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Abstract

Information processing in the human brain arises from both interactions between adjacent areas and from distant
projections that form distributed brain systems. Here we map interactions across different spatial scales by estimating the
degree of intrinsic functional connectivity for the local (#14 mm) neighborhood directly surrounding brain regions as
contrasted with distant (.14 mm) interactions. The balance between local and distant functional interactions measured at
rest forms a map that separates sensorimotor cortices from heteromodal association areas and further identifies regions
that possess both high local and distant cortical-cortical interactions. Map estimates of network measures demonstrate that
high local connectivity is most often associated with a high clustering coefficient, long path length, and low physical cost.
Task performance changed the balance between local and distant functional coupling in a subset of regions, particularly,
increasing local functional coupling in regions engaged by the task. The observed properties suggest that the brain has
evolved a balance that optimizes information-processing efficiency across different classes of specialized areas as well as
mechanisms to modulate coupling in support of dynamically changing processing demands. We discuss the implications of
these observations and applications of the present method for exploring normal and atypical brain function.
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Introduction

The human brain is a complex biological structure with

specializations for local, modular processing that are distinct from

anatomical properties that facilitate integrative processing. Specifi-

cally, anatomic projection patterns suggest a division between areas

that form domain-specific hierarchical connections [1–4] and distinct

heteromodal association areas that receive widespread projections

from distributed brain systems [5–9]. The dichotomy is not absolute.

Sensory systems contain divergent projections and display multi-

modal convergence at advanced processing stages. Nonetheless,

dominance for one connectivity profile over the other is present for

many areas and suggests a fundamental organizing principle of

cortical-cortical connectivity. Early sensory cortical areas are

examples of areas with predominantly local hierarchical connections

(e.g., see [2]) while prefrontal, lateral temporal, limbic and paralimbic

areas form hubs linking widely distributed connections – neural

epicenters of large-scale distributed networks [8].

Studies of comparative anatomy suggest that the ratio of local to

distributed areal projections may be critical to the evolution of

higher-order cognitive functions including language, reasoning,

and foresight. The hominin brain has tripled in absolute size over

the past 2–3 million years including a disproportionate enlarge-

ment of cortical surface area [10,11]. However, expansion comes

with a cost to information processing efficiency [11]. Proliferation

of long-distance connections and increasing brain volume could

lead to untenable wiring lengths if they evolved unchecked [12].

Thus, there is a compensatory pressure to modularize information

flow within parallel processing pathways and to maximize efficient

communication among areas of similar function. Van Essen [13]

proposed that there is a specific selection pressure to optimize

wiring length between adjacent functionally-similar areas within

the same hemisphere. Consistent with this possibility, cortical

folding patterns in the macaque brain minimize between-area

wiring lengths for sensory (e.g., Broadmann’s area [BA] 17 to BA

18) and motor (e.g., BA 4 to BA 6) pathways.

The relative proportion of association cortex differs further in

the human [14,15]. The human brain is three times larger than

that of modern great apes yet primary motor (BA 4) and visual (BA

17) cortices are about the same absolute size [16,17]. Preuss

[14,18], in a detailed analysis of cortical growth, concluded that

widely distributed associated areas exhibited an increase in

absolute surface area during hominin evolution including higher-

order parietal and temporal areas as well as prefrontal cortex.

Thus, the long-held belief that the prefrontal cortex is preferen-

tially expanded in humans is only partially correct; heteromodal

association areas are likely expanded throughout cortex including

those areas falling within prefrontal cortex. Bolstering these
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observations, surface-based analysis of cortical differences between

macaque and human based on 23 estimated homologous areas

reveals a high degree of expansion in parietal, lateral temporal,

and dorsolateral prefrontal regions and a relative compression of

sensorimotor and visual areas [19].

The modern human brain also possesses a high proportion of

cerebral white matter relative to contemporary primates including

the great apes [20,21] (see also [22] for a broad analysis of primates).

Comparative study of the arcuate fasciculus, the major fiber bundle

connecting anterior and posterior heteromodal language zones,

shows that it is enlarged in humans as compared to chimpanzees or

macaques [15]. Thus long-distance association projections have

expanded as well and may have done so in relation to specific

functional adaptations. One can presume that there has been

considerable pressure to maintain efficient wiring and network

properties as the complexity of cortical connectivity and association

cortex has increased, especially considering long-distance projections

are well represented in the human brain (see [23]).

All of these findings converge to suggest that the balance

between long-range projections and local areal interactions is

important for efficient cortical processing. While this balance has

been recognized for some time (e.g., see [5,7,8]), recent

computational explorations of connectional patterns have brought

the issue into sharp focus [24]. Graph theory, in particular,

provides informative metrics to analyze properties of complex

networks [25–31]. When applied to the study of connectional

anatomy, analyses consistently reveal that cortical networks exhibit

‘‘small world’’ properties [32,33]. Connections are not randomly

dispersed among cortical areas but rather show strong clustering

patterns and hubs that allow for relatively short path lengths to

propagate information through the networks [34].

Moreover, the extent to which an individual area is central to

maximizing communication between multiple areas can be

quantified and cortical regions possessing hub-like properties can

be mapped. Applying this analysis strategy to structural [35] and

functional [36,37] human connectivity data reveals a core set of

regions along the cortex including paralimbic areas and parietal

association areas that behave as hubs. The resulting map of these

regions in humans includes the many known heteromodal

association areas spread throughout prefrontal, parietal, and

lateral temporal cortex and bares a strong resemblance to the

estimated regions of cortical expansion in human as compared to

macaque (e.g., contrast [37] with [19]).

Although previous studies have focused their attention in

network topological modularity [38–41] and in some aspects of

the relationship between physical distance and connectivity

[29,36,42], connectivity profiles that differentiate local and distant

projection patterns have not been fully characterized. Physical

distance and network path length, as discussed above, are among

of the most central properties to efficient information propagation.

There are two likely reasons for this omission. First, human

studies using diffusion techniques to measure anatomic connec-

tivity (diffusion tensor imaging; DTI) provide poor information

about connectivity between areas that are supported by local

association fibers (u-fibers) and neighborhood association fibers

that connect immediately adjacent and nearby areas [43].

