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The orientability problem in open Gromov–Witten theory

PENKA GEORGIEVA

We give an explicit formula for the holonomy of the orientation bundle of a family
of real Cauchy–Riemann operators. A special case of this formula resolves the
orientability question for spaces of maps from Riemann surfaces with Lagrangian
boundary condition. As a corollary, we show that the local system of orientations
on the moduli space of J–holomorphic maps from a bordered Riemann surface to a
symplectic manifold is isomorphic to the pullback of a local system defined on the
product of the Lagrangian and its free loop space. As another corollary, we show
that certain natural bundles over these moduli spaces have the same local systems of
orientations as the moduli spaces themselves (this is a prerequisite for integrating the
Euler classes of these bundles). We will apply these conclusions in future papers to
construct and compute open Gromov–Witten invariants in a number of settings.

53D45, 57R17; 14N35

1 Introduction

The theory of J–holomorphic maps introduced by Gromov [5] plays a central role
in the study of symplectic manifolds. Considerations in theoretical physics led to
the development of the Gromov–Witten invariants. They are invariants of symplectic
manifolds and can be interpreted as counts of J–holomorphic maps from a closed
Riemann surface passing through prescribed constraints. Open string theory motivated
the study of J–holomorphic maps from a bordered Riemann surface with boundary
mapping to a Lagrangian submanifold and predicts the existence of open Gromov–
Witten invariants. Their mathematical definition, however, has proved to be a subtle
problem. Two main obstacles are the question of orientability and the existence of
real codimension-one boundary strata of the moduli space of maps from a bordered
Riemann surface. This work addresses the first of these issues.

The orientability question in the case † D D2 was previously studied by de Silva
[14] and Fukaya, Oh, Ohta and Ono [4]; see also Ekholm, Etnyre and Sullivan [2],
Seidel [13], Wehrheim and Woodward [18] and Welschinger [19]. The moduli space
of J–holomorphic maps from D2 is not always orientable. However, Fukaya et al [4]
showed that the moduli space is orientable if the Lagrangian L is relatively spin and a
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choice of a relatively spin structure determines an orientation. This result was extended
by Solomon [15] to relatively pin˙ Lagrangians and Riemann surfaces of higher genus
with a fixed complex structure. Solomon constructed a canonical isomorphism between
the determinant line bundle of the moduli space and the pullback by the evaluation maps
of a certain number of copies of det.TL/. We extend these results to any Lagrangian
and allow the complex structure on the domain to vary. We also discover an entirely
new topological condition sufficient for the orientability of the moduli space.

In this paper, we give an explicit criterion specifying whether the determinant line bundle
of a loop of real Cauchy–Riemann operators over bordered Riemann surfaces is trivial;
see Theorem 1.1. As a corollary, we conclude that the local system of orientations on the
moduli space of J–holomorphic maps from a bordered Riemann surface is isomorphic
to the pullback of a local system defined on the product of the Lagrangian and its free
loop space; see Corollary 1.8. Our formula recovers the orientability results obtained
in [4] and [15] as special cases and detects new topological conditions sufficient for
the orientability of the moduli space, such as w2 of an orientable Lagrangian being the
square of a class; see Corollary 1.6. As another corollary, we show that the local systems
of orientations of certain natural bundles over these moduli spaces are canonically
isomorphic to the local systems of orientations of the moduli spaces themselves which
is a prerequisite for integrating the Euler classes of these bundles; see Corollary 1.10.
This is a generalization of Pandharipande, Solomon and Walcher [11, Lemma 13].

If M is a manifold, possibly with boundary, or a (possibly nodal) surface, and L�M

is a submanifold, a bundle pair .E;F /! .M;L/ consists of a complex vector bundle
E!M and a maximal totally real subbundle F � EjL . A real Cauchy–Riemann
operator on a bundle pair .E;F /! .†; @†/, where † is an oriented surface with
boundary @†, is a linear map of the form

D D N@CAW �0.E;F /� f� 2 �.†;E/ W �.@†/� Fg

�!�
0;1
j .E/� �.†; .T �†; j /0;1˝C E/;

where N@ is the holomorphic N@–operator for some complex structure j on † compatible
with the orientation and a holomorphic structure in E and

A 2 �
�
†;HomR.E; .T

�†; j /0;1˝C E/
�

is a zeroth-order deformation term. All real Cauchy–Riemann operators are Fredholm
in appropriate completions; see McDuff and Salamon [10, Theorem C.1.10].

Let I D Œ0; 1�. Given an orientation-preserving diffeomorphism �W †!†, let

.M� ; @M�/D
�
.†; @†/� I

�
=.x; 1/� .�.x/; 0/
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be the mapping torus of � and � W M�! S1 be the projection map. For each t 2 S1 ,
let †t D �

�1.t/ be the fiber over t . A continuous family of real Cauchy–Riemann
operators on .E;F / is a collection of real Cauchy–Riemann operators

Dt W �
0.Ej†t

;Fj@†t
/!�

0;1
jt
.Ej†t

/

which varies continuously with t 2 S1 . We denote by det.D/! S1 the determinant
line bundle corresponding to this family; see [10, Section A.2].

