
 Open access Proceedings Article DOI:10.1109/LICS.2012.46

The Ordinal-Recursive Complexity of Timed-arc Petri Nets, Data Nets, and Other
Enriched Nets — Source link

Serge Haddad, Sylvain Schmitz, Philippe Schnoebelen

Institutions: École normale supérieure de Cachan

Published on: 25 Jun 2012 - Logic in Computer Science

Topics: Petri net, Stochastic Petri net, Process architecture and Fast-growing hierarchy

Related papers:

 Well-structured transition systems everywhere!

 Algorithmic Analysis of Programs with Well Quasi-ordered Domains

 Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets

 Verifying programs with unreliable channels

 The Ordinal Recursive Complexity of Lossy Channel Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/the-ordinal-recursive-complexity-of-timed-arc-petri-nets-
2to4uepl23

https://typeset.io/
https://www.doi.org/10.1109/LICS.2012.46
https://typeset.io/papers/the-ordinal-recursive-complexity-of-timed-arc-petri-nets-2to4uepl23
https://typeset.io/authors/serge-haddad-1tmvptg78b
https://typeset.io/authors/sylvain-schmitz-1pycmf936f
https://typeset.io/authors/philippe-schnoebelen-1fuawx1adf
https://typeset.io/institutions/ecole-normale-superieure-de-cachan-1us5b34j
https://typeset.io/conferences/logic-in-computer-science-19g7094o
https://typeset.io/topics/petri-net-1xqxexw7
https://typeset.io/topics/stochastic-petri-net-3e3vvraf
https://typeset.io/topics/process-architecture-27g86ups
https://typeset.io/topics/fast-growing-hierarchy-1nmzv067
https://typeset.io/papers/well-structured-transition-systems-everywhere-kvo839d0ll
https://typeset.io/papers/algorithmic-analysis-of-programs-with-well-quasi-ordered-1orbemd6dd
https://typeset.io/papers/revisiting-ackermann-hardness-for-lossy-counter-machines-and-1j2vnbd19e
https://typeset.io/papers/verifying-programs-with-unreliable-channels-5cit2lmbfu
https://typeset.io/papers/the-ordinal-recursive-complexity-of-lossy-channel-systems-wjc65lwhuu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-ordinal-recursive-complexity-of-timed-arc-petri-nets-2to4uepl23
https://twitter.com/intent/tweet?text=The%20Ordinal-Recursive%20Complexity%20of%20Timed-arc%20Petri%20Nets,%20Data%20Nets,%20and%20Other%20Enriched%20Nets&url=https://typeset.io/papers/the-ordinal-recursive-complexity-of-timed-arc-petri-nets-2to4uepl23
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-ordinal-recursive-complexity-of-timed-arc-petri-nets-2to4uepl23
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-ordinal-recursive-complexity-of-timed-arc-petri-nets-2to4uepl23
https://typeset.io/papers/the-ordinal-recursive-complexity-of-timed-arc-petri-nets-2to4uepl23

HAL Id: hal-00793811
https://hal.archives-ouvertes.fr/hal-00793811

Submitted on 23 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Ordinal Recursive Complexity of of Timed-Arc
Petri Nets, Data Nets, and Other Enriched Nets

Serge Haddad, Sylvain Schmitz, Philippe Schnoebelen

To cite this version:
Serge Haddad, Sylvain Schmitz, Philippe Schnoebelen. The Ordinal Recursive Complexity of of
Timed-Arc Petri Nets, Data Nets, and Other Enriched Nets. 27th ACM/IEEE Symposium on
Logic in Computer Science, Jun 2012, Dubrovnik, Croatia. pp.355–364, ฀10.1109/LICS.2012.46฀. ฀hal-
00793811฀

https://hal.archives-ouvertes.fr/hal-00793811
https://hal.archives-ouvertes.fr

The Ordinal-Recursive Complexity of

Timed-Arc Petri Nets, Data Nets, and

Other Enriched Nets

Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen

Laboratoire Spécification et Vérification (LSV),

ENS Cachan & CNRS

Cachan, France

Abstract—We show how to reliably compute fast-growing
functions with timed-arc Petri nets and data nets. This construc-
tion provides ordinal-recursive lower bounds on the complexity
of the main decidable properties (safety, termination, regular
simulation, etc.) of these models. Since these new lower bounds
match the upper bounds that one can derive from wqo theory,
they precisely characterise the computational power of these so-
called “enriched” nets.

Index Terms—Complexity theory, fast-growing hierarchy, for-
mal verification, Petri nets, well-structured systems

I. INTRODUCTION

We call enriched nets a handful of Petri net extensions

where tokens are coloured with data values, that still enjoy

decidable verification problems: timed-arc Petri nets (TPN)

where tokens carry real-valued clocks [6], data nets (DN) and

Petri data nets (PDN) where they carry a datum from some

dense domain [19], and constrained multiset rewriting systems

(CMRS) where they carry positive integers [3]. Their richer

structure makes enriched nets a natural choice when modelling

for instance parameterised systems, protocols, workflows, or

real-time systems—in fact, timed extensions of Petri nets have

been in use since the 1970’s for such modelling tasks. In spite

of the presence of two “sources” of infiniteness, the number

of tokens and their colours, enriched nets can be handled

by the now standard toolkit of well quasi-orders (wqo) and

well-structured transition systems (WSTS) [5, 14] so that e.g.

safety—which in this context corresponds to the coverability

problem—and other properties are decidable [4, 2, 9].

Recent investigations [1, 7] have shown that all these

formalisms are expressively equivalent, i.e. they define the

same class of so-called coverability languages, and thus in

particular their coverability problems are inter-reducible. Their

computational complexity, however, has rarely been analysed.

The employed wqo and WSTS techniques are generally seen

as non-constructive, hence the aforementioned works do not

provide any complexity analysis of the algorithms they pro-

pose ([19, Prop. 3.2] gives a lower bound: PDNs can simulate

lossy channel systems and hence inherit at least their Fωω

complexity [10], but this is far from optimal).

We prove in this paper that the complexity of enriched nets

is exactly at level Fωωω in the fast-growing hierarchy.

1) The upper bound is a consequence of a generic technique

described in [22]: the length-function theorem for elementary

wqos, here instantiated with (Nk)∗ as the underlying wqo. It

applies uniformly to DN, PDNs, TPNs, CMRSs (and to some

further extensions); see Sec. IV.

2) The matching lower bound is our main contribution: it

relies on the construction of PDNs with O(k) unbounded

places that can compute in a weak sense the fast-growing

functions F
ωωk and their inverses and therefore simulate F

ωωk -

bounded computations (see Sec. V for an overview). This

construction relies on several intermediate steps: we first

define in Sec. VI-A a cumulative encoding of ordinals below

ωωωk

in sequences of vectors of integers (or “codes”) along

with rewriting rules over codes implementing fast-growing

computations and their inverses (see Sec. VI-B). Because

this encoding is robust, i.e. safe wrt. Higman’s ordering on

codes, any weak implementation of the rewriting rules will

yield the desired behaviour (Sec. VI-C); in particular, a weak

PDN implementation is possible, as shown in Sec. VII. Once

established for PDNs, the new lower bound automatically

applies to TPNs and DNs.

3) Beyond the complexity of verification problems, our

techniques are easily applied to the study of the coverabil-

ity languages of WSTS models [17]. Here our construction

directly yields separation results; see Sec. VIII.

The details of the proofs and of the construction of PDNs

can be found in the long version of the paper.

II. PETRI DATA NETS

Although the complexity of decision problems in timed-

arc Petri nets provided our prime motivation—an important

body of literature is dedicated to their analysis [6, 4, 2, 9]

and they are actually employed in tools [e.g. 18]—, we will

work exclusively with Petri data nets, which proved easier to

manipulate, and rely on known interreducibility results [7, 1]

to capture the other classes of enriched nets.

A. Definitions

We denote by 0 the null vector in Nk for any k, and for a

word w = x1 · · ·xn we write |w| = n and w(i) = xi.

A Petri Data Net (PDN) is a Petri net where each token

carries an identity from a linearly ordered and dense domain

D. A marking s of a PDN with P as set of places could

be seen, e.g., as a multiset of pairs in D × P , or as a map

s ∈ (NP)D. However, two key features of PDNs will guide

our choice of (N|P | \ 0)∗ for representing markings:

1) a marking s only has finitely many tokens, thus denoting

d1 < · · · < dm the identities that occur in s and

gathering all the tokens that carry the same identity di,

one obtains a (non-null) place vector vi in N|P | \ 0:

s can be written as a sequence (d1, v1) · · · (dm, vm),
implicitly associating the null vector 0 with any d ∈
D \ {d1, . . . , dm};

2) the concrete identities di are irrelevant, and only their

relative order is useful wrt. the dynamics of the net, thus

s can safely be abstracted as the sequence v1 · · · vm in

(N|P | \ 0)∗. (Also the choice of the concrete set D is

irrelevant.)

Every transition t of a PDN specifies a sequence of n

ordered potential identities and for any such identity specifies

the tokens cons to be consumed and prod to be produced.

Thus cons(t) and prod(t) are two sequences of n (possibly

null) place vectors.

Definition 1 (Petri Data Nets). A k-dimensional Petri Data

Net (k-PDN) is a tuple N = (P, T, cons, prod , s0) where

• P is a finite set of k = |P | places,

• T is a finite set of transitions with P ∩ T = ∅,

• for every t in T , cons(t) and prod(t) are finite sequences

in (Nk)∗ with |cons(t)| = |prod(t)|, and

• s0 is an initial marking in (Nk \ 0)∗.

Consider now a marking s ∈ (Nk \ 0)∗. In order to fire

a transition t with |cons(t)| = n, nondeterministically select

n identities, consume some of their tokens as indicated by

cons(t), and produce new tokens with the identities specified

by prod(t). However, some of these n identities might not be

present in s, and we should introduce null vectors wherever

necessary: s′ ∈ (Nk)∗ is a 0-extension of s ∈ (Nk \ 0)∗ (or s

is the 0-contraction of s′)
def
⇔ s is obtained by removing all 0’s

from s′. Once an extension s′ is built, select in it a subword of

n vectors x1, . . . , xn s.t. every vector contains enough tokens,

i.e. with xi ≥ cons(t)(i). If the condition is fulfilled, the

corresponding tokens are consumed and prod(t)(i) is added to

the resulting vector, yielding a new sequence s′′. This s′′ may

contain null vectors, e.g. when all tokens with some identity

have been consumed, hence the reached marking really is the

0-contraction of s′′. Note that any way of firing t requires

at most n insertions. Examples of PDNs will be found in

Section VII.

Definition 2 (Semantics of PDNs). The transition system

associated with a k-PDN N = (P, T, cons, prod , s0) is

(S, s0,→) with state set S
def
= (Nk \0)∗ and transition relation

→
def
=

⋃

t∈T

t
−→, where s

t
−→ s′ for t ∈ T iff, letting

n = |cons(t)|:

• there exists u0x1u1 · · ·un−1xnun a 0-extension of s with

for all i, ui ∈ (Nk)∗ and xi ∈ Nk;

• for i in {1, . . . , n}, xi ≥ cons(t)(i);

• and defining yi = xi − cons(t)(i) + prod(t)(i), s′ is the

0-contraction of u0y1u1 · · ·un−1ynun.

Below we consider three decision problems for PDNs:

(Strong) Coverability: Given N and p ∈ P , can we reach

a configuration where p holds at least one token?

Boundedness: Given N , is the set of reachable configura-

tions in S finite?

Termination: Given N , is every run finite?

B. PDNs as Well-Structured Transition Systems

A wqo (A,≤) is a set A endowed with a transitive and

reflexive relation ≤ s.t. every infinite sequence σ = a0, a1, · · ·
of elements of A contains a pair ai ≤ aj for some i < j. Some

classical examples of wqos are

Dickson’s Lemma: (Nk,≤) with the product ordering de-

fined by x ≤ y
def
⇔ ∀0 ≤ j < k, x[j] ≤ y[j],

Higman’s Lemma: if (A,≤) is a wqo, then (A∗,≤∗) the set

of finite sequences of elements of A along with the

subword embedding ordering is also a wqo, where

≤∗ is defined by s ≤∗ s′
def
⇔ s = a1 · · · an, s′ =

x0b1x1 · · · bnxn with x0, . . . , xn in A∗ and ai ≤ bi
for all 1 ≤ i ≤ n.

