# The Organocatalytic Three-Step Total Synthesis of (+)-Frondosin B 

Maud Reiter, Staffan Torrsell, Sandra Lee and David W. C. MacMillan*<br>Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544<br>E-mail: dmacmill@princeton.edu

FAX: (+1) 609-258-5922

## Electronic supplementary information (ESI)

General Information. Commercial reagents were purified prior to use following the guidelines of Perrin and Armarego. ${ }^{\text {S1 }}$ All solvents were purified according to the method of Grubbs. ${ }^{\text {S2 }}$ Chromatographic purification of products was accomplished using force-flow chromatography on Silicycle silica gel according to the method of Still. ${ }^{53}$ Thin-layer chromatography (TLC) was performed on Silicycle 250 mm silica gel plates. Visualization of the developed chromatogram was performed by fluorescence quenching and potassium permanganate or cerium ammonium molybdate stain. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury $400(400 \mathrm{MHz}$ or 100 MHz ), or a Bruker $500(500 \mathrm{MHz}$ and 125 MHz ) as noted, and are internally referenced to residual protio solvent signals (note: $\mathrm{CDCl}_{3}$ referenced at d 7.26). Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ( $\delta$ $\mathrm{ppm})$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, integration, coupling constant $(\mathrm{Hz})$ and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Mass spectra were obtained from the California Institute of Technology Mass Spectral Facility and the Princeton Mass Spectroscopy Facility. Gas liquid chromatography (GLC) was performed on Hewlett-

[^0]Packard 6850 and 6890 Series gas chromatographs equipped with split-mode capillary injection system and flame ionization detectors using Bodman Chiraldex $\Gamma$-TA ( $30 \mathrm{~m} \times$ 0.25 mm ) column. Supercritical fluid chromatography (SFC) was performed on a Berger Minigram equipped with a diode array UV detector ( $\lambda=214-258 \mathrm{~nm}$ ) using a chiral column ( 25 cm ) and guard column ( 5 cm ) as noted for each compound.

For the synthesis and full characterization of $(R)$-3-(5-methoxybenzofuran-2-yl)butan-1-ol $((R)-\mathbf{1 2})$ and X-ray crystallographic data of the corresponding 4-bromobenzoate, see reference $S 4$.

## 2-(5-methoxybenzofuranyl)trifluoroborate (6a).



6a

Prepared according to a procedure adopted from Molander et al. ${ }^{55}$ commercially available 2-(5-methoxybenzofuranyl) boronic acid 2 ( $1.75 \mathrm{~g}, 9.00 \mathrm{mmol}, 1.00$ equiv.) was dissolved in anhydrous methanol ( 25 mL ). Potassium hydrogenfluoride ( $2.44 \mathrm{~g}, 31.0 \mathrm{mmol}, 3.40$ equiv.) was added and the resulting suspension was sonicated for 5 min before being cooled down to $0{ }^{\circ} \mathrm{C}$. Water ( 8 mL ) was added dropwise over 45 min using a syringe pump. A heavy white precipitate was deposited. The resulting suspension was stirred at room temperature for 2 h and then concentrated in vacuo and azeotroped five times with methanol. The resulting white solid was dried under high vacuum for 2 h , before being taken up with hot acetone and filtered. The filtrate was cooled to room temperature and concentrated in vacuo. Ethyl ether was added to triturate the product as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, d $\mathrm{d}_{6}$-acetone) $\delta 7.18(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}$, aryl H), $6.64(\mathrm{dd}, 1 \mathrm{H}, J=8.7,2.4 \mathrm{~Hz}, \operatorname{ArH}), 6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{d}_{6}$-acetone) $\delta 155.5,151.5,130.5,110.7,110.2,107.6,102.9,55.3 ;{ }^{19} \mathrm{~F}$ NMR

[^1](282 MHz, $\mathrm{d}_{6}$-acetone) $\delta-143.1$ (br d, $J=44 \mathrm{~Hz}$ ); HRMS (ES-) calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{BF}_{3}[\mathrm{M}]^{-}$ $m / z 215.0491$, found $m / z 215.0462$.

## (R)-3-(5-methoxybenzofuran-2-yl)butanal (7a).


(R)-7a

From trifluoroborate 6a: To a plastic vial (Wheaton HDPE) was added aqueous HF (48 $\mathrm{wt} \%, 6.25 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv.) followed by 1,2 -dimethoxyethane ( $450 \mathrm{~mL}, 1 \mathrm{~m}$ relative to aldehyde) and a magnetic stir bar. Imidazolidinone catalyst (S, S)-4a(10.9 mg, $0.0300 \mathrm{mmol}, 0.200$ equiv.) and acid co-catalyst HCl ( 4 M in 1,4-dioxane, $7.5 \mu \mathrm{~L}, 0.030$ $\mathrm{mmol}, 0.200$ equiv.) were added and the reaction mixture was cooled to $-20{ }^{\circ} \mathrm{C}$. Crotonaldehyde ( $37.5 \mu \mathrm{~L}, 0.450 \mathrm{mmol}, 3.00$ equiv.) was added to the reaction mixture followed by potassium 2-(5-methoxybenzofuranyl) trifluoroborate $\mathbf{6 a}(42.4 \mathrm{mg}, 0.150$ mmol, 1.00 equiv.). The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 24 h and diluted with $\mathrm{CHCl}_{3}(1.5$ $\mathrm{mL})$, quenched with $1 \mathrm{~m} \mathrm{HCl}(1.0 \mathrm{~mL})$ and stirred at ambient temperature for 30 min . The aqueous layer was extracted with $\mathrm{CHCl}_{3}(2 \times 5 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, $10 \% \mathrm{EtOAc}$ in hexanes) yielded the title compound as clear oil ( $30.7 \mathrm{mg}, 94 \%$ yield, $92 \%$ ee).