Commonly used diffusion imaging techniques capture long

association fibers that travel in discrete fascicles within the

hemisphere and commissural fibers that pass between the

hemispheres (but see [44] for a recent exception), and usually

discard fibers or fail to adequately measure information from close

or adjacent regions.

Second, functional connectivity approaches that measure

cortical-cortical interactions indirectly via correlated blood

oxygenation level-dependent contrast (BOLD) [45–47] have not

focused on local anatomic correlations because of the relatively

poor spatial resolution of the approach. While the blood flow

response is locally regulated (under certain conditions at the level

of the cortical column; e.g., [48]), the current practical resolution

for exploring large cortical regions is about 3–4 mm [49]. This

makes exploring within-area lateral connections challenging.

However, the achievable resolution of functional MRI (fMRI) is

well within the expected resolution needed to provide information

about adjacent and nearby areas that are distinct from interactions

carried by long association fibers and other long-range connec-

tions. Measurements at this intermediate resolution should be rich

in information about the connectional architecture of the human

brain including information about whether cortical areas possess

local modularity.

Motivated by this possibility, we developed and applied a novel

approach to map the regional balance between local and distant

functional connectivity in the human brain. We first extended a

computationally efficient approach based on network graph theory

[37] to map the degree of intrinsic functional connectivity between

regions throughout the brain, taking into account the local

neighborhood connections as well as the remote or distant

connections (within and outside 14 mm of a neighborhood area)

(Figure 1). Control analyses showed that the method successfully

and reliably identified distinct local degree values across the brain.

Estimates of these values were then used to explore the properties

of regions across the brain and to compare these estimates to those

derived from well-known network measures including path length,

physical cost, and clustering coefficient. Finally, we examined

functional connectivity during an active task (as contrast to rest) to

examine how functional coupling dynamically changes in response

to task demands.

Results

The Human Neocortex Displays a Complex Topography
of Preferential Local Versus Distant Connectivity
Local and distant functional connectivity are plotted separately

(Figure 2) as well as combined into maps of preferential

connectivity (local – distant; Figure 3) and overlap (local >

distant; Figure 4). Based on these maps regions could be

characterized into three broad categories: 1) Regions displaying

preferential local connectivity with less distant connectivity,

involving mainly primary and secondary/modality-selective cor-

tices (motor, somatosensory, auditory, visual, and a region at or

near the supplementary motor area [SMA] proper), 2) Regions

Author Summary

Information processing in the human brain arises from
both interactions between adjacent brain areas and from
distant projections that form distributed systems. Here we
estimated functional connectivity profiles in the human
brain using a novel approach to map the regional balance
between local and distant functional connectivity. We
discovered that the human brain exhibits distinct connec-
tivity profiles across regions with primary sensory and
motor areas displaying preferential local connectivity and
heteromodal association areas displaying preferential
distant connectivity. These findings expand our knowledge
of how the human brain has specialized its architecture to
optimize processing efficiency and provides an approach
to measure, in individuals, the degree to which the typical
balance of local and distant connectivity is present.

Local and Distant Connectivity in the Human Brain
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displaying preferential distant connectivity with relatively low local

connectivity including heteromodal areas in the lateral parieto-

temporal and frontal cortices, and 3) Regions that contained both

a high degree of local and distant connectivity including

prominent midline regions that comprise components of the

default network (posterior cingulate, certain regions within the

medial prefrontal cortex). The third connectivity profile is most

clearly visualized by examining the overlap of the maps (Figure 4).

Figure S1 and S2 display maps at several levels of threshold and

left/right projections to illustrate that the topographies of the

preferential and overlap maps are qualitatively consistent across

thresholds. Volume displays of the maps are also provided for

transverse sections in the atlas space of the Montreal Neurological

Institute (MNI) (Figure S3). The full volume data are available

from the authors upon request.

A striking feature of the maps is that regions near primary

sensory and motor cortex show strong preferential local connec-

tivity. Examining the topography of the regions in more detail

revealed that they track estimated boundaries of primary sensory

and motor areas (Figures 5 and 6). For example, the regions of the

visual system that show strong preferentially local connectivity

overlap well with the early retinotopic areas that extend from V1

to V3a and V4 (Figure 5). In this regard, the analytic procedure of

mapping local versus distant functional connectivity at rest is

sufficient to reveal the well-established distinction between

primary/secondary and association cortices. Regions with high

distant degree connectivity and high local degree connectivity

converged on multiple regions that fall within the default network

[50,51].

Does Local Functional Connectivity Change During Task
Performance?
Although functional connectivity patterns measured at rest

provide valuable information about the intrinsic architecture of the

brain, they are not synonymous with anatomic connectivity and

are influenced by the task state (see [47] for recent review). For this

reason, we next explored the influence of task performance on

local and distant connectivity. Two results emerged (Figure 7).

First, engaging the task influenced both local and distant

functional connectivity in regions typically active during perfor-

Figure 1. Methods for identifying local and distant functional connectivity. The basis of the present method is the intrinsic BOLD signal
fluctuations that correlate between brain regions. The functional connectivity matrix was computed to represent the strength of correlation between
every pair of voxels across the brain; the pattern of these connections is the functional connectivity network. The displayed example represents a
matrix and network of 1000 nodes (brain voxels). To estimate local and distant brain connectivity, the normalized degree of intrinsic functional
connectivity of every voxel across the brain was computed taking into account physical distance to compute separate estimates of local degree
connectivity and distant degree connectivity (see also Figure S1).
doi:10.1371/journal.pcbi.1000808.g001

Local and Distant Connectivity in the Human Brain
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mance of the abstract/concrete classification task. The changes

were particularly prominent in the local connectivity estimates and

included prefrontal cortex along the inferior frontal gyrus, lateral

temporal cortex, dorsal anterior cingulate and a posterior parietal

region linked to the frontal-parietal control system (e.g., [52]).

Thus, one unexpected observation is that local functional

connectivity can be used to measure engagement of task regions

in a manner that is distinct from previous approaches to fMRI

data analysis. A subtle change was also noted in increased (relative)

distant connectivity in visual regions perhaps reflecting coupling of

sensory regions to association areas during task engagement.

Second, the regions of preferential local functional connectivity,

as revealed by the direct contrast of the local to distant

connectivity maps obtained from the task data, included the

primary sensory and motor cortices (Figure 7; right column).

