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Abstract. We consider a quasiconformal automorphism of a Rie-
mann surface, which fixes the homotopy class of a simple closed
geodesic. Under certain conditions on the injectivity radius of the
surface and bounds on the dilatation of the map, the automorphism
induces a periodic element of the Teichmüller modular group. We
may also estimate the order of the period.

1. Introduction

Let R be an arbitrary Riemann surface with possibly infinitely
generated fundamental group. An element χ of the Teichmüller mod-
ular group Mod(R) is induced by a quasiconformal automorphism f of
R. We would like to determine when the order of χ is finite. When
f is a conformal automorphism of R, then the element χ of Mod(R)
induced by f fixes the base point of the Teichmüller space T (R). In [3],
we proved that, for a Riemann surface R with non-abelian fundamental
group, a conformal automorphism f of R has finite order if and only if
f fixes either a simple closed geodesic, a puncture or a point on R. In
each case, we obtained a concrete estimate for the order of f in terms
of the injectivity radius on R. One of our results is the following. For
the definition of the upper bound condition, see the next section.

Theorem 1.1 ([3], [4]). Let R be a hyperbolic Riemann surface
with non-abelian fundamental group. Suppose that R satisfies the upper
bound condition for a constant M > 0 and a connected component R∗

M

of RM . Let f be a conformal automorphism of R such that f(c) = c for
a simple closed geodesic c on R with c ⊂ R∗

M and l(c) = l > 0. Then
the order n of f satisfies

n < (eM − 1) cosh(l/2).

The purpose of this paper is to extend Theorem 1.1 to a quasi-
conformal automorphism f . One of the difficulties that arise is that
the element χ ∈ Mod(R) induced by f need not have a fixed point on
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T (R). However, we will show that if the maximal dilatation of f is
smaller than some constant, then χ is periodic.

The author would like to express her gratitude to Professor Kat-
suhiko Matsuzaki for his valuable suggestions.

2. Statement of Theorem

Let H be the upper half-plane equipped with the hyperbolic met-
ric |dz|/Im z. Throughout this paper, we assume that a Riemann sur-
face R is hyperbolic. Namely, it is represented as H/Γ for some torsion-
free Fuchsian group Γ acting on H. Furthermore, we also assume that
R has a non-abelian fundamental group. The hyperbolic distance on
H is denoted by d, and the hyperbolic length of a curve c on R by l(c).
For the axis L of a hyperbolic element of the Fuchsian group Γ, we
denote by πΓ(L) the projection of L to H/Γ. When there is no fear of
confusion, we denote this simply by π(L). Also, for a quasiconformal

automorphism f̃ of H, we denote by f̃(L)∗ the geodesic having the

same end points as those of f̃(L).
We recall the definition of Teichmüller spaces and Teichmüller

modular groups. Fix a Riemann surface R. We say that two quasicon-
formal maps f1 and f2 on R are equivalent if f2 ◦ f−1

1 is homotopic to
a conformal map of f1(R) onto f2(R). The reduced Teichmüller space
T (R) with the base Riemann surface R is the set of all equivalence
classes [f ] of quasiconformal maps f on R. The Teichmüller distance
dT on T (R) is defined by dT ([f1], [f2]) = log K(g), where g is an ex-
tremal quasiconformal map in the sense that its maximal dilatation
K(g) is minimal in the homotopy class of f2 ◦ f−1

1 . This is a complete
metric on T (R). The reduced Teichmüller modular group Mod(R) of
R is a group of the homotopy classes [h] of quasiconformal automor-
phisms h of R. Each element [h] of Mod(R) induces an automorphism
of T (R) by [f ] 7→ [f ◦ h−1], which is an isometry with respect to dT .

We now make a couple of definitions given in terms of the hyper-
bolic geometry of Riemann surfaces.

Definition. For a constant M > 0, we define RM to be the set
of points p ∈ R for which there exists a non-trivial simple closed curve
cp passing through p with l(cp) < M . The set Rε is called the ε-thin
part of R if ε > 0 is smaller than the Margulis constant. Furthermore,
a connected component of the ε-thin part corresponding to a puncture
is called the cusp neighborhood.

Remark. The injectivity radius at a point p ∈ R is the supremum
of radii of embedded hyperbolic discs centered at p. Note that RM
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coincides with the set of those points having the injectivity radius less
than M/2.

Definition. We say that R satisfies the lower bound condition if
there exists a constant ε > 0 such that ε-thin part of R consists of only
cusp neighborhoods or neighborhoods of geodesics which are homotopic
to boundary components. We also say that R satisfies the upper bound
condition if there exist a constant M > 0 and a connected component
R∗

M of RM such that the homomorphism of π1(R
∗
M) to π1(R) induced

by the inclusion map of R∗
M into R is surjective.