From boronic acid 2: To a plastic vial (Wheaton HDPE) was added HF ( $48 \mathrm{wt} \%, 58.4 \mathrm{mg}$, $1.40 \mathrm{mmol}, 1.00$ equiv.) followed by EtOAc ( $14 \mathrm{~mL}, 0.1 \mathrm{~m}$ relative to boronic acid) and a magnetic stir bar. Imidazolidinone catalyst ( $S, S$ )-4a( $105 \mathrm{mg}, 0.280 \mathrm{mmol}, 0.200$ equiv.) and acid co-catalyst dichloroacetic acid ( $23.1 \mu \mathrm{~L}, 0.280 \mathrm{mmol}, 0.200$ equiv.) were added and the reaction mixture was stirred for 15 min at room temperature. Crotonaldehyde (348 $\mu \mathrm{L}, 4.20 \mathrm{mmol}, 3.00$ equiv.) was added to the reaction mixture followed by boronic acid 2 ( $269 \mathrm{mg}, 1.40 \mathrm{mmol}, 1.00$ equiv.). The reaction was stirred at room temperature for 36 h and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$, quenched with water ( 8 mL ) and stirred at ambient
temperature for 1 h . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) yielded the title compound as a clear oil $(255 \mathrm{mg}, 84 \%$ yield, $93 \%$ ee $):[\alpha]^{20}{ }_{\mathrm{D}}=-8.5\left(c=1.3, \mathrm{CHCl}_{3}\right)$; IR (film) $1724,1475,1205,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.78(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{CHO}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.98(\mathrm{~d}$, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 6.81(\mathrm{dd}, 1 \mathrm{H}, J=9.0,2.4 \mathrm{~Hz}, \mathrm{ArH}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}, \mathrm{ArH})$, $3.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.79\left(\mathrm{ddd}, 2 \mathrm{H}, J=17.4,6.6,1.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.39$ $\left(\mathrm{d}, 3 \mathrm{H}, J=0.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 201.0,162.1,155.8,149.5,129.0$, $112.0,111.2,103.2,101.5,55.9,48.8,28.2,18.8$; HRMS (EI+) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}]^{+}$ $m / z 218.0943$, found $m / z 218.0944$. The enantiomeric excess was determined by SFC using a Chiracel OJ-H column ( $5 \%$ to $10 \% \mathrm{MeCN}$, linear gradient, $100 \mathrm{bar}, 35^{\circ} \mathrm{C}$ oven, flow $=$ $4.0 \mathrm{~mL} / \mathrm{min}) ;(S)$ isomer $\mathrm{t}_{\mathrm{r}}=5.17 \mathrm{~min},(R)$ isomer $\mathrm{t}_{\mathrm{r}}=5.61 \mathrm{~min}$.

## (R)-1-(6,6-dimethylcyclohex-1-enyl-)-3-(5-methoxybenzofuran-2-yl)butan-1-ol (10).



10

To a solution of 2,4,6-triisopropylbenzenesulfonyl hydrazone $(\mathbf{9})^{56}(320 \mathrm{mg}, 0.780 \mathrm{mmol}$, 1.00 equiv.) in anhydrous THF ( 1.5 ml ) was added $t-\operatorname{BuLi}(1.30 \mathrm{ml}, 1.3 \mathrm{~m}, 1.72 \mathrm{mmol}, 2.20$ equiv.) dropwise over 15 min at $-78^{\circ} \mathrm{C}$. The resultant solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then at $0{ }^{\circ} \mathrm{C}$ for 15 min , upon which $\mathrm{N}_{2}$ evolution was observed. Upon cooling back down to $-78^{\circ} \mathrm{C}$, aldehyde $(R)-7 \mathbf{a}(290 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.69$ equiv.) in THF ( 1.0 ml ) was added via cannula. The resulting reaction mixture was then stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 3 h and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo.

[^2]Purification by flash chromatography (silica gel, $10 \% \mathrm{EtOAc}$ in hexanes) yielded the title compound as a yellow oil in a $1: 1$ mixture of diastereomers ( $220 \mathrm{mg}, 86 \%$ yield). IR (film) $3475,1617,1475,1205,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.25(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, ArH, dia 1), 7.23 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$, dia 2), $6.93(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{ArH}$, dia 1$), 6.92$ $(\mathrm{d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{ArH}$, dia 2), $6.78(\mathrm{dt}, 1 \mathrm{H}, J=8.8,2.8 \mathrm{~Hz}, \mathrm{ArH}$, dia $1 \& 2), 6.35(\mathrm{~s}, 1 \mathrm{H}$, $\operatorname{ArH}$, dia 1), $6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}, \operatorname{dia} 2), 5.82(\mathrm{t}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}, \operatorname{dia} 1), 5.80(\mathrm{t}, 1 \mathrm{H}, J=$ $4.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}, \operatorname{dia} 2), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=10.0,2.8 \mathrm{~Hz}, \mathrm{CHOH}$, dia 1$), 4.02(\mathrm{dd}, 1 \mathrm{H}, J=$ $10.0,2.8 \mathrm{~Hz}, \mathrm{CHOH}$, dia 2 ), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$, dia 1 ), 3.79 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$, dia 2 ), 3.18 (m, $1 \mathrm{H}, \mathrm{CHCH}_{3}$, dia $1 \& 2$ ), 2.08 (ddd, $1 \mathrm{H}, J=13.6,9.2,4.4 \mathrm{~Hz}, \mathrm{CHOHCH}_{2}$, dia 1), $1.98(\mathrm{t}, 2 \mathrm{H}$, $J=2.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{CCH}_{2}$, dia $1 \& 2$ ), 1.91 (ddd, $1 \mathrm{H}, J=13.6,10.0,2.8 \mathrm{~Hz}, \mathrm{CHOHCH}_{2}$, dia 2), 1.76 (ddd, $1 \mathrm{H}, J=13.4,10.0,4.8 \mathrm{~Hz}, \mathrm{CHOHCH}_{2}$, dia 2 ), 1.65 (ddd, $1 \mathrm{H}, J=13.6,9.2,2.8$ $\mathrm{Hz}, \mathrm{CHOHCH}_{2}$, dia 1), $1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right.$, dia $1 \& 2$ ), $1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right.$, dia 1\&2), $1.32\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$, dia 1), $1.31\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$, dia 2), 1.08 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$, dia 1), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia 2), 0.93 (s, $3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$, dia 1$) 0.80$ (s, 3H, C(CH3 $)_{2}$, dia 2); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.2,164.2,155.9,149.8,129.6$, $129.5,122.7,122.4,111.7,111.6,111.3,103.5,101.8,100.8,67.9,67.1,56.2,44.9,44.2$, 39.8, 39.7, 34.0, 33.9, 31.6, 31.0, 28.6, 28.5, 28.3, 28.2, 26.0, 20.1, 19.3, 18.5; HRMS (EI+) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}]^{+\bullet} \mathrm{m} / \mathrm{z} 328.2038$, found $\mathrm{m} / \mathrm{z} 328.2043$.

