sum_{m\geq 1} p_{j_nm}^2$, and its trivial class coincides with A(X) (cf. [18; Theorem 4]). Therefore the first part of Corollary 3 seems to be useful for the characterization of the saturation class of $\{B_{j_n}^{i_n}\}$ by structural properties on the functions f.

If L is a Markov operator on C(X), then for any $f \in C(X)$, we define

$$\sigma_{n,i}(L;f) = (1/(n+1))\sum_{m=0}^{n} L^{m+i}(f) \quad (n, i \in N)$$

and

$$A_{t,i}(L;f) = (1-t)\sum_{m=0}^{\infty} t^m L^{m+i}(f) \quad (0 < t < 1, \ i \in N)$$
 ,

which is a particular case of (8). Note that if $\{S_{\tau}\}$ is of type $[B_1; x_{\tau}]$, then $\{S_{\alpha,\tau}\}$ is of type $[B_1; 1-\sum_{m=0}^{\infty}a_{\alpha,m}(1-x_{\tau})^{i_m}]$. Thus, in view of this fact, making use of Corollary 1 we have the following quantitative ergodic type theorem for iterations of the discrete Cesàro and Abel means of the Bernstein-Lototsky-Schnabl operators.

THEOREM 5. Let $m, j \ge 1$ be fixed, and set $\beta = \beta(m, j) = (1 - \sum_{i \ge 1} p_{m_i}^2)^j$. Then the following statements hold:

(i) Let $\{k_n; n \in N\}$ be a sequence of positive integers. Then for all $f \in C(X)$, $n \in N$ and all $i \in N$,

$$\|\sigma_{n,i}^{k_n}(B_m^j;f) - B_1(f)\| \leq \Omega(f,x_{n,i}),$$

where

(18)
$$x_{n,i} = (\beta^{i}(1-\beta^{n+1})/((1-\beta)(n+1)))^{k_n/2}.$$

(ii) Let $\{n_t; 0 < t < 1\}$ be a family of positive integers. Then for all $f \in C(X)$, $t \in (0, 1)$ and all $i \in N$,

$$||A_{t,i}^{n_t}(B_m^j;f) - B_{\scriptscriptstyle 1}(f)|| \le \Omega(f,y_{t,i})$$
 ,

where

(19)
$$y_{t,i} = (\beta^{i}(1-t)/(1-t\beta))^{n_{t}/2}.$$

In particular, for the sequence $\{B_n; n \ge 1\}$ of the Bernstein operators on $C(\Delta_r)$ given by (15) we have:

COROLLARY 4. Let $m, j \ge 1$ be fixed. Let $x_{n,i}$ and $y_{t,i}$ be given by (18) and (19) with $\beta = \beta(m, j) = (1 - 1/m)^j$, respectively. Then for all $f \in C(A_r)$, $n, i \in \mathbb{N}$ and all $t \in (0, 1)$,

$$\begin{split} \|\sigma_{n,i}^{k_n}(B_m^j;f) - B_1(f)\| & \leq \left(1 + \min\left\{\left\|\sum_{i=1}^r \left(e_i - e_i^2\right)\right\|, \left\|\sum_{i=1}^r \left(e_i - e_i^2\right)\right\|^{1/2}\right\}\right) \omega(f, x_{n,i}) \\ & \leq \left(1 + \min\{r/4, r^{1/2}/2\}\right) \omega(f, x_{n,i}) \;, \end{split}$$

and

$$\begin{aligned} \|A_{t,i}^{n_t}(B_m^j;f) - B_1(f)\| & \leq \left(1 + \min\left\{\left\|\sum_{i=1}^r \left(e_i - e_i^2\right)\right\|, \left\|\sum_{i=1}^r \left(e_i - e_i^2\right)\right\|^{1/2}\right\}\right) \omega(f, y_{t,i}) \\ & \leq \left(1 + \min\left\{r/4, r^{1/2}/2\right\}\right) \omega(f, y_{t,i}) \ . \end{aligned}$$

We also note that the corresponding result of Corollary 4 holds for the Bernstein operators on $C(I_r)$ given by (12).

Finally, we restrict ourselves to the case where $P=(p_{nj})_{n,j\geq 1}$ is the arithmetic Toeplitz matrix, i.e., $p_{nj}=1/n$ for $n\geq 1$, $1\leq j\leq n$, and $p_{nj}=0$ otherwise. In [12] we showed that there exists a unique strongly continuous semigroup $\{S(t); t\geq 0\}$ of Markov operators on C(X) such that for every $f\in C(X)$ and every sequence $\{k_n\}$ of positive integers with $\lim_{n\to\infty}k_n/n=t$,

$$\lim_{n \to \infty} ||B_n^{k_n}(f) - S(t)(f)|| = 0$$

and

$$\lim_{n\to\infty} \left\| (1/(k_n+1)) \sum_{i=0}^{k_n} B_n^i(f) - \int_0^1 S(tu)(f) du \right\| = 0$$

whenever $t \geq 0$.