Theorem 1.1 Let † be a smooth oriented bordered surface, �W †!† be a diffeo-
morphism preserving the orientation and each boundary component, and .E;F / be a
bundle pair over .M� ; @M�/. For each boundary component .@†/i of †, choose a
section ˛i of

.@M�/i DM�j.@†/i
! S1:

If D is any family of real Cauchy–Riemann operators on .E;F /, then

hw1.det D/;S1
i D

X
i

�˝
w1.F /; .@†/i

˛
C 1

�
hw1.F /; ˛iiC

X
i

˝
w2.F /; .@M�/i

˛
:

Remark 1.2 Any two choices of sections ˛i differ by a multiple of .@†/i and thus
give the same i th term in the first sum above.

We prove this theorem in Section 3 by showing that the determinant line bundle of D

is isomorphic to the tensor product of the determinant line bundle of a N@–operator on a
line bundle and the determinant line bundle of a N@–operator on an orientable bundle.
The evaluation of their first Stiefel–Whitney classes then gives the two parts in the
formula in Theorem 1.1.

The case of Theorem 1.1 when † has one boundary component, E ! † � S1 is
trivial, and j is fixed is equivalent to the full statement of [13, Lemma 11.7], which
expresses w1.det D/ in terms of characteristic classes of the Lagrangian Grassmannian
Gr.n/ D U.n/=O.n/. Theorem 1.1 directly leads to orientability results for moduli
spaces of bordered J–holomorphic maps; such results can be obtained from [13,
Lemma 11.7] only in the case † D D2 (and using the approach of Corollary 1.5).
The way [13, Lemma 11.7] is generally used to study the orientation problem involves
(relative) pin structures, covering only the known cases of [4] and [15]. As Theorem 1.1
and Corollary 1.5 show such a structure is not necessary for the orientability of the
moduli spaces; for example, all moduli spaces associated to orientable Lagrangians
with w2 being a square class are orientable, regardless of whether or not they are
relatively spin. The last result is clearly visible from Theorem 1.1, but not from [13,
Lemma 11.7] even in the disk case. The proof of [13, Lemma 11.7] involves explicitly
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determining generators for �1 of the free loop space of Gr.n/, which then give rise to
the two terms of the righthand side in [13, (11.16)]. Our proof of Theorem 1.1 provides
a completely different and more geometric decomposition of det D and applies to the
general setting, from both the topological viewpoint (E!M� need not be trivial) and
the analytic one (j need not be fixed).

Remark 1.3 Families of real Cauchy–Riemann operators often arise by pulling back
data from a target manifold by smooth maps as follows. Suppose .M;J / is an almost
complex manifold, L�M is a submanifold, .E; I/!M is a complex vector bundle,
and F � EjL is a maximal totally real subbundle. Let r be a connection in .E; I/
and

A 2 �
�
M;HomR.E;T

�M 0;1
˝C E/

�
:

For any bordered Riemann surface .†; j / and any map uW .†; @†/! .M;L/, let ru

denote the induced connection in u�E and

Au DA ı @u 2 �
�
†;Hom.u�E; .T �†; j /0;1˝C u�E/

�
:

The homomorphisms

N@ru D
1
2
.ru
C I ıru

ı j /; N@ru CAuW �
0.u�E;u�

j@†F /!�
0;1
j .u�E/

are then real Cauchy–Riemann operators that form families of real Cauchy–Riemann
operators over families of maps.

Throughout this paper, we denote by .M; !/ a symplectic manifold, by L �M a
Lagrangian submanifold, and by J a tame almost complex structure on M . Fix a tuple
of homology classes

(1-1) bD .b; b1; : : : ; bh/ 2H2.M;L/˚H1.L/
˚h;

an oriented bordered surface .†; @†/ of genus g , an ordering of the boundary compo-
nents

@†D

ha
iD1

.@†/i Š

ha
iD1

S1;

a nonnegative integer l , and a tuple kD .k1; : : : ; kh/ 2 Zh
C . Let Bl;k

g;h.M;L;b/ be
the space of tuples .u; z;x1; : : : ;xh/, where

� z is a tuple of l interior marked points,
� xi is a tuple of ki marked points on .@†/i ,
� u is a map from .†; @†/ to .M;L/, which represents the class b 2H2.M;L/

and for which the restriction uj.@†/i represents the class bi 2H1.L/.
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In this definition, we can consider either smooth maps u or maps of class W 1;p , with
p> 2. Let J† be the space of complex structures on † compatible with the orientation,
D be the diffeomorphism group of † preserving the orientation and each boundary
component, and

Hl;k
g;h.M;L;b/D .Bl;k

g;h.M;L;b/�J†/=D:

Remark 1.4 Throughout the paper we assume that the action of D has no fixed points.
Thus, the quotient space Hl;k

g;h.M;L;b/ is a topological manifold. This happens for
example if there are sufficiently many marked points. In applications to more general
cases, this issue can be avoided by working with Prym structures on Riemann surfaces;
see Looijenga [8].

The determinant line bundle of a family of real Cauchy–Riemann operators D.E;F /

on Bl;k
g;h.M;L;b/�J† induced by a bundle pair .E;F / as in Remark 1.3 descends

to a line bundle over Hl;k
g;h.M;L;b/, which we denote by det D.E;F / . As a direct

corollary of Theorem 1.1, we obtain the following result on its orientability.