## (R)-O-Methyl frondosin B(11).



11

A round-bottom flask was charged with allylic alcohol $10(100 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv.) and $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Br}_{2}\right]_{2}(22.4 \mathrm{mg}, 0.0300 \mathrm{mmol}, 0.100$ equiv.). Freshly distilled and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the reaction was stirred at room temperature for 6 h upon which it had reached completion, as judged by TLC. The reaction mixture was diluted
with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of florisil. The organic solvent was concentrated in vacuo. Purification by flash chromatography (silica gel, 5\% EtOAc in hexanes) yielded the title compound as pale yellow oil ( $77 \mathrm{mg}, 83 \%$ yield) as a 2.5:1 mixture with its conjugated olefin isomer. IR (film) $1613,1475,1205,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.25$ $(\mathrm{d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \operatorname{ArH}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \operatorname{ArH}), 6.77(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.5 \mathrm{~Hz}$, $\mathrm{ArH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.15\left(\mathrm{q}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 2.55(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{C}=\mathrm{CCH}_{2}\right), 2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right)$, $1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 1.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32(\mathrm{~d}, 3 \mathrm{H}, J=8.5 \mathrm{~Hz} \text {, }}\right.$ $\left.\mathrm{CHCH}_{3}\right), 1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.2$, $155.5,149.3,144.6,129.5,124.1,116.9,111.1,111.0,105.6,56.3,39.8,39.0,36.0,34.9$, 30.8, 29.2, 28.2, 26.3, 20.3, 20.0; HRMS (EI+) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}[\mathrm{M}]^{+\bullet} \mathrm{m} / \mathrm{z} 310.1933$, found $m / z 310.1928$.

## ( $R$ )-O-Methyl frondosin $B$, non-conjugated olefin isomer.



A round-bottom flask was charged with allylic alcohol $10(33 \mathrm{mg}, 0.088 \mathrm{mmol}, 1.00$ equiv.) and $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Br}_{2}\right]_{2}$ ( $34 \mathrm{mg}, 0.044 \mathrm{mmol}, 0.050$ equiv.). Freshly distilled and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the reaction was stirred at $-20^{\circ} \mathrm{C}$ for 12 h , upon which it had reached completion, as judged by TLC. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of florisil. The organic solvent was concentrated in vacuo. Purification by flash chromatography (silica gel, 5\% EtOAc in hexanes) yielded the title compound as pale yellow oil ( $27 \mathrm{mg}, 98 \%$ yield) as a $1: 1$ mixture of diastereomers. IR (film) 1613, 1475, 1205, $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.27(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, ArH, dia 1), $7.25(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$, dia 2$), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{ArH}$, dia $1 \& 2$ ), $6.80(\mathrm{dd}, 1 \mathrm{H}, J=9.0,2.5 \mathrm{~Hz}, \mathrm{ArH}$, dia 1), $6.78(\mathrm{dd}, 1 \mathrm{H}, J=9.0,2.5 \mathrm{~Hz}, \mathrm{ArH}, \operatorname{dia} 2), 5.59$ (dd, $1 \mathrm{H}, J=6.4,4.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}$, dia 1), $5.55(\mathrm{dd}, 1 \mathrm{H}, J=7.6,6.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}$, dia 2), 3.85
( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$, dia $1 \& 2$ ), $3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHC=C}$, dia 1$), 3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{C}$, dia 2), 3.20 (dqd, $1 \mathrm{H}, J=7.2,7.2,6.4 \mathrm{~Hz}, \mathrm{CHCH}_{3}$, dia 1), $3.14\left(\mathrm{qd}, 1 \mathrm{H}, J=7.2,7.2,2.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$, dia 2), 2.55 (dqd, $1 \mathrm{H}, J=16.4,4.4,2.2 \mathrm{~Hz}, \mathrm{CHCH}_{3} \mathrm{CH}_{2}$, dia 1 ), 2.41 (ddd, $J=16.4,7.2,2.4$ $\mathrm{Hz}, \mathrm{CHCH}_{3} \mathrm{CH}_{2}$, dia 2), $2.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.66(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34\left(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$, dia 1\&2), 1.18 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia $\left.1 \& 2\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia 1$)$, $1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia 2$)$; ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.53,158.9,155.7,148.6,148.3,147.3,131.2,131.1,117.3$, $116.1,115.6,115.3,111.3,111.2,110.7,110.6,102.4,56.4,43.1,42.9,39.2,39.0,36.9$, $36.7,35.8,35.7,34.9,33.6,33.1,31.0,30.8,26.8,26.6,23.7,23.6,19.7,18.4$; HRMS (EI+) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}[\mathrm{M}]^{+\bullet} \mathrm{m} / \mathrm{z} 310.1933$, found $m / z 310.1928$.

## (R)-(+)-Frondosin B(1).


(+)-1

From $\boldsymbol{O}$-methyl frondosin $\mathbf{B}$ (11): To a solution of $(R)$ - $O$-methyl frondosin B (11) and its conjugated olefin isomer ( $2.5: 1,125 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{BBr}_{3}$ ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.28 \mathrm{~mL}, 1.28 \mathrm{mmol}, 3.20$ equiv.) dropwise at $-78{ }^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 30 min , the solution was warmed to $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was then quenched with sat. aqueous $\mathrm{NaHCO}_{3}$ and diluted with EtOAc ( 6 mL ). The organic layer was washed with sat. aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography (silica gel, 5\% EtOAc in hexanes) yielded the title compound and its conjugated olefin isomer as a pale yellow oil (2.5:1, $105 \mathrm{mg}, 90 \%$ total yield).

