THE ORDINARY QUATERNIONS OVER A PYTHAGOREAN FIELD ${ }^{1}$

BURTON FEIN AND MURRAY SCHACHER

Abstract

Let L be a proper finite Galois extension of a field K and let D be a division algebra with center K. If every subfield of D properly containing K contains a K-isomorphic copy of L, it is shown that K must be Pythagorean, $L \cong K(\sqrt{-1})$, and D is the ordinary quaternions over K. If one assumes only that every maximal subfield of D contains a K isomorphic copy of L, then, under the assumption that $[D: K]$ is finite, it is shown that K is Pythagorean, $L=K(\sqrt{-1})$, and D contains the ordinary quaternions over K.

Let K be a field and L a finite-dimensional Galois extension of K. Suppose D is a division algebra with center K having the property that every maximal subfield of D contains a K-isomorphic copy of L. We ask what can be concluded about D, K, and L. In [1] Herstein considered the case where L is quadratic over K; he concluded then that K is Pythagorean, $L=K(\sqrt{-1})$, and $D \supset Q_{K}$, the ordinary quaternion algebra over K. A Pythagorean field is a field which is formally real in which every sum of squares is a square. The ordinary quaternion algebra Q_{K} is the K algebra $K+K i+K j+K k$ subject to the relations: $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i, k i=-i k$ $=j$.

In this paper we prove the following two theorems, both of which should be viewed as generalizations of [1].

Theorem 1. Let L be a proper finite Galois extension of K and let D be a division algebra with center $K, Q \neq K$. Suppose that every subfield of D properly containing K contains a K-isomorphic copy of L. Then K is Pythagorean, $L=K(\sqrt{-1})$, and D is the ordinary quaternion algebra Q_{K}.

Theorem 2. Let L be a proper finite Galois extension of K and let D be a finite-dimensional division algebra with center $K, D \neq K$. Suppose that every maximal subfield of D contains a K-isomorphic copy of L. Then K is Pythagorean, $L=K(\sqrt{-1})$, and D contains the ordinary quaternions over K.

Before proving these results we need a lemma which is presumably well known, but for which we have not been able to find a convenient reference.

[^0]Copyright © 1977, American Mathematical Society

Lemma 1. Let K be a field. Then K is Pythagorean if and only if Q_{K} is a division algebra and every maximal subfield of Q_{K} is K-isomorphic to $K(\sqrt{-1})$.

Suppose K is Pythagorean. Then Q_{K} is a division algebra since -1 is not a sum of two squares in K. Let $K(\sqrt{t})$ be a maximal subfield of Q_{K}. Then $K(\sqrt{t})$ splits Q_{K} and so -1 is a sum of two squares in $K(\sqrt{t})$. Thus $-1=(a+b \sqrt{t})^{2}$ where $a, b, c, d, t \in K, \sqrt{t} \notin K$. Expanding and using the Pythagorean property of K we have $-1=u^{2}+u^{2} t, u, v \in K$. Thus $t=$ $-w^{2}, w \in K$, so $K(\sqrt{t})=K(\sqrt{-1})$ as desired. Conversely, assume Q_{K} is a division algebra having, up to isomorphism, a unique maximal subfield. Let $t \in K$. Then since

$$
-1=-1-t^{2}+t^{2}=\left(\sqrt{-\left(1+t^{2}\right)}\right)^{2}+t^{2}
$$

$K\left(\sqrt{-\left(1+t^{2}\right)}\right)$ splits Q_{K}. Thus $K\left(\sqrt{-\left(1+t^{2}\right)}\right)$ is a maximal subfield of Q_{K} and so $K\left(\sqrt{-\left(1+t^{2}\right)}\right)=K(\sqrt{-1})$. This implies that $1+t^{2}$ is a square in K for all $t \in K$. Thus if u, v are nonzero elements of K then $u^{2}+v^{2}$ $=u^{2}\left(1+v^{2} / u^{2}\right)$ is a square in K. It follows that K must be Pythagorean since Q_{K} is a division algebra.