Corollary 1.5 Let  be a loop in Hl;k
g;h.M;L;b/ and e a path in Bl;k

g;h.M;L;b/�J†
lifting  such that e 1 D � � e 0 for some � 2D with �j@† D id. For each boundary
component .@†/i of †, denote by ˛i W S

1! L and ˇi W S
1 � .@†/i ! L the paths

traced by a fixed point on .@†/i and by the entire boundary component .@†/i . Then,

(1-2) hw1.det D.E;F //;  i D

hX
iD1

�˝
w1.F /; bi

˛
C 1

�
hw1.F /; ˛iiC

hX
iD1

˝
w2.F /; ˇi

˛
:

By Lemma 2.4, every loop  in Hl;k
g;h.M;L;b/ admits a lift e such that e 1 D � �e 0

for some � 2D with �j@† D id. Thus, the first assumption in Corollary 1.5 imposes
no restriction on  .

Corollary 1.6 Let  and ˛i be as in Corollary 1.5. If for some � 2H 1.L/ the class
w2.F /C �

2 belongs to Im.i�W H 2.M /!H 2.L//, then

(1-3)
˝
w1

�
det.D.E;F //

�
; 
˛
D

hX
iD1

.hw1.F /; biiC 1/hw1.F /; ˛ii:

In particular, if F is also orientable or hw1.F /; bii D 1 for every i D 1; : : : ; h, then
det.D.E;F // is orientable.
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The presence of w2.F / in (1-2) means that in general the local system of orientations
on det.D.E;F // is not the pullback of a system on L. In Section 4, we construct a
local system ZF

.w1;w2/
on the h–fold product of the Lagrangian and its free loop space

L.L/, which traces the twisting coming from the righthand side of (1-2). When there
is at least one boundary marked point on each boundary component, there is a natural
map

evW Hl;k
g;h.M;L;b/!

�
L�L.L/

�h
;

which is canonically determined up to homotopy; see Proposition 4.6. We show that the
pullback of ZF

.w1;w2/
under this map is isomorphic to the local system twisted by the

first Stiefel–Whitney class of det.D.E;F //. Moreover, ev�ZF
.w1;w2/

is trivial along the
fiber of the map forgetting the boundary marked point(s) and pushes down to the space
with no boundary marked points; see Lemma 4.7. Depending on the context, denote byeev�ZF

.w1;w2/
either the pulled-back system or its pushdown under the forgetful map.

Theorem 1.7 There is a local system ZF
.w1;w2/

on .L�L.L//h such that the local
system of orientations of det D.E;F / is isomorphic to eev�ZF

.w1;w2/
. An isomorphism

between the two systems is determined by a choice of a trivialization of F over a
basepoint in L and trivializations of F˚3 det.F / over representatives for the homotopy
classes of loops in L.

The N@–operator on Bl;k
g;h.M;L;b/�J† , given by

N@.u; j /D 1
2
.duCJ ı du ı j /;

descends to Hl;k
g;h.M;L;b/. The moduli space Ml;k

g;h.M;L;b/ � Hl;k
g;h.M;L;b/

consists of elements Œu; z;x1; : : : ;xh� satisfying N@uD 0. Linearizations of the N@–
operator along Bl;k

g;h.M;L;b/ are real Cauchy–Riemann operators over † induced by
the bundle pair .TM;TL/! .M;L/; see [10, Section 3.1]. Their determinant line
bundle descends to a line bundle over Hl;k

g;h.M;L;b/, which we denote by det.D N@/.
The significance of this bundle comes from the fact that when the moduli space is
cut transversely, the top exterior power of its tangent bundle is essentially the bundle
det.D N@/. As a corollary of Theorem 1.7, we obtain the following statement concerning
the orientation system of this moduli space.

Corollary 1.8 There is a local system ZTL
.w1;w2/

on .L�L.L//h such that the local
system of orientations on Ml;k

g;h.M;L;b/ is isomorphic to eev�ZTL
.w1;w2/

. An isomor-
phism between the two systems is determined by a choice of a trivialization of TL

over a basepoint in L and trivializations of TL˚ 3 det.TL/ over representatives for
the homotopy classes of loops in L.
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Remark 1.9 By Corollaries 1.6 and 1.8, Ml;k
g;h.M;L;b/ is orientable if w2.L/C�

2 is
in the image of the restriction homomorphism H 2.M /!H 2.L/ for some � 2H 1.L/

and L is orientable; with � D 0, this recovers [4, Theorem 8.1.1]. If L�M is not
orientable, but w2.L/ is as before, the orientation system of Ml;k

g;h.M;L;b/ is a
pullback/pushdown of several copies of the orientation system of the Lagrangian L;
with � D 0; w1.L/, this recovers [15, Theorem 1.1].

An important collection of examples of operators D.E;F / arises as follows.

If aD .a1; : : : ; am/ is an m–tuple of positive integers and n 2 ZC , let

Ln;a DOCPn.a1/˚ � � �˚OCPn.am/!CPn:

The natural conjugation on CPn lifts to Ln;a . Denote its fixed locus by LR
n;a ; this is a

real vector bundle over RPn . Let

(1-4) �n;aW VR
n;a DM

g;h

l;k
.Ln;a;LR

n;a;b/!M
g;h

l;k
.CPn;RPn;b/:

The fiber of �n;a over Œu; z;x1; : : : ;xh� is canonically isomorphic to

Ker N@.u�Ln;a;u�LR
n;a/
:

By [10, Theorem C.1.10(iii)], N@.u�Ln;a;u
�LR

n;a/ is surjective if �.b/ � 4gC 2h� 2.
Thus, VR

n;a is a vector bundle in this case and its orientation line bundle agrees with
det.N@.u�Ln;a;u

�LR
n;a//. The following corollary of Theorem 1.7, suggests that it may be

possible to integrate the twisted Euler class e.VR
n;a/ against the homology class of a

compactification

eMg;h

l;k .CPn;RPn;b/ of M
g;h

l;k
.CPn;RPn;b/

in some cases, including when the corresponding complete intersection Xn;a is a
Calabi–Yau threefold; see Remark 1.11.