Remark. The lower and upper bound conditions are quasicon-
formally invariant notions (see [5, Lemma 8]).

We shall obtain a range of maximal dilatations of quasiconformal
automorphisms f inducing periodic elements χ ∈ Mod(R). Moreover,
we get a concrete estimate for the order of χ.

Theorem 2.1. Let R be a Riemann surface satisfying the lower
bound condition for a constant ε > 0 as well as the upper bound condi-
tion for a constant M > 0 and a connected component R∗

M of RM . For
a given constant l > 0, there exists a constant K0 = K0(ε, M, l) > 1
depending only on ε, M and l that satisfies the following: Let f be a
quasiconformal automorphism of R such that f(c) is homotopic to c
for a simple closed geodesic c on R with c ⊂ R∗

M and l(c) = l . Suppose
K(f) < K0. Then there exists a positive integer n ≤ N0 such that fn

is homotopic to the identity. Here

N0 = N0(M, l) = − l

log(tanh(D + 13.5))
,

D = D(M, l) =

 2 arccosh

(
sinh(M/2)

sinh(l/2)

)
+ M if l ≤ M,

M if l ≥ M.

In particular, when K(f) = 1, we have the following:

Theorem 2.2. Let R be a Riemann surface satisfying the upper
bound condition for a constant M > 0 and a connected component R∗

M

of RM as well as the lower bound condition. Let f be a conformal
automorphism of R such that f(c) = c for a simple closed geodesic c
on R with c ⊂ R∗

M and l(c) = l > 0. Then the order n of f satisfies

n ≤ − l

log(tanh(D/2))
,

where D = D(M, l) is the same constant as in Theorem 2.1.
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Note that for M ≥ arcsinh(2/
√

3) = 0.98 · · · and every l > 0, we
have

− l

log(tanh(M/2))
< (eM − 1) cosh(l/2).

Here the constant arcsinh(2/
√

3) is the smallest possible value of M
for which R satisfies the upper bound condition (see [6]). Hence when
l ≥ M , the upper bound of the order of f obtained in Theorem 2.2 is
smaller than that in Theorem 1.1. However, when l < M , the estimate
in Theorem 1.1 is still better than that in Theorem 2.2 for all sufficiently
small l . In fact, (eM − 1) cosh(l/2) converges to eM − 1 as l → 0, while
−l/(log(tanh(D/2))) diverges to +∞.

In connection with Theorems 2.1 and 2.2, we would like to men-
tion the result about the discreteness of the orbit of a certain subgroup
of the Teichmüller modular group.

Proposition 2.3 ([5]). Let R be a Riemann surface satisfying
the lower and upper bound conditions. For a simple closed geodesic c
on R, let G be a subgroup of Mod(R) such that g(c) is homotopic to c
for every [g] ∈ G. Then for every point p ∈ T (R), the orbit G(p) of
p is a discrete subset in T (R). Furthermore, for any point p ∈ T (R),
there exist only finitely many elements [g] in G that fix p.

3. Proof of Theorems

For a proof of these theorems, we first prove some properties on
the hyperbolic geometry of Riemann surfaces.

Proposition 3.1. Let R = H/Γ be a Riemann surface satisfying
the upper bound condition for a constant M > 0 and a connected com-
ponent R∗

M of RM . Suppose that L is the axis of a hyperbolic element of
Γ such that the projection π(L) is a simple closed geodesic c on R with
c ⊂ R∗

M and l(c) = l > 0. Then there exists an axis L′ of a hyperbolic
element of Γ such that L ∩ L′ = ∅, d(L,L′) ≤ D and π(L′) = π(L).
Here D = D(M, l) is the same constant as in Theorem 2.1.

Proof. First we assume that l > M . Since c ⊂ R∗
M , there exists a

non-trivial simple closed curve α passing through p ∈ c with l(α) < M .
It follows from the assumption l > M that α is not homotopic to c,
which implies that there exists an axis L′ (6= L) such that π(L′) = c
and d(L,L′) < M .
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Next we assume that l ≤ M . We further assume that there exists
an annular neighborhood A(c) of c with width ω(c), where

ω(c) = arccosh

(
sinh(M/2)

sinh(l/2)

)
.

Then, for any q ∈ ∂A(c), the boundary of A(c), the shortest simple
closed curve γ passing through q and homotopic to c has length M .

Indeed, we may assume that L = {iy | y > 0}, and q̃ = eiθ and
q̃′ = el+iθ are lifts of q to H. Then, by the equality (7.20.3) in [2], we
have

1

sin θ
=

1

cos(π/2 − θ)
= cosh d(q̃, L) = cosh ω(c) =

sinh(M/2)

sinh(l/2)
.