Inspection of the data in reference to cortical flattened

representations once again showed that the strongest preferential

local connectivity estimates were within or near early retinotopi-

cally-defined visual areas. That is, despite some relative changes in

local and distant functional coupling during the task state, sensory

areas still persisted in having preferentially local connectivity

profiles.

Relationship to Network Measures of Path Length,
Physical Cost, and Clustering Coefficient
To situate our findings in the context of other well-known

network measures, we computed the average path length, physical

cost and clustering coefficient in our data set (Figure 8). Average

path length is a measure of how far a node is, on average, from all

other nodes in the network. Low path lengths (blue in our scale in

Figure 8; left column) are those regions that have the shortest path

lengths to other regions of the brain. Physical cost reflects, in some

sense, the opposite property and plots, in our scale, regions with

physically distant connected regions in yellow and orange.

Clustering coefficient is a measure of segregation and, in our

scale, displays regions with the greatest level of local modular

organization in yellow and orange.

As shown in Figure 8, regions with preferential local

connectivity fall within regions that are characterized by long

path length, low physical cost and high clustering coefficient. Low

levels of network topological path lengths and high levels of

physical cost are prominent in regions of distant preferential

connectivity. This relationship is perhaps most apparent when

comparing the local degree map in Figure 2 and the clustering

coefficient map in Figure 8. It is also possible to detect differences

Figure 2. Local and distant functional connectivity maps. Local (left) and distant (right) functional connectivity maps are displayed for the left
hemisphere from 100 subjects. Data were acquired during passive (rest) fixation. Notable differences in the topography of the connectivity profiles
are present with primary sensory and motor regions showing strong local connectivity and regions of association cortex displaying distant
connectivity (see also Figure S3). The surface projection uses the PALS approach of Van Essen (2005; see text). The color bar represents the
normalized degree connectivity (Z-score).
doi:10.1371/journal.pcbi.1000808.g002

Local and Distant Connectivity in the Human Brain

PLoS Computational Biology | www.ploscompbiol.org 4 June 2010 | Volume 6 | Issue 6 | e1000808



between the local/distant preferential map (Figure 3) and the

network measures (Figure 8).

Reliability and Control Analyses
The primary results of our analyses are the map estimates of local

and distant functional connectivity. Several parameters were set to

complete the analyses (e.g., the distance threshold) and therefore

processing decisions may have affected the results. A series of control

analyses were conducted to boost confidence in the approach and to

establish that the reported results are robust. First, test-retest reliability

was assessed for the local and distant connectivity maps by comparing

maps derived from two independent datasets each comprising 50

participants (Figure S4). High correlation coefficients between the two

samples were obtained (r= 0.95 for local and 0.91 for distant degree

connectivity). Next, the influence of changing the distance threshold

on the resulting local connectivity maps was examined by varying the

neighborhood from a radius of 6 mm to 18 mm (Figure S5). The

radius of 6 mm yielded a map that did not notably distinguish areal

topography consistent with the limited spatial resolution of the

technique. Results showed largely stable estimates of local connec-

tivity for neighborhood radius values greater than 10 mm. We

conservatively used a distance threshold of 14 mm for all analyses.

The influence of Gaussian smooth was examined by comparing maps

without spatial smoothing to the chosen 4 mm full-width half-

Figure 3. Preferential connectivity maps highlight regions with differential functional connectivity profiles. Data from Figure 2 are
contrast to illustrate the relative differences between local and distant degree connectivity. The maps plot the direct subtraction of distant versus
local functional connectivity with blue indicating regions of preferential distant connectivity and yellow indicating regions of preferential local
connectivity. Note that the primary sensory and motor regions show different profiles as contrast with association cortices in the parietal, temporal
and frontal lobes. The insets display the same maps but at an increased threshold to appreciate the high relative local degree connectivity in visual
cortex and rostral anterior cingulate (see also Figure S3). ACC= anterior cingulate.
doi:10.1371/journal.pcbi.1000808.g003

Local and Distant Connectivity in the Human Brain
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maximum (FWHM) smoothing kernel (Figure S6). Removing the

spatial smooth did not qualitatively affect the results; however, the

preferential effects in the degree maps were generally less robust

consistent with a reduction in signal-to-noise ratio.

We further examined whether correlations between the

hemispheres across the midline contributed to the observed

results. Bilateral contributions might cause a bias in overestimating

local connectivity values along midline structures. Maps that

included degree connectivity for only one hemisphere were highly

similar to those that included both hemispheres (Figure S7).

Masking the cortex to include only the cortical mantle (excluding

subcortical regions including the basal ganglia, thalamus, and

midbrain as well as the cerebellum) also did not qualitatively

change the results but did lead to several subtle differences

presumably arising from exclusion of distant thalamic, striatal, and

cerebellar connections (Figure 8). As a final exploration we

examined the influence of the specific normalization approach and

also the effect of grey matter volume correction (Figure 8). Again,

the results were largely robust to analysis variations.

Discussion

The present study applied a novel approach to analyze regional

functional connectivity profiles taking into account the distance

between correlated regions. We found that the human brain

exhibits cortical functional connectivity profiles at rest that fall into

three major categories: one for sensory and motor cortical regions

(preferential local connectivity), one for many regions near

Figure 4. Some regions display both high local and high distant functional connectivity. Plotted in red, using the same format as Figure 2,
are regions that show both high local and distant functional connectivity (normalized degree cutoff of Z-score.1.0). These regions include the
posterior cingulate cortex (PCC), a region ventral to the intraparietal sulcus (IPS) extending into the inferior parietal lobule, and the medial prefrontal
cortex (MPFC). Note that the region within the MPFC does not extend into the rostral ACC that displays a preferential local connectivity profile (see
Figure 3).
doi:10.1371/journal.pcbi.1000808.g004

Local and Distant Connectivity in the Human Brain
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Figure 5. Retinotopic visual areas display preferential local functional connectivity. Preferential functional connectivity data (from
Figure 3) are plotted in relation to approximate Brodmann areas (left) and estimated retinotopic boundaries (right) for visual cortex. The display
represents a flattened portion of cortex that includes the occipital lobe. Labels in the Brodmann panel represent approximate Brodmann area
boundaries (see text). Labels in the Retinotopic panel represent estimated visual areas (see text). The regions of high preferential local connectivity
fall within the early retinotopic areas including primary visual cortex.
doi:10.1371/journal.pcbi.1000808.g005

