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Abstract Protein networks, describing physical interac-

tions as well as functional associations between proteins,

have been unravelled for many organisms in the recent past.

Databases such as the STRING provide excellent resources

for the analysis of such networks. In this contribution, we

revisit the organisation of protein networks, particularly the

centrality–lethality hypothesis, which hypothesises that

nodes with higher centrality in a network are more likely to

produce lethal phenotypes on removal, compared to nodes

with lower centrality. We consider the protein networks of a

diverse set of 20 organisms, with essentiality information

available in the Database of Essential Genes and assess the

relationship between centrality measures and lethality. For

each of these organisms, we obtained networks of high-

confidence interactions from the STRING database, and

computed network parameters such as degree, betweenness

centrality, closeness centrality and pairwise disconnectivity

indices. We observe that the networks considered here are

predominantly disassortative. Further, we observe that

essential nodes in a network have a significantly higher

average degree and betweenness centrality, compared to the

network average. Most previous studies have evaluated the

centrality–lethality hypothesis for Saccharomyces cerevisi-

ae and Escherichia coli; we here observe that the centrality–

lethality hypothesis hold goods for a large number of

organisms, with certain limitations. Betweenness centrality

may also be a useful measure to identify essential nodes, but

measures like closeness centrality and pairwise disconnec-

tivity are not significantly higher for essential nodes.

Keywords Protein–protein interactions � Lethality �
Centrality � Network biology

Introduction

Protein networks, describing functional associations as

well as physical interactions between proteins, have been

unravelled for several organisms in the recent past. A

number of methods have been developed to identify pro-

tein–protein interactions, using both experimental (Shoe-

maker and Panchenko 2007a) and computational

techniques (Shoemaker and Panchenko 2007b). Databases

such as the DIP (Xenarios et al. 2002) and STRING

(Szklarczyk et al. 2011) provide excellent resources for

building and analysing networks of proteins. The organi-

sation of these protein networks have been studied in the

past, particularly examining the importance of highly

connected proteins, or ‘hubs’, in terms of their essentiality,

or lethality (Batada et al. 2006; He and Zhang 2006; Jeong

et al. 2001; Ning et al. 2010; Rodrigues et al. 2011; Song

and Singh 2013). Previous studies have also addressed how

complex networks can be attacked, by targeting specific

nodes, based on centrality properties (Holme et al. 2002).

Many of the previous studies (Batada et al. 2006; He and

Zhang 2006; Jeong et al. 2001) have focussed on budding

yeast, Saccharomyces cerevisiae, as the model organism,

while some focus on yeast and Escherichia coli (Ning et al.

2010).
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In this contribution, we revisit the organisation of protein

networks, particularly the centrality–lethality hypothesis

(He and Zhang 2006; Jeong et al. 2001), assessing the

importance of a set of network parameters and centrality

measures, for protein networks of a diverse set of 20

organisms. The networks we consider are functional asso-

ciation networks from the STRING database; however, we

consider only the interactions and associations reported with

high confidence. We analyse various network parameters,

such as degree centrality, betweenness centrality, closeness

centrality and pairwise disconnectivity index.

In particular, we seek to answer the following questions,

across a diverse set of 20 organisms: How are protein net-

works organised, structurally, in terms of the connectivity of

essential and non-essential proteins? Does the centrality–

lethality hypothesis hold good for different types of organ-

isms? Do essential proteins hold a special position in the

network organisation? What are the important network

metrics that can decide if a protein is likely to be essential?

Methods

Data

We obtained the protein networks for 20 organisms from

the STRING database (STRING version 9.0; http://string.

embl.de/; file protein.links.v9.0.txt.gz). We chose these 20

organisms, because they had essentiality data available

from the Database of Essential Genes (see below). The

STRING database (Szklarczyk et al. 2011) includes inter-

actions from published literature describing experimentally

identified protein interactions, as well as functional asso-

ciations from genome sequence analysis using many well-

established methods based on phylogenetic profiling,

domain fusion and gene neighbourhood concepts. For each

organism, we considered only the high-confidence inter-

actions, i.e. interactions with a STRING score greater than

700.