The transition system associated with a PDN (see Defi-

nition 2) is well-structured [5, 14] for the wqo (S,≤∗): if

s1
t
−→ s2 and s1 ≤∗ s3, then there exists s4 s.t. s2 ≤∗ s4 and

s3
t
−→ s4. This (strict) compatibility of the transition relation

with the ordering allows to employ generic algorithms for

deciding coverability, boundedness, and termination. In fact,

the same generic WSTS algorithms show that coverability,

boundedness and termination are decidable

• for TPNs [2], even when extended with read arcs [9] or

transport arcs [18],

• for CMRSs [3], and

• as far as coverability and termination are concerned, for

DNs [19]. Compared to PDNs, these allow so-called

whole-place operations that can e.g. duplicate or erase the

whole contents of some places, and/or transfer them to

other places, which makes their compatibility non-strict—

and indeed their boundedness problem is undecidable.

III. ORDINAL RECURSIVE COMPLEXITY

The enormous complexity of some decidable problems

on WSTSs requires the introduction of complexity classes

spanning way beyond the usual polynomial or exponential

hierarchies. The complexity classes we consider are generated

by ordinal-indexed subrecursive hierarchies, like the Hardy

hierarchy and the fast-growing hierarchy. See [12] for a self-

contained presentation; we only recall below the notions and

notations that are required for our construction in Section VI.

It is well-known that any ordinal α < ε0 can be written

uniquely in Cantor Normal Form (CNF). In this paper we use

a dotted addition symbol “+̇” when we want to stress that an

ordinal term is in CNF. Thus, when we write

α = ωα1 +̇ · · · +̇ ωαp , (1)

we mean that not only the equality (1) holds, but also that

αp ≤ . . . ≤ α1 < α, as required by CNF. (NB: we allow

writing α +̇ α′ when α or α′ is 0.)

Subrecursive hierarchies are defined through assignments

of fundamental sequences (λn)n<ω for limit ordinals λ < ε0,

verifying λn < λ for all x and λ = supn λn. A standard

assignment is defined by:
(
γ +̇ ωα+1

)

n

def
= γ +̇ ωα · ωn,

(
γ +̇ ωλ

)

n

def
= γ +̇ ωλn , (2)

together with ωn
def
= n. Writing Ω for the ordinal ωωωω

, this

yields for instance Ωk = ωωωk

and (Ωk)k = ωωωk−1
·k

.

The Hardy hierarchy (Hα : N → N)α<ε0 is defined by

H0(n)
def
= n and

Hα+1(n)
def
= Hα(n+ 1), Hλ(n)

def
= Hλn(n). (3)

Observe that H1 is the successor function, and more generally

Hα is the αth iterate of the successor function, using diago-

nalisation to treat limit ordinals. The fast growing hierarchy

(Fα : N → N)α<ε0 can be defined by Fα
def
= Hωα

, resulting

in F0(n) = H1(n) = n + 1, F1(n) = Hω(n) = Hn(n) =
2n, F2(n) = Hω2

(n) = 2nn being exponential, F3 non-

elementary, and Fω an Ackermannian function.

By applying elementary closure operations to the collection

of functions (Fβ)β≤α along with the addition, projection

and zero functions, one obtains a hierarchy (Fα)α known

as the extended Grzegorczyck hierarchy [20], which char-

acterises several natural classes of functions; for instance

F0 = F1 is the class of linear functions, F2 that of elementary

ones,
⋃

k∈N
Fk of primitive-recursive ones, and

⋃

k∈N
Fωk

of multiply-recursive ones. The hierarchy is strict for all

0 < α < α′: Fα (Fα′ , in particular because Fα′ 6∈ Fα.

The (Fα)α hierarchy provides a more abstract packaging of

the main stops in the extended Grzegorczyk hierarchy and

requires lighter notation than the Hardy hierarchy (Hα)α.

However, with its tail-recursive definition, the Hardy hierarchy

is easier to implement as a while-program or as a counter

machine. Below we weakly implement Hardy computations

with PDNs. Formally, a (forward) Hardy computation is a

sequence α0, n0 −→ α1, n1 −→ α2, n2 −→ · · · −→ αℓ, nℓ of

evaluation steps implementing Eq. (3) seen as left-to-right

rewrite rules. It guarantees α0 > α1 > α2 > · · · and

n0 ≤ n1 ≤ n2 ≤ · · · and keeps Hαi(ni) invariant. We say

it is complete when αℓ = 0 and then nℓ = Hα0(n0) (we

also consider incomplete computations). A backward Hardy

computation is obtained by using Eq. (3) as right-to-left rules.

For instance, Ω, k → Ωk, k → (Ωk)k, k constitute the first

three steps of the forward Hardy computation starting from

Ω, k if k > 0.

IV. COMPLEXITY UPPER BOUNDS

A key insight for the complexity analysis of WSTS al-

gorithms is that the use of wqos yields not only algorithm

termination, but also upper complexity bounds:

Theorem 3 (Upper Bound). Coverability and termination for

PDNs, DNs, TPNs, and CMRSs, are in Fωωω

(
n+O(1)

)
.

For this result, as explained in [13, 22], we merely need to

find out (1) what is the complexity of a step of the WSTS (in

the case of PDNs, transitions perform simple affine operations

in F1), and (2) the maximal order type of the wqo, which is

a measure of its complexity (this is Ωk for a k-PDN). By

the length function theorem for elementary wqos (see full

version of [22]), we then obtain a parameterised upper bound

in F
ωωk for the decision problems of k-PDNs mentioned

in Section II-B, and a uniform Fωωω upper bound (which

asymptotically majorises every function in
⋃

k F
ωωk) when

the dimension is not fixed.

These upper bounds hold more generally for k-DNs, as

they have the same order type and their extra whole-place

operations are still in F1. Regarding TPNs and CMRSs,

the Fωωω upper bound also holds; however here the main

parameter in the parameterised complexity—which appears as

the exponent on top of the tower of ω’s—is not simply the

dimension k but km where m is the maximal constant that

appears in the constraints put on transitions or in the initial

marking.

V. COMPLEXITY LOWER BOUNDS

We now describe the proof plan for our main result.

Theorem 4 (Lower Bound). Coverability and termination for

PDNs are Fωωω -hard.

This follows from a reduction from the halting problem

for Minsky machines (MM) M with counters bounded by

Fωωω (|M |). The proof is done by assembling two construc-

tions (described in the following sections). The schematics

(see Fig. 1) are similar to earlier constructions for lossy

channel systems or counter machines and the reader can refer

to [23, 10] where more lower-level details are given. We

outline it as a motivation for the following sections.

NH [k]

=(Ωk)k,k
︷ ︸︸ ︷
α0, n0

r
−→ · · ·

r
−→ αi, ni

r
−→ · · ·

r
−→ αℓ,

≤Hα0 (n0)
︷︸︸︷
nℓ

pstart

prewr phalt

trewr

NH−1[k]

0,m0
r
−→−1 · · ·

r
−→−1 α, n

p′′startp′′rewr
p′′halt

t′′rewr

NM
p′start

p′halt

simulate M
using cpt

as a budget

cpt

cM1

cMr

Fig. 1. Schematics for Theorem 4.

1) Direct Computation: For a provided size k, we first

construct (see Section VII) a PDN NH [k] initialised with a

pair α0, n0
def
= (Ωk)k, k and that tries to rewrite it α0, n0 −→

α1, n1 −→ · · · −→ αℓ, nℓ in a way that reflects precisely the

complete Hardy derivation issuing from α0, n0, thus comput-

ing nℓ = Hα0(n0) = HΩ(k). There are two difficulties here.

First, one has to encode ordinals in sequences of vectors (i.e.

in PDN configurations) and this is the topic of Section VI.

Secondly, our PDN only performs Hardy computations in a

weak sense. What is guaranteed is the following:

Lemma 5 (See Section VII). NH [k] is “complete”: Starting

with α0 = (Ωk)k, NH [k] can perform the exact Hardy

computation and halt with αℓ = 0 and nℓ = HΩ(k).
NH [k] is “safe”: Any halting computation in NH [k], correct

or incorrect, has nℓ ≤ HΩ(k).

2) Simulation: Now consider some MM M of size k. An

easy (see [11, §7] or [21, §4]) and classic construction yields a

PDN NM that simulates M as far as halting is concerned: NM

has unbounded places cM1 , . . . , cMr to simulate the r counters

of M . Starting from control place p′start and with empty

cM1 , . . . , cMr , it eventually reaches p′halt with cM1 , . . . , cMr
empty iff M halts. We further modify NM so that it uses cpt

(where NH [k] stores nℓ) as a budget, i.e. any incrementing of

a cMi is matched by decrementing cpt and vice versa, see [23,

§4]. Adding cpt as a budget has two consequences. First, M

is now simulated with an upper bound of nℓ for (the sum

of) its counters, at any time along its run. Second, when NM

reaches p′halt, witnessing that M halts, does not require testing

cM1 , . . . , cMr for emptiness: at this point, the value nf of cpt

is necessarily ≤ nℓ, and only equals nℓ if cM1 , . . . , cMr are

empty (NB: if M halts, nf = nℓ is indeed feasible).

3) Inverse Computation: We now connect NH [k], NM and

NH−1 [k] so that they run sequentially. Here NH−1 [k] is a PDN

for backward Hardy computations. It starts with α′
0 = 0 and

m0 = nf (passed on by NM). Its backward computation

may reach (Ωk)k, k if m0 = HΩ(k). Here too, the PDN

only computes H−1 in a weak sense but it is guaranteed that

it can do exact backward computations (completeness) and

that incorrect backward computations halting on (Ωk)k, n have

H(Ωk)k(n) ≤ m0 (safety).

As a consequence, the resulting full PDN started with

(Ωk)k, k can reach a configuration with p′′halt and a pair α, n

that covers (Ωk)k, k (in terms of the places that store the

current Hardy pair) if, and only if, the Minsky machine M

with space bounded by HΩ(k) = Fωωω (k) halts.

Indeed, if M halts within the space bound, the PDN may

reach the required p′′halt, α, n by chaining exact Hardy compu-

tations and the simulation of M by NM . More interestingly, if

the required α, n is reached, we know, letting h
def
= HΩ(k), that

nℓ ≤ h (safety of NH), that nℓ ≥ nf = m0 (budget of NM),

that Hα(n) ≤ m0 (safety of NH−1), and that Hα(n) ≥ h (α, n

covers (Ωk)k, k). Thus h ≤ Hα(n) ≤ m0 = nf ≤ nℓ ≤ h.

Necessarily nℓ = nf , witnessing that M halts, and nℓ = h,

witnessing that M runs in space bounded by h = Fωωω (k).
In conclusion, the construction provides a (logspace) many-

one reduction from the halting problem for Minsky machines

running in space bounded by Fωωω (k) where k = |M | is

the size of the MM description. Using standard complexity-

theoretical arguments, Theorem 4 (for Coverability) follows.

4) Termination: Regarding termination, a similar reduction

works. One makes sure that NH [k] always halts or deadlocks

(it does) and stores two copies of nℓ: one is a time budget

that ensures the eventual halting-or-deadlock of NM , and the

other witnesses nf = nℓ as earlier. In the end, the whole

system has to eventually stop, unless it can cover (Ωk)k, k
with α, n, finally enabling an infinite loop. This reduces the

same MM problem to termination for PDNs. More details can

be found in [23, §7] where the same adaptation is done.

Using the simulations of PDNs by TPNs of [7] and of DNs

by CMRSs of [1, §5], we conclude:

Corollary 6. Coverability and Termination for TPNs, DNs,

and CMRSs are Fωωω -hard.

VI. ENCODING HARDY COMPUTATIONS

We define in this section a so-called “cumulative” encoding

of ordinals as codes (Section VI-A) and a rewriting system
r
−→

operating on codes that performs Hardy computations (Sec-

tion VI-B). Its crucial property is its robustness, which entails

that weak implementations, like the PDN implementation we

present in Section VII, are correct (see Section VI-C).

A. Encoding Ordinals as Cumulative Vector Sequences

Fix k ∈ N. An ordinal < ωk is “small” and we use β, β′, . . .

to denote small ordinals; an ordinal < ωωk

is “medium” and

we use α, α′, . . . for such ordinals; finally, an ordinal < Ωk is

“large” and we use π, π′, . . . for such ordinals. A medium

ordinal can be written in CNF as α = ωβ1 +̇ · · · +̇ ωβp

where β1, . . . , βp are small ordinals, and a large ordinal can

be written as π = ωα1 +̇ · · · +̇ ωαm where α1, . . . , αm are

medium ordinals.

We now introduce an encoding of large ordinals that will

allow the computation of the Hardy functions with PDNs.

These data structures are 1) k-dimensional vectors in Nk for

small ordinals, 2) vector sequences in (Nk)∗ for medium

ordinals, and 3) cumulative encodings in (Nk ⊎ {#})∗ for

large ordinals, where # is a fresh tally symbol.

1) Small Ordinals as Vectors: For v ∈ Nk and an index

0 ≤ i < k, let v[i] ∈ N denote the i-th component of v. We use

two different orderings over Nk: the product ordering, denoted

v ≤ v′ and the lexicographic ordering, denoted v ≤lex v′, with

most significant component at index k− 1. Recall that ≤ is a

wqo, and that ≤lex is a linearization of ≤.