From allylic alcohol 10 by one-pot cyclization/isomerization/deprotection: To a solution of allylic alcohol $\mathbf{1 0}$ ( $114 \mathrm{mg}, 0.347 \mathrm{mmol}, 1.00$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was
added $\mathrm{BBr}_{3}$ ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.22 \mathrm{~mL}, 1.22 \mathrm{mmol}, 3.50$ equiv.) dropwise at $-78{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and was then allowed to reach $-15{ }^{\circ} \mathrm{C}$ (acetone/ice). After 3 h , the reaction mixture was quenched with sat. aqueous $\mathrm{NaHCO}_{3}$ ( 5 $\mathrm{mL})$ and aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{M}, 5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 15 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, $5 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) yielded the title compound as pale yellow oil ( $71.0 \mathrm{mg}, 69 \%$ yield) and its conjugated olefin isomer ( $19.8 \mathrm{mg}, 19 \%$ yield). ( $R$ )-(+)frondosin $\mathrm{B}:[\alpha]^{20}{ }_{\mathrm{D}}=+16.3(c=0.12, \mathrm{MeOH})\left[\right.$ lit. $[\alpha]^{20}{ }_{\mathrm{D}}=+18.6(c=0.17, \mathrm{MeOH}),{ }^{57}[\alpha]^{20}{ }_{\mathrm{D}}$ $\left.=+15.2(c=0.13, \mathrm{MeOH})^{58}\right]$; IR (film) 3300, 2930, 1620, 1460, $1189 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{ArH}), 6.67(\mathrm{dd}, 1 \mathrm{H}$, $J=8.8,2.5 \mathrm{~Hz}, \mathrm{ArH}), 4.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.17\left(\mathrm{q}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 2.51(\mathrm{t}, 2 \mathrm{H}, J=$ $6.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CCH}_{2}$ ), $2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArC}=\mathrm{CCH}_{2}\right), 2.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 2.08(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{ArC}=\mathrm{CCH}_{2}\right), 1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 1.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32$ $\left(\mathrm{d}, 3 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4$, 150.9 , 149.3, 144.6, 129.8, 124.0, 116.7, 111.3, 111.1, 107.5, 39.7, 38.7, 35.9, 34.9, 30.8, 29.2, 28.2, 26.3, 20.3, 20.0.

## (S)-Methyl-5-(5-methoxybenzofuran-2-yl)-hexanoate (13).


(S) -13

To a suspension of KOt - $\mathrm{Bu}(30.6 \mathrm{mg}, 0.273 \mathrm{mmol}, 1.30$ equiv.) in dry THF ( 3 mL ) was added methyl 2-(diethoxyphosphoryl)acetate ( $53.3 \mu \mathrm{~L}, 0.294 \mathrm{mmol}, 1.40$ equiv.) dropwise at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was allowed to warm up to room temperature and stirred for an additional 15 min , before a solution of aldehyde $(S)$ - $7 \mathbf{a}$ ( $45.0 \mathrm{mg}, 0.210$

[^3]mmol, 1.00 equiv., $86 \%$ ee) in THF ( 2 mL ) was added. After the reaction mixture was stirred for 12 h at room temperature, it was diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ and quenched upon slow addition of water $(1 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the crude product ( 50 mg ), which was used in the next step without further purification.
The crude ( $S, E$ )-methyl-(5-methoxybenzofuran-2-yl)-hexanoate ( 50 mg ) was dissolved in methanol ( 3 mL ) and Lindlar's catalyst ( Pd on $\mathrm{Ca}_{2} \mathrm{CO}_{3}$, poisoned with Pb ) ( $15.5 \mathrm{mg}, 0.0700$ mmol, 0.05 equiv.) was added and the system flushed with hydrogen. The mixture was stirred for 12 h at room temperature and then diluted with methanol and filtered through celite. The solvent was removed in vacuo and the obtained crude product was purified by flash chromatography (silica gel, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentanes) to give the title compound ( 40 mg , $88 \%$ yield over two steps $):[\alpha]^{20}{ }_{\mathrm{D}}=+19.6\left(c=0.10, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit} .[\alpha]^{20}{ }_{\mathrm{D}}=-20.4(c=0.104\right.$, $\mathrm{CDCl}_{3}$ ) for $\left.(R) \mathbf{- 1 3}(84 \% \mathrm{ee})^{58}\right]$; IR (film) $1735,1475,1205,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{Ar}-\mathbf{H}), 6.80(\mathrm{dd}, 1 \mathrm{H}, J=$ 9.0, 2.7 Hz, ArH), $6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.92(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCH}_{3}$ ), $2.32\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me} ; 1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 1.66(\mathrm{~m}\right.$, $\left.3 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.32\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $174.2,164.3,155.9,149.7,129.6,111.7,111.4,103.5,101.3,56.2,51.7,35.0,34.2,33.7$, 22.8, 19.2.

## $(R)-\left[{ }^{2} \mathrm{H}\right]$-3-(5-methoxybenzofuran-2-yl)butanal $\left(\left[{ }^{2} \mathrm{H}\right]-8\right)$.