Thus, by Theorem 7.2.1 in [2], we see that

sinh
1

2
d(q̃, q̃′) =

|q̃ − q̃′|
2 (Imq̃ Imq̃′)1/2

=
el − 1

2 el/2 sin θ
=

sinh(l/2)

sin θ
= sinh

M

2
,

which implies that l(γ) = d(q̃, q̃′) = M .
We can take a point q0 ∈ ∂A(c) such that q0 ∈ R∗

M . Indeed,
otherwise, ∂A(c) ∩ R∗

M = ∅. Since c ⊂ R∗
M , this means that R∗

M is an
annular neighborhood of c, contradicting the upper bound condition.

By the definition of RM , there exists a non-trivial simple closed
curve β passing through q0 with l(β) < M . By the consideration above,
we see that the curve β is not homotopic to c. Hence there exists an
axis L′ (6= L) such that π(L′) = c and d(L,L′) < 2 ω(c) + M .

Finally, we assume that l ≤ M and that the width of the maximal
annular neighborhood A(c) of c is less than ω(c). Then there exists an
axis L′ (6= L) such that π(L′) = c and d(L,L′) < 2 ω(c). ¤

We now estimate the number of axes satisfying Proposition 3.1.

Definition. For an element γ of a Fuchsian group, we say that
two axes L1 and L2 are γ-equivalent if γn(L1) = L2 for some n ∈ Z.

Proposition 3.2. Let R = H/Γ be a Riemann surface and D0 >
0 a constant. Furthermore, let L be the axis of a hyperbolic element
γ ∈ Γ such that the projection π(L) is a simple closed geodesic c on R
with l(c) = l > 0. Let S be the set of axes L′ of hyperbolic elements
of Γ satisfying the following: (i) L ∩ L′ = ∅, (ii) d(L,L′) ≤ D0, (iii)
π(L′) = c and (iv) there exists an arc α connecting L and L′ whose
projection to R has no intersection with c except at the end points.
Then the number of γ-equivalence classes of axes in S is dominated by

− l

log(tanh(D0/2))
.
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Proof. We may assume that L = {iy | y > 0}. We take θ0

(0 < θ0 < π/2) so that cosh D0 = (cos θ0)
−1 and set θ = π/2 − θ0.

Furthermore, we set

T+ = {reiθ | 1 ≤ r < el} and T− = {rei(π−θ) | 1 ≤ r < el}.
Then d(L, T+) = D0 and d(L, T−) = D0. To estimate the number of
γ-equivalence classes of elements in S, we have only to consider the
maximal number n of disjoint axes L′ that are tangent to T+ or T−.

Let C be the Euclidean circle on C that is tangent to the segment
T+ and has center a > 0 with radius r. Then r = a sin θ, and the circle
C passes through two points,

x1 = (1 − sin θ)a and x2 = (1 + sin θ)a.

The ratio of these points is given by

s =
x2

x1

=
1 + sin θ

1 − sin θ
=

1 + cos θ0

1 − cos θ0

=
cosh D0 + 1

cosh D0 − 1
=

1

(tanh(D0/2))2 .

Hence it is easy to see that

n ≤ 2 · l

log s
= − l

log(tanh(D0/2))
.

¤

The following proposition gives a relationship between the hyper-
bolic distance of two axes and that of their images under a quasicon-
formal map.

Proposition 3.3 ([1]). Let f be a K-quasiconformal automor-
phism of H. Then there exists a constant C = C(K) > 0 depending
only on K such that, for any two geodesics L1 and L2 in H, the in-
equality

K−1 · d(L1, L2) − C ≤ d(f(L1)∗, f(L2)∗) ≤ K · d(L1, L2) + C

holds. The constant C(K) satisfies C(K) → 0 as K → 1, and may be
taken to be

(1/2)arccosh
(
2−(K−1)2e6(K+1)2

√
K−1

)
.

The following proposition gives a sufficient condition for the max-
imal dilatations of quasiconformal maps to be bounded away from one.

Proposition 3.4 ([4]). Let R = H/Γ be a Riemann surface. Sup-
pose that R satisfies the lower bound condition for a constant ε > 0 as
well as the upper bound condition for a constant M > 0 and a con-
nected component R∗

M of RM . Let B > 0 and l > 0 be constants. Then
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there exists a constant A0 = A0(ε,M,B, l) > 1 depending only on ε,
M , B, l and satisfying the following conditions: Given a quasiconfor-
mal automorphism f of R, suppose that there exist three disjoint axes
Li (i = 1, 2, 3) of hyperbolic elements of Γ such that

(1) their projections π(Li) on R are simple closed geodesics ci (i =
1, 2, 3) with ci ⊂ R∗

M and l(ci) ≤ l ,
(2) d(L1, L2) ≤ B,

(3) f̃(L1)∗ = L1, f̃(L2)∗ = L2, f̃(L3)∗ 6= L3 for a lift f̃ of f to
H.