We now turn to the theorems.
Proof of Theorem 1. Since every subfield of D containing K contains a K-isomorphic copy of L, we must have $[L: K]=p$, a prime. Let $\alpha \in D$ such that $K(\alpha)$ is K-isomorphic to L and let σ generate the Galois group of $K(\alpha)$ over K. By the Skolem-Noether theorem [2, Theorem 4.3.1, p. 99], there is a $\delta \in D$ such that $\delta^{-1} \alpha \delta=\sigma(\alpha)$. Since $L \neq K, \sigma(\alpha) \neq \alpha$. We write $\operatorname{Irr}(\alpha, K)$ for the irreducible polynomial of α over K. Since $[K(\alpha): K]=p, \delta^{p}$ commutes with α. If $\delta^{p} \notin K$, then $K\left(\delta^{p}\right)$ contains a K-isomorphic copy of L and so $\operatorname{Irr}(\alpha, K)$ splits into linear factors in $K\left(\delta^{p}\right)$. Since $K\left(\alpha, \delta^{p}\right)$ is a field and α is a root of $\operatorname{Irr}(\alpha, K)$ in $K\left(\alpha, \delta^{p}\right)$ we must have $\alpha \in K\left(\delta^{p}\right)$. But $K\left(\delta^{p}\right)$ $\subset K(\delta)$ so $\alpha \in K(\delta)$ and $\delta^{-1} \alpha \delta=\alpha$, a contradiction. Thus $\delta^{p} \in K$. Let $D_{0}=\left\{\sum_{i=0}^{p-1} a_{i} \delta^{i} \mid a_{i} \in K(\alpha)\right\}$. Then $D_{0} \subset D$ and D_{0} is K-isomorphic to the cyclic algebra $\left(K(\alpha) / K, \sigma, \delta^{P}\right)$.

Let $C_{D}\left(D_{0}\right)$ denote the centralizer in D of D_{0}. By [2, Theorem 4.4.2, p. 112], $D \cong D_{0} \otimes_{K} C_{D}\left(D_{0}\right)$. If $C_{D}\left(D_{0}\right) \neq K$, then $C_{D}\left(D_{0}\right)$ is a nontrivial division ring. Let E be a maximal subfield of $C_{D}\left(D_{0}\right)$. Then E contains a K isomorphic copy of L and so $D \supset K(\alpha) \otimes_{K} L$. Since $K(\alpha) \cong L, D$ $\supset L \otimes_{K} L$. This is a contradiction since $L \otimes_{K} L$ has zero divisors. Thus $C_{D}\left(D_{0}\right)=K$ and so $D=D_{0}$. We have established that $[D: K]=p^{2}$ and $D=\left(K(\alpha) / K, \sigma, \delta^{p}\right)$. In particular, $K(\delta)$ is a maximal subfield of D and so $K(\delta) \cong L$. Since $\delta^{p} \in K$, the characteristic of K cannot be p. Since $K(\delta)$ is a Galois extension of K of degree p and $\delta^{p} \in K, K$ must contain a primitive p th root of unity. Also, $\operatorname{Irr}(\delta, K)=x^{p}-\delta^{p}$. Since $K(\alpha)$ is K-isomorphic to $K(\delta)$, some element of $K(\alpha)$ is a root of $\operatorname{Irr}(\delta, K)$. We clearly may assume that this element is α and so $\alpha^{p}=\delta^{p}$. Since $\delta^{-1} \alpha \delta \in K(\alpha)$ and $\delta^{-1} \alpha \delta$ is a root of $\operatorname{Irr}(\alpha, K)$, we must have $\delta^{-1} \alpha \delta=\zeta \alpha$ where ζ is a primitive p th root of unity in K. An easy induction proves that $\left(\alpha \delta^{-1}\right)^{n}=\zeta^{n(n-1) / 2} \alpha^{n} \delta^{-n}$ for
$n \geqslant 1$. If p is odd, then $\zeta^{p(p-1) / 2}=1$ and so $\left(\alpha \delta^{-1}\right)^{p}=\alpha^{p} \delta^{-p}=1$. Since K contains all p th roots of unity, $\alpha \delta^{-1} \in K$ and so $\alpha \delta=\delta \alpha$. This is a contradiction and so $p=2$. In this case we have $\left(\alpha \delta^{-1}\right)^{2}=-\alpha^{2} \delta^{-2}=-1$. Since $\alpha \delta^{-1} \notin K, K(\sqrt{-1})$ is a subfield of D and so $L \cong K(\sqrt{-1})$. Without loss of generality we may assume that $\alpha^{2}=-1$ and so $\delta^{2}=-1$. Since $\left(\alpha \delta^{-1}\right)^{2}=$ $-1, \alpha \delta^{-1}=-\delta^{-1} \alpha$ and so D is the ordinary quaternions over K. Finally, since all maximal subfields of D are K-isomorphic to $L \cong K(\sqrt{-1}), K$ is Pythagorean by the lemma. This proves Theorem 1.