Corollary 1.10 Let m; n 2 ZC and a 2 .ZC/m be such that n�
P

ai is odd. Let b

be as in (1-1) with .M;L/D .CPn;RPn/. If �.b/� 4gC 2h� 2, the line bundles
t̂op

R
VR

nIa;
t̂op

R
TM

g;h

l;k
.CPn;RPn;b/!M

g;h

l;k
.CPn;RPn;b/

are canonically isomorphic up to multiplication by RC in each fiber.

Remark 1.11 If s 2 H 0.CPn;Ln;a/ is a transverse section commuting with the
conjugations on CPn and Ln;a , Xn;aD s�1.0/ is a smooth complete intersection with
conjugation inherited from CPn . The section s induces a section zs of (1-4) such that

M
g;h

l;k
.Xn;a;X

R
n;a;b/D zs

�1.0/�M
g;h

l;k
.CPn;RPn;b/;
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where

X R
n;a DXn;a \RPn:

This suggests that (open) Gromov–Witten invariants of .Xn;a;X
R
n;a/, which should

arise from the moduli space M
g;h

l;k
.Xn;a;X

R
n;a;b/, can be computed by integrating the

Euler class

e.VR
n;a/ against Œ eMg;h

l;k .CPn;RPn;b/�;

which can be done via equivariant localization. By Bini, de Concini, Polito and
Procesi [1, Section 2.1.2]; Li and Zinger [7, Theorem 1.1]; and [11, Theorem 3], this is
indeed the case if gC h � 1 and Xn;a is a Calabi–Yau threefold in the hD 1 case.
Based on Walcher [17] and Popa and Zinger [12], there are strong indications that this
is also the case for .g; h/D .0; 2/. We plan to investigate this in the future, building
on Corollary 1.10.

The paper is organized as follows. In Section 2, we set up the notation and establish
some preliminary results. We prove the key Theorem 1.1, as well as Corollary 1.6, in
Section 3. In Section 4, we construct a local system ZF

.w1;w2/
on the h–fold product

of the Lagrangian and its free loop space, which traces the twisting coming from the
righthand side in (1-2). We then show that its pullback is canonically isomorphic
to the local system twisted by the first Stiefel–Whitney class of det.D.E;F //, thus
establishing Theorem 1.7. Corollaries 1.8 and 1.10 are proved at the end of the section.
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with the exposition and the referees for a comprehensive evaluation of this work and
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2 Conventions and preliminaries

Let X;Y be Banach spaces and DW X ! Y be a Fredholm operator. The determinant
line of D is defined as

det.D/ WD
t̂op

Ker.D/˝
t̂op

Coker.D/_:
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A short exact sequence of Fredholm operators

0 // X 0 //

D0

��

X //

D
��

X 00 //

D00

��

0

0 // Y 0 // Y // Y 00 // 0

determines a canonical isomorphism

(2-1) det.D/Š det.D0/˝ det.D00/:

For a continuous family of Fredholm operators Dt W Xt ! Yt parameterized by a
topological space B , the determinant lines det.Dt / form a line bundle over B ; see
[10, Section A.2]. For a short exact sequence of such families, the isomorphisms (2-1)
give rise to a canonical isomorphism between determinant line bundles.

Let † be a nodal bordered Riemann surface and � W e†!† be its normalization; fix
an ordering of the nodes of † and the boundary components of e† . A real Cauchy–
Riemann operator D.E;F / on .E;F /! † corresponds to a real Cauchy–Riemann
operator zD.E;F / D

L
i Di on . eE ; eF / � ��.E;F /! e† , where the sum is taken

over the components of e† . Thus, by (2-1), there is a canonical isomorphism

det. zD.E;F //Š
O

i

det.Di/:

On the other hand, by gluing together punctured disks around the special points in e† ,
we obtain a smooth surface †" and a real Cauchy–Riemann operator D" over †" for
a gluing parameter ". By [2, Section 3.2] and [18, Section 4.1], for every sufficiently
small " there is a canonical isomorphism

(2-2) det.D"/Š det. zD.E;F //˝
t̂op�M

j

Ezj ˚

M
j

Fxj

�_
;

where zj and xj are the interior and boundary nodes, respectively. Moreover, the
gluing maps satisfy an associativity property: the isomorphism (2-2) is independent of
the order in which we smooth the nodes.

Remark 2.1 Let .E;F / ! .†; @†/ be a bundle pair. Choose a trivialization of
E over a curve C� � † isotopic to one of the boundary components of †. This
trivialization can be extended over a neighborhood U of the curve C� . Pinching †
along C� , we obtain a nodal curve †s with a diffeomorphism .†�C�/! .†s–node/.
We can pull back the bundle pair .E;F / to .†s–node/. The trivialization of E over the
neighborhood U of the curve C� induces a trivialization in a punctured neighborhood
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of the node. It can be uniquely extended over †s . We say that the bundle pair .E;F /
descends to a bundle pair on the nodal surface.