Figure 6. Somatosensory, motor and auditory areas display preferential local functional connectivity. Preferential functional
connectivity data are plotted in relation to approximate Brodmann areas for somatosensory/motor cortex (left) and auditory (right) cortex. Labels
represent Brodmann areas.
doi:10.1371/journal.pcbi.1000808.g006

Local and Distant Connectivity in the Human Brain
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heteromodal association areas (preferential distant connectivity),

and one related to a subset of heteromodal association and

paralimbic regions that fall along the midline, in regions that are

core components of the default network (high local and high

distant connectivity). Specifically, preferential local and distant

connectivity profiles revealed that regions within or near primary

sensory and motor areas display high local connectivity consistent

with a modular organization. By contrast, distant connectivity is

prominent across association areas in parietal, lateral temporal,

and frontal cortices as well as paralimbic cortex including posterior

cingulate. These regions have been previously described as

important for higher-order cognitive functions such as attentional,

memory and language processes. Among the set of regions with a

high degree of distant connectivity is a subset that simultaneously

Figure 7. Task performance leads to changes in local and distant functional coupling. Changes in the degree of functional connectivity
during performance of a continuous semantic classification task are displayed for local connectivity (left) and distant connectivity (center). An
increase in local functional coupling is observed along the inferior frontal gyrus (a), the inferior parietal lobule (b), lateral temporal cortex (c), and the
dorsal anterior cingulate (d). More modest (but anatomically similar) increases in functional coupling are noted for distant functional coupling with
the exception of visual cortex (e) that shows a more prominent change in distant functional coupling. Despite the task differences, data acquired
during rest fixation and continuous task performance show similar locations of preferential local connectivity within motor and sensory regions
(right).
doi:10.1371/journal.pcbi.1000808.g007

Figure 8. Maps of path length, physical cost and clustering coefficient. Map estimates of path length (left), physical cost (center) and
clustering coefficient (right) are displayed. Compared to the local-distant preferential map (Figure 3 and Figure S1), short path lengths and high levels
of physical cost are predominant in regions of preferentially distant connectivity. Preferential local connectivity is associated with regions of high path
length, low physical cost and high clustering coefficient.
doi:10.1371/journal.pcbi.1000808.g008

Local and Distant Connectivity in the Human Brain
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possess both high local and distant connectivity. The presence of

densely interconnected local (modular) systems linked by connec-

tional hubs is indicative of complex systems that gain efficiency

through ‘‘small world’’ properties [24,29,30]. We discuss the

implications of these connectional profiles and applications of the

present method for understanding neuropsychiatric illness.

Regional Differences in Local Connectivity Profiles
A strong expectation that human primary sensory cortex will

possess properties consistent with a high local distance connectivity

organization is provided by prior analyses of macaque anatomic

connectivity (e.g., [2]). The absence of methods able to measure

local anatomical connectivity, including detecting small u-fibers

and local association connectivity, has limited the ability to

visualize this basic organizational property. Our results demon-

strate that differences in connectivity profiles were prominent

across the cortex. Figure 3 summarizes these differences and

Figures 5 and 6 provide detailed examination of sensory and

motor areas. Regions that encompass estimated boundaries of

early sensory and motor areas display high levels of local

connectivity, most likely as a result of local anatomical connections

between adjacent or nearby areas. Within the visual cortex, the

region with the most pronounced local connectivity organization is

at or near V1 with a gradual transition to less modular

connectivity profiles as one moves along the hierarchical

progression from V2 through V3a, supporting a functional

gradient. Regions anterior to the estimated boundary of the

MT+ complex display preferentially distant connectivity.

Regions at or near primary somatosensory, auditory cortex,

and motor cortex also display high levels of local connectivity.

Some of the details of the mapping are not fully aligned with

expectations, particularly the dense local connectivity observed in

area 43 but not area 41 in auditory cortex. It is presently unclear

whether this is a differential property of the area, an inaccuracy

of the present method, or a consequence of inaccurate estimates

of the areal boundaries. Of the regions studied, the best

alignment between expectations from macaque anatomy and

estimated human areal boundaries was for the retinotopically

mapped visual areas [53]. Equivalent mapping in human

auditory cortex was not available. Thus, an important future

direction will be to map sensory areas within individual subjects

and explore further the correspondence between areal boundaries

and connectivity profiles.

We also found that certain regions along the midline,

including portions of the anterior cingulate, have preferential

local connectivity and less distant connectivity similar to

somatosensory/motor, auditory or visual cortices (see inset

detail in Figure 3). In humans the portion of cingulate just

anterior to the genu of the corpus callosum includes areas 24

and 32ac, possible homologues to macaque areas 24a/b/c

[54,55]. In their seminal studies of medial prefrontal cortex in

the macaque, Carmichael and Price [56] noted that areas 24a/

b, 10m and 32 are tightly interconnected components of the

‘‘medial network’’. Unlike other areas of high local connectivity,

areas 24a/b do not receive significant projections from sensory

systems (barring some olfactory inputs to the region). Inputs are

predominantly limbic. What is clear from the connectivity

profiles is that cingulate cortex just anterior to the corpus

callosum shows a markedly different connectivity profile than

posterior cingulate and more anterior medial prefrontal regions

that include human area 10. These regions, as will be discussed

in the next section, show among the highest levels of both local

and distant connectivity.

Certain Regions Possess Hybrid Local and Distant
Connectivity Profiles
Certain regions were estimated to simultaneously possess both

high levels of local and distant connectivity (Figure 4). The

posterior cingulate, medial prefrontal cortex, and inferior parietal

lobule were the three most extreme examples of the hybrid

connectivity profile. The importance of these regions as connec-

tional hubs, in particular the posterior cingulate, has been noted

previously based on anatomical [57,58], diffusion [35,59], and

functional [37,50,60] connectivity data. Prior functional connec-

tivity analyses using graph theory have previously revealed that

these regions are hubs of long-distance cortical-cortical interac-

tions with both high degree and betweeness centrality [36,37].

What is new here is that a subset of these regions also possess

among the highest levels of local functional connectivity.