$(R)-\left[{ }^{2} \mathrm{H}\right]-8$

To a plastic vial (Wheaton HDPE) was added HF ( $48 \mathrm{wt} \%, 35.1 \mathrm{mg}, 0.840 \mathrm{mmol}, 1.00$ equiv.) followed by 1,2-dimethoxyethane ( $1.7 \mathrm{~mL}, 1 \mathrm{~m}$ relative to aldehyde) and a magnetic stir bar. The imidazolidinone catalyst $(S, S)-\mathbf{4 b} \cdot \mathrm{HCl}(47.7 \mathrm{mg}, 0.170 \mathrm{mmol}, 0.200$ equiv.)
were added and the reaction mixture was cooled to $-20^{\circ} \mathrm{C}$. Crotonaldehyde $\left[{ }^{2} \mathrm{H}\right]-12^{\text {s9 }}$ ( 120 $\mathrm{mg}, 1.69 \mathrm{mmol}, 2.01$ equiv., $>95 \% \mathrm{D}$ ) was added to the reaction mixture followed by trifluoroborate $\mathbf{6 a}$ ( $214 \mathrm{mg}, 0.840 \mathrm{mmol}, 1.00$ equiv.). The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 24 h and diluted with $\mathrm{CHCl}_{3}(2.5 \mathrm{~mL})$, quenched with $1 \mathrm{M} \mathrm{HCl}(2.5 \mathrm{~mL})$ and stirred at ambient temperature for 30 min . The aqueous layer was extracted with $\mathrm{CHCl}_{3}(2 \times 15 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, $10 \%$ EtOAc in hexanes) yielded the title compound as clear oil ( $132.5 \mathrm{mg}, 72 \%$ yield, $84 \% \mathrm{ee}) .[\alpha]^{20}{ }_{\mathrm{D}}=-13.7\left(c=1.3, \mathrm{CHCl}_{3}\right.$ ); IR (film) 1725,1476 , 1206, $1031 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.80(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$ ), $7.30(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.83(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.36$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.92\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.68(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}$ ), 1.39 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 200.9$, 162.0, 155.7, 149.5, 129.0, $111.9,111.2,103.2,101.5,55.8,48.7,18.7$; HRMS (ESI+) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{DO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ $m / z 220.1079$, found $m / z 220.1073$. The enantiomeric excess was determined by SFC using a Chiracel OJ-H column ( $5 \%$ to $10 \% \mathrm{MeCN}$, linear gradient, $100 \mathrm{bar}, 35^{\circ} \mathrm{C}$ oven, flow $=$ $4.0 \mathrm{~mL} / \mathrm{min}) ;(S)$ isomer $\mathrm{t}_{\mathrm{r}}=4.52 \mathrm{~min},(R)$ isomer $\mathrm{t}_{\mathrm{r}}=4.90 \mathrm{~min}$.

## (R)-[ $\left.{ }^{2} \mathrm{H}\right]$-1-(6,6-dimethylcyclohex-1-eyl-)-3-(5-methoxybenzofuran-2-yl)butan-1-ol ( $\left.{ }^{2} \mathrm{H}\right]-10$ ).


$\left[{ }^{2} \mathrm{H}\right]-10$

To a solution of 2,4,6-triisopropylbenzenesulfonyl hydrazone (5) ${ }^{56}$ ( $206 \mathrm{mg}, 0.506 \mathrm{mmol}$, 1.00 equiv.) in anhydrous THF ( 2 mL ) was added $t$ - $\operatorname{BuLi}(600 \mu \mathrm{~L}, 1.7 \mathrm{M}, 1.01 \mathrm{mmol}, 2.00$ equiv.) dropwise over 15 min at $-78^{\circ} \mathrm{C}$. The resultant solution was stirred at $-78^{\circ} \mathrm{C}$ for 30

[^4]$\min$ and then at $0{ }^{\circ} \mathrm{C}$ for 15 min , upon which $\mathrm{N}_{2}$ evolution was observed. Upon cooling back down to $-78{ }^{\circ} \mathrm{C}$, aldehyde $\left[{ }^{2} \mathrm{H}\right]-8(166 \mathrm{mg}, 0.760 \mathrm{mmol}, 1.50$ equiv.) in THF ( 1 mL ) was added via cannula. The resulting reaction mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for 3 h and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) yielded the title compound as a clear oil as $1: 1$ mixture of diastereomers ( $139 \mathrm{mg}, 84 \%$ yield). The diastereomers can be separated for analytical purposes using preparative TLC ( $5 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, eluted twice). IR (film) 3442, 1617, 1476, 1205, $1032 \mathrm{~cm}^{-1}$; HRMS (ESI+) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{DO}_{3}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 330.2174$, found $m / z$ 330.2168. Diastereomer $1:[\alpha]^{20}{ }_{\mathrm{D}}=+11.9$ $\left(c=0.088, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.85(\mathrm{t}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.29(\mathrm{dt}, J=9.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.10(\mathrm{dd}, J$ $\left.=14.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOHCH}_{2}\right), 2.04-1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2}\right), 1.70(\mathrm{dd}, J=14.1,3.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHOHCH} 2), ~ 1.62-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 1.50-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.36$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CDCH}_{3}\right), 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 164.9,155.6,149.5,149.4,129.3,122.5,111.4,111.1,103.1,100.6,67.0,55.9$, $43.9,39.5,33.8,29.7,28.3,28.2,25.8,19.0,18.1$. Diastereomer 2: $[\alpha]^{20}{ }_{\mathrm{D}}=-6.5(c=0.15$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 6.81(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.38(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 5.83(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}), 4.04(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}=\mathrm{CCH}_{2}$ ), $1.93\left(\mathrm{dd}, J=14.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOHCH}_{2}\right), 1.78(\mathrm{dd}, J=14.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}$, CHOHCH 2$), ~ 1.59-1.52 ~\left(m, 2 H, ~ C=C H_{2} C H_{2}\right), 1.44-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.33$ ( s , $\left.3 \mathrm{H}, \mathrm{CDCH}_{3}\right), 0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.8,155.6,149.9,149.5,129.3,122.1,111.4,111.1,103.1,101.6,67.6,55.9,44.6,39.4$, 33.6, 28.1, 28.1, 25.7, 20.5, 19.0.