With a vector v ∈ Nk, we associate the small ordinal

β(v)
def
= ωk−1 · v[k − 1] +̇ · · · +̇ ω0 · v[0] . (4)

This establishes a bijective correspondence between Nk and

small ordinals, and we write v(β) for β−1(β). We write 1i

for the vector with v[i] = 1 and v[j] = 0 for all j 6= i. Hence

β(0) = 0 and β(1i) = ωi.

The bijection relates the two linear orderings of small

ordinals and of vectors in Nk since

v ≤lex v′ iff β(v) ≤ β(v′) . (5)

2) Medium Ordinals as Vector Sequences: With a finite

sequence V = v1v2 · · · vp ∈ Nk∗, we associate the ordinal

α(V) = α(v1v2 · · · vp)
def
= ωβ(v1) + · · ·+ ωβ(vp) . (6)

This surjective1 embedding of Nk∗ into ωωk

satisfies

α(VV′) = α(V) + α(V′). Write ε for the empty sequence

in Nk∗. Then α(V) = 0 iff V = ε, and α(V) = 1 iff V = 0.

Example 7. Consider k = 2: α(10) = α(|01) = ωβ(10) =

ωω0·1 = ω1 = ω, thus α(|01 |
0
1) = ω · 2, while α(2 × 10) =

α(|02) = ωω0·2 = ω2.

We order vector sequences with ≤∗, the sequence extension

of ≤: it is a wqo since ≤ is.

We say that V = v1 · · · vp is pure if v1 ≥lex v2 ≥lex

· · · ≥lex vp: restricted to pure vector sequences, the embedding

in (6) is bijective since the expression giving α(V) in Eq. (6)

is in CNF. We write pure(V) for the only pure V′ such

that α(V) = α(V′): one obtains pure(V) by removing in

V = v1 · · · vp any vi such that vi <lex vj for some j > i.

Hence pure(V) ≤∗ V.

3) Cumulative Encodings for Large Ordinals: Fix a special

tally symbol # and let Nk
#

def
= Nk∪{#}. A cumulative ordinal

description, or simple a “code”, is a sequence x in Nk
#

∗. Below

we see them as sequences in [Nk∗#]∗Nk∗, i.e. we single out

the tally symbols and factor codes under the form

x = V1#V2# · · ·#Vm#Vrest , (7)

where the Vi’s are vector sequences. We extend ≤∗ from

vector sequences to codes in the natural way, by requiring

that a # embeds into a #: this is still a wqo.

With x we associate a large ordinal π(x) via the following

π(V1#V2# · · ·#Vm#Vrest)
def
=

ωα(V1V2···Vm) +̇ · · · +̇ ωα(V1V2) +̇ ωα(V1) .
(8)

The above definition explains why codes are called cumulative.

One can also define π inductively by

π(V) = 0 , π(V#x) = ωα(V) · π(x) +̇ ωα(V) . (9)

We say that x is pure if each Vi, i = 1, . . . ,m, is pure, and

if in addition Vrest = ε. (NB: purity of, e.g., V1#V2#, does

not guarantee purity of V1V2.) For a code x, the unique pure

x′ such that π(x) = π(x′), denoted x′ = pure(x), is given by

pure(V1#V2# · · ·#Vm#Vrest) =

pure(V1)#pure(V2)# · · ·#pure(Vm)#ε .
(10)

Lemma 8. x ≤∗ x′ implies pure(x) ≤∗ pure(x′).

Lemma 9 (Bijection). Pure codes in Nk
#

∗ and large ordinals

in Ωk are in bijection by π.

1This is not bijective, e.g. for v <lex v′, α(v v′) = ωβ(v) + ωβ(v′) =

ωβ(v′) = α(v′)
(

6= ωβ(v′) +̇ ωβ(v)
)

.

If we write V (x) for the vector sequence obtained by

removing all tally symbols from x, i.e. the result of the

projection # 7→ ε applied to x, then

π(x1#x2) = π(pure(V (x1)x2)) +̇ π(x1#) . (11)

Example 10. Let k > 1; the initial Hardy computation step

x0, k → x1, k with pure codes x0, x1 is defined by

x0
def
= (1k−1)

k# ; π(x0) = (Ωk)k ;

x1
def
= (1k−1)

k−1(1k−2)
k# ; π(x1) = ωωωk−1

·(k−1)+ωk−2
·k

.

B. Rewriting of Ordinal Codes

Let us turn to the encoding of Hardy computations (below

Ωk) as rewriting rules on codes. Such a system should e.g.

map x0 to x1 in Example 10. It turns out that the bulk of the

task when computing Hardy functions lies in computing the

elements in the fundamental sequences of limit ordinals.

1) Limit Ordinals: Observe that a code denotes a succes-

sor ordinal if it is of the form #x, as indeed π(#x) =
ω0 · π(x) + ω0 = π(x) + 1. Conversely, a pure code of

form Vv#x denotes a limit ordinal π(Vvx) +̇ ωα(Vv) s.t.
(
π(Vv#x)

)

n
= π(Vvx) +̇ (ωα(Vv))n. We want to define

a similar mapping (.)n from codes to codes s.t. π
(
(x)n

)
=

(
π(x)

)

n
; this mapping essentially needs to treat the head Vv,

which contributes the smallest term ωα(Vv) to the encoded

ordinal. Several cases arise depending on v:

• if v = 0, i.e. ωβ(v) = 1, then ωα(V0) = ωα(V)+1 verifies

(ωα(V0))n = ωα(V) · n, encoded through

(V0)n
def
= V#n . (12)

Thus we verify

π
(
(V0#x)n

) def
= π(V#n0x) (13)

= π(V0x) +̇ ωα(V) · n

=
(
π(V0#x)

)

n
.

• if v 6= 0 then (ωα(Vv))n = ωα(V)+̇(ωβ(v))n (recall that

Vv is pure) is encoded by

(Vv)n
def
= V(v)n# , (14)

and we need to further distinguish two cases: let i ∈
{0, . . . , k− 1} be the smallest index with v[i] > 0. Then

β(v) is a successor ordinal if i = 0 and a limit ordinal

otherwise, hence the definition

(v)n
def
=

{

(v − 10)
n if i = 0,

v − 1i + n · 1i−1 otherwise.
(15)

Since every vector in the sequence (v)n is <lex v, this

verifies

π
(
(Vv#x)n

) def
= π(V(v)n#vx) (16)

= π(V(v)nvx) +̇
(
ωα(Vv)

)

n

= π(Vvx) +̇
(
ωα(Vv)

)

n
.

The definitions (12–16) thus result for a pure Vv in

π
(
(Vv#x)n

)
= π

(
(Vv)nvx

)
=

(
π(Vv#x)

)

n
. (17)

2) Rewriting System: We define a set of rewriting rules
r
−→

working on pairs (x, n) of a code x and a number n ∈ N, that

together encode an intermediate stage Hπ(x)(n) in the course

of a Hardy computation.

Definition 11 (
r
−→). The relation x, n

r
−→y,m is given by rules

(R1–R2) below.

#x, n
r
−→ x, n+ 1 (R1)

Vv#x, n
r
−→







(Vv)nx, n if x = ε or x = v′x′

with v <lex v′

(Vv)nvx, n if x = #x′ or x = v′x′

with v′ ≤lex v

(R2)

Rule (R2) implements the case of limit ordinals and is

correct by (17)—the first subcase includes a purification step

when π((Vv)nvx) = π((Vv)nx)—while rule (R1) handles

successor ordinals:

Proposition 12 (Correctness of
r
−→). x, n

r
−→ y,m and x pure

imply Hπ(x)(n) = Hπ(y)(m).

Remark 13 (Purity is required). A step x, n
r
−→ y,m is not

always correct when x is not pure: e.g. if k = 1, π(01#) =
ω + ωω = ωω but 01#, n

r
−→ 0n+1#, n, which encodes ωn+1,

and Hωω

(n) = Hωn

(n) < Hωn+1

(n).

It is convenient to work with pure codes in proofs: the one-

to-one correspondence between pure codes and ordinals in

Ωk yields a one-to-one correspondence between a pair (x, n)
and a snapshot of a Hardy computation Hπ(x)(n), allowing to

transfer results from Hardy computations to
r
−→.

More importantly, note that Proposition 12 entails the

correctness of
r
−→ even when applied backwards: we capture

both forward and backward Hardy computations with the same

rewriting system.

C. Robustness of
r
−→

So far, our encoding of ordinals in Ωk and the rewriting sys-

tem
r
−→ can be seen as a (rather convoluted) way of performing

forward and backward Hardy computations using sequences of

vectors. Their critical interest compared to more basic ordinal

encodings is that
r
−→ is robust: if instead of computing with x, n

we first decrease the configuration in an uncontrolled way to

some y,m with y ≤∗ x and m ≤ n, we obtain a configuration

that codes a smaller value Hπ(y)(m) ≤ Hπ(x)(n). This

result is subject to hygienic conditions on x, n and y,m; see

Proposition 16 for the exact statement.

Remark 14 (Non-Robustness of CNF). Let us pause for a

moment and consider a natural encoding χ of large ordinals. In

this encoding, we use the CNF of the ordinal and separate pure

vector sequences with “+̇” symbols s.t. χ(V1 +̇ · · · +̇Vm)
def
=

ωα(V1)+̇· · ·+̇ωα(Vm); e.g. p = 1+̇0 codes χ(p) = ωω +̇ω for

k = 1. However, q = 10 verifies q ≤∗ p and codes the much

larger ordinal χ(q) = ωω+1, with Hχ(p)(n) = Hωω+̇ω(n) <
Hωω·(n−1)+̇ωn

(n) = Hχ(q)(n) when n > 0. By contrast, with

cumulative codes, “losing” a tally symbol results in the loss of

a summand in the corresponding ordinal, which immediately

leads to smaller Hardy values.

a) Trim Codes: We introduce a restriction on codes that

allows to ensure that
r
−→ behaves as expected, especially when

performing backward computations: a pure code x is n-trim

if, for any vector v occurring in x, there exists 0 ≤ i < k s.t.

v[i] ≤ n and for all 0 ≤ j < i, v[j] = 0 and all i < j < k,

v[j] ≤ n− 1 (this restricts the ordinal β(v)). A configuration

x, n of
r
−→ is trim if x is n-trim, and a computation x0, n0

r
−→

x1, n1
r
−→ · · ·

r
−→ xm, nm is trim if every configuration xi, ni

is trim. Write x′, n
trim
−−→ x, n if x ≤∗ x′ and x is n-trim (and

thus pure) and call trimming the transformation from x′, n to

x, n (nondeterministic but always possible, e.g. by decreasing

vector values in excess, or removing vectors). In particular,
trim
−−→⊆≥∗ where we let x, n ≤∗ x′, n′ def

⇔ x ≤∗ x′ and n ≤ n′.

Trimness allows us to focus on particular computations of
r
−→:

Lemma 15. If x is n-trim, then there exists a trim computation

x, n
r
−→∗

ε, Hπ(x)(n).

As our initial code x0 defined in Example 10 is k-trim, it

suffices in the following to consider trim computations, i.e.

forward computations in
rt
−→ or backward computations in

rt
−→−1, where x, n

rt
−→ y,m

def
⇔ x, n

r
−→ y,m and x, n and y,m

are trim. (In other words,
rt
−→=

r
−→∩ {x, n | x, n is trim}2).

The next proposition states the key monotonicity property

of trim computations:

Proposition 16 (Robustness). Let x, x′ be pure codes and

n′ > 0. If x′ is n′-trim and x, n ≤∗ x′, n′, then Hπ(x)(n) ≤
Hπ(x′)(n′).

b) Weak Implementations: The efforts put into defining a

robust computation for the Hardy functions pay when one tries

to implement them in a “weak” model like PDNs, as we do

in Section VII—but this could also be used in other models.

By a weak implementation, we mean—as usual in the Petri

net literature—an implementation that guarantees

1) completeness: it includes the desired behaviour, and

2) safety: it might also yield “smaller” results.

In the case at hand, we provide sufficient conditions (see

Definition 18) for two relations
d
−→ and

b
−→ on configurations

to be called weakenings of
r
−→ and

r
−→−1. The conditions will

be easy to check on the actual implementation by PDNs of

Section VII, and they entail:

Theorem 17 (Weak Implementations). If
d
−→ is a weakening

of
r
−→ and

b
−→ a weakening of

r
−→−1, then

1) For any n0-trim x0, x0, n0
d
−→ ∗

ε, Hπ(x0)(n0) and

ε, Hπ(x0)(n0)
b
−→∗x0, n0.