The regions displaying the hybrid connectivity profile overlap

regions that belong to the default network [50,51]. This network

has been implicated in cognitive functions associated with internal

thought as contrast to stimulus-based perception. For example, the

network is active during autobiographical memory retrieval [61],

imagining the future [62], and mind wandering [63] (see [50,64]

for reviews).

These observations raise two questions: What are the functional

consequences of a hybrid functional connectivity profile and why is

it so prominently represented in the default network? While there

are too few constraints to offer more than broad speculations, it is

worthwhile to generate hypotheses to encourage further explora-

tion. Given that the regions possessing hybrid connectivity profiles

are active during internal modes of thought, including during

passive fixation, it is intriguing to hypothesize that information

processing that persists independent of strong sensory constraints

might require a set of modular, tightly coupled areas to maintain

efficient local processing. That is, the default network may possess

features so that information processing is able to maintain stable in

situ information (high local network connectivity) and simulta-

neously to associate distributed information from key limbic,

parietal and prefrontal regions of the brain (high distant network

connectivity). This idea extends what has been previously

articulated. For example, in Mesulam’s foundational work on

transmodal areas [6–8], he emphasizes their role as pointers to

distributed modular systems. The present hypothesis expands this

notion to also explore processing contributions that arise directly

from extensive local connectivity between and within certain

contiguous association areas.

Effects of Task and the Potential Use of Functional
Coupling to Estimate Task Effects
An interesting unexpected result was the detection of clear local

functional coupling changes when a task was engaged (Figure 7).

Most of our analyses were of resting-state fixation data similar to

the approach common to the literature. When a continuous task

involving semantic classification of words was engaged, the

preferential local connectivity profiles in sensory and motor

regions were largely retained with the addition of strong local

coupling within many of the distributed regions typically activated

by the task. In fact, the map of increased local functional

connectivity in the task state relative to rest fixation (Figure 7; left

column) could easily be mistaken for a typical blocked-task

functional MRI or positron emission tomography (PET) paradigm

(e.g., compare our Figure 7 with Supplementary Figure 3 in [65]).

There are two separate implications of this observation. First, the

result is a reminder that low-frequency functional correlations as

measured by BOLD contrast fMRI are not an exact proxy for

Local and Distant Connectivity in the Human Brain
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anatomical connectivity. Coupling among regions changes as a

function of task state. Second, measures of local functional coupling

may provide a means to investigate regional activity levels during

tasks. It is possible, although not explicitly tested here, that local

functional coupling may provide a powerful approach for identifying

task-activated regions including for brief epochs of task performance.

It will be interesting in future studies to explore this possibility and to

generally examine what can be learned from task-induced changes in

local functional coupling. A radical possibility is that task contrasts

will not be required and local functional coupling by itself, or

referenced to other aspects of the data or normative data, will be

sufficient to estimate properties of brain activity.

Limitations, Caveats, and Future Directions
The present work maps relative connectivity profiles that

distinguish local and distant functional connectivity. As such it

moves into an arena that is at the resolution boundary of present

functional imaging approaches. Further, the connectivity method

applied was based on intrinsic activity correlations measured using

BOLD contrast fMRI. As we have discussed previously [47], there

are strengths and limitations of this indirect approach for

estimating connectional anatomy. Relevant here is the observation

that intrinsic activity correlations can reflect more than direct

monosynapatic connections including contributions of polysynapic

projections and common driving inputs, such as from the

thalamus. Our results also reveal clear, task-dependent modulation

of functional coupling. Thus, it will be important to employ

convergent methods to validate the anatomic properties that we

infer. Diffusion-based methods that employ high angular resolu-

tion diffusion (e.g., DSI) may soon be able to map u-fibers and

local association fibers [44]. To make a reasonable assessment of

whether the properties we are observing reflect an artifact of

smoothing or other processing steps, or the boundaries of

functional resolution, we conducted a large number of control

analyses (see Supplementary Figures S1, S2, S3, S4, S5, S6, S7).

The core results are reliable and robust across alternative

smoothing and processing decisions. Thus, while we anticipate

further refinement of the methods, we expect that the main results

of the paper are valid.

One potential limitation of our study is that we are

approximating real cortical distance with Euclidean distance. In

the case of nodes in adjacent gyri, the Euclidean distance is

underestimating the true cortical distance, since the white matter

tracts often bend around the intervening sulcus. Future work will

be needed in order to include additional information regarding

surface distance and ideally white matter tract path lengths (to

approximate this approach see an example in [66]).

A further limitation of the present paper is the focus on group

data. An important avenue for future work will be to explore these

properties, perhaps even at higher spatial resolution, in the context

of task-based estimates of functional areas. For example, it will be

useful to explore whether individual differences in estimated

boundaries of retinotopic visual areas track estimates of local

distance connectivity. We predict they will. Similarly, the regions

of preferentially distinct connectivity overlap with regions that are

active during tasks of remembering, foresight, and other forms of

high-level cognition [50,64]. It will be important to study more

explicitly the overlap between connectivity profiles and activity

during these forms of cognitive task at the individual subject level.

Exploration of individual differences has potentially important

implications for study of genetics and neuropsychiatric illness (e.g.

Alzheimer’s disease, epilepsy, schizophrenia, bipolar disorder, and

autism). A particularly interesting area of future exploration

concerns the development of local and distinct connectivity and

the relation of our metrics to atypical development. Certain

neuropsychiatric disorders are suspected to result from molecular

disruptions that give rise to aberrant connectivity patterns. For

example, autism is associated with overgrowth of the brain early in

development and adult white-matter abnormalities [67]. Atypical

development may affect the fragile balance between local and

distant connectivity.

Relevant to this possibility, Fransson and colleagues [68]

demonstrated functional connectivity in infants at typical birth

age (the infants were preterm). They found strong connectivity

among sensorimotor networks but did not identify connectivity

within the association networks typical of adults, including the

default network. Fair et al. [69] reported that the distributed

connectivity pattern within regions defining the default network –

the prototypical regions in our maps of distant connectivity – is not

fully present in young children. An expanded analysis of the

phenomenon demonstrated that childhood development is

characterized by a general trend toward increases in functional

connectivity across widely distributed regions conceptualized as

the development of a ‘local to distributed’ organization [70].

These prior analyses suggest that detailed analysis of the

development of local- and distant-connectivity profiles may

provide important insights for both typical and atypical neurode-

velopmental trajectories.