Lemma 2.2 Let .†; @†/ be a smooth oriented surface with boundary. Every diffeo-
morphism hW .†; @†/! .†; @†/ which preserves the orientation and each boundary
component is isotopic to a diffeomorphism which restricts to the identity on a neighbor-
hood of @† in †.

Proof Fix a component .@†/i Š S1 of @†, an identification of a neighborhood of
.@†/i in † with S1 � Œ0; 2ı�, and � 2 .0; ı/ such that h.S1 � Œ0; ��/ � S1 � Œ0; 2ı�.
After composing h with a path of diffeomorphisms on † which restrict to the identity
outside S1 � Œ0; 2ı�, we can assume that h.S1 � Œ0; ��/ D S1 � Œ0; ��. By Farb and
Margalit [3, Proposition 2.4] and [9, (1.1)], the group of diffeomorphisms of the cylinder
preserving the orientation and each boundary component is path-connected. Thus, there
is a path of diffeomorphisms

ft W S
1
� Œ0; ��! S1

� Œ0; �� such that f0 D id; f1 D h�1
jS1�Œ0;��

:

The path ft generates a time-dependent vector field Xt . By multiplying Xt by a
bump function on † vanishing outside Œ0; �� and restricting to 1 on S1 � Œ0; �

2
�, we

obtain a time-dependent vector field eX t on †. This new vector field gives rise to
diffeomorphisms Qft of † which are identity outside S1 � Œ0; ��, while Qf1 restricts to
h�1 on S1 � Œ0; �

2
�. Then h ı Qft is a path of diffeomorphisms connecting h with a

diffeomorphism which restricts to the identity in a neighborhood of .@†/i .

Lemma 2.3 Let .†; @†/ be a smooth oriented surface with boundary and � 2 D .
Every family of real Cauchy–Riemann operators on a bundle pair .E;F / over M�

can be smoothly deformed to a family of real Cauchy–Riemann operators on a bundle
pair .E0;F 0/ over M�0 for some �0 2 D such that �0 restricts to the identity on a
neighborhood of @†.

Proof By Lemma 2.2, there exists a path hs in D such that h0D � and h1 restricts to
the identity on a neighborhood of @† in †. Set fs D �

�1 ı hs . Let .jt ;Et ;Ft ;Dt /,
with t 2 I , be any family of tuples such that jt is a complex structure on †, Dt is a
real Cauchy–Riemann operator on .Et ;Ft / over .†; @†/, and

.j1;E1;F1;D1/D .�
�j0; �

�E0; �
�F0; �

�D0/:

For each s 2 I , let

.jsIt ;EsIt ;FsIt ;DsIt /D .f
�

stjt ; f
�

stEt ; f
�

stFt ; f
�

stDt /:
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Since .jsI1;EsI1;FsI1;DsI1/D .h
�
s jsI0; h

�
s EsI0; h

�
s FsI0; h

�
s DsI0/, this defines families

of real Cauchy–Riemann operators on the bundle pairs .Es;Fs/ over Mhs
. Since

h0 D � , we have thus constructed the desired deformation of the original family.

Lemma 2.4 Every loop  in Hl;k
g;h.M;L;b/ lifts to a path e in Bl;k

g;h.M;L;b/�J†
such that e 1 D � � e 0 for some � 2D with �j@† D id.

Proof Under the assumption of Remark 1.4, the projection

Bl;k
g;h.M;L;b/�J†!Hl;k

g;h.M;L;b/

admits local slices. Thus, there exists a path e t D .ut ; jt / in Bl;k
g;h.M;L;b/�J†

lifting  . Let � 2 D be such that e 1 D � � e 0 . By Lemma 2.2, there exists a path
ht in D such that h0 D � and h1 restricts to the identity on the boundary. The lifte 0t D ht ��

�1 � e t of  then satisfies e 01 D h1 � e 00 .

3 Determinant line bundles over loops

We begin this section by deducing Theorem 1.1 from Propositions 3.1 and 3.2 below,
which treat two distinct cases of Theorem 1.1. We then verify each of the two propo-
sitions for the trivial mapping cylinder over the disk with an additional assumption
on the Maslov index of the pair .E;F / on each fiber; see Lemmas 3.4 and 3.6. The
full statements of Propositions 3.1 and 3.2 are then reduced to Lemmas 3.4 and 3.6,
respectively. We conclude this section by proving Corollary 1.6.

Proposition 3.1 Let † be a smooth oriented bordered surface, �W † ! † be a
diffeomorphism preserving the orientation and each boundary component, and .E;F /
be a bundle pair over .M� ; @M�/ with F orientable. If D is any family of real
Cauchy–Riemann operators on .E;F /, then

hw1.det D/;S1
i D

X
i

˝
w2.F /; .@M�/i

˛
:

Proposition 3.2 Let † be a smooth oriented bordered surface, �W † ! † be a
diffeomorphism preserving the orientation and each boundary component, and .E;F /
be a bundle pair over .M� ; @M�/ with rk F D 1. For each boundary component .@†/i
of †, choose a section ˛i of

.@M�/i DM�j.@†/i
! S1:

If D is any family of real Cauchy–Riemann operators on .E;F /, then

hw1.det D/;S1
i D

X
i

�˝
w1.F /; .@†/i

˛
C 1

�
hw1.F /; ˛ii:
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Remark 3.3 The space of real Cauchy–Riemann operators .E;F / ! .†; @†/ is
contractible; thus, a choice of orientation on one determinant line canonically induces
orientations on the rest. Moreover, any two families of real Cauchy–Riemann operators
on a family .Et ;Ft /! .†t ; @†t / are fiberwise homotopic. This implies that their
determinant bundles have the same Stiefel–Whitney class.