Proof of Theorem 2. If every subfield of D properly containing K contains a K-isomorphic copy of L, we are finished by Theorem 1. Assume that E is a subfield of D, E, properly containing K, and E is maximal with respect to not containing a K-isomorphic copy of L. E exists because [$D: K$] is finite. Then $C_{D}(E)$ satisfies the hypotheses of Theorem 1 and so E is Pythagorean, $E L=E(\sqrt{-1})$, and $C_{D}(E)$ is the ordinary quaternions over $E, C_{D}(E)=Q_{E}$. Since $Q_{E} \cong Q_{Q} \otimes_{Q} E, Q_{E} \supset Q_{Q} \otimes_{Q} K=Q_{k}$ and so $D \supset$ $Q_{K} . K$ is formally real since E is. Suppose $L \not \equiv K(\sqrt{-1})$. Then take F a subfield of $D, F \supset K(\sqrt{-1}), F$ maximal with respect to not containing a K-isomorphic copy of L. Then $C_{D}(F)$ satisfies the hypotheses of Theorem 1 so $C_{D}(F)=Q_{F}$. But $\sqrt{-1} \in F$ so Q_{F} has zero divisors. Thus $C_{D}(F)$ has zero divisors, a contradiction. It follows that $L \cong K(\sqrt{-1})$. Finally, we must show that K is Pythagorean. In view of the results already obtained and the lemma, we need only show that every maximal subfield of Q_{K} is K-isomorphic to $K(\sqrt{-1})$. Let V be a maximal subfield of Q_{K}. If $V \neq K(\sqrt{-1})$ we may take W a subfield of $D, W \supset V, W$ maximal with respect to $\sqrt{-1} \notin W$. Since $L \cong K(\sqrt{-1}) C_{D}(W)$ satisfies the hypotheses of Theorem 1 so $C_{D}(W)=Q_{W}$. But $W \supset V$ and V splits Q_{K} so Q_{W} has zero divisors. This contradiction completes the proof of Theorem 2.

The following corollary is immediate from Theorem 1.
Corollary 3. Let D be a division algebra finite dimensional over its center K. If all maximal subfields of D are Galois over K and are K-isomorphic, then K is Pythagorean and D is the ordinary quaternions over K.

There are some natural questions open to generalization concerning the results above. Among these the most tantalizing seem to be:
(1) Can the assumption of normality of L in Theorems 1 and 2 be eliminated?
(2) Can the assumption of finite-dimensionality be eliminated from Theorem 2?

[^1]Department of Mathematics, Oregon State University, Corvallis, Oregon 97331

[^0]: Received by the editors October 13, 1975.
 AMS (MOS) subject classifications (1970). Primary 16A40.
 Key words and phrases. Division algebra, Pythagorean field.
 ${ }^{1}$ The work of the first author was supported in part by NSF Grant MPS71-02969 while the work of the second author was supported by NSF Grant MPS71-2884. During much of this work the second author was a research fellow at the University of Pisa. He would like to thank the Italian National Research Council (CNR) for their support.

[^1]: References

 1. I. N. Herstein, On a theorem of Albert, Scripta Math. 29 (1972), 391-394.
 2. , Noncommutative rings, Carus Math. Monographs, vol. 15, Math. Assoc. Amer., distributed by Wiley, New York, 1968. MR 37 \# 2790.