Conclusions
Functional connectivity MRI was used to analyze network

properties across the human brain introducing spatial distance

information. We discovered that mapping regions based on

whether they exhibit preferentially local versus preferentially

distant functional connectivity at rest easily separates early

sensorimotor, heteromodal association cortices and core regions

of the default mode network. This observation reveals a

parsimonious property of cortical network architecture that divides

processing between many parallel systems characterized by

extensive local processing and transmodal regions that serve as

hubs connecting these local systems. As a practical application of

our approach, metrics of connectivity profiles that reflect local and

distributed connectivity can be made rapidly in individual

participants. These metrics may thus have value for exploring

individual differences both in relation to genetics and also in

developmental neuropsychiatric disorders where atypical connec-

tivity profiles may be present. More broadly, the observation that

connectivity hubs fall within regions of estimated cortical

expansion between monkey and humans [19], and also regions

of late child development [71], reinforces the hypothesis that

association areas make an important contribution to higher-order

cognitive functions that are especially well developed in humans.

Methods

Participants
112 healthy young adults participated in MRI for payment.

Table 1 shows the participant demographics. All participants had

normal or corrected-to-normal vision and were right-handed,

native English speakers. Participants were screened to exclude

individuals with a history of neurologic or psychiatric conditions as

well as those using psychoactive medications. Resting-state data

from these participants have been reported previously [37,65] and

are openly available to the community upon request.

Ethics Statement
Written informed consent was obtained in accordance with

guidelines set forth by the institutional review board of Partners
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Healthcare Inc, and this research has been conducted according to

the Declaration of Helsinki.

MRI Acquisition Procedures
Scanning was performed on a 3 Tesla TimTrio system

(Siemens, Erlangen, Germany) using the 12-channel phased-array

head coil supplied by the vendor. High-resolution 3D T1-weighted

magnetization prepared rapid acquisition gradient echo (MP-

RAGE) images were acquired for anatomic reference

(TR=2530 ms, TE= 3.44 ms, FA=7u, 1.0 mm isotropic voxels).

Functional data were acquired using a gradient-echo echo-planar

pulse sequence sensitive to BOLD contrast (TR=2500 ms,

TE= 30 ms, FA= 90u, 36–43 axial slices parallel to plane of the

anterior commissure-posterior commissure, 3.0 mm isotropic

voxels, 0.5 mm gap between slices). Head motion was restricted

using a pillow and foam, and earplugs were used to attenuate

scanner noise. During the functional runs, the participants fixated

on a visual cross-hair (plus sign, black on white) centered on a

screen for each of two runs (each run 7 min 24 sec; 148 time

points). Participants were asked to stay awake and remain as still as

possible. For the task condition, we used a data set previously

reported in Buckner et al. [37]. Briefly, two runs of continuous task

performance and two runs of fixation were acquired in twelve

subjects (each run 5 min 12 sec; 104 time points). Participants

decided whether centrally presented visual words represented

abstract or concrete entities. Order of task was counterbalanced

across participants. The visual stimuli were generated on an Apple

PowerBook G4 computer (Apple, Inc., Cupertino, CA) using

Matlab (The Mathworks, Inc., Natick, MA) and the Psychophysics

Toolbox extensions [72]. Stimuli were projected onto a screen

positioned at the head of the magnet bore.

MRI Preprocessing
MRI analysis procedures were optimized for functional

connectivity MRI (fcMRI) analysis [47] extending from the

approach developed by Biswal et al. [45]. The first four volumes

were removed to allow for T1-equilibration effects, followed by

compensation of systematic, slice-dependent time shifts, motion

correction and normalization to the atlas space of the MNI

(SPM2, Wellcome Department of Cognitive Neurology, London,

UK) to yield a volumetric time series resampled at 2 mm cubic

voxels. Temporal filtering removed constant offsets and linear

trends over each run while retaining frequencies below 0.08 Hz.

Data were spatially smoothed using a 4 mm FWHM Gaussian

blur (note that the effect of smoothing was explicitly considered in

control analyses below).

Several sources of spurious or regionally nonspecific variance

then were removed by regression of nuisance variables including:

six parameter rigid body head motion (obtained from motion

correction), the signal averaged over the whole-brain, the signal

averaged over the lateral ventricles, and the signal averaged over a

region centered in the deep cerebral white matter. Temporally-

shifted versions of these waveforms also were removed by inclusion

of the first temporal derivatives (computed by backward

differences) in the linear model. This regression procedure

removes variance unlikely to represent regionally specific corre-

lations of neuronal origin. Of note, the global (whole-brain) signal

correlates with respiration-induced fMRI signal fluctuations

[47,73,74]. By removing global signal, variance contributed by

physiological artifacts is minimized. Removal of signals correlated

with ventricles and white matter further reduces non-neuronal

contributions to BOLD correlations. Removal of global signal also

causes a shift in the distribution of correlation coefficients such that

there are approximately equal numbers of positive and negative

correlations making interpretation of the sign of the correlation

ambiguous [47,75,76]. This effect is not directly relevant to the

current analyses as degree connectivity is computed based on the

correlations that exceed a positive threshold. Finally, for

computational efficiency, we down sampled the data to 4 mm

isotropic voxels.

Degree Connectivity Measures and Thresholds
The present study used fcMRI to map the local and distant

degree of functional connectivity in the human brain. fcMRI

measures intrinsic activity correlations between brain regions

[45–47]. The method assumes that fcMRI is sufficiently

constrained by anatomy to reveal informative estimates of

connectivity properties. We have previously outlined the reasons

for this assumption as well as the caveats and limitations of fcMRI

[47]. For our present purposes it is important to make clear that

fcMRI can reflect mono- and polysynaptic connectivity, correla-

tions arising from common sources, and task-dependent dynamic

functional coupling. Thus, it should not be considered a direct

measure of anatomic connectivity. Nonetheless, fcMRI reflects, to

a large degree, the statistical properties of anatomical connections

and therefore provides a great deal of indirect information about

human connectional anatomy.

Degree centrality (or degree) is a network measure that

quantifies the number of links or edges connected to a node

[27]. Here brain voxels (that sample small regions of cortex) are

the nodes and positive correlations between voxels above certain

strength are the links or edges in the graph. A computationally-

efficient approach was used to map the degree of functional

connectivity across the brain at the voxel level in a large number of

individuals [37] taking into account topographical neighborhood

information for the local and distant distinction.