Proof of Theorem 1.1 By Remark 3.3, it is sufficient to prove the result for some
family of real Cauchy–Riemann operators on .E;F /! .M� ; @M�/. A connection on
E induces a family of complex linear Cauchy–Riemann operators N@.E;F / over M� ,
which on a fiber †t is given by the complex linear Cauchy–Riemann operator of the
restricted connection. Let

.E1;F1/D .detC E; det F /; . eE ; eF /D .E˚ 3E1;F ˚ 3F1/:

The connection on E induces connections on E1 , eE , and 4E1 and thus families
of complex linear Cauchy–Riemann operators N@.eE;eF / , N@.E1;F 1/ , and N@.4E1;4F 1/ . By
(2-1),

det.N@.eE;eF //˝ det.N@.E1;F 1//Š det.N@.eE˚E1;eF˚F 1//

D det.N@.E˚4E1;F˚4F 1//

Š det.N@.E;F //˝ det.N@.4E1;4F 1//:

Therefore,

w1

�
det.D/

�
D w1

�
det.N@.E;F //

�
D w1

�
det.N@.eE;eF //�Cw1

�
det.N@.E1;F 1//

�
Cw1

�
det.N@.4E1;4F 1//

�
:

By Proposition 3.1,˝
w1

�
det.N@.eE;eF //�;S1

˛
D

X
i

hw2.eF /; .@M�/ii D
X

i

hw2.F /; .@M�/ii;˝
w1

�
det.N@.4E1;4F 1//

�
;S1

˛
D

X
i

hw2.4F1/; .@M�/ii D 0:

By Proposition 3.2,˝
w1

�
det.N@.E1;F 1//

�
;S1

˛
D

X
i

�
hw1.F

1/; .@†/iiC 1
�
hw1.F

1/; ˛ii

D

X
i

�
hw1.F /; .@†/iiC 1

�
hw1.F /; ˛ii:

Combining the last four identities, we obtain Theorem 1.1.
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Lemma 3.4 Let .E;F /! .D2; @D2/�S1 be a bundle pair with F orientable and
Maslov index zero on each fiber. If D is a family of real Cauchy–Riemann operators
on .E;F /, then

hw1.det D/;S1
i D

˝
w2.F /; @D

2
�S1

˛
:

Proof The standard N@0 –operator on .Cn;Rn/ ! .D2; @D2/ is surjective and its
kernel consists of constant real-valued sections; see [10, Theorem C.1.10]. If the bundle
pair .E;F /! .D2; @D2/�S1 is trivializable, we can consider the constant family of
standard N@0 –operators on a trivialization

.E;F /Š .Cn
�D2;Rn

� @D2/�S1:

The determinant bundle of this family is isomorphic to Rn � S1 by evaluation at a
boundary point and in particular is orientable. By Remark 3.3, the determinant bundle
of the family D is also orientable.

If .E0;F 0/! .D2; @D2/�S1 is another bundle pair,

det D.E;F /˝ det D.E0;F 0/ Š det.D.E;F /˚D.E0;F 0//Š det D.E˚E0;F˚F 0/

by (2-1). Thus, we can stabilize .E;F / with a trivial bundle pair and assume that
nD rk F >2. Since �1.SO.n//ŠZ2 and the homomorphism �1.SO.n//!�1.U.n//

induced by the inclusion is trivial, the second Stiefel–Whitney class w2.F / then
classifies the bundle pairs .E;F / over .D2; @D2/ � S1 . Thus, if w2.F / D 0, the
bundle pair .E;F / is trivializable and the determinant bundle det.D/ is orientable. If
w2.F /¤ 0, the bundle pair .E;F / is isomorphic to a stabilization of the bundle pair in
[4, Proposition 8.1.7], which constructs a nonorientable family of real Cauchy–Riemann
operators. Combining the two cases gives the result.

Lemma 3.5 If .E;F /! .D2; @D2/ is a bundle pair with rkC ED1 and Maslov index
�D �.E;F /� �1, every real Cauchy–Riemann operator D on .E;F / is surjective.
Moreover, if x1; : : : ;x�C1 2 @D

2 are distinct points, then the homomorphism

(3-1) evW Ker.D/!
�C1M
iD1

Fxi
; ev.�/D

�
�.x1/; : : : ; �.x�C1/

�
;

is an isomorphism.

Proof By [10, Theorem C.3.5 and Corollary C.3.9], the bundle pair .E;F / is isomor-
phic to .C �D2; ƒ/, where the fiber at ei� 2 @D2 Š S1 is given by

ƒei� D e
i��

2 R:
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By [10, Theorem C.1.10], the standard Cauchy–Riemann operator N@0 on .C �D2; ƒ/

is surjective if �� �1 and thus dim Ker N@0 D �C 1. Moreover, the elements of the
kernel are polynomials �.z/ D a0C � � � C a�z� with ai D Na��i . The kernel of the
homomorphism

(3-2) evW Ker.N@0/!