## $(R)-\left[^{2} \mathbf{H}\right]-O$-Methyl frondosin $B\left(\left[{ }^{2} \mathbf{H}\right]-11\right)$.


$\left[{ }^{2} \mathrm{H}\right]-11$
A round-bottom flask was charged with allylic alcohol $\left[{ }^{2} \mathrm{H}\right]-10(26.0 \mathrm{mg}, 0.0800 \mathrm{mmol}$, 1.00 equiv.) and $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Br}_{2}\right]_{2}(11.6 \mathrm{mg}, 0.0158 \mathrm{mmol}, 0.200$ equiv.). Freshly distilled and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added and the reaction was stirred at room temperature for 6 h upon which it had reached completion, as judged by TLC. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of florisil. The organic solvent was concentrated in vacuo. Purification by chromatography (silica gel, 5\% EtOAc in hexanes) yielded the title compound as pale yellow oil ( $18.5 \mathrm{mg}, 75 \%$ yield) as a $2.5: 1$ mixture with its conjugated olefin isomer. IR (film) 1613, 1475, 1205, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{dd}, J=8.8$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.57\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2}\right), 2.20-2.06(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}$ ), 1.76-1.67 (m, 2H, $\mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}$ ), 1.65-1.54 (m, 3H, $\left.\mathrm{CH}_{2} \mathbf{H}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CDCH}_{3}\right), 1.092\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.089(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.0,155.1,149.0,144.4,129.2,123.7$, 116.6, 110.9, 110.8, 105.2, 56.1, 39.4, 38.5, 35.7, 30.5, 28.9, 27.8, 26.0, 20.0, 19.6; HRMS (ESI+) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{DO}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z 312.2068$, found $m / z 312.2065$.

## $(R)-(+)-\left[^{2} \mathbf{H}\right]-$ Frondosin $\mathbf{B}\left(\left[{ }^{2} \mathbf{H}\right]-(+) 1\right)$.


$\left[^{2} \mathrm{H}\right]-(+)-1$

To a solution of allylic alcohol $\left[{ }^{2} \mathrm{H}\right]-10\left(47.0 \mathrm{mg}, 0.143 \mathrm{mmol}, 1.00\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL ) was added $\mathrm{BBr}_{3}$ ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 500 \mu \mathrm{~L}, 0.499 \mathrm{mmol}$, 3.5 equiv.) dropwise at $-78{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and was then allowed to reach -15 ${ }^{\circ} \mathrm{C}$ (acetone/ice). After 2 h , the reaction mixture was quenched with sat. aqueous $\mathrm{NaHCO}_{3}$ ( 5 mL ) and aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~m}, 5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\times 10 \mathrm{~mL}$ ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, $5 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) yielded the title compound as a pale yellow oil ( $24.8 \mathrm{mg}, 59 \%$ yield) and its conjugated olefin isomer ( $7.3 \mathrm{mg}, 17 \%$ yield). ( $R$ )-$(+)-\left[{ }^{2} \mathrm{H}\right]$-frondosin $\mathrm{B}:[\alpha]^{20}{ }_{\mathrm{D}}=+6.5\left(c=1.5, \mathrm{CHCl}_{3}\right)$; IR (film) 3300, 2927, 1591, 1457, $1198 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.70(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArOH}), 2.59-2.48(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}=\mathrm{CCH}_{2}$ ), 2.21-2.03 (m, 3H, CH2 $\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}$ ), 1.75-1.66 (m, $2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}$ ), 1.64-1.52 (m, 3H, CH2 $\left.\mathbf{H}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CDCH}_{3}\right), 1.083\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.079(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 160.2,150.7,149.1,144.4,129.6,123.7$, $116.5,111.1,110.9,107.3,39.5,38.3,35.7,34.5,34.3,34.2,30.6,28.9,27.9,26.1,20.0$, 19.7; HRMS (ESI+) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{DO}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 298.1912$, found $\mathrm{m} / \mathrm{z} 298.1914$.

## (R)-3-(benzofuran-2-yl)-1-(6,6-dimethylcyclohex-1-enyl)butan-1-ol.



To a solution of 2,4,6-triisopropylbenzenesulfonyl hydrazone $\mathbf{9}^{56}(160 \mathrm{mg}, 0.400 \mathrm{mmol}$, 1.00 equiv.) in anhydrous THF ( 1.5 ml ) was added $t-\operatorname{BuLi}(550 \mu \mathrm{~L}, 0.88 \mathrm{mmol}, 1.6 \mathrm{~m}$ in pentane, 2.20 equiv.) dropwise over 15 min at $-78^{\circ} \mathrm{C}$. The resultant solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and then at $0^{\circ} \mathrm{C}$ for 15 min , upon which $\mathrm{N}_{2}$ evolution was observed. Upon cooling back down to $-78^{\circ} \mathrm{C}$, aldehyde $\mathbf{6} \mathbf{b}^{54}(130 \mathrm{mg}, 0.690 \mathrm{mmol}, 1.73$ equiv.) in THF ( 1 mL ) was added via cannula. The resulting reaction mixture was then stirred at $0^{\circ} \mathrm{C}$
for 1 h and at room temperature for 3 h and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. Flash chromatography ( $10 \%$ EtOAc in hexanes) of the residue gave the title compound ( $80 \mathrm{mg}, 70 \%$ yield, 1:1 d.r.) as a yellow oil. IR (film) $3411,2932,1456$, $1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$, dia 1\&2), $7.42(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$, dia 1\&2), 7.25-7.14 (m, 4H, ArH, dia 1\&2), 6.44 (s, 1H, ArH, dia 1), $6.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}$, dia 2), $5.86(\mathrm{t}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}$, dia 1), $5.84(\mathrm{t}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}$, $\mathrm{C}=\mathrm{CH}$, dia 2), 4.31 (dd, $1 \mathrm{H}, J=9.6,3.6 \mathrm{~Hz}, \mathrm{CHOH}$, dia 1$), 4.08$ (dd, $1 \mathrm{H}, J=10.5,3.3 \mathrm{~Hz}$, CHOH , dia 2), 3.33-3.14 (m, 2H, $\mathrm{CHCH}_{3}$, dia 1\&2), 2.14 (ddd, $1 \mathrm{H}, J=14.3,9.6,4.8 \mathrm{~Hz}$, $\mathrm{CHOHCH}_{2}$, dia 1), 2.07-1.93 (m, 5H, $\mathrm{C}=\mathrm{CCH}_{2}$, dia $1 \& 2$, $\mathrm{CHOHCH}_{2}$, dia 2), 1.81 (ddd, $1 \mathrm{H}, J=14.3,9.9,4.5 \mathrm{~Hz}, \mathrm{CHOHCH}_{2}$, dia 2), 1.73 (ddd, $1 \mathrm{H}, J=13.9,9.1,3.7 \mathrm{~Hz}$, $\mathrm{CHOHCH}_{2}$, dia 1), 1.63-1.52 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}$, dia $1 \& 2$ ), $1.50-1.42(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}$, dia $1 \& 2$ ), $1.39\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$, dia 1$), 1.37(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\mathrm{CHCH}_{3}$, dia 2), 1.13 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$, dia 1), $0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia 2), 0.97 ( $\mathrm{s}, 3 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$, dia 1), $0.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia 2); ${ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,163.0$, 154.57, 154.51, 149.8, 149.6, 128.8, 123.08, 123.07, 122.5, 122.34, 122.31, 122.2, 120.30, $120.26,110.75,110.73,101.4,100.4,67.7,67.0,44.7,44.0,39.53,39.51,33.8,33.6,31.2$, 30.7, 29.31, 29.29, 28.3, 28.2, 28.10, 28.08, 25.76, 25.73, 20.6, 19.1, 18.2; HRMS (ESI+) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 321.1825$, found $\mathrm{m} / \mathrm{z} 321.1827$.