Thus, we computed a variation of the classic degree centrality

measure in graph theory (e.g., [27,77]) by introducing physical

distance restrictions in the whole-brain voxel-by-voxel functional

connectivity network. The immediate neighborhood was taken

into account to generate a local degree map and functional

connectivity outside of this neighborhood was taken into account

to generate a distant degree map. Different parameters of

neighborhood threshold, in terms of radius sphere, were tested

from which we choose 14 mm radius (approximately 3 voxels

around target voxels) (see Figure S5). This distance threshold

provides information about connectivity that is likely to reflect

communication between local (nearby) areas and minimizes the

correlations that reflect smoothing between adjacent voxels.

For these analyses, the time course of each voxel from the

participant’s brain defined within a whole-brain mask was

correlated to every other voxel time course. As a result an n6n

matrix of Pearson correlation coefficients was obtained, where n is

the dimension of the whole-brain mask. The Pearson R, or

Table 1. Participant demographics.

Data Set 1 Date Set 2

Composite

Set

Task Data

Set

Sample size 50 (21 Male) 50 (25 male) 100 (46 male) 12 (3 male)

Mean age, yr

(SD)

22.1 (3.1) 22.3 (2.9) 22.2 (3.0) 22.1 (2.3)

Notes: SD = standard deviation. Data Sets 1 and 2 included data acquired during
passive (rest) fixation. The Task Data Set included separate runs of fixation and
continuous task performance (see text).
doi:10.1371/journal.pcbi.1000808.t001
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product-moment correlation coefficient, computed in the ith row

and jth column of this matrix is given by:

Rij~

P

x t½ �i{xi
� �

x t½ �j{xj

� �h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

x t½ �i{xi
� �2

x t½ �j{xj

� �2
� �

s t~0:::T , i~1:::N, j~1:::N ð1Þ

where t is the frame count, x t½ �i and x t½ �j are the voxel intensities

at the ith and jth voxel location respectively defined by the whole-

brain mask at frame count t . The mean voxel intensity across all of

the time points at the ith and jth voxel locations is given by xi and

xj respectively. From the Pearson correlation coefficients, a map of

degree connectivity was computed. We computed the local degree

map by counting for each voxel the number of voxels above a

correlation threshold of r.0.25 inside its neighborhood (defined as

a 14 mm radius sphere), and for the distant degree map by

counting for each voxel the number of voxels above the same

threshold but outside the neighborhood. The r threshold was

chosen to eliminate counting voxels that had low temporal

correlation due to signal noise (see [37] for analysis of the effects of

r threshold). No gap for counting voxels was included between the

local and distant degree measures.

Finally, undirected and unweighted local and distant degree

values were estimated for each voxel of the brain. The measure of

degree connectivity for a voxel is given by:

Di~

X

dij j~1 . . .N, i=j ð2Þ

where j is the inside or outside neighborhood voxels of the i

depending on the measure of local or distant degree map. The

degree connectivity map was then standardized by Z-score

transformation so that maps across participants could be averaged

and compared [37]. The conversion to Z-score does not influence

the topography of the individual-participant maps but does cause

the values in each participant’s map to be comparable across

subjects. In the present case, the Z-score transformation was

computed separately for the local and distant degree connectivity

maps. Moreover, these final Z-score degree maps were used to

create the preferential and overlap maps. We refer here to

preferential not as an absolute measure of number of links but

rather as a relative measure of the overall topography differences

(LocalZ-score minus DistantZ-score). Finally, the overlap map

(Figure 4) was created by combining the local and distant Z-score

maps after thresholding each of them at 1 SD in order to isolate

only regions showing the strongest effects (see Figure S2 for other

threshold criteria for the overlap map).

Path lengths, physical cost and clustering coefficient
To situate our findings in the context of other well-known

network measures, we computed in the same sample of subjects

the following measures per node: path length (Figure 8; left

column images), physical cost (Figure 8; center column images)

and clustering coefficient (Figure 8; right column images), using

matlabBGL (http://www.stanford.edu/,dgleich/programs/

matlab_bgl/) and Boost Graph Library (http://www.boost.

org/doc/libs/1_42_0/libs/graph/doc/index.html). For each

subject, the functional connectivity MRI time series was first

down-sampled from 4 to 8 mm voxel size for computational

efficiency. We then formed a graph following the same

principles as explained above but this time at 8 mm resolution.

The path length of a node was calculated as the average path

lengths from the node to all other nodes in the graph. Since

each pair of connected nodes lie in physical space, we can

assign a cost to each edge in the graph based on the physical

Euclidean distance between the nodes in the brain. The

physical cost of a node is therefore the average of the physical

costs of all the edges of the node defined for each voxel as:

PCi~
1

Di

X

j [Ni

fij

where the sum is over all the neighbors of voxel i, Dj is the

degree of voxel i and fij is the Euclidean distance between voxel

i and voxel j.

The clustering coefficient of a node is the proportion of all pairs

of its neighbors that are directly connected to each other in the

graph or, in other words, the number of links between the

neighborhood vertices divided by the number of links that could

possibly exist between them [31]. The measure of clustering

coefficient for each voxel is given by:

Ci~
Ei

Di Di{1ð Þ=2

where Ei is the actual number of links between the neighborhood

vertices of voxel i and Di is the degree of voxel i. Observe that

Di(Di21)/2 is the number of possible edges that could exist

between the neighbors of voxel i.