�C1M
iD1

ƒxi
; ev.�/D

�
�.x1/; : : : ; �.x�C1/

�
;

consists of polynomials (of degree �) which vanish at the �C 1 points xi ; therefore,
this homomorphism is injective. Since the domain and target are of the same dimension,
the homomorphism (3-2) is an isomorphism.

Let D0 be any real Cauchy–Riemann operator on the above bundle pair .C �D2; ƒ/.
By [10, Theorem C.1.10], D0 is still surjective and dim Ker.D0/ D �C 1. If the
homomorphism (3-2) with N@0 replaced by D0 is not an isomorphism, there exists
� 2 Ker.D0/�f0g vanishing at the �C 1 points xi . By [10, Section C.4], there exists
f W .D2; @D2/! .C�;R�/ such that N@0.f �/ D 0. Since f � vanishes at the �C 1

points, by the previous paragraph � is identically zero. Thus, the homomorphism (3-2)
with N@0 replaced by D0 is in fact an isomorphism.

An isomorphism 'W .E;F /! .C �D2; ƒ/ induces a commutative diagram

Ker.D/ ev //

Š �

��

�C1L
iD1

Fxi

Š �

��

Ker
�
.'�1/�D

� ev
Š

//
�C1L
iD1

ƒxi
;

where .'�1/�D is the induced real Cauchy–Riemann operator on .C�D2; ƒ/. Since
three of the maps in the diagram are isomorphisms, so is the evaluation map (3-1).

Lemma 3.6 Let .E;F /! .D2; @D2/ � S1 be a bundle pair with rk F D 1 and a
nonnegative Maslov index �. If D is a family of real Cauchy–Riemann operators on
.E;F / and x 2 @D2 , then

hw1.det D/;S1
i D

� ˝
w1.F /; @D

2
˛
C 1

�
hw1.F /;x �S1

i:

Proof By Lemma 3.5, the operators Dt , t 2 S1 , are surjective and

evW Ker.Dt /!

�C1M
iD1

Fjxi�t ; ev.�/D
�
�.x1/; : : : ; �.x�C1/

�
;
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are isomorphisms for any choice of distinct points x1; : : : ;x�C1 2 @D
2 . Therefore,

˝
w1

�
det.D/

�
;S1

˛
D

*
w1

 
�C1M
iD1

Fjxi�t

!
;S1

+
D

�C1X
iD1

hw1.F /;xi �S1/i

D .�C 1/hw1.F /;x1 �S1
i:

Since the Maslov index � modulo two is hw1.F /; @D
2i,

.�C 1/hw1.F /;x1 �S1
i D

�
hw1.F /; @D

2
iC 1

�
hw1.F /;x1 �S1

i;

establishing the formula.

Proof of Proposition 3.1 By Lemma 2.3, we can assume that � restricts to the identity
in a neighborhood of the boundary. For each boundary component .@†/i of †, let

Ui Š Œ0; 2��� .@†/i �S1
� Cyl�S1

be a neighborhood of .@†/i �S1 in M� . Let j0 be a standard complex structure on
Œ0; 2��� .@†/i . Since every loop  of complex structures on the cylinder Cyl is of the
form jt D  

�
t j0 for some loop of diffeomorphisms  t , there is an isomorphism

.Cyl�S1
I  /Š .Cyl�S1

I j0/; .x; t I jt / 7! . t .x/; t I . 
�1
t /�jt D j0/:

Thus, there is an isomorphism

(3-3) .Ui ; jt jUi
/Š .Œ0; 2��� .@†/i �S1; j0/:

Let I D Œ0; 1� as before. For each ı 2 Œ0; 2��, let

zUi.ı/Š Œ0; ı�� .@†/i � I

be the neighborhood of .@†/i � I �†� I corresponding to Œ0; ı�� .@†/i �S1 under
the identification (3-3); for example, zUi.0/ Š f0g � .@†/i � I . We can trivialize F

over zUi.0/, since F is orientable and zUi.0/ is homotopic to a circle. A trivialization
Fj zUi .0/ ŠRn � zUi.0/ induces a trivialization

E
j zUi .0/

Š F ˚JF
j zUi .0/

ŠCn
� zUi.0/;

which we can extend to a trivialization E
j zUi .2�/

ŠCn � zUi.2�/.

At the two endpoints of the interval I , glue the trivial bundles Rn � .@†/i � 1 and
Rn � .@†/i � 0 using a clutching map gi W .@†/i! SO.n/ so that the bundle pair

.Cn
� .@†/i ;R

n
� .@†/i/�.gi ;gi / I ! .@†/i �S1
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ı
˚

†� I

zU .ı/D Œ0; ı�� @†� I

is isomorphic to .Ej.@†/i�S1 ;Fj.@†/i�S1/. Since the inclusion SO.n/ ! U.n/ is
nullhomotopic, the map gi can be extended to a map

zgi W Œ0; 2��� .@†/i! U.n/ such that zgijŒ �
2
;2�� D id:

For every t 2S1 , pinch †� t along the curve �� .@†/i� t to obtain a nodal curve †s

with normalization consisting of a disjoint union of disks D2
i and a closed Riemann

surface y†, with special points 0 2D2
i and pi 2

y†. The bundle pair .E;F / descends
to a bundle pair over the family of nodal curves as in Remark 2.1, inducing bundles

yE! y†�S1 and .Ei ;Fi/� .C
n
�D2

i ;R
n
�.@D2/i/�.zgi ;gi /I! .D2

i ; .@D
2/i/�S1

with isomorphisms yEjpi�t ŠCn ŠEij0�t for every t 2 S1 .