Data on essential genes were obtained from the Data-

base of Essential Genes (DEG version 5.0; http://tubic.tju.

edu.cn/deg/). While the DEG indexes proteins using the

NCBI GI numbers (GenInfo Identifiers), the STRING

indexes proteins using RefSeq/ENSEMBL identifiers. We

translated the DEG identifiers to STRING identifiers, using

the aliases file provided in the STRING database (file

protein.aliases.v9.0.txt.gz). Based on the data in the DEG,

we annotated proteins in the networks derived from

STRING as essential or non-essential. Some essential

proteins may not have high-confidence interactions; this

leads to a small discrepancy in the number of proteins

listed as essential in DEG for an organism, and the number

in the third column of Table 1. The table also lists all the

organisms considered in this study, along with statistics on

network size, number of essential proteins, as well as the

total number of interactions considered.

Table 1 Summary of the

networks considered in this

study

The table lists the organisms

considered in this study along

with their NCBI taxonomy ID,

the number of nodes (proteins),

the number of essential nodes

(as obtained from DEG), and the

number of high-confidence

interactions between the nodes

(as obtained from STRING)

Organism (NCBI taxonomy ID) Nodes

(proteins)

Essential

nodes

(%) Edges

(interactions)

Acinetobacter baylyi (62977) 2,546 468 (18.4 %) 12,996

Arabidopsis thaliana (3702) 7,090 195 (2.8 %) 69,603

Bacillus subtilis (224308) 3,347 219 (6.5 %) 20,728

Caenorhabditis elegans (6239) 5,184 192 (3.7 %) 46,737

Escherichia coli (511145) 3,789 672 (17.7 %) 25,784

Francisella novicida (401614) 1,415 362 (25.6 %) 7,587

Haemophilus influenzae (71421) 1,497 592 (39.5 %) 8,877

Helicobacter pylori (85962) 1,352 298 (22.0 %) 7,915

Mycobacterium tuberculosis (83332) 3,295 587 (17.8 %) 18,445

Mycoplasma genitalium (243273) 446 363 (81.4 %) 3,376

Mycoplasma pulmonis (272635) 616 288 (46.8 %) 3,111

Pseudomonas aeruginosa (208963) 4,556 296 (6.5 %) 21,818

Saccharomyces cerevisiae (4932) 5,477 1,109 (20.2 %) 105,429

Salmonella enterica serovar typhi (209261) 3,491 344 (9.9 %) 19,650

Salmonella typhimurium (99287) 3,712 204 (5.5 %) 20,985

Staphylococcus aureus NCTC (93061) 2,127 328 (15.4 %) 9,500

Staphylococcus aureus subsp. aureus N315 (158879) 1,966 296 (15.1 %) 9,207

Streptococcus pneumoniae (170187) 1,718 109 (6.3 %) 8,597

Streptococcus sanguinis (388919) 1,801 215 (11.9 %) 8,315

Vibrio cholerae (243277) 2,958 537 (18.2 %) 15,644

74 K. Raman et al.

123

http://string.embl.de/
http://string.embl.de/
http://tubic.tju.edu.cn/deg/
http://tubic.tju.edu.cn/deg/


Network analyses

A number of biological networks have been analysed using

concepts from graph theory in computer science. An

excellent introduction to network biology, the science of

analysing biological networks, can be found elsewhere

(Barabási and Oltvai 2004). For the protein networks we

discuss here, the nodes are proteins, and the interactions

between proteins comprise edges. Nodes in networks can

be characterised by several parameters, which evaluate

their importance in the network’s structure, from different

perspectives. We here describe only few of the important

network parameters, which we have used in our study. A

more comprehensive review of networks and network

parameters can be found elsewhere (Boccaletti et al. 2006;

Newman 2003b).

Degree centrality

Degree centrality, or degree, represents the number of

edges or links that a node has to other nodes in the network.

Betweenness centrality

Betweenness centrality (CB) measures the participation of a

node in the shortest parts in a network. For a graph G(V,E)

with n vertices (nodes), the betweenness centrality of a

vertex v is defined as:

CB vð Þ ¼
X

s6¼v 6¼t2V

rstðvÞ
rst

Here, rst is the number of shortest paths from s to t, and

rst(v) is the number of shortest paths from s to t that pass

through the vertex v. Betweenness centrality was first

defined by Freeman (1977).

Closeness centrality

Closeness centrality (CC) is defined as the reciprocal of the

sum of all geodesic distances from one vertex to all other

vertices in the graph (Sabidussi 1966):

CC vð Þ ¼ 1P
t2V=v dGðv; tÞ

Here dG(v,t) represents the distance between v and t in the

graph. Note that closeness centrality can generally be

computed only for a fully connected graph.