## Desoxyfrondosin B (14).



14

A round-bottom flask was charged with the allylic alcohol prepared in the previous step ( $55.0 \mathrm{mg}, 0.180 \mathrm{mmol}, 1.00$ equiv.) and $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Br}_{2}\right]_{2}(40.7 \mathrm{mg}, 0.055 \mathrm{mmol}, 0.30$ equiv.). Freshly distilled and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the reaction was
stirred at room temperature for 6 h upon which it had reached completion, as judged by TLC. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of florisil. The organic solvent was concentrated in vacuo. Purification by flash chromatography (silica gel, $5 \% \mathrm{EtOAc}$ in hexanes) yielded the title compound as a pale yellow oil ( $40 \mathrm{mg}, 80 \%$ yield) as a 2.5:1 mixture with its conjugated olefin isomer. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.70(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.25-7.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 3.31-3.17$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.71-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2}\right), 2.26-2.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right)$, 1.78-1.69 (m, 2H, C= $\mathrm{CCH}_{2} \mathrm{CH}_{2}$ ), 1.67-1.53 (m, 3H, $\left.\mathrm{CH}_{2} \mathbf{H}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=6.9$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right), 1.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $158.9,154.0,144.4,128.9,122.8,121.9,121.8,119.6,116.5,110.7,39.5,38.2,35.7,34.7$, 30.7, 28.9, 27.9, 26.0, 20.1, 19.9; HRMS (ESI+) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 281.1900, found $m / z 281.1902$.
tert-Butyl (3R)-1-(6,6-dimethylcyclohex-1-enyl)-3-(1H-indol-2-yl)butyl carbonate. ${ }^{\text {S10 }}$


To a solution of 2,4,6-triisopropylbenzenesulfonyl hydrazone $\mathbf{9}^{56}(77.7 \mathrm{mg}, 0.191 \mathrm{mmol}$, 1.00 equiv.) in anhydrous THF ( 1.5 mL ) was added $t$-BuLi ( $265 \mu \mathrm{~L}, 0.420 \mathrm{mmol}, 1.6 \mathrm{M}$ in pentane, 2.20 equiv.) dropwise over 15 min at $-78^{\circ} \mathrm{C}$. The resultant solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and then at $0^{\circ} \mathrm{C}$ for 15 min , upon which $\mathrm{N}_{2}$ evolution was observed. Upon cooling back down to $-78{ }^{\circ} \mathrm{C}$, aldehyde $\mathbf{6 c}{ }^{54}(83.3 \mathrm{mg}, 0.290 \mathrm{mmol}, 1.52$ equiv.) in THF ( 1 mL ) was added via cannula. The resulting reaction mixture was then stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 3 h before it was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase was extracted $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography $\left(2 \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) of

[^5]the residue gave the title compound ( $64.5 \mathrm{mg}, 85 \%$ yield, $1: 1$ d.r.) as a clear oil. IR (film) 3423, 2938, 1733, 1281, 1156; Diastereomer 1: ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}$, NH), $7.55(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\operatorname{ArH}), 7.07(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.84(\mathrm{t}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH})$, $5.30(\mathrm{dd}, 1 \mathrm{H}, J=10.2,2.3 \mathrm{~Hz}, \mathrm{CHOBoc}), 2.89\left(\mathrm{ddd}, 1 \mathrm{H}, J=10.4,7.0,3.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$, 2.11 (ddd, $\left.1 \mathrm{H}, J=14.1,10.2,3.6 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OBoc}) \mathrm{CH}_{2}\right), 2.06-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2}\right), 1.80$ (ddd, $\left.1 \mathrm{H}, J=14.4,10.4,2.5 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OBoc}) \mathrm{CH}_{2}\right), 1.56-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 1.53(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) 1.40\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.39-1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 154.1,144.1,144.0$, 135.6, 128.6, 125.0, 120.8, 119.8, 119.3, 110.7, 97.5, 82.4, 73.7, 45.4, 39.3, 33.5, 29.9, 28.2, 28.1, 27.8, 27.6, 25.7, 21.0, 18.8. Diastereomer 2: ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.29$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.54(\mathrm{~d}, 1 \mathrm{H}, J=7.7, \mathrm{ArH}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}, \mathrm{ArH}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 6.28(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{ArH}), 5.88(\mathrm{t}, 1 \mathrm{H}, J=3.9$ $\mathrm{Hz}, \mathrm{C}=\mathrm{CH}$ ), 5.26 (dd, $1 \mathrm{H}, J=8.7,5.0 \mathrm{~Hz}, \mathrm{CHOBoc}), 3.02-2.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.24$ (ddd, $1 \mathrm{H}, J=14.8,8.6,6.4 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OBoc}) \mathrm{CH}_{2}$ ), 2.11-1.94 (m, 2H, $\mathrm{C}=\mathrm{CCH}_{2}$ ), 1.92 (ddd, $\left.1 \mathrm{H}, J=14.2,7.8,14.2 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OBoc}) \mathrm{CH}_{2}\right), 1.64-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 1.47(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.07(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.3,144.1,143.5,135.7$, $128.5,125.0,120.9,119.9,119.4,110.5,98.3,81.9,73.5,42.6,39.4,33.6,30.1,28.4,28.2$, 27.8, 27.8, 25.8, 20.7, 18.8. HRMS (ESI+) calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 398.2690, found $m / z 398.2690$.