Then K(f) ≥ A0.

We now prove our theorems.

Proof of Theorem 2.1. We set B := D = D(M, l) in Proposition
3.4 and let A0 = A0(ε,M, l) > 1 be a constant depending only on ε, M
and l obtained in Proposition 3.4. Setting A = min{A0, 2}, we prove
the statement for K0 = A1/(N0+1). Namely, we show that, if K(f) < K0,
then there exists an integer n ≤ N0 such that fn is homotopic to the
identity.

Let Γ be a Fuchsian model of R. Furthermore let L1 be an axis
such that π(L1) = c and γ1 the primitive hyperbolic element of Γ with
axis L1. By applying Proposition 3.1 to L1, we see that there exists
an axis L2 of a hyperbolic element γ2 of Γ such that L1 ∩ L2 = ∅,
d(L1, L2) ≤ D and π(L1) = π(L2).

Let f̃ be a lift of f to H satisfying f̃(L1)∗ = L1. Since K(f) <
K0 = A1/(N0+1), we have K(fk) < A for k ≤ N0 + 1. Then, by
Proposition 3.3,

d(L1, f̃
k(L2)∗) = d(f̃k(L1)∗, f̃

k(L2)∗) ≤ A · d(L1, L2) + C(A)(1)

≤ 2D + C(2) = 2D + (1/2)arccosh(e54/2)

≤ 2D + 27

for all k ≤ N0 + 1.
We consider the set S0 of all axes L′ of hyperbolic elements of

Γ satisfying the following conditions: (i) L1 ∩ L′ = ∅, (ii) d(L1, L
′) ≤

2D + 27, (iii) π(L′) = c and (iv) there exists an arc α connecting L1

and L′ such that the projection of α to R has no intersection with c
except at the end points. We see that the set S ′ = {f̃k(L2)∗}N0+1

k=1 is
contained in S0. Indeed, by the proof of Proposition 3.1, the axis L2

satisfies the property (iv), and since f̃k is a homeomorphism, the axes

f̃k(L2)∗ satisfy the same property. The other properties (i), (ii), (iii)
are also satisfied.
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By Proposition 3.2, the number of γ1-equivalence classes of ele-
ments in S0 is dominated by N0. Hence there exist at least two ele-
ments in S ′, say f̃m1(L2)∗ and f̃m2(L2)∗ (1 ≤ m1 < m2 ≤ N0 + 1),
that are γ1-equivalent to each other. Thus there exists j ∈ Z such that
γj

1 ◦ f̃n(L2)∗ = L2, where n = m2 − m1 (≤ N0). With this n, we will

prove that fn is homotopic to the identity. We set F = γj
1 ◦ f̃n, which

is a lift of fn to H.
Suppose to the contrary that fn is not homotopic to the identity.

We set χ(γ) = F ◦ γ ◦ F−1 for γ ∈ Γ. Then there exists γ3 ∈ Γ such
that χ(γ3) 6= γ3. Setting γ′

i = γ3 ◦ γi ◦ γ−1
3 for i = 1, 2, we claim

that either χ(γ′
1) 6= γ′

1 or χ(γ′
2) 6= γ′

2 is satisfied. Suppose that both
χ(γ′

1) = γ′
1 and χ(γ′

2) = γ′
2 are satisfied. Since χ(γi) = γi, we have

β ◦ γi ◦ β−1 = γi (i = 1, 2), where β = γ−1
3 ◦ χ(γ3). Thus, β fixes all

fixed points of γ1 and γ2. Since γ1 and γ2 are non-commutative, the
Möbius transformation β fixes four points and must be the identity.
This contradicts that χ(γ3) 6= γ3.

Hence either F (γ3(L1))∗ 6= γ3(L1) or F (γ3(L2))∗ 6= γ3(L2) is sat-
isfied, and we may assume without loss of generality that F (γ3(L1))∗ 6=
γ3(L1). Since π(γ3(L1)) = π(L1) = c, we can apply Proposition 3.4 to
the lift F of fn and to the three axes L1, L2 and γ3(L1). Then we have
K(fn) ≥ A0, a contradiction, since we assumed K(fn) < A ≤ A0.
Hence if K(f) < A1/(N0+1), then fn is homotopic to the identity. ¤

Proof of Theorem 2.2. In the proof of Theorem 2.1, we can replace
the inequality (1) with

d(L1, f̃
k(L2)∗) = d(f̃k(L1)∗, f̃

k(L2)∗) = d(L1, L2) = D.

Hence we have only to replace the constant 2D+27 with D in Theorem
2.1. ¤
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