Now take W(t) = S(t) $(t \ge 0)$ and let $\{C_{\xi,\lambda}; \xi > 0, \lambda \ge 0\}$ and $\{R_{\xi,\lambda}; \xi, \lambda \ge 0\}$ be the families of operators defined by (10) and (11), respectively. Then we have the following quantitative ergodic type theorem for iterations of continuous Cesàro and Abel means of the semigroup $\{S(t)\}$.

THEOREM 6. Let $\{m_{\xi}; \xi > 0\}$ be a family of positive integers. Then for all $f \in C(X)$, $\xi > 0$ and all $\lambda \ge 0$,

$$\|C_{\varepsilon,\xi}^{\mathsf{m}\xi}(f) - B_{\scriptscriptstyle 1}(f)\| \leq \Omega(f, \exp(-\lambda m_{\varepsilon}/2)((1 - \exp(-\xi))/\xi)^{m_{\varepsilon}/2})$$

and

$$\|R_{\xi,\lambda}^{m_\xi}(f) - B_{\mathbf{1}}(f)\| \leq \Omega(f, \exp(-\lambda m_\xi/2)(\xi/(\xi+1))^{m_\xi/2}) .$$

PROOF. From the proof of [12; Theorem 4], $\{S(t)\}$ is of type $[B_i; 1 - \exp(-t)]$. Therefore, $\{C_{\xi,i}\}$ and $\{R_{\xi,i}\}$ are of types $[B_i; 1 - (1/\xi)(1 - \exp(-\xi))\exp(-\lambda)]$ and $[B_i; 1 - (\xi/(\xi+1))\exp(-\lambda)]$, respectively. Thus the desired result follows from Corollary 1.

Let $\{m_{\xi}; \xi > 0\}$ be a family of positive integers. Then, by [18; Theorem 3(b)], we have the following result: If $\lim_{\xi \to +0} m_{\xi}(\xi - 1 + \exp(-\xi))/\xi = 0$, then $\{C_{\xi,0}^{m_{\xi}}\}$ is saturated in C(X) with order $1 - ((1 - \exp(-\xi))/\xi)^{m_{\xi}}$, or equivalently, with order $m_{\xi}(\xi - 1 + \exp(-\xi))/\xi$, and its trivial class coincides with A(X). Also, if $\lim_{\xi \to \infty} m_{\xi}/(\xi + 1) = 0$, then $\{R_{\xi,0}^{m_{\xi}}\}$ is saturated in C(X) with order $1 - (\xi/(\xi + 1))^{m_{\xi}}$, or equivalently, with order $m_{\xi}/(\xi + 1)$, and its trivial class coincides with A(X). Concerning the direct estimates of the degree of approximation for these processes we have, by Corollary 1, the following:

THEOREM 7. Let $\{m_{\xi}; \xi > 0\}$ be a family of positive integers. Then for all $f \in C(X)$ and all $\xi > 0$,

$$\|C_{\xi,0}^{m_{\xi}}(f) - f\| \le \Omega(f, (1 - ((1 - \exp(-\xi))/\xi)^{m_{\xi}})^{1/2})$$

 $\le \Omega(f, (m_{\xi}(\xi - 1 + \exp(-\xi))/\xi)^{1/2}) \le \Omega(f, (m_{\xi}\xi)^{1/2})$

and

$$||R_{\varepsilon,0}^{m_{\xi}}(f) - f|| \leq \Omega(f, (1 - (\xi/(\xi+1))^{m_{\xi}})^{1/2}) \leq \Omega(f, (m_{\varepsilon}/(\xi+1))^{1/2}).$$

REMARK 3. Let u > 0 be fixed. Then the following statements hold: (i) Let $\{k_n; n \in N\}$ be a sequence of positive integers. Then for all $f \in C(X)$, $n \in N$ and all $i \in N$,

$$\|\sigma_{n,i}^{k_n}(S(u);f)-B_1(f)\| \leq \Omega(f,x_{n,i}),$$

where

$$x_{n,i} = \exp(-iuk_n/2)((1-\exp(-u(n+1)))/((1-\exp(-u))(n+1)))^{k_n/2}$$
 .

(ii) Let $\{n_t; 0 < t < 1\}$ be a family of positive integers. Then for all $f \in C(X)$, $t \in (0, 1)$ and all $i \in N$,

$$||A_{t,i}^{n_t}(S(u);f) - B_i(f)|| \le \Omega(f, y_{t,i})$$
 ,

where

$$y_{t,i} = \exp(-iun_t/2)((1-t)/(1-t\exp(-u)))^{n_t/2}$$
.

Consequently, for $\{k_n\} = \{n_t\} = \{1\}$, Theorems 5 and 6 and Remark 3 give quantitative versions of [18; Theorem 5] and they enable us to estimate the rate of convergence.

REMARK 4. Let X be a compact connected Hausdorff abelian group and let G be an independent subset of the character group of X. Then, under the setting of complex-valued functions, Condition (1) holds for $C = K = \pi$ (see, [1; Lemma 3]). Thus it should be possible to apply our general results (which are valid for the case of complex-valued functions) to this situation and we are able to derive a sharp improvement of the

results of Bloom and Sussich [1]. Consequently, we have quantitative estimates for the degree of approximation by various positive convolution operators on $C(T^r)$, where T^r is the r-dimensional torus. We omit the details.