Pairwise disconnectivity index

The pairwise disconnectivity index was defined by Win-

gender and co-workers earlier (Potapov et al. 2008), as the

‘‘fraction of those initially connected pairs of vertices in a

network which become disconnected if vertex v is removed

from the network’’:

Dis vð Þ ¼ N0 � N�v

N0

Here, N0 is the total number or vertex pairs in the network

that are connected by a path of any length in the network,

and N-v is the number of vertex pairs that remain connected

following the removal of vertex v. We computed these

values for every node in each of the networks, using

MATLAB and the Boost Graph Library for MATLAB

(http://dgleich.github.io/matlab-bgl/).

Assortativity

Newman (2003a) defined a measure to quantify the as-

sortativity of networks with discrete types of nodes. In our

networks, we have two types of nodes—essential and non-

essential. We compute the assortativity coefficient as

defined by Newman:

r ¼
Tr e� e2

�� ��
1� e2k k

where e is a 2 9 2 matrix indicating the fraction of edges

between nodes of different types (essential and non-

essential). eij in the matrix represents the fraction of edges

in the network between a node of type i and a node of type

j. The trace of a matrix is the sum of the main diagonal

elements, while �k k denotes the sum of all the elements in

the corresponding matrix.

Results

We analysed the relationships between essentiality and

network parameters such as degree centrality, betweenness

centrality, closeness centrality and pairwise disconnectivity

index. We performed these analyses for 20 organisms with

data available in the DEG. While Arabidopsis thaliana had

the smallest fraction of essential genes, some of the very

small organisms had very large fractions of essential genes,

viz. Mycoplasma genitalium (81.4 %) and M. pulmonis

(46.8 %). This is understandable, given that these organ-

isms have very small genomes, and that a large number of

genes in their genomes might not be redundant, but rather

have very important functions for the survival of the

organism. S. cerevisiae has its 5,477 proteins connected

through a large number of high confidence interactions.

About 20 % of the proteins in S. cerevisiae are essential.

E. coli has 3,789 proteins in its network, with about 18 %

of its nodes being essential.
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Protein networks are predominantly disassortative/

essential proteins tend to connect to non-essential

proteins

We observe that nearly all of the protein networks studied

here show low assortativity. Table 2 illustrates the distri-

bution of various edge types (essential–essential, non-

essential–non-essential and essential–non-essential) as well

as the assortativity coefficients, computed according to

Newman (2003a). If a network is assortative, then a vast

majority of the edges must connect like nodes. In the

protein network of S. typhi, which has an assortativity

coefficient of 0.55, we observe that 85 % of the connec-

tions are between like nodes. In all the other networks, the

assortativity coefficient is less than 0.5; even though a

number of edges connect non-essential nodes amongst

themselves, relatively few edges connect essential nodes

amongst themselves, leading to low overall assortativity.

Do essential nodes differ significantly in certain

metrics?

Many previous studies have highlighted the critical roles

played by ‘hubs’, or highly connected proteins in protein

networks (He and Zhang 2006; Jeong et al. 2001); the

centrality–lethality hypothesis essentially implies that

proteins essential for an organism’s survival are likely to

have a higher degree (Jeong et al. 2001). We here examine

multiple metrics, in addition to degree, as to whether

essential proteins in the networks differ in terms of metrics

such as betweenness centrality, closeness centrality and

pairwise disconnectivity index. We address this question

by means of a simple statistical test: our null hypothesis is

that essential nodes have the same average value of a

metric (degree, betweenness centrality, etc.) as the entire

set of nodes in the network. We consider the set of essential

nodes (E) as a particular subsample of the entire set of

nodes (N). Following this, we create 106 random subsam-

ples of size |E| from N. We then compute a p-value, as the

probability of observing a mean value of the metric (in

these random subsamples) greater than equal to that of

E. Table 3 lists these values for degree, betweenness cen-

trality, closeness centrality and pairwise disconnectivity

index, for each of the 20 organisms. For example, in S.

cerevisiae, we observe that the degree and betweenness

centrality are significantly higher for essential nodes, vis-à-

vis the entire network (p \ 10-6). Indeed, it can be clearly

seen that the average degree for essential nodes is

Table 2 Assortativity coefficients for the networks considered in this study

Organism Nodes (proteins) Fractions of edges of different types Total edges Assortativity (r)