## Indole derivative 15.



15

To a solution of the previously prepared allylic carbonate $(27.5 \mathrm{mg}, 0.0692 \mathrm{mmol}, 1.00$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3 mL ) was added trifluoroacetic acid ( $26.8 \mu \mathrm{~L}, 0.346 \mathrm{mmol}, 5.00$ equiv.) and the resultant dark solution was stirred at room temperature for 2 h . The reaction was quenched with sat. aqueous $\mathrm{NaHCO}_{3}$ and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Flash chromatography ( $2 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) of the residue gave $\mathbf{1 5}$ ( $17.4 \mathrm{mg}, \mathbf{9 0 \%}$ yield, 1.4:1 d.r.) as a clear oil. IR (film) $3409,2925,1459,1319,740 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$, dia 1), $7.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$, dia 2), 7.54-7.48 (m, $1 \mathrm{H}, \mathrm{ArH}$, dia 1\&2), 7.36-7.24 (m, 1H, ArH, dia 1\&2), 7.15-7.07 (m, 2H, ArH, dia 1\&2), 5.63 (dd, 1H, J $=7.8,3.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}$, dia 1$), 5.55(\mathrm{~d}, 1 \mathrm{H}, J=8.2,2.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}$, $\operatorname{dia} 2), 3.99(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCH}$, dia 2$), 3.97(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCH}$, dia 1$), 3.39-3.30(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{3}$, dia 1), 3.07-2.98 (m, $1 \mathrm{H}, \mathrm{CHCH}_{3}$, dia 2), $2.65(\mathrm{dd}, 1 \mathrm{H}, J=15.7,2.8 \mathrm{~Hz}$, $\mathrm{C}=\mathrm{CHCH}_{2}$, dia 2), $2.44-2.24\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right.$, dia $\left.1 \& 2\right), 2.20(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}$, $\mathrm{ArCHCH}_{2}$, dia 2$), 2.11\left(\mathrm{~d}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz}, \mathrm{ArCHCH}_{2}\right.$, dia 1$), 2.01-1.81(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2}$, dia $\left.1 \& 2\right)$, 1.75-1.54 (m, $2 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2}$, dia $\left.1 \& 2\right)$, 1.51-1.42 (m, 1 H , $\mathrm{C}=\mathrm{CHCH}_{2}$, dia $1 \& 2$ ), $1.41\left(\mathrm{~d}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$, dia 1$), 1.39(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}$, $\mathrm{CHCH}_{3}$, dia 2), $1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia 1), $1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia 2), 1.18 (s, 3 H , $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$, dia 2), $1.15\left(\mathrm{~s}, 3 \mathrm{H} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$, dia 1); ${ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.6,147.1$, $140.2,139.3,134.5,134.2,129.3,128.84,120.77$, 120.6, 119.0, 118.9, 117.5, 117.34, $115.1,113.1,113.0,110.5,110.3,51.4,50.4,42.8,42.7,38.0,37.8,36.7,36.6,36.3,34.3$, $33.1,31.9,31.0,30.7,26.7,26.3,23.5,23.4,20.4,18.3$; HRMS (ESI+) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z 280.2060$, found $m / z 280.2062$.

(R)-7a




10: $1: 1 \mathrm{dr}$



| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |  | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 150 | 14 |  | 120 | , | 100 | $\mathrm{f1}$ (ppm) |  |  |  |  |  |  |  |  |


frondosin (+)-1






(R) $-\left[^{2} \mathrm{H}\right]-8$



$\left[{ }^{2} \mathrm{H}\right]-10$ : diastereomer 1



$\left[{ }^{2} \mathrm{H}\right]-10$ : diastereomer 2



$\left[{ }^{2} \mathrm{H}\right]-1$




[^0]:    ${ }^{\text {S1 }}$ Perrin, D. D. \& Armarego, W. L. F. (1998) Purification of Laboratory Chemicals; $3^{\text {rd }}$ ed., Pergamon Press, Oxford.
    ${ }^{\text {S2 }}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K. \& Timmers, F. J. (1996) Organometallics, 15, 15181520.
    ${ }^{\text {S3 }}$ Still, W. C.; Kahn, M. \& Mitra, A. J. (1978) J. Org. Chem. 43, 2923-2925.

[^1]:    ${ }^{\text {S4 }}$ Lee, S. \& MacMillan, D. W. C. (2007) J. Am. Chem. Soc. 129, 15438-15439.
    ${ }^{\text {S5 }}$ Molander, G. A. \& Ito, T. (2001) Org. Lett. 3, 393-396.

[^2]:    ${ }^{\text {S6 }}$ Törmäkangas O. P.; Toivola R. J.; Karvinen E. K. \& Koskinen A. M. P. (2002) Tetrahedron 58, 2175-2181.

[^3]:    ${ }^{\text {S7 Patil, A. D.; Freyer, A. J.; Killmer, L.; Offen, P.; Carte, B.; Jurewicz, A. J. \& Johnson, R. K. (1997) Tetrahedron 53, }}$ 5047-5060.
    ${ }^{\text {S8 }}$ Inoue, M.; Carson, M. W.; Frontier, A. J.; Danishefsky, S. J. (2001) J. Am. Chem. Soc. 123, 1878-1889.

[^4]:    ${ }^{\text {S9 }}$ Mariano, P.S. \& Bay, E. (1980) J. Org. Chem. 45, 1763-1769.

[^5]:    ${ }^{\text {S10 }}$ Under the reaction conditions, a complete migration of the tert-butoxycarbonyl (Boc) group from the indole nitrogen to the secondary alcohol moiety was observed.