We are interested in the first Stiefel–Whitney class of the family of real Cauchy–
Riemann operators D.E;F / . Taking a family of complex linear Cauchy–Riemann
operators yD on yE and gluing it to a family of real Cauchy–Riemann operators Di on
.Ei ;Fi/, we obtain a family of real Cauchy–Riemann operators D" on .E;F /. By
Remark 3.3 and (2-2),

det.D.E;F //Š det.D"/Š det. yD/˝
O

i

�
det.Di/˝

t̂op
. yEj.pi ;t//

�
and thus

w1

�
det.D/

�
D w1

�
det. yD/

�
C

X
i

�
w1

�
det.Di/

�
Cw1. yEpi�S1/

�
:

The complex structure on the kernels and cokernels of the family of operators yD
induces a canonical orientation on det. yD/; in particular, w1

�
det. yD/

�
is zero. Moreover,

yEpi�S1
ŠCn�S1 also has a canonical orientation and w1. yEpi�S1

/ is zero. Therefore,
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the problem reduces to the families of operators Di on .Ei ;Fi/ over .D2
i ; .@D

2
i //�S1 .

Lemma 3.4 now gives the result.

Proof of Proposition 3.2 For each boundary component .@†/i of †, let zUi.ı/ be as
in the proof of Proposition 3.1. Let mi 2 f0; 1g be equal to 0 if hw1.F /; .@†/ii D 0

and 1 if hw1.F /; .@†/ii D 1. Then there is an isomorphism

.E;F /
j zUi .0/

Š .C � zUi.0/;ƒi � I/;

where the fiber of ƒi at a point ei� � t 2 .@†/i � I is given by ei�mi=2R � C . We
can extend the trivialization E

j zUi .0/
ŠC � zUi.0/ to the neighborhood zUi.2�/.

At the two endpoints of the interval I , glue the bundles ƒi � 1 and ƒi � 0 using a
clutching map gi W .@†/i! f˙1g so that the bundle pair

.C � .@†/i ; ƒi/�.gi ;gi / I ! .@†/i �S1

is isomorphic to .Ej.@†/i�S1 ;Fj.@†/i�S1/. Since the inclusion O.1/! U.1/ is null-
homotopic, the map gi can be extended to a map

zgi W Œ0; 2��� .@†/i! U.1/ such that zgijŒ �
2
;2�� D id:

For every t 2 S1 , pinch †� t along the curve �� .@†/i � t to obtain a nodal curve
†s as in the proof of Proposition 3.1. The bundle pair .E;F / descends to a bundle
pair over the family of nodal curves as in Remark 2.1, inducing bundles

yE! y†�S1 and .Ei ;Fi/� .C �D2
i ; ƒi/�.zgi ;gi / I ! .D2

i ; .@D
2/i/�S1;

with isomorphisms yEjpi�t ŠC ŠEij0�t for every t 2 S1 .

Taking a family of complex linear Cauchy–Riemann operators yD on yE and gluing it
to a family of real Cauchy–Riemann operators Di on .Ei ;Fi/, we obtain a family of
real Cauchy–Riemann operators D" on .E;F /. By Remark 3.3 and (2-2),

det.D.E;F //Š det.D"/Š det. yD/˝
O

i

�
det.Di/˝

m̂ax
. yEj.pi ;t//

�
and thus

w1

�
det.D/

�
D w1

�
det. yD/

�
C

X
i

�
w1

�
det.Di/

�
Cw1. yEpi�S1/

�
:

As in the proof of Proposition 3.1, w1.det. yD// and w1. yEpi�S1/ vanish. Thus, the
problem reduces to the families of operators Di on .Ei ;Fi/ over .D2

i ; .@D
2
i //�S1 .

Lemma 3.6 now gives the result.

Geometry & Topology, Volume 17 (2013)



2502 Penka Georgieva

Proof of Corollary 1.6 Let ˇi be as in Corollary 1.5. The sum
P
ˇi 2H2.L/ is the

boundary of the class S 2H3.M;L/ obtained by following the image in .M;L/ of
the whole surface along the loop  , that is

P
ˇi D @S . Let

� � � �!H 2.M IZ2/
i�

�!H 2.LIZ2/
ı
�!H 3.M;LIZ2/ �! � � �

be the exact sequence for the pair .M;L/. Since w2.F /C �
2 is in the image of i� ,

ı.w2.F /C �
2/D 0. Since ˇi is the class of a torus, h�2; ˇii D 0. Thus,

0D hı.w2.F /C �
2/; ŒS �i D

˝
ı
�
w2.F /

�
; ŒS �

˛
C

D
�2;

X
ˇi

E
D

D
w2.F /;

X
ˇi

E
:

The formula (1-2) thus reduces to (1-3).

4 Local systems of determinant line bundles

In this section we recall the basics of local systems following Steenrod [16] and
construct a local system ZF

.w1;w2/
over the h–fold product of the Lagrangian L and

its free loop space L.L/.1 We then show its pullback is canonically isomorphic to the
local system twisted by the first Stiefel–Whitney