EE NE NN

Arabidopsis thaliana 7,090 0.002 0.066 0.932 69,603 0.034

Caenorhabditis elegans 5,184 0.005 0.100 0.895 46,737 0.041

Helicobacter pylori 1,352 0.105 0.390 0.505 7,915 0.071

Streptococcus pneumoniae 1,718 0.019 0.171 0.810 8,597 0.084

Mycoplasma genitalium 446 0.825 0.158 0.017 3,376 0.088

Haemophilus influenzae 1,497 0.249 0.454 0.296 8,877 0.090

Salmonella typhimurium 3,712 0.020 0.145 0.836 20,985 0.135

Saccharomyces cerevisiae 5,477 0.193 0.371 0.436 105,429 0.212

Pseudomonas aeruginosa 4,556 0.047 0.168 0.785 21,818 0.265

Mycobacterium tuberculosis 3,295 0.141 0.294 0.565 18,445 0.284

Escherichia coli 3,789 0.149 0.261 0.590 25,784 0.352

Bacillus subtilis 3,347 0.068 0.159 0.773 20,728 0.367

Mycoplasma pulmonis 616 0.658 0.216 0.126 3,111 0.397

Vibrio cholerae 2,958 0.176 0.251 0.573 15,644 0.404

Streptococcus sanguinis 1,801 0.184 0.252 0.565 8,315 0.411

Staphylococcus aureus subsp. aureus N315 1,966 0.235 0.274 0.491 9,207 0.413

Acinetobacter baylyi 2,546 0.263 0.278 0.459 12,996 0.422

Francisella novicida 1,415 0.360 0.287 0.353 7,587 0.426

Staphylococcus aureus NCTC 2,127 0.245 0.238 0.517 9,500 0.486

Salmonella enterica serovar typhi 3,491 0.137 0.149 0.714 19,650 0.554

EE Essential–Essential, NE Non-essential–Essential, NN Non-essential–Non-essential

The table lists the different organisms along with the fraction of different types of edges and the assortativity coefficient, computed as indicated

in the text. The list is sorted in increasing order of the assortativity coefficient (r)
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significantly higher than the network average, for each of

the 20 organisms considered. Interestingly, in addition to

degree centrality, betweenness centrality also is signifi-

cantly higher (p \ 0.01), for 15 of the 20 organisms con-

sidered here.

In stark contrast, closeness centrality and pairwise dis-

connectivity index for yeast are not significantly different

for essential nodes compared to the entire network

(p = 0.28 and p = 0.09 respectively). It is clear from the

table that metrics such as closeness centrality and pairwise

disconnectivity index do not vary significantly for essential

nodes, for all of the organisms considered here.

Degree and betweenness centrality correlate

with lethality in many organisms

Does degree or betweenness centrality form a strong

indicator of lethality? To address this, we computed the

fraction of nodes that are essential, in a set of proteins

having a degree greater than a specified value. Figure 1

shows a plot to this end for S. cerevisiae, E. coli, Staphy-

lococcus aureus NCTC and Mycobacterium tuberculosis:

the horizontal axis represents increasing node degrees,

indicated as percentiles (x); such a representation also hints

at the degree distribution. The vertical axis indicates the

fraction of essential nodes in Nx [ N, where Nx is the set of

nodes with degrees in the xth percentile and above, i.e. Nd
90

is the set of nodes with degrees (indicated by the super-

script d) in the 90th percentile and above (top 10 % of

nodes with highest degrees). In S. cerevisiae, we see that

for Nd
90, 43.8 % nodes are essential, compared to 20.2 % in

the entire network (also see Table 4). A similar plot for

betweenness centrality is shown in Fig. 2. For Nbc
90 (the

superscript bc denotes betweenness centrality), 29 % of the

nodes are essential. Online Resources 1 and 2 show similar

plots for the remaining organisms. Table 4 summarises the

N90 data for degree and betweenness centrality. Overall, we

observe that, for most organisms, there is a clear increase in

the fraction of essential nodes (albeit gradual), with

increase in degree or betweenness centrality.

Closeness centrality and pairwise disconnectivity index

are not strong indicators of essentiality

We computed closeness centrality for every node in the 20

different networks. Online Resource 3 indicates the varia-

tion of the fraction of essential nodes in the 20 organisms

with increasing closeness centrality. Clearly, we observe

Table 3 p-values for the significance of deviation of the mean of different metrics for the set of essential nodes vis-à-vis all nodes in a network

Organism p (degree) p (Betweenness

centrality)

p (Closeness

centrality)

p (Pairwise

disconnectivity index)