2) If x0 is n0-trim and x0, n0
d
−→∗

ε, n then n ≤ Hπ(x0)(n0),

and if ε,m
b
−→∗x, n, then Hπ(x)(n) ≤ m.

Note that these are exactly the two properties required in the

main proof of Section V from the PDNs NH [k] and NH−1 [k].
Here are our sufficient conditions:

Definition 18 (Weakenings). A relation
d
−→ on codes is a

weakening of
r
−→ if

rt
−→ ⊆

d
−→ ⊆ ≥∗;

trim
−−→;

rt
−→;≥∗;

trim
−−→.

Similarly, a relation
b
−→ is a weakening of

r
−→−1 if

rt
−→ −1 ⊆

b
−→ ⊆ ≥∗;

trim
−−→;

rt
−→−1;≥∗;

trim
−−→.

Proof of Theorem 17: For (1), by Lemma 15, for

an n0-trim x0, x0, n0
r
−→ ∗

ε, Hπ(x0)(n) implies x0, n0
rt
−→

∗

ε, Hπ(x0)(n) and ε, Hπ(x0)(n) (
rt
−→−1)∗ x0, n0 since ε is

(
Hπ(x0)(n)

)
-trim.

For (2), we reconstruct step by step pieces of a computation

of
rt
−→ or

rt
−→−1. For

d
−→, if x, n is trim and x, n ≥∗ x′, n′ trim

−−→

x′′, n′′ rt
−→ y′′,m′′ ≥∗ y′,m′ trim

−−→ y,m, then

Hπ(x)(n) ≥ Hπ(x′′)(n′′) (by Prop. 16)

= Hπ(y′′)(m′′) (by Prop. 12)

≥ Hπ(y)(m) , (by Prop. 16)

from which a simple induction yields the result.

Similarly for
b
−→, if y,m is trim and y,m ≥∗ y′,m′ trim

−−→

y′′,m′′ rt
−→−1x′′, n′′ ≥∗ x′, n′ trim

−−→ x, n, then

Hπ(y)(m) ≥ Hπ(y′′)(m′′) (by Prop. 16)

= Hπ(x′′)(n′′) (by Prop. 12)

≥ Hπ(x)(n) , (by Prop. 16)

and we proceed again by induction.

VII. PETRI DATA NET IMPLEMENTATION

We explain in this section how to construct NH and NH−1 ,

the PDNs that we announced and used in Section V. They

transform pairs x, n via a relation
d
−→ (or

b
−→ for NH−1) that

is a weakening of
r
−→ (resp., of

r
−→−1) so that Theorem 17 is

a proof of Lemma 5. We have to explain how to represent

pairs x, n in a PDN, how to transform them correctly, and

to engineer definitions for
d
−→ and

b
−→ that are both simple

enough for PDN implementability, but rigorous and complete

enough to fulfil the requirements of Definition 18. One can

loosely describe
d
−→ and

b
−→ as “trying to perform

r
−→ or

r
−→−1

on codes, tolerating decreases (wrt ≤∗) on x and n, all the

while trimming x regularly because Definition 18 requires it.”

The PDNs are highly nondeterministic (unlike
r
−→) and may

deadlock, but this is not a concern.

What makes PDNs relatively powerful is that they can make

weak copies of a counter and even of a sequence, and they

can use these weak copies for bounding the number of times

a loop is executed (“weak control”). We designed codes and

robustness precisely to fit this weak computational power.

In the rest of this section we explain how codes are

represented in a PDN (Section VII-A) and how to perform

trimming. Due to lack of space, the definitions and the

implementation of
d
−→ and

b
−→ can be found in the full version

of the paper, but all the main implementation ideas are already

present with the trimming process.

A. Encoding Configurations of
r
−→ in a PDN

The weak implementation of Hardy computations has to

maintain a PDN representation of a code/counter pair x, n.

1) Counter: The counter n is represented via two places

cpt and cpt.id. Place cpt.id is an identity place for

relevant tokens: the current value of the counter will be the

number of tokens in cpt whose identity match cpt.id.

2) Code: For a code x of length l, distinct identities I1 <

. . . < Il identify each item in x. Every item of the code is

identified by a unique identity, and the ordering of identities

lets one recover the code. All the identities that have been used

for items of the current and past codes are stored in two places,

vect and tally, letting one distinguish between vector and #
occurrences in x; note that each # occurrence has a different

identity. The representation of a vector v identified by some I

in a code is done via places c0, . . . , ck−1: v[i] is the number

of tokens in ci with identity I .

Identities evolve during a computation. In order to prevent

tokens with now irrelevant identities from disturbing the

computation, NH uses two identity places, low and high.

We make sure that at any time each of these two places

contains a single token, and we just write low or high to

denote the identity carried by that single token. Initially, one

has cpt.id < low < high and the identities I1, . . . , Il for

the (current) code are exactly those with low < I < high;

other identities are irrelevant for x.

When simulating an
r
−→ step (and except in simple cases),

cpt.id is decreased, high is increased and low is set to the

previous value of high. Thus tokens with (now) irrelevant

identities will never match the current value of cpt.id nor

belong to the open interval (low, high).

B. Counter Duplication

In most cases,
r
−→ requires that we iterate some operation at

most n times (or n−1, or ...) where n is the current value of the

counter. In NH this is systematically done in a modular way

by first duplicating the counter and then consuming the tokens

of the duplicate, thus controlling the number of iterations.

For this, NH uses two places, dpt and dpt.id, where it

stores duplicates of the tokens in cpt and cpt.id. The net

of Fig. 2 depicts the duplication.2 Transition dp1 performs the

identity updating: cpt.id acquires a smaller identity C′ < C

while dpt.id is updated with the previous identity of cpt.id,

namely C. Then transition dp2 transfers the tokens of cpt

(corresponding to the previous identity of the counter D) both

to the original counter and to the duplicated counter. Transition

2 We rely on the standard graphical depiction of enriched nets and use
(pictures of) Petri nets where arcs connected to a transition t are labelled with
bags of variables that must be instantiated by ordered identities. The number
of these variables is exactly |cons(t)| and the ordering of the corresponding
identities is carried by the transition. For concision and readability, it is
convenient to allow orderings of the variables that are not total: this stands
for all possible linearizations. We also use graphical conventions for better
readability: control places containing black tokens are greyed or filled some-
how, identity places containing at most one token per identity are represented
by simple circles, and the other places, used for counters or general storage,
are represented by double circles.

before dp1

dp2

dp3
C'<C

dpt.id dpt

after

cptcpt.id

duplicate

C'

C
C

D

C

D

D
D

C

Fig. 2. Duplication of the counter value.

.
.
.

sk-1

ffirst

tsi

from ci di

T

to

F

F
T F

si

tsk-1

.
.
.

addone

ept.id ept

E E

F

F T F

T

ts'i

ifirst

ept := dpt - 1

ept := dpt - 1

.
.
.

Fig. 3. Copying the first vector (case i).

dp3 stops the process, and is slightly modified if we need to

put n−1 rather than n in dpt. (In order to avoid a special case

for the first duplication, the initial marking has dpt empty and

dpt.id with the same identity as cpt.id.)

This simple mechanism must be refined for the loops in

the trimming process (see below) where the value of n is

used to control that every component of a vector in the code

is ≤ (some value related to) n. Here one cannot just iterate

the previous mechanism: since every duplication possibly

decreases n and could violate the property already established

for previous components. A more elaborate implementation

is required: NH uses a second auxiliary counter ept and

ept.id (initialised using dpt and dpt.id) for such multiple

controls (as in Fig. 3). In order to avoid a clash of identities

for counters, at every initialisation of ept, the new identity

of dpt.id, namely D′ is selected by the guard C < D′ < D

where D and C are the current identities of dpt.id and cpt.

C. Weak Trimming

During most weak rule applications, a trimming is per-

formed on-the-fly while the exact rule is simulated, i.e. we

actually weakly implement
rt
−→ and its inverse. This trimming

consists in implementing ≥∗;
trim
−−→ during the selection and

copy of the rule left-hand side and is simultaneously ensured

from the rule right-hand side: it turns a configuration t, n into

another one t′, n′ ≤∗ t, n which is trim and pure.

• NH first duplicates the counter cpt, yielding a new value

n′ ≤ n (see Fig. 2). Below we assume that this stage is

already passed.

• NH scans (in increasing order) relevant identities (the

ones in vect or sharp, between low and high), purifies

the code and copies it beyond high as we explain.

• It purifies, one at a time, sequences separated by #s.

• When copying a vector sequence, the first vector is copied

but also duplicated in auxiliary places d0, . . . , dk−1 inter-

preted as the ci’s. The remaining vectors are also copied

and duplicated. Purity is enforced by checking that any

(copy of a) vector is lexicographically below the previous

vector, as stored in d0, . . . , dk−1.

• Finally, both vectors should fulfil the trimming constraint:

for some i < k, v[i] ≤ n, and v[j] < n when j > i, and

v[j] = 0 when j < i.

1) Controlling Trimming: Let us detail how this is con-

trolled. NH uses three additional identity places: from, to

and with. The current item’s identity is from, its copy after

trimming has the new identity to, and the purification of a

vector requires comparisons with the previous vector in the

sequence, whose identity is recorded in with, letting one

select the appropriate tokens in d0, . . . , dk−1. Fig. 4 describes

the overall control of this process, started by beg.pur,

looping, and concluded by end.pur. The body of the loop

copies one vector sequence followed by a #. If non empty,

the sequence has just one vector, or more, requiring two

different treatments. For readability, the labeling of the crucial

transitions is specified in the lower part of the picture:

• At start, beg.pur produces identity tokens in from and

to within the appropriate intervals (wrt. low and high),

guessing the identity of an item to be copied.

• When the treatment ends, end.pur updates low and

high to their new value.

• After copying the first vector, efirst guesses a new

identity (to be copied) in from and a new (target) identity

in to, while recording the current identity in with.

• After copying a remaining vector, erem guesses fresh

identities from and to, and updates the recorded identity

in with.

• csharp copies a # symbol, consuming a token in sharp

with identity from and producing a token with identity

to (while updating from and to as usual).

Observe that a bad guess in from can lead to deadlock but

no infinite looping is possible (as required by the proof of

Theorem 4).

2) Copy of a Vector Sequence:

a) First Vector: First, in order to guarantee a trim rep-

resentation, the copy of the first vector non deterministically

selects a component i, which is allowed to be less than or

equal to n. The rest of the process is depicted in Fig. 3. It

end.purbeg.pur

ifirst ffirst irem

Copy

first vector
Copy

remaining vectors

csharp

frem

from

vect

F

F

F

F

efirst erem

high

H

L<F<H<T

low

L

to

F

beg.pur

T

from with

H

F<F'<H<T<T'

high

F

to

F'

efirst T

from

T'

F

with

H

F<F'<H<T<T'

high

F

to

F'

erem T

from

T'

FW

sharp

H

F<F'<H<T<T'

high

T

to

F'

csharp T

from

T'

FF

high

H

low

L

to

F

end.pur

T

from

with

W

T

H

to

T T

T T

Fig. 4. Control part of the trimming phase.

consists for j > i in:

• setting the auxiliary counter ept to dpt;

• “updating” tokens in place cj from identity F to identity

n, and at the same time in memorising the transferred

tokens in place dj for j > i. With the help of the

counter ept, at most n − 1 tokens are transferred. This

is performed by transition tsj .

We then perform the same transfer for component i, but allow

one more token thanks to the firing of transition ts′i. No token

is transferred for any component j < i.

b) Remaining Vectors: For the sake of readability, we do

not represent the management of trimming, which is performed

as with the first vector, but rather focus on the purity of the

vector sequence.

Let us call v the vector to be copied (identified by variable

F), v′′ the last vector that has been copied (identified by W)

and v′ ≤ v the vector to be copied (identified by T). In order

for v′ to be lexicographically smaller than v′′ it must satisfy:

• either for all i, v′(i) ≤ v′′(i)
• or there exists some i s.t. for all j > i, v′(i) ≤ v′′(i) and

v′(i) ≤ v′′(i)− 1.

Then the simulation non deterministically selects one of these

cases. The purity check is thus largely similar to the trimming

one: copying is limited by some values, depending on W and

cpt.

Observe that one of the possible results of weak trimming

is (exact) trimming of the code, and that the other ones are

trimmings of a weaker code.

VIII. ON WELL-STRUCTURED LANGUAGES

Well-structured transition systems can be seen as language

acceptors (or generators). For M a class of WSTS models,

e.g. M = the Data Nets, let L(M) be the class {L(M) | M ∈

M} of languages (nondeterministically) accepted by systems

in M when their transitions carry labels, possibly ε, over some

alphabet, and when the set of “final”, or “accepting”, states is

upward-closed. Geeraerts et al. [17] shows convincingly that

this notion of well-structured languages (WSL), also called

coverability languages, is most relevant.