Control Analyses
Several control analyses were performed to explore the

influences of processing decisions on the degree connectivity

maps, to measure test-retest reliability, and to estimate the

effects of local anatomy (Figures 9 and S1, S2, S3, S4, S5, S6,

S7). We first evaluated the possible effects of distance threshold

as well as spatial smoothing. Another concern is that the local

degree connectivity measure along the midline is contaminated

by strong correlations between homologous voxels across the left

and right hemispheres. To explore this issue, we computed

degree connectivity maps that masked the whole-brain (both

hemispheres) as well as control analyses that restricted

connectivity to within the hemisphere. We examined the

influence of brain mask by comparing masks that involved the

whole brain (including subcortical structures) versus a mask the

included only cortical gray matter (excluding the basal ganglia,

thalamus, and midbrain as well as the cerebellum). We also

examined the influence of the local volume of grey matter in the

neighborhood of the voxel (we refer to this as gray matter

correction). For this analysis, the preferential map of local versus

distant connectivity was estimated taking into account the

number of grey matter voxels included in the search sphere

rather than the absolute count, in order to appropriately weight

regions that may contain less grey matter volume than others

(such as voxels in the cortical/non-cortical interfaces). The

normalized grey matter mask was obtained from SPM MarsBar

toolbox (http://www.fil.ion.ucl.ac.uk/spm). Finally, we tested a

second method to normalize degree maps in order to verify that

our normalization procedure is not biasing our results using

percentage normalization ([Distant Degree6100]/[Distant De-

gree+Local Degree]). While these control analyses do not

represent an exhaustive set of possible processing variations,

they bolster confidence that the major aspects of obtained

results likely reflect properties of intrinsic functional connectivity

that are not artifacts of anatomy or a specific processing

decision.

ð1Þ
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Visualization
Data were visualized on the cortical surface using the

population-average, landmark- and surface-based (PALS) surface

and plotted using Caret software [53,78]. The PALS atlas is based

on the PALS-B12 dataset from [79] and projects estimated areal

boundaries from Broadmann’s original architectonic scheme [80]

to the surface. These area estimates are thus to be considered

approximate. Reference boundaries for visuotopic-mapped areas

(e.g., V1, V2v/d, V3) are based primarily on fMRI studies of

human retinotopic mapping (e.g., [81]; see [53] for discussion).

Supporting Information

Figure S1 Projections illustrate different visualization thresholds

for preferential connectivity map. For comparison purpose, we

display the preferential connectivity map at three distinct

thresholds and include both left and right hemisphere projections

to illustrate that its topography is qualitatively consistent across all

variations.

Found at: doi:10.1371/journal.pcbi.1000808.s001 (6.62 MB TIF)

Figure S2 Projections illustrate different visualization thresh-

olds for regions that display both high local and high distant

connectivity. Plotted in red are regions that show both high local

and distant connectivity for three different thresholds: threshold 1

using normalized degree cutoff of Z-score.1.0, threshold 2 using

normalized degree cutoff of Z-score.0.9 and threshold 3 using

normalized degree cutoff of Z-score.0.8. As shown in the maps

using threshold 1, the regions in both hemispheres that have high

local and high distant connectivity at the same time are the

regions that fall within the default network, such as the posterior

cingulate, a region within the inferior parietal lobule, and the

medial prefrontal cortex. Other regions, especially the superior

parietal cortex, increase overlap while relaxing the threshold

level. Left lateral and left medial view in threshold 1 are the same

as Figure 4.

Found at: doi:10.1371/journal.pcbi.1000808.s002 (3.86 MB TIF)

Figure S3 Volume display of local, distant and preferential map.

The results were projected on cortical surface in the main paper to

aid visualization of the cortical surface. For reference we plot here

brain volume maps of local degree (A), distant degree (B) and the

preferential connectivity map (C) that include subcortical and

cerebellar regions.

Found at: doi:10.1371/journal.pcbi.1000808.s003 (9.92 MB TIF)

Figure S4 Test-retest reliability for local and distant connectivity

measures. The overall test-retest reliability of our approach was

assessed with two different datasets of 50 participants each (dataset

1 and dataset 2). Degree maps for local (A) and distant (B)

connectivity are highly correlated (r.0.90 in both cases). The

figures on the left show the cortical projection in both samples and

the graphs on the right the voxel-by-voxel correlation between

Data Sets 1 and 2 for both analyses.

Found at: doi:10.1371/journal.pcbi.1000808.s004 (4.29 MB TIF)

Figure S5 The effect of neighborhood distance threshold. In

order to explore the influence of the neighborhood distance

threshold for the analysis, we tested different sized spheres. The

image shows maps for distance thresholds ranging from 6 to

18 mm in an example participant. A small radius such as 6 mm

(approximately only one voxel around target voxel) yields a map

that did not notably distinguish areal topography - the image is

largely flat. This is likely because local correlations between very

adjacent voxels dominate the computation. That is, there is little

information about differential functional connectivity. Neighbor-

hood sizes greater than 10 mm show clear topological differences

along the cortex. However, neighborhood radii more than 10–

14 mm are largely similar. As one extends the distant threshold

further, the map eventually becomes equivalent to the distant-

connectivity maps (data not shown). Therefore, we conservatively

used a distance threshold of 14 mm for all analyses.

Found at: doi:10.1371/journal.pcbi.1000808.s005 (2.70 MB TIF)

Figure S6 The effect of Gaussian smoothing. The influence of

Gaussian smoothing was examined by comparing maps without

spatial smoothing to the chosen 4 mm FWHM smoothing kernel.

Comparison between degree measures with and without Gaussian

smooth for local (A) and distant (B) degree maps reveals

qualitatively similar results with both approaches. Some differ-

ences were noted with the predominant effect being the lower

degree connectivity estimates obtained when no smoothing was

applied (consistent with a reduction in signal-to-noise ratio).

Found at: doi:10.1371/journal.pcbi.1000808.s006 (7.67 MB TIF)

Figure 9. Preferential connectivity maps are similar in three control conditions. Map estimates of preferential local and distant connectivity
do not notably change when subcortical structures are excluded from analysis, although several subtle differences are observed presumably arising
from exclusion of distant thalamic, striatal, and cerebellar connections (left). Weighting the connectivity estimates based on the local gray matter
volume also does not notably change the results (middle). Alternative normalization using percent normalization ([Distant Degree6100]/[Distant
Degree + Local Degree]) shows qualitatively similar results as well (right).
doi:10.1371/journal.pcbi.1000808.g009
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Figure S7 Local connectivity along the midline. Estimates of

local connectivity along the midline may be inflated because they

include homologous right and left hemisphere regions. For this

reason, it was important to evaluate the potential bias in

overestimating local connectivity values along the midline. Here

we show that maps that include local degree connectivity for only

one hemisphere (right) are highly similar to the results in the main

paper that involve both hemispheres (left). Thus contralateral

correlations do not account for our observations in local

connectivity.

Found at: doi:10.1371/journal.pcbi.1000808.s007 (2.22 MB TIF)
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