Acinetobacter baylyi \ 10-6 \ 10-6 0.22 0.14

Arabidopsis thaliana 8.52 9 10-3 0.05 0.18 0.15

Bacillus subtilis \ 10-6 \ 10-6 0.89 0.40

Caenorhabditis elegans 8.40 9 10-5 0.25 0.10 0.01

Escherichia coli \ 10-6 \ 10-6 0.92 0.98

Francisella novicida \ 10-6 \ 10-6 0.50 0.49

Haemophilus influenzae \ 10-6 0.26 0.22 0.36

Helicobacter pylori \ 10-6 6.55 9 10-4 0.86 0.03

Mycobacterium tuberculosis \ 10-6 \ 10-6 0.20 0.07

Mycoplasma genitalium \ 10-6 0.05 0.76 0.18

Mycoplasma pulmonis \ 10-6 \ 10-6 0.87 0.00

Pseudomonas aeruginosa \ 10-6 \ 10-6 0.14 0.05

Saccharomyces cerevisiae \ 10-6 \ 10-6 0.28 0.09

Salmonella enterica serovar typhi \ 10-6 \ 10-6 0.92 0.06

Salmonella typhimurium \ 10-6 0.0163 0.85 0.15

Staphylococcus aureus NCTC \ 10-6 \ 10-6 0.24 0.18

Staphylococcus aureus subsp. aureus N315 \ 10-6 \ 10-6 0.96 0.05

Streptococcus pneumoniae 2 9 10-6 7.14 9 10-4 0.57 0.11

Streptococcus sanguinis \ 10-6 \ 10-6 0.61 \ 10-6

Vibrio cholerae \ 10-6 \ 10-6 0.57 0.89

Poor p values (p [ 0.01) have been shown in bold. The table clearly shows that metrics such as closeness centrality and pairwise disconnectivity

index cannot be used to selectively delineate essential nodes
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that with increasing closeness centrality, there is no

appreciable change in the fraction of essential nodes. In

most cases, we can observe that the fraction of essential

nodes remains unaffected, for instance, when one compares

Ncc
20 and Ncc

80.

We also computed the pairwise disconnectivity index

(Potapov et al. 2008) for every node in each of the

organisms. Online Resource 4 indicates the variation of the

fraction of essential nodes in the 20 organisms with

increasing pairwise disconnectivity indices. The sparse

plots and the large gaps between successive points in the

plots indicate that a very large fraction of nodes share the

same pairwise disconnectivity index; further, the fraction

of essential nodes does not increase very much with an

increase in pairwise disconnectivity index, suggesting that

this is not a very powerful metric to evaluate the lethality

of a node. These observations reiterate the statistical tests

illustrated in Table 3, which showed that the set of

essential nodes do not differ significantly from the set of all

nodes in the network, in terms of metrics such as closeness

centrality or pairwise disconnectivity index.

Discussion

Understanding the structural organisation of protein net-

works holds the key to understanding biological function,

as well as the design principles of biological networks. As

several protein networks have become readily available, it

is now possible to ask several questions about the structural

organisation of these networks, and examine the roles

played by different proteins in such networks. The identi-

fication and analysis of essential proteins in an organism

serves more than one purpose: (1) such proteins may be

functionally very important, and mediate a number of

biological processes (Batada et al. 2006), (2) such proteins,

particularly in a pathogenic organism, may be of particular

interest as drug targets (Flórez et al. 2010; Verkhedkar

et al. 2007). The identification of essential genes/proteins

in an organism experimentally is a challenging, expensive

and time-consuming task. Therefore, it is important to

identify likely essential proteins in organisms through

computational analyses. It is already possible to identify

important metabolic enzymes through computational

techniques such as flux balance analysis (Joyce and Palsson

2008; Kauffman et al. 2003). While such methods are

powerful, they also require data on the stoichiometry of

individual reactions, and are restricted to enzymes/meta-

bolic genes. Protein networks, on the other hand, encom-

pass the entire proteome of an organism—therefore, an

analysis of protein network structure may provide a better

picture of essential proteins in an organism.

Although there are many metrics commonly used in

graph theory and network biology, there is no clear

understanding of the best metric to predict essentiality/

lethality in biological systems. For example, even though

betweenness centrality has been suggested as an important

metric to identify critical nodes in a network (Holme et al.
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Fig. 1 Variation in fraction of

essential nodes, with increase in

degree. The horizontal axis

represents increasing node

degrees, indicated as percentiles

(x), while the vertical axis

indicates the fraction of

essential nodes in Nd
x , the set of

nodes with degrees in the xth

percentile and above. For

simplicity, four example

organisms are shown: a S.

cerevisiae, b E. coli, c S. aureus

NCTC and d M. tuberculosis.