A series of recent papers (see [17, 1, 8] and the references

therein) successfully use WSLs as a tool for comparing the

descriptive power of varied WSTS models, showing equiva-

lence, e.g. of PDNs and TPNs, or, separating them from the

less expressive LCSs (lossy channel systems) or APNs (affine

Petri nets [15]).

It turns out that the simulation we develop in this paper (and

the matching complexity upper bounds) leads to a (relative but)

precise characterisation: Let L0 = {w#n | n = |w|} collect

all words (over a two-letter alphabet) equipped with a length

witness: L0 ⊆ (a+ b)∗#∗ is deterministic context-free.

Theorem 19.

1) L ∈ L(PDN)(= L(TPN) = L(DN)) implies L ∈
⋃

k∈N
TIME(F

ωωk (n)).
2) L ∈

⋃

k∈N
TIME(F

ωωk (n)) implies L ∩ L0 ∈ L(PDN).

The proof relies on the possibility of simulating a space-

bounded MM. Using the simulations in [10, 23] and the upper

bounds in [13, 22] we derive in a similar way:

Theorem 20. For any L ⊆ L0:

1) L ∈
⋃

k∈N
TIME(Fωk(n)) iff L ∈ L(LCS).

2) L ∈
⋃

k∈N
TIME(Fk(n)) iff L ∈ L(APN).

This immediately entails separation results like L(APN) (
L(LCS) (L(PDN)(= L(TPN) = L(DN)) and the non-

collapse of hierarchies like {L(k-PDN)}k∈N, {L(k-LCS)}k
and {L(k-APN)}k where k-DN, k-APN and k-LCS restrict

to nets with at most k places (resp., to channel systems with

a k-letter internal message alphabet). These first separation

results are not stronger than those of [1, 8], but they provide

a standard measure (using Turing, or equivalently Minsky,

machines) rather than a myriad of relative ones.

IX. CONCLUDING REMARKS

Theorems 3 and 4 close the open question of the complexity

of decision problems over the family of “enriched” nets (our

terminology), and have immediate consequences, e.g. for sepa-

rating various WSTS models according to their computational

power. Interestingly, we are not aware of any other natural

decision problem sitting exactly at level Fωωω [16], which

makes of enriched net problems the canonical examples for

this complexity class.

Our main technical contribution is the robust encoding in

(Nk∗,≤∗) of ordinals in Ωk, together with rewrite rules that

describe Hardy computations. Enriched nets are not the only

computational model in which these rules can be weakly

implemented, and one may use them for proving complexity

lower bounds in other settings.

Finally, let us mention two questions raised by this work:

1) Can one improve on Theorem 20? We would prefer an

exact characterisation of L(PDN), not relatively to L0.

2) What about ν-Petri nets [21] and unordered PDNs? The

underlying wqo is simpler than Nk∗, hence we expect

lower complexities.

ACKNOWLEDGMENT

Work supported by ANR grant 11-BS02-001-01 and by the

Leverhulme Trust. The third author is currently visiting the

Computer Science Department at Oxford University.

REFERENCES

[1] P. A. Abdulla, G. Delzanno, and L. Van Begin, “A

classification of the expressive power of well-structured

transition systems,” Inform. and Comput., vol. 209, pp.

248–279, 2011.

[2] P. Abdulla, P. Mahata, and R. Mayr, “Dense-timed Petri

nets: Checking Zenoness, token liveness and bounded-

ness,” Logic. Meth. in Comput. Sci., vol. 3, p. 1, 2007.

[3] P. A. Abdulla and G. Delzanno, “On the coverability

problem for constrained multiset rewriting,” in AVIS

2006, 2006.

[4] P. A. Abdulla and A. Nylén, “Timed Petri nets and

BQOs,” in Petri Nets 2001, ser. LNCS, vol. 2075.

Springer, 2001, pp. 53–70.

[5] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay,

“Algorithmic analysis of programs with well quasi-

ordered domains,” Inform. and Comput., vol. 160, pp.

109–127, 2000.

[6] T. Bolognesi, F. Lucidi, and S. Trigila, “From timed Petri

nets to timed LOTOS,” in PSTV ’90. North-Holland,

1990, pp. 395–408.

[7] R. Bonnet, A. Finkel, S. Haddad, and F. Rosa-Velardo,

“Comparing Petri Data Nets and Timed Petri Nets,”

LSV, ENS Cachan, Research Report LSV-10-23, Dec.

2010. [Online]. Available: http://tinyurl.com/82vwcxf

[8] ——, “Ordinal theory for expressiveness of well struc-

tured transition systems,” in FoSSaCS 2011, ser. LNCS,

vol. 6604. Springer, 2011, pp. 153–167.

[9] P. Bouyer, S. Haddad, and P.-A. Reynier, “Timed Petri

nets and timed automata: On the discriminating power

of Zeno sequences,” Inform. and Comput., vol. 206, pp.

73–107, 2008.

[10] P. Chambart and Ph. Schnoebelen, “The ordinal recursive

complexity of lossy channel systems,” in LICS 2008.

IEEE, 2008, pp. 205–216.

[11] C. Dufourd, A. Finkel, and Ph. Schnoebelen, “Reset nets

between decidability and undecidability,” in ICALP ’98,

ser. LNCS, vol. 1443. Springer, 1998, pp. 103–115.

[12] M. V. H. Fairtlough and S. S. Wainer, “Ordinal com-

plexity of recursive definitions,” Inform. and Comput.,

vol. 99, pp. 123–153, 1992.

[13] D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebe-

len, “Ackermannian and primitive-recursive bounds with

Dickson’s Lemma,” in LICS 2011. IEEE, 2011, pp.

269–278.

[14] A. Finkel and Ph. Schnoebelen, “Well-structured transi-

tion systems everywhere!” Theor. Comput. Sci., vol. 256,

pp. 63–92, 2001.

[15] A. Finkel, P. McKenzie, and C. Picaronny, “A well-

structured framework for analysing Petri nets exten-

sions,” Inform. and Comput., vol. 195, pp. 1–29, 2004.

[16] H. M. Friedman, “Some decision problems of enormous

complexity,” in LICS 1999. IEEE, 1999, pp. 2–13.

[17] G. Geeraerts, J.-F. Raskin, and L. V. Begin, “Well-

structured languages,” Acta Inf., vol. 44, pp. 249–288,

2007.

[18] L. Jacobsen, M. Jacobsen, M. Møller, and J. Srba,

“Verification of timed-arc Petri nets,” in SOFSEM 2011,

ser. LNCS, vol. 6543. Springer, 2011, pp. 46–72.

[19] R. Lazić, T. Newcomb, J. Ouaknine, A. Roscoe, and

J. Worrell, “Nets with tokens which carry data,” Fund.

Inform., vol. 88, pp. 251–274, 2008.

[20] M. Löb and S. Wainer, “Hierarchies of number theoretic

functions, I,” Arch. Math. Logic, vol. 13, pp. 39–51, 1970.

[21] F. Rosa-Velardo and D. de Frutos-Escrig, “Decidability

and complexity of Petri nets with unordered data,” Theor.

Comput. Sci., vol. 412, pp. 4439–4451, 2011.

[22] S. Schmitz and Ph. Schnoebelen, “Multiply-recursive

bounds with Higman’s Lemma,” in ICALP 2011, ser.

LNCS, vol. 6756. Springer, 2011, pp. 441–452, Avail-

able: arXiv:1103.4399 [cs.LO].

[23] Ph. Schnoebelen, “Revisiting Ackermann-hardness for

lossy counter machines and reset Petri nets,” in MFCS

2010, ser. LNCS, vol. 6281. Springer, 2010, pp. 616–

628.

APPENDIX

A. Subrecursive Hierarchies and Monotonicity

1) Properties of the Hardy Hierarchy: Let us remind a

few useful facts about the Hardy hierarchy (see [12] or [22,

Appendix C] for details).

The first fact is that each Hardy function is expansive and

monotone in its argument n:

Fact 21 (Expansiveness and Monotonicity, see e.g. 22, Lem-

mata C.9 and C.10). For all α, α′ and n > 0,m,

n ≤ Hα(n) , (18)

n < m implies Hα(n) ≤ Hα(m) . (19)

However, the Hardy functions are not monotone in the ordi-

nal parameter: Hn+1(n) = 2n+ 1 > 2n = Hn(n) = Hω(n),
though n + 1 < ω. We will introduce two ordinal orderings

in Section A2 and Section A4 that ensure monotonicity of the

Hardy functions.

Another handful fact is that we can decompose Hardy

computations:

Fact 22 (see e.g. 22, Lemma C.7). For all α, γ in Ω, and x,

Hγ+̇α(x) = Hγ(Hα(x)) . (20)

2) Pointwise Ordering: The classical “pointwise at n”

ordering used e.g. in [12] and [22, Appendix C] is defined

for any n ∈ N as the smallest transitive relation ≺n s.t.

α ≺n α+ 1 , λn ≺n λ . (21)

The inductive definition of ≺n implies

α′ ≺n α iff

{
α = β + 1 is a successor and α′ 4n β, or

α = λ is a limit and α′ 4n λn.

This can be understood a “descent” through ordinals, eventu-

ally reaching predecessor ordinals, which are defined by

Pn(α+ 1)
def
= α , Pn(λ)

def
= Pn(λn) , (22)

and indeed

0 4n α , Pn(α) ≺n α .

The interesting observation here is that the ordinals that appear

in a Hardy computation α0, n → α1, n → · · · → αℓ, n where

n remains constant, i.e. no successor steps are used, are all

related by ≺n: α0 ≺n α1 ≺n · · · ≺n αℓ. The first successor

step will occur with Pn(α0) + 1, n → Pn(α0), n+ 1.

Obviously ≺n is a restriction of <, the linear ordering of

ordinals. For example, n = ωn ≺n ω but n + 1 6≺n ω. The

≺n relations are linearly ordered themselves, and <, can be

recovered in view of [see 22, Appendix C.2]:

≺0 ⊂ · · · ⊂ ≺n ⊂ ≺n+1 ⊂ · · · ⊂
(⋃

n∈N

≺n

)

= < . (23)

Fact 23 (Congruence, see 22, Lemma C.2). For all α, α′, γ

and all n > 0

α ≺n α′ implies γ +̇ α ≺n γ +̇ α′ , (24)

α ≺n α′ implies ωα ≺n ωα′

. (25)

Fact 24 (Monotonicity, see e.g. 22, Lemma C.9). For all α, α′

and n,m,

α ≺n α′ implies Hα(n) ≤ Hα′

(n) . (26)

Since Fα = Hωα

, the same statement holds for F using (25).

3) Almost Lean Ordinals: Leanness is a norm on ordinal

terms used extensively in [22]: Let n be in N. We say that

an ordinal α < ε0 is n-lean if it only uses coefficients < n,

or, more formally, when it is written under the strict CNF

α = ωβ1 · c1 +̇ · · · +̇ ωβm · cm with β1 > · · · > βm, if we

have ci < n and if, inductively, βi is also n-lean, this for all

i = 1, . . . ,m.

Let us introduce a slight variant of n-lean ordinals [see 22,

Lemma D.2]: let α = ωβ1 · c1 +̇ · · · +̇ ωβm · cm be an ordinal

in CNF with α > β1 > · · · > βm and ω > c1, . . . , cm > 0.

We say that α is almost n-lean if either (i) cm ≤ n and both
∑

i<m ωβi and βm are n-lean, or (ii) cm ≤ n,
∑

i<m ωβi is

n-lean, and βm is almost n-lean. An almost n-lean ordinal is

not necessarily n-lean, but an n-lean ordinal is always almost

n-lean.

The interest of almost n-leanness is that it is an invariant

of the ordinals appearing during forward Hardy computations.

As the initial ordinal of (10) is almost k-lean, this property is

preserved by perfect computations.

Lemma 25. If a limit ordinal λ is n-lean, then λn is almost

n-lean.

Proof: By induction on λ, letting λ = ωβ1 · c1 +̇ · · · +̇
ωβm · cm as above. If βm is a successor ordinal β + 1 (thus

β is n-lean), λn = ωβ1 · c1 +̇ · · · +̇ ωβm · (cm − 1) + ωβ · n is

almost n-lean. If βm is a limit ordinal, λn = ωβ1 · c1 +̇ · · · +̇
ωβm · (cm − 1) + ω(βm)n is n-lean by ind. hyp. on βm.

Lemma 26. If a successor ordinal α+1 is almost n-lean then

α is n-lean.

Proof: If α + 1 = ωβ1 · c1 +̇ · · · +̇ ωβm · cm as above,

it means βm = 0, thus we are in case (i) of almost n-lean

ordinals with cm ≤ n, and α = ωβ1 · c1 +̇ · · · +̇ωβm · (cm−1)
is n-lean. The converse implication is immediate.