We also note that results analogous to those of this paper is obtained for approximation processes in the sense of the author [13], whose results can be actually improved by means of the higher order moments. As illustrations of general results in this direction, for instance, concerning the degree of almost convergence (F-summability) (in the sense of Lorentz [7]) of $\{B_n^{k_n}; n \geq 1\}$ with a sequence $\{k_n\}$ of positive integers, we have the following estimates for all $f \in C(X)$ and all $n \geq 1$:

$$\sup\left\{\left\|\left(1/n\right)\sum_{i=m}^{n+m-1}B_i^{k_i}(f)-f\right\|,\,m\in N\right\}\leq \varOmega(f,\,x_n)\,\,,$$

where

$$\begin{split} x_n &= \left(\sup \left\{ (1/n) \sum_{i=m}^{n+m-1} (1-(1-1/i)^{k_i}); \, m \in N \right\} \right)^{1/2} \\ &\leq \left(\sup \left\{ (1/n) \sum_{i=m}^{n+m-1} k_i/i; \, m \in N \right\} \right)^{1/2} \,. \end{split}$$

In particular, if $k_n = 1$ for all $n \ge 1$, then

$$egin{align} x_n &= \Big(\sup \Big\{ (1/n) \sum_{i=m}^{n+m-1} (1/i); \ m \in N \Big\} \Big)^{1/2} \ &\leq ((\gamma + \log(n+1))/n)^{1/2} \ , \end{split}$$

where $\gamma = 0.5772156649015328\cdots$ is Euler's constant.

$$\sup\left\{\left\|(1/n)\sum_{i=m}^{n+m-1}B_i^{k_i}(f)-B_i(f)\right\|;\,m\in N\right\}\leqq \varOmega(f,\,y_n)\;,$$

where

$$y_n = \left(\sup\left\{(1/n)\sum_{i=m}^{n+m-1}(1-1/i)^{k_i}; m \in N\right\}\right)^{1/2}$$
.

REFERENCES

- [1] W. R. Bloom and J. F. Sussich, The degree of approximation by positive linear operators on compact connected abelian groups, J. Austral. Math. Soc. Ser. A, 33 (1982), 364-373.
- [2] P.L. BUTZER AND H. BERENS, Semi-groups of operators and approximation, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [3] M. W. Grossman, Lototsky-Schnabl functions on compact convex sets, J. Math. Anal. Appl. 55 (1976), 525-530.
- [4] E. HILLE AND R. PHILLIPS, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Providence, R. I., 1957.
- [5] S. Karlin and Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory. 3 (1970), 310-339.

- [6] R.P. Kelisky and T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math. 21 (1967), 511-520.
- [7] G.G. LORENTZ, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [8] G.G. LORENTZ, Bernstein polynomials, Univ. of Toronto Press, Toronto, 1953.
- [9] J. NAGEL, Sätze Korovkinschen Typs für die Approximation linearer positiver Operatoren, Dissertation, Universität Essen, 1978.
- [10] J. NAGEL, Asymptotic properties of powers of Bernstein operators, J. Approx. Theory. 29 (1980), 323-335.
- [11] T. NISHISHIRAHO, The degree of convergence of positive linear operators, Tôhoku Math. J. 29 (1977), 81-89.
- [12] T. NISHISHIRAHO, Saturation of bounded linear operators, Tôhoku Math. J. 30 (1979), 69-81.
- [13] T. NISHISHIRAHO, Quantitative theorems on approximation processes of positive linear operators, Multivariate approximation theory II (Proc. Conf. Math. Res. Inst. Oberwolfach 1982; ed. by W. Schempp and K. Zeller), ISNM. Vol 61, 297-311. Birkhäuser Verlag, Basel-Boston-Stuttgart, 1982.
- [14] T. NISHISHIRAHO, Convergence of positive linear approximation processes, Tôhoku Math. J. 35 (1983), 441-458.
- [15] T. NISHISHIRAHO, The rate of convergence of positive linear approximation processes, Approximation theory IV (Proc. Int. Sympos. College Station 1983; ed. by C. K. Chui, L. L. Schumaker and J. D. Ward), 635-641. Academic Press, New York-London-San Francisco, 1983.
- [16] T. Nishishiraho, The degree of approximation by positive linear approximation processes, Bull. Coll. Educ., Univ. of the Ryukyus. 28 (1985), 7-36.
- [17] T. NISHISHIRAHO, The degree of approximation by iterations of positive linear operators, Approximation theory V (Proc. Int. Sympos. College Station 1986; ed. by C. K. Chui, L. L. Schumaker and J. D. Ward), 507-510. Academic Press, New York-London-San Francisco, 1986.
- [18] T. NISHISHIRAHO, The convergence and saturation of iterations of positive linear operators, Math. Z. 194 (1987), 397-404.
- [19] W. Schempp, Zur Lototsky-transformation über kompakten Räumen von Wahrscheinlichkeitsmassen, Manuscripta Math. 5 (1971), 199-211.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF THE RYUKYUS NISHIHARA-CHO, OKINAWA, 903-01 JAPAN