To illustrate, in panel (d), M.

tuberculosis, about 31 % the

nodes with the highest 30 % of

degrees (nodes in Nd
70) are

essential. This increases to 33 %

in Nd
90. In panel (a), S.

cerevisiae, about 37 % of the

nodes in Nd
70 are essential,

which rises to 44 % in Nd
90. For

further details, see text
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Table 4 Fraction of essential proteins in the top 10 % of nodes (by degree, by betweenness centrality)

Organism Nodes

(proteins) |N0|

Essential

nodes

in N0

(%) Nd
90

�� �� Essential

nodes

in Nd
90

(%) Nbc
90

�� �� Essential

nodes

in Nbc
90

(%)

Acinetobacter baylyi 2,546 468 (18.4) 258 138 (53.5) 257 101 (39.3)

Arabidopsis thaliana 7,090 195 (2.8) 717 29 (4.0) 710 24 (3.4)

Bacillus subtilis 3,347 219 (6.5) 338 71 (21.0) 335 53 (15.8)

Caenorhabditis elegans 5,184 192 (3.7) 519 34 (6.6) 519 27 (5.2)

Escherichia coli 3,789 672 (17.7) 407 150 (36.9) 379 118 (31.1)

Francisella novicida 1,415 362 (25.6) 147 102 (69.4) 142 63 (44.4)

Haemophilus influenzae 1,497 592 (39.5) 160 89 (55.6) 150 62 (41.3)

Helicobacter pylori 1,352 298 (22.0) 140 48 (34.3) 136 40 (29.4)

Mycobacterium tuberculosis 3,295 587 (17.8) 330 109 (33.0) 330 99 (30.0)

Mycoplasma genitalium 446 363 (81.4) 45 45 (100.0) 46 40 (87.0)

Mycoplasma pulmonis 616 288 (46.8) 63 61 (96.8) 62 45 (72.6)

Pseudomonas aeruginosa 4,556 296 (6.5) 468 77 (16.5) 456 61 (13.4)

Saccharomyces cerevisiae 5,477 1,109 (20.2) 548 240 (43.8) 548 159 (29.0)

Salmonella enterica serovar typhi 3,491 344 (9.9) 355 103 (29.0) 350 66 (18.9)

Salmonella typhimurium 3,712 204 (5.5) 395 45 (11.4) 372 37 (9.9)

Staphylococcus aureus NCTC 2,127 328 (15.4) 221 128 (57.9) 213 72 (33.8)

Staphylococcus aureus subsp. aureus N315 1,966 296 (15.1) 200 115 (57.5) 197 68 (34.5)

Streptococcus pneumoniae 1,718 109 (6.3) 180 25 (13.9) 172 22 (12.8)

Streptococcus sanguinis 1,801 215 (11.9) 181 80 (44.2) 181 58 (32.0)

Vibrio cholerae 2,958 537 (18.2) 314 130 (41.4) 296 83 (28.0)

The table lists all organisms considered in this study, along with the numbers and fraction of essential nodes in the entire network, as well as for

sets of nodes with the highest degree or betweenness centralities. The table clearly illustrates the enrichment of essential nodes in the N90 sets: in

all cases, there is an increase in the fraction of essential proteins in the N90 sets, more so in some organisms compared to others
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(c)  Mycobacterium tuberculosis
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(d)  Staphylococcus aureus NCTC
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Fig. 2 Variation in fraction of

essential nodes, with increase in

betweenness centrality. The

horizontal axis represents

increasing node betweenness

centralities, indicated as

percentiles (x), while the

vertical axis indicates the

fraction of essential nodes in

Nbc
x , the set of nodes with

betweenness centralities in the

xth percentile and above. For

further details, see text
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2002), other researchers have argued that betweenness

centrality may be less informative in many cases (Potapov

et al. 2008).

Following our analysis of multiple network measures in

this study, we make three broad observations, for a set of

diverse organisms. Firstly, we observe that nearly all the

protein networks considered in this study are disassortative;

this is in agreement with previous studies by Newman

(2002). Also, most interactions happen amongst non-

essential proteins, or between essential and non-essential

proteins; interactions amongst essential proteins are much

rarer. Secondly, we observe that essential nodes have a

significantly higher average degree compared to the net-

work average in all organisms; the centrality–lethality

hypothesis thus appears to hold for a larger set of organ-

isms. However, the rate at which the fraction of essential

nodes increases, with increase in degree is slow. For

example, in M. tuberculosis, about 31 % the nodes with the

highest 30 % of degrees (nodes in Nd
70) are essential. This

increases to only 33 % in Nd
90. Only at much higher degrees

(top 2 %), does the fraction of essential nodes near 49 %.