Lemma 27. If a limit ordinal λ is almost n-lean then λn is

almost n-lean.

Proof: We proceed by induction on λ, letting λ = ωβ1 ·
c1 +̇ · · · +̇ ωβm · cm as above.

If βm is a successor ordinal β + 1, λn = ωβ1 · c1 +̇ · · · +̇
ωβm ·(cm−1)+ωβ ·n, and either (i) cm ≤ n and βm

is n-lean, and then λn also verifies (i), or (ii) cm < n

and β + 1 is almost n-lean and thus β is n-lean by

Lemma 26, and λn is again almost n-lean verifying

condition (i).

If βm is a limit ordinal, then λn = ωβ1 · c1 +̇ · · · +̇ ωβm ·
(cm − 1) + ω(βm)n . Either (i) cm ≤ n and βm

is n-lean, and by Lemma 25 (βm)n is almost n-

lean and λn is almost n-lean by condition (ii), or

(ii) cm < n and βm is almost n-lean, and by ind.

hyp. (βm)n is almost n-lean, and λn almost n-lean

by condition (ii).

The following lemma relates leanness, the pointwise order-

ing, and the linear ordinal ordering; this is a refinement of [22,

Lemma B.1], as it handles the almost n-lean case instead of

the n-lean one:

Lemma 28. Let α be almost n-lean. Then α < α′ iff α ≺n α′.

Proof: If α = 0, we are done so we assume α > 0 and

hence n > 0, thus α = ωβ1 · c1 +̇ · · · +̇ωβm · cm in CNF with

m > 0.

We prove the claim by induction on α′, considering two

cases:

1) if α′ = α′′ + 1 is a successor then α < α′ implies

α ≤ α′′, hence α
ih

4n α′′ ≺n α′.

2) if α′ is a limit, we claim that α ≤ α′
n, from which

we deduce α
ih

4n α′
n ≺n α′. We prove the claim by

induction and considering three subcases on α′:

a) if α′ = ωλ with λ a limit, then α < α′ implies

β1 < λ, hence β1 ≤ λn by ind. hyp., applicable

since β1 is also almost n-lean. Thus α ≤ ωλn =
(ωλ)n = α′

n.

b) if α′ = ωβ+1 then α < α′ implies β1 < β + 1,

hence β1 ≤ β. Now, since α is almost n-lean,

either

i) c1 = n and m = 1, hence α = ωβ1 · n ≤
ωβ · n = (ωβ+1)n = α′

n, or

ii) c1 < n, hence α < ωβ1 · n ≤ ωβ · n =
(ωβ+1)n = α′

n.

c) if α′ = γ +̇ ωβ with 0 < γ, β, then either α ≤ γ,

hence α < γ +̇ (ωβ)n = α′
n, or α > γ, and then

α can be written as α = γ +̇ γ′ with γ′ < ωβ .

In that case γ′ ≤ (ωβ)n by ind. hyp., applicable

since γ′ is also almost n-lean. Thus α = γ +̇ γ′ ≤
γ +̇ (ωβ)n = (γ +̇ ωβ)n = α′

n.

4) Embedding Ordering: We introduce a partial ordering

⊑o on ordinals, called embedding, and which can be seen as

a tree embedding on CNF’s that respects layers. Formally, it

is defined inductively as

α ⊑o β
def
⇔







α = ωα1 +̇ · · · +̇ ωαp

β = ωβ1 +̇ · · · +̇ ωβm

α1 ⊑o βi1 ∧ · · · ∧ αp ⊑o βip

for some i1 < i2 < . . . < ip .

(27)

Note that 0 ⊑o α for all α, that 1 ⊑o α for all α > 0. Observe

that, in general, α 6⊑o ωα and λn 6⊑o λ. This ordering is

obviously congruent for addition and ω-exponentiation:

α ⊑o α′ and β ⊑o β′ imply α +̇ β ⊑o α′ +̇ β′ , (28)

α ⊑o α′ implies ωα ⊑o ωα′

, (29)

and could in fact be defined alternatively by the axiom 0 ⊑o α

and the two deduction rules (28) and (29).

When considering the encoding of small ordinals described

in Section VI-A-1), the following holds:

v ≤ v′ implies β(v) ⊑o β(v′) . (30)

The reciprocal of (30) does not hold in general, e.g. β(11) =
ω ⊑o ω2 = β(12) while 11 6≤ 12.

We list a few useful consequences of the definition of ⊑o:

α ⊑o γ +̇ ωβ implies α ⊑o γ

or α = γ′ +̇ ωβ′

with γ′ ⊑o γ and β′ ⊑o β ,

(31)

n ≤ m implies λn ⊑o λm , (32)

α ⊑o λ implies α ⊑o λn or α is a limit and αn ⊑o λn .

(33)

Proof: (31): Intuitively, there are two cases when we

consider an embedding α ⊑o α′ = γ +̇ ωβ : either the ωβ

summand of α′ is in the range of the embedding or not. If

it is not, then already α ⊑o γ. If it is, then α must be some

γ′ +̇ ωβ′

and ωβ′

⊑o ωβ .

(32): By induction on λ: indeed if λ = γ +̇ ωβ+1 then λm =
γ +̇ωβ ·m by (2) which is λn +̇ωβ ·(m−n). If λ = γ +̇ωµ, the

i.h. gives µn ⊑o µm, hence λn = γ +̇ωµn ⊑o γ +̇ωµm = λm.

(33): By induction on λ. λ is some γ +̇ ωβ with β > 0 so

that λn = γ +̇ (ωβ)n. If α ⊑o γ, then α ⊑o λn trivially. If

α = γ′ +̇ 1 is a successor, 1 ⊑o (ωβ)n and again α ⊑o λn.

There remains the case where α = γ′ +̇ ωβ′

is a limit (i.e.

β′ > 0) with γ′ ⊑o γ and β′ ⊑o β. If β is a limit, then by

i.h. either β′ ⊑o βn and hence α ⊑o λn, or β′ is a limit and

β′
n ⊑o βn, hence αn ⊑o λn. Finally, if β = δ+1 is a successor,

then either β′ ⊑o δ so that α ⊑o γ + ωδ ⊑o γ + ωδ · n = λn,

otherwise by (31), β′ is a successor δ′ + 1 with δ′ ⊑o δ, and

then (ωβ′

)n = ωδ′ · n ⊑o ωδ · n = (ωβ)n, hence αn ⊑o λn.

Proposition 29 (Monotonicity).

α ⊑o β and 0 < n ≤ m imply Fα(n) ≤ Fβ(m) , (34)

α ⊑o α′ implies Hα(n) ≤ Hα′

(n) . (35)

Proof of (34): We prove (34) by induction on β. There

are three cases:

1. If β = 0 then α ⊑o β implies α = 0 and we are done.

2. If β = λ is a limit, then by (33) either α ⊑o λn or α is a

limit and αn ⊑o λn. In the first case Fα(n) ≤ Fλn
(m) by i.h.,

in the second case Fα(n) = Fαn
(n) ≤ Fλn

(m), again by i.h.

Now (32) and the i.h. entail Fλn
(m) ≤ Fλm

(m) = Fλ(m)
and we are done.

3. If β = β′ +̇ 1 is a successor, then by (31) either α ⊑o β′,

or α = α′ +̇ 1 with α′ ⊑o β′.

In the first case, Fα(n) ≤ Fβ′(m) (by i.h.) ≤ Fm
β′ (m) (by

expansiveness) = Fβ(m).
In the second case, Fα(n) = Fα′+̇1(n) = Fn

α′(n). Now,

since α′ ⊑o β′, the i.h. gives F k
α′(n) ≤ F k

β′(m) for all k ∈ N

(by ind. on k). In particular Fn
α′(n) ≤ Fn

β′(m) ≤ Fm
β′ (m) (by

expansiveness) = Fβ(n).

Proof of (35): Let us proceed by induction on a proof

of α ⊑o α′, based on the deduction rules (28) and (29). For

the base case, 0 ⊑o α′ implies H0(n) = n ≤ Hα′

(n) by

expansiveness. For inductive step with (28), if α ⊑o α′ and

β ⊑o β′, then

Hα+̇β(n) = Hα
(
Hβ(n)

)
(by (20))

≤ Hα
(
Hβ′

(n)
)

(by ind. hyp. and (19))

≤ Hα′(
Hβ′

(n)
)

(by ind. hyp.)

= Hα′+̇β′

(n) . (by (20))

For the inductive step with (29), Hωα

(n) = Fα(n) ≤

Fα′(n) = Hωα′

(n) by (34).

B. Monotonicity for Codes

This Appendix details the proof of Proposition 16.

1) Atomic Losses: Let us first investigate a few properties

of ≤∗ over pure codes. Write x ≤1
∗ x′ when x ≤∗ x′ and the

difference between two pure codes x and x′ is in some sense

“minimal”.3 Formally, the relation is defined by three axioms:

x1x2 ≤1
∗ x1#x2 x1x2 ≤1

∗ x1vx2 x1vx2 ≤1
∗ x1(v + 1j)x2

(36)

with 0 ≤ j < k.

It is plain that ≤∗ is the reflexive and transitive closure of

≤1
∗. The following lemma allows reducing Proposition 16 to

the simpler case x ≤1
∗ x′:

Lemma 30. If x ≤∗ x′ are two pure codes, then there exists

x = x0 ≤1
∗ x1 ≤1

∗ x2 ≤1
∗ · · · ≤1

∗ xℓ = x′ where the xi’s are

pure.

Proof idea: We explain how to build the sequence of

intermediary xi’s in three steps.

1) One starts with x and adds all missing # symbols one

by one: this maintains purity.

2) One then adds vectors in place where they are missing.

In order to maintain purity, an empty position is filled

by duplicating the vector immediately to the right of the

empty slot (or add 0 if there is a # to the right). Any

such addition maintains purity.

For example, assume

x = . . .#v1v3v6# . . . and x′ = . . .#v′1v
′
2v

′
3v

′
4v

′
5v

′
6v

′
7# . . .

with vi ≤ v′i for i ∈ {1, 3, 6}. Then x can be filled (in

4 steps) with

x = . . .#v1v3v6# . . . ≤1
∗≤

1
∗≤

1
∗≤

1
∗ . . .#v1v3v3v6v6v60# . . .

If this filling process is done from right to left, every

inserted vector is smaller than the corresponding vector

in x′ (since x′ is pure) hence the constructed xi+1

remains ≤∗ x′.

3) We have now reduced the problem to the case where x

and x′ have same length. It suffices to add enough unit

3It would be minimal for arbitrary codes if the second axiom was reading
x1x2 ≤1

∗
x10x2, but it would not always relate pure codes to pure codes.

vectors to every v until we reach the corresponding v′

in x′ whenever v < v′. If this is done from left to right,

purity is maintained.

2) Code Honesty: We investigate in this section two restric-

tions on the size of representation of codes during computa-

tions. One is an upper bound on the length of the code, and

is true of any forward or backward computation with
r
−→. The

second, trimness, is a restriction on the values that can appear

in the vectors of the code: it is guaranteed by our forward

computation, but need to be enforced on backward ones;

however there exists one “perfect” backward computation that

verifies it: it suffices to reverse the forward computation!

a) Length Hierarchy: We define a hierarchy of func-

tions Hα(n) that bounds the length of any pure code x s.t.

Hπ(x)(n) = Hα(n). The strategy we adopt is to employ

the rules of Definition 11 in reverse from a configuration

(ε, Hα(n)), and bound the size of the resulting code. It will

turn out that this hierarchy is already known in the literature

as the length hierarchy [24].

We define accordingly

H0(n) = 0 , (37)

Hα+1(n) = Hα(n+ 1) + 1 , (38)

Hλ(n) = Hλn
(n) . (39)

Observe that, indeed, ε is of length 0, thus justifying (37);

that if x is of length ≤ Hα(n+1), then applying rule (R1) in

reverse increments this length by 1, thus justifying (38); finally,

if x is of length ≤ Hλn
(n), then applying rule (R2) in reverse

either decreases this length, or preserves it in case of a rewrite

“Vv#x, n
r
−→ V(v)n#x, n” with (v)n = v−1i+n ·1i−1 for

some i > 0, justifying (39). By Proposition 12, we deduce:

Lemma 31. If x is pure and x, n
r
−→∗

ε, Hα(n), then |x| ≤
Hα(n).

The length hierarchy is closely related to the Hardy hierar-

chy; in particular [see e.g. 22, Eq. (65)]:

Hα(n) = Hα(n)− n . (40)

An easy observation in the same line as Lemma 31 is that

backward rule applications from ε, Hα(n) cannot increment

the values in vectors to more that the total computed value

Hα(n). Thus,

Lemma 32. If x1vx2 is pure and x1vx2, n
r
−→∗

ε, Hα(n), then

v[j] < Hα(n) for all 0 ≤ j < k.

b) Almost Lean and Trim Computations: Lemma 32 does

not provide us with enough information on the values in

vectors for our purposes. Recall the definition of almost n-lean

ordinals from Appendix A3. Let us call a pure code x almost

n-lean if π(x) is almost n-lean. By extension, a configuration

x, n of
r
−→ is almost lean if x is pure and almost n-lean, and

a computation x0, n0
r
−→ x1, n1

r
−→ · · ·

r
−→ xm, nm is almost

lean if every configuration xi, ni is almost lean, for every

0 ≤ i ≤ m. By Lemmas 25 to 27, we deduce:

Lemma 33. If π(x) is almost n-lean, then there exists an

almost lean computation x, n
r
−→∗

ε, Hπ(x)(n).

Note that our initial code x0 from (10) is almost k-lean.

However, almost n-leanness is not a robust property of

codes: e.g. |20 |
1
0 |

1
0 |

1
0# encodes ωωω2+̇ω·3

and is almost 2-

lean, but the smaller code |10 |
1
0 |

1
0 |

1
0# that encodes ωωω·4

is

not almost 2-lean. We therefore introduce a slight relaxation

of almost leanness: a pure code x is n-trim if, for any

decomposition x = x1vx2, the ordinal β(v) is almost n-lean,

i.e. there exists 0 ≤ i < k s.t. v[i] ≤ n and for all 0 ≤ j < i,

v[j] = 0 and all i < j < k, v[j] < n. By analogy with almost

leanness, call a computation trim if in every configuration

xi, ni the code xi is ni-trim. Unlike almost leanness, trimness

is clearly preserved by ≥∗. Interestingly, it is also preserved

by direct computations, as shown by Lemma 15, which is a

version of Lemma 33 that restricts computations to trim ones

instead of almost lean ones:

Proof of Lemma 15: Define a large n-trim ordinal as

π(x) where x is n-trim. We need to prove that if π′ is an

n-trim large ordinal and π ≺n π′, then π is n-trim. This is

obvious for π′ = π+1, and we turn now to the different limit

cases when π = π′
n. If π = (γ +̇ ωα+1)n = γ +̇ ωα · n, this

holds; otherwise π = (γ +̇ ωα)n = γ +̇ ωαn and we only

need to prove that the small ordinals in αn = (
∑p

i=1 ω
βi)n

are almost n-lean, under the hypothesis that each βi is almost

n-lean since π′ is n-trim. If βp = β+1 is a successor ordinal,

then αn =
∑p−1

i=1 ωβi +̇ωβ ·n, then β is clearly almost n-lean.

If βp is a limit ordinal, then αn =
∑p−1

i=1 ωβi +̇ ω(βp)n is s.t.

βn is almost n-lean by Lemma 27. Hence π is n-trim in all

cases.

Lemma 15 implies that forward computations preserve trim-

ness, but more importantly that we can restrict our backward

rule applications to enforce trimness. Such a restriction is

required because backward rule applications do not necessarily

preserve trimness: for instance with k = 2, we can go from a

configuration (0, n)#, n to a configuration #(0, n)#, n − 1
by applying (R1), and if n is sufficiently large, later to a

configuration (0, n + 1)#, n′ for a considerably smaller n′.

What Lemma 33 entails is that there is another computation

that fits our needs: for this example, applying (R2) backwards

on (0, n)#, n yields (1, 0)#, n instead.

3) Monotonicity in Presence of Losses: We prove a series

of monotonicity results that allow to handle losses in codes.

As we work with ordinals of form ωα, it is more convenient

to express these results using Fα = Hωα

.

Lemma 34. Let α, α′, γ be ordinals. If γ+α is almost n-lean

and α < α′, then γ + α ≺n γ + α′.

Proof: Write γ = γ1 +̇γ2 +̇γ3 so that γ+α = γ1 +̇γ2 +̇α

and γ+α′ = γ1 +̇α′. Now γ2 +̇α < α′ and γ2 +̇α is almost

n-lean, so that γ2 +̇ α ≺n α′ by Lemma 28 and γ + α =
γ1 +̇ γ2 +̇ α ≺n γ1 +̇ α′ = γ + α by (24).

Lemma 35. If γ ≺n γ′ then Fγ+α(n) ≤ Fγ+α′(n).

Proof: We proceed by induction over α.

For α = 0, γ ≺n γ′ entails Fγ(n) ≤ Fγ′(n) by (26).

For α = β + 1 a successor ordinal, the ind. hyp. and (23)

gives Fγ+β(m) ≤ Fγ′+β(m) for any m ≥ n,

hence Fn
γ+β(n) ≤ Fn

γ′+β(n) by (19) and (18), hence

Fγ+β+1(n) ≤ Fγ′+β+1(n).
For α = λ a limit ordinal, we immediately have Fγ+λ(n) =

Fγ+λn
(n) ≤ Fγ′+λn

(n) = Fγ′+λ(n) by ind. hyp.

We exploit Lemma 34 in the two following lemmata, which

match cases 2 and 3 of atomic losses in codes:

Lemma 36. If γ is n-lean, then Fγ+α′+α(n) ≤
Fγ+α′+̇ωβ+α(n).

Proof: If α′ > 0, the lemma is trivial, as putting γ =
γ1 +̇ γ2 and γ + α′ = γ1 +̇ α shows that γ1 +̇ α′ + α ⊑o

γ1 +̇α′ +̇ωβ +α and we conclude by (34). Assume therefore

α′ = 0; then Lemma 34 applies to show γ ≺n γ+ωβ since γ

is almost n-lean and 0 < ωβ , and applying Lemma 35 yields

the result.

Lemma 37. If γ + ωβ is almost n-lean and β ⊑o β′, then

Fγ+α′+̇ωβ+α(n) ≤ Fγ+α′+̇ωβ′+α(n).

Proof: As in the previous proof, the case α′ > 0 is trivial

since ωβ ⊑o ωβ′

by (29). Assume therefore α′ = 0, then

ωβ < ωβ′

yields γ + ωβ ≺n γ + ωβ′

by Lemma 34, and

applying Lemma 35 yields the result.

The following proposition together with (19) immediately

proves Proposition 16:

Proposition 38. Let x, x′ be pure codes and n > 0. If x′ is

n-trim and x ≤∗ x′, then Hπ(x)(n) ≤ Hπ(x′)(n).

Proof: We proceed by induction on the number of ≤1
∗-

steps between x and x′. If x = x′ the result hold vacuously.

Consider therefore for the induction step a pure code x′′ with

x′′ ≤∗ x′ and x ≤1
∗ x′′; clearly x and x′′ are also n-trim. By

ind. hyp., Hπ(x′′)(n) ≤ Hπ(x′)(n), and we only need to prove

Hπ(x)(n) ≤ Hπ(x′′)(n).

1) The first axiom is easy to treat: if x = x1x2 and x′′ =

x1#x2, then π(x) ⊑o π(x′′) and thus Hπ(x)(n)
(35)

≤
Hπ(x′′)(n). This simple proof is the main rationale for

our cumulative encoding of ordinals.

The next two axioms require more work. In both cases, we

decompose x′′ into x1#V1vV2#x2 where v is the particular

vector modified by ≤1
∗, so that x = x1#V#x2 verifies either

V = V1V2 (in the case of the second axiom) or V = V1(v−
1j)V2 for some 0 ≤ j < k (in the case of the third axiom). By

Lemma 15, there exists a trim computation on x′′; its initial

phase is of form:

x1#VvV′#x2, n
r
−→∗ pure(V (x1)V1vV2#x2), n

′ (41)

which we reach by evaluating x1 in full, i.e.

x1#, n
r
−→∗

ε, n′ , (42)

where we define

n′ def
= Hπ(x1#)(n) . (43)

Assume that the following claim holds for all vector se-

quences V′ and all r ≥ n′:

Hωα(V (x1)VV
′)

(r) ≤ Hωα(V (x1)V1vV2V
′)

(r) . (44)

Let further x2
def
= V3# · · ·#Vm#, and consider the prefix

corresponding to (41) in the computation on x: it encodes a

Hardy computation

Hπ(x1#V#x2)(n)

=Hπ(V (x1)VV3#···#Vm#)
(
Hωα(V (x1)V)

(n′)
)

(by (20))

≤Hπ(V (x1)VV3#···#Vm#)
(
Hωα(V (x1)V1vV2)

(n′)
)

(by (44) with V′ = ε and (19))

=Hπ(V (x1)VV3V4#···#Vm#)
(
Hωα(V (x1)VV3)

(n′′)
)

(by (20) and setting n′′ def
= Hωα(V (x1)V1vV2)

(n′))

≤Hπ(V (x1)VV3V4#···#Vm#)
(
Hωα(V (x1)V1vV2V3)

(n′′)
)

(by (44) with V′ = V3 and (19))

...

≤Hπ(V (x1)V1vV2#x2)(n′)

=Hπ(x′′)(n) .

It only remains to prove the claimed (44). To this end, two

comments on the prefix of the computation (41) are in order:

by combining Lemma 31 and (40) on the computation (42),

we deduce that |x1| ≤ n′−n < n′ since n > 0, thus α(V (x1))
can be written as

∑p
i=1 ω

βi with p < n′. Using Lemma 32,

each βi, which is encoded by a vector appearing in x1, is

n′-lean, hence:

α(V (x1)) is n′-lean. (45)

In the same way, since the computation is trim, β(v) is almost

n′-lean. Recall that the CNF of α(V (x1)) has p < n′ terms.

As it is also n′-lean, adding an almost n′-lean term yields an

almost n′-lean term:

α(V (x1)) + ωβ(v) is almost n′-lean. (46)

Note that (45) and (46) also hold for all r ≥ n′.

Turning to the two remaining axioms:

2) For the second axiom, recall that V = V1V2.

Put γ = α(V (x1)), α′ = α(V1), β = β(v),
and α = α(V2V

′). Then, by (45) and Lemma 36,

Hωγ+α′+α

(r) = Fγ+α′+α(r) ≤ Fγ+α′+̇ωβ+α(r) =

Hωγ+α′+̇ωβ+α

(r).
3) For the third axiom, recall that V = V1(v−1j)V2. Put

γ = α(V (x1)), α
′ = α(V1), β = β(v−1j), β

′ = β(v),
and α = α(V2V

′). By (30), β ⊑o β′, and by (46)

and Lemma 37, Hωγ+α′+̇ωβ+α

(r) = Fγ+α′+̇ωβ+α(r) ≤

Fγ+α′+̇ωβ′+α(r) = Hωγ+α′+̇ωβ′

+α

(r).

C. Proof of Theorem 20 (Section VIII)

1. If L is L(N) for some PDN N , then the question whether

w ∈ L reduces to a coverability problem for N ′ def
= w ⊗ N ,

a PDN obtained by a synchronized product of N and (an

FSA for) w. Since |N ′| = O(|w|) (here N is a constant

of size O(1)) and since N ′ is k-dimensional when N is,

we have reduced L to coverability for k-PDNs, a problem

in TIME(F
ωωk+O(1) (n)) by Theorem 3.

2. With a Minsky machine (MM) M and some k, the

construction in section V associates a PDN that simulates M

with space bounded by F
ωωk (n). It is easy to modify the PDN

so that it (1) guesses a word w of length n; (2) outputs w while

weakly storing w#n in the work space of the MM and weakly

storing n in cpt; (3) generates F
ωωk (n) extra workspace for

M and runs it on w; (4) after/if M accepts w, folds back the

workspace and reconstructs cpt; (5) outputs #n′

where n′ is

value now stored in cpt. As in Section V, the nature of weak

computations guarantees n′ ≤ n, and one only has n′ = n if

the simulation of the MM (and storing w) was perfect. Hence

the PDN only outputs words w#n s.t. n = |w| and that are

accepted by M in space F
ωωk (n) (or s.t. n < |w| and hence

that are not in L0).

D. Weak Implementation of
r
−→

In Table I, we present the so-called “weak” rules that

define
d
−→, a weakening of both

r
−→ and

r
−→−1 in the sense

of Theorem 17, which proves its weak correctness. Note that

a general implicit condition on the rules is that they take and

produce trim configurations. Rule 1 corresponds to rule (R1)

but we have split the exact rule (R2) of
r
−→. Indeed in order

to correctly define
d
−→, we need to make explicit the implicit

different cases of rule (R2). More precisely, the application of

this rule may vary depending on two criteria:

• The type of the vector that is found in front of the first

#. Rules 2–5 correspond to the case of the null vector,

as in (12). Rules 6–9 correspond to the case of a vector

whose first component is non null, which is the first case

in (15). Rules 10–13 correspond to the remaining case of

(15).

• Inside any group of rules, there are four cases depending

on what follows the first #. It can be the empty sequence,

a second # or a vector. This last case is again split into

two subcases depending on a lexicographic relation.

This laborious presentation of all the rules has its uses, firstly

because writing the weak backward rules and performing

trimming on-the-fly without first breaking up the various cases

turned out to be an error-prone task, and secondly because

there is sufficient variation between the various cases of
r
−→

and especially of
r
−→−1 to warrant handling them separately

in a PDN implementation.

Let us repeat that these weak rules always produce a trim

representation. In order to prove the correction of the the

weak rules, we prove that they are weakenings as defined in

Definition 18.

Exact Rules Weak forward rules Weak backward rules

Rule 1 #t, n
r
−→ t, n+ 1 s#t, n

d
−→ t, n+ 1 t, n

d
−→#t′, n′ + 1

with n′ ≤ n and t′ ≤∗ t

Rule 2 V0#, n
r
−→V#n, n rvs#t, n

d
−→V#n′′

, n′ r#t0# . . .#tn′ , n
d
−→V0#, n′

with n′′ ≤ n′ ≤ n and V ≤∗ r with n′ ≤ n and V ≤∗ r

Rule 3 V0##t, n
r
−→V#n

0#t, n rvs#s′#t, n
d
−→V#n′′

0#t′, n′ r#t0# . . .#tn′vs#t, n
d
−→V0##t′, n′

with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t

Rule 4 V0#0t, n
r
−→V#n

00t, n rvs#s′wt, n
d
−→V#n′′

00t′, n′ r#t0# . . .#tn′vsv′t, n
d
−→V0#0t′, n′

with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t

Rule 5 V0#wt, n
r
−→V#nwt, n rvs#s′wt, n

d
−→V#n′′

w′t′, n′ r#t0# . . .#tn′wt, n
d
−→V0#w′t′, n′

with w > 0 with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
and 0 < w′ ≤ w and 0 < w′ ≤ w

Rule 6 Vv#, n
r
−→V(v − 10)n#, n rvs#t, n

d
−→Vv0 . . . vn′′#, n′ rv0t0 . . . tn′

−1vn′ t, n
d
−→V(v′ + 10)#, n′

with 10 ≤ v with n′′ ≤ n′ ≤ n, V ≤∗ r, with n′ ≤ n, V ≤∗ r
10 ≤ v and v0 ≤ (v − 10) and v′ ≤ min(vi)

Rule 7 Vv##t, n
r
−→V(v − 10)n#v#t, n rvs#s′#t, n

d
−→Vv0 . . . vn′′#vn′′ + 10#t′, n′ rv0t0 . . . tn′

−1vn′ tn′#svn′ + 10s′#t, n
d
−→V(v′ + 10)##t′, n′

with 10 ≤ v with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and vn′′ ≤ vn′′ and v′ ≤ min(vi)

Rule 8 Vv#wt, n
r
−→V(v − 10)n#vwt, n rvs#s′wt, n

d
−→Vv0 . . . vn′′#vn′′ + 10w′t′, n′ rv0t0 . . . tn′

−1vn′ tn′#svn′ + 10s′wt, n
d
−→V(v′ + 10)#w′t′, n′

with 10 ≤ v and w ≤lex v with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and vn′′ ≤ vn′′ v′ ≤ min(vi) , w′ ≤ w and w′ ≤lex v′ + 10

Rule 9 Vv#wt, n
r
−→V(v − 10)n#wt, n rvs#s′wt, n

d
−→Vv0 . . . vn′′#w′t′, n′ rv0t0 . . . tn′

−1vn′ tn′#swt, n
d
−→V(v′ + 10)#w′t′, n′

with 10 ≤ v and v <lex w with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and v0 + 10 <lex w′ v′ ≤ min(vi) , w′ ≤ w and v′ + 10 <lex w

Rule 10 Vv#, n
r
−→Vv′′#, n rvs#t, n

r
−→Vv′′#, n′ rvs#t, n

r
−→V(v′′ + 1i)#, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, ∃v′ ≤ v Vv′ pure i > 0, ∀j < i v′′(j) = 0, v(i− 1) ≥ n′

∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 ∀j > i v′′(j) ≤ v(i)
v′′(i) = v(i)− 1 and v′′(i− 1) = n v′′ ≤ v′ − 1i + (n′)1i−1 V ≤∗ r

Rule 11 Vv##t, n
r
−→Vv′′#v#t, n rvs#s′#t, n

r
−→Vv′′#v′#, n′ rvs#s′us′′#t, n

r
−→V(v′′ + 1i)##, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, v′ ≤ v Vv′ pure ∃v′ ≤ u , ∀j < i v′(j) = 0 ∧ v′ ≥ (v′′ + 1i)
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 i > 0, v ≥ v′ − 1i + (n′)1i−1

v′′(i) = v(i)− 1 and v′′(i− 1) = n v′′ ≤ v′ − 1i + (n′)1i−1 V ≤∗ r

Rule 12 Vv#wt, n
r
−→Vv′′#vwt, n rvs#s′wt, n

r
−→Vv′′#v′w′t, n′ rvs#s′us′′wt, n

r
−→V(v′′ + 1i)#w′t′, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, v′ ≤ v Vv′ pure ∃v′ ≤ u , ∀j < i v′(j) = 0 ∧ v′ ≥ (v′′ + 1i)
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 i > 0, v ≥ v′ − 1i + (n′)1i−1

v′′(i) = v(i)− 1 and v′′(i− 1) = n v′′ ≤ v′ − 1i + (n′)1i−1 w′ ≤lex v′ , V ≤∗ r and t′ ≤∗ t
w ≤lex v w′ ≤ w and t′ ≤∗ t

Rule 13 Vv#wt, n
r
−→Vv′′#wt, n rvs#s′wt, n

r
−→Vv′′#w′t, n′ rvs#s′wt, n

r
−→V(v′′ + 1i)#w′t′, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, ∃v′ ≤ v Vv′ pure i > 0, ∀j < i v′′(j) = 0, v(i− 1) ≥ n′

∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 ∀j > i v′′(j) ≤ v(i)
v′′(i) = v(i)− 1 and v′′(i− 1) = n v′′ ≤ v′ − 1i + (n′)1i−1 (v′′ + n′

1i−1) <lex w ≤ w
v <lex w w′ ≤ w v′ <lex w and t′ ≤∗ t V ≤∗ r and t′ ≤∗ t

TABLE I
THE EXACT AND WEAK RULES.

E. PDN Simulation of
d
−→

The implementation of all the various cases described by the

rules of Table I is highly redundant, and relies on the same

core ideas that we have illustrated in Section VII. We only

present a few salient points that ought to convince the reader

that all rules can be implemented in a PDN.

1) Weak Forward Rule 1: Let us recall this rule:

s#t, n
d
−→ t, n+ 1 (D1)

This (simple) rule does not require to copy the code in order

to be simulated. It is sufficient to select an identity between

low and high corresponding to a #, to update the low identity

with this identity (implicitly deleting the prefix #) and to

increment the counter. This is performed by a single transition

depicted in Figure 5.
2) Weak Forward Rule 3: Let us recall this rule:

rvs#s′#t, n
d
−→V#n′′

0#t′, n′ (D3)

where V ≤∗ r is pure, t′ ≤∗ t, and n′′ ≤ n′ ≤ n. In the

perfect case, these orderings are equalities, v is 0, and s, s′

are ε.
a) First Stage: It consists in duplicating the counter,

which corresponds to the following transition.

x, n → x, n′ where n′ ≤ n

sharp

low

cpt

cpt.id
C

C

L

D

D L<D

Fig. 5. Implementation of (D1).

The subsequent stages consist of an appropriate copy with

update of the code.

b) Second Stage: It consists in extracting a non empty

vector sequence and in copying with purification a vector

sequence with the last vector (v) which is not copied. This can

be performed by a net similar to (and in fact simpler than) the

purification net of Figure 4. It corresponds to the following

partial transition. The up arrows are “lower bounds” of the

identities of from and to.

rv↑x
′, n′ → V↑ where V ≤∗ r,V pure and n′ ≤ n

c) Third Stage: It consists in picking two # in the

remaining code (x′) and in copying, with the help of the

duplicated counter, at most n′ # symbols followed by the

null vector and a #. This is performed by the net of Figure 6.

Transition mult1 checks that from contains the identity of a

symbol and adds such a symbol to the new code. Transition

mult2, which can be performed at most n′ times, also adds a

at the end of the new code. Finally, transition mult3 adds a

null vector to the new code and “moves forward” the identity

contained in from. All transitions also move forward the token

in to. Creating a null vector is easy since it simply consists

in adding a vect identity to the new code. We have not

represented the concatenation of the # which simply consists

in adding a token in place sharp with identity to and in

increasing the identity.

This stage corresponds to the partial transition:

rvs#s′#↑t, n
′ → V#n′′

0#↑

where V ≤∗ r, V pure and n′′ ≤ n′ ≤ n

d) Fourth Stage: The last stage consists in copying the

remaining code t in a way similar to that of the weak trimming

net.

3) Weak Forward Rule 7: Let us recall this rule:

rvs#s′#t, n
d
−→Vv0 . . . vn′′#(vn′′ + 10)#t′, n′ (D7)

where V ≤∗ r, v0 + 10 ≤ v, V(v0 + 10) pure, ∀0 ≤ i ≤ n,

vi ≤ vi, t
′ ≤∗ t, and n′′ ≤ n′ ≤ n

We have already presented all the gadgets necessary to

simulate this rule. First we duplicate the counter which yields

a new value n′ ≤ n. Then we extract and copy a non empty

pure vector sequence, the last vector containing at least a token

from

T<T'

sharp

dmult

T

T'

dpt.iddpt

D

to

F

fmult

imult

mult
1

F

T'

T

T

vect

Y

T
D

mult
2

T<T'

T' T

F<F'<H<T<T'
mult

3F

F'

high

H

Fig. 6. Multiplying the tally symbol

in the 0-component; this sequence is V(v0 + 10). We delete

this token and extend it to a sequence of n non increasing

vectors v0 . . . vn′′#vn′′ (inserting a # before and after writing

the last vector). This can be done by a modified version of

the purification net where the duplicated counter controls the

length of the sequence (as for the duplication of # in rule

D2). We add a token to the last vector. Finally, we copy the

remaining code t at the end of the new code.

4) Weak Forward Rule 11: Let us recall this rule:

rvs#s′#t, n
d
−→Vv′′#v′t′, n′ (D11)

where V ≤∗ r, v′ ≤ v, ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0,

Vv′ pure, v′′ ≤ (v′)n′′ , t′ ≤∗ t and n′′ ≤ n′ ≤ n

We simulate the rule in four stages. First we duplicate the

counter. Then we simulate the following partial copy:

rv↑x
′ → Vv′#v′

It consists in extracting and copying a non empty pure

vector sequence Vv′#v′. The copy of the last vector is

particular since

• we arbitrarily choose some component index i, such that

v′(i) > 0; we memorize this choice by marking place

derivi.

• we set v′(j) = 0 for all j < i;

ci

deri,1

oldoldto
ci-1

dpt

T

T

dpt.id

D D

ideri

derivi

cderi

fderi

deri,2

deri,3

TT

T

T

Fig. 7. Derivating a vector (case i)

• we duplicate v′ in the new code and separate them by a

#. This can be done by moving forward to three times

and keeping in auxiliary places oldto and oldoldto the

identities that precede the current one. Then the copy is

done simultaneously using to and oldoldto for the two

copies of the vector, while a # is inserted with identity

oldto.

The third stage consists in deriving it, i.e. in deleting a token

in ci and adding at most n′ tokens in ci−1. This is done by the

net of Figure 7 for some case i. Transition derivi,1 starts the

derivation by subtracting a token in ci. Then there are at most

n applications of derivi,2 adding tokens in ci−1. Finally,

derivi,3 stops the derivation by adding one more token in

ci−1.

The last stage consists in copying the remaining code #t

at the end of the new code.

We end this subsection by presenting the copy of remaining

vectors of a sequence during the weak trimming in figure 8.

ADDITIONAL REFERENCES

[24] E. A. Cichoń and E. Tahhan Bittar, “Ordinal recursive

bounds for Higman’s Theorem,” Theor. Comput. Sci., vol.

201, pp. 63–84, 1998.

irem

tk

di

.
.
.

qk-1

qi+1

ti+1

tj'+1

t0

qj'

frem

with

W

with

W

tqj'

from

cj' dj'

T

to

F

F
T F

(j≥i)

tj' .
.
. (j'<i)

.
.
.

tk-1

tj+1

qj

tqj

from

cj dj

T

to

F

F
T F

tj

.
.
.

W

tqk-1

.
.
.

.
.
.

.
.
.

W

Fig. 8. Weak Trimming: Copying the remaining vectors.