Even in S. cerevisiae, about 37 % of the nodes in Nd
70 are

essential, which rises to 44 % in Nd
90; only in Nd

99 do we

observe nearly 73 % essential nodes. Therefore, while

higher degree may be an indicator of lethality in general,

high degree does not automatically imply lethality. The

average betweenness centrality for essential proteins is

significantly higher compared to the network average in

most organisms considered here; however, similar to

degree, high betweenness centrality does not automatically

imply essentiality. Perhaps, it would be fruitful to explore

combinations of metrics, which may have a stronger

association with lethality. Finally, we observe that metrics

such as closeness centrality and pairwise disconnectivity

index, while useful to predict/analyse critical nodes in

complex networks, are insufficient to predict lethality of

proteins in the networks.

Our work does have its limitations. Firstly, we consider

protein networks that are composed not only of physical

interactions, but also functional associations. However, we

consider only the high-confidence associations reported in

the STRING database, which should considerably limit any

false positive associations in our networks. The advantage,

however, is that, these interactions present a more complete

view of protein function within a cell, in comparison with

networks composed merely of physically interacting pro-

tein pairs. While we have considered more organisms than

some of the previous studies, it is possible that our results

could be altered if we were to consider a much larger and

even more diverse set of organisms. Here, we are quite

limited by the availability of data on gene essentiality in

various organisms. Further, we are also currently limited

by the gaps in our existing knowledge of essential genes in

the organisms considered; in particular, we would be lim-

ited by any gaps in the DEG.

Overall, the major contribution of this study is that the

identification of hubs or highly connected proteins is

insufficient to identify essential proteins in networks.

Importantly, we perform an extensive analysis of protein

networks of 20 diverse organisms, which, to our knowl-

edge, has not been carried out before. These organisms

differ substantially in the number of proteins, the fraction

of essential proteins, the density of interactions and so on.

Therefore, our analysis across this diverse set of organisms

scrutinises the centrality–lethality hypothesis more criti-

cally, and enables us to make general statements about the

associations between centrality and lethality for different

organisms. Although degree centrality, betweenness cen-

trality and lethality are correlated in many organisms, it is

still not possible to predict lethal nodes in an organism to a

large degree of accuracy using merely degree/betweenness.

Further, we observe that metrics like pairwise disconnec-

tivity index are much poorer indicators of essentiality in

protein networks, despite the fact it is a useful metric to

analyse critical nodes in complex networks (Potapov et al.

2008). Indeed, our results reiterate the observation by Roy

and others (Roy 2012; Roy and Filkov 2009) that indi-

vidual metrics may not be sufficient to analyse the phe-

notypes of an organism. Our results warrant a further

exploration of the organisation of protein networks; a mere

analysis of hubs in a network may not completely explain

the complex organisation of protein networks.
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Flórez AF, Park D, Bhak J et al (2010) Protein network prediction and

topological analysis in Leishmania major as a tool for drug target

selection. BMC Bioinformatics 11:484. doi:10.1186/1471-2105-

11-484

Freeman LC (1977) A set of measures of centrality based on

betweenness. Sociometry 40:35–41. doi:10.2307/3033543

80 K. Raman et al.

123

http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1371/journal.pcbi.0020088
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1186/1471-2105-11-484
http://dx.doi.org/10.1186/1471-2105-11-484
http://dx.doi.org/10.2307/3033543


He X, Zhang J (2006) Why do hubs tend to be essential in protein

networks? PLoS Genet 2:e88. doi:10.1371/journal.pgen.0020088

Holme P, Kim B, Yoon C, Han S (2002) Attack vulnerability of complex

networks. Phys Rev E65:056109. doi:10.1103/PhysRevE.65.

056109

Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and

centrality in protein networks. Nature 411:41–42. doi:10.1038/

35075138

Joyce AR, Palsson BØ (2008) Predicting gene essentiality using

genome-scale in silico models. Methods mole biol (Clifton, NJ)

416:433–457. doi:10.1007/978-1-59745-321-9_30

Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux

balance analysis. Curr Opin Biotechnol 14:491–496. doi:10.

1016/j.copbio.2003.08.001

Newman M (2002) Assortative mixing in networks. Phys Rev Lett

89:208701. doi:10.1103/PhysRevLett.89.208701

Newman MEJ (2003a) Mixing patterns in networks. Phys Rev E

67:026126. doi: 10.1103/physreve.67.026126

Newman MEJ (2003b) The structure and function of complex networks.

SIAM Rev 45:167–256. doi:10.1137/S003614450342480

Ning K, Ng H, Srihari S et al (2010) Examination of the relationship

between essential genes in PPI network and hub proteins in

reverse nearest neighbor topology. BMC Bioinformatics. doi:10.

1186/1471-2105-11-505

Potapov AP, Goemann B, Wingender E (2008) The pairwise

disconnectivity index as a new metric for the topological

analysis of regulatory networks. BMC Bioinformatics 9:227.

doi:10.1186/1471-2105-9-227

Rodrigues FA, da Costa LF, Barbieri AL (2011) Resilience of

protein–protein interaction networks as determined by their

large-scale topological features. Mol BioSyst 7:1263–1269. doi:

10.1039/c0mb00256a

Roy S (2012) Systems biology beyond degree, hubs and scale-free

networks: the case for multiple metrics in complex networks.

Syst Synth Biol 6:31–34. doi:10.1007/s11693-012-9094-y

Roy S, Filkov V (2009) Strong associations between microbe

phenotypes and their network architecture. Phys Rev E80:040

902. doi:10.1103/PhysRevE.80.040902

Sabidussi G (1966) The centrality index of a graph. Psychometrika

31:581–603. doi:10.1007/BF02289527

Shoemaker BA, Panchenko AR (2007a) Deciphering protein–protein

interactions. Part I. experimental techniques and databases. PLoS

Comput Biol 3:e42. doi:10.1371/journal.pcbi.0030042

Shoemaker BA, Panchenko AR (2007b) Deciphering protein–protein

interactions. Part II. computational methods to predict protein

and domain interaction partners. PLoS Comput Biol 3:e43.

doi:10.1371/journal.pcbi.0030043

Song J, Singh M (2013) From hub proteins to hub modules: the

relationship between essentiality and centrality in the yeast

interactome at different scales of organization. PLoS Comput

Biol 9:e1002910. doi:10.1371/journal.pcbi.1002910

Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING

database in 2011: functional interaction networks of proteins,

globally integrated and scored. Nucleic Acids Res 39:D561–

D568. doi:10.1093/nar/gkq973

Verkhedkar KD, Raman K, Chandra NR, Vishveshwara S (2007)

Metabolome Based Reaction Graphs of M. tuberculosis and M.

leprae: a Comparative Network Analysis. PLoS ONE. doi:10.

1371/journal.pone.0000881

Xenarios I, Salwı́nski L, Duan XJ et al (2002) DIP, the Database of

Interacting Proteins: a research tool for studying cellular networks

of protein interactions. Nucleic Acids Res 30:303–305. doi:10.

1093/nar/30.1.303

The organisational structure of protein networks 81

123

http://dx.doi.org/10.1371/journal.pgen.0020088
http://dx.doi.org/10.1103/PhysRevE.65.056109
http://dx.doi.org/10.1103/PhysRevE.65.056109
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1007/978-1-59745-321-9_30
http://dx.doi.org/10.1016/j.copbio.2003.08.001
http://dx.doi.org/10.1016/j.copbio.2003.08.001
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/physreve.67.026126
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1186/1471-2105-11-505
http://dx.doi.org/10.1186/1471-2105-11-505
http://dx.doi.org/10.1186/1471-2105-9-227
http://dx.doi.org/10.1039/c0mb00256a
http://dx.doi.org/10.1007/s11693-012-9094-y
http://dx.doi.org/10.1103/PhysRevE.80.040902
http://dx.doi.org/10.1007/BF02289527
http://dx.doi.org/10.1371/journal.pcbi.0030042
http://dx.doi.org/10.1371/journal.pcbi.0030043
http://dx.doi.org/10.1371/journal.pcbi.1002910
http://dx.doi.org/10.1093/nar/gkq973
http://dx.doi.org/10.1371/journal.pone.0000881
http://dx.doi.org/10.1371/journal.pone.0000881
http://dx.doi.org/10.1093/nar/30.1.303
http://dx.doi.org/10.1093/nar/30.1.303

	The organisational structure of protein networks: revisiting the centrality--lethality hypothesis
	Abstract
	Introduction
	Methods
	Data
	Network analyses
	Degree centrality
	Betweenness centrality
	Closeness centrality
	Pairwise disconnectivity index
	Assortativity


	Results
	Protein networks are predominantly disassortative/essential proteins tend to connect to non-essential proteins
	Do essential nodes differ significantly in certain metrics?
	Degree and betweenness centrality correlate with lethality in many organisms
	Closeness centrality and pairwise disconnectivity index are not strong indicators of essentiality

	Discussion
	Acknowledgments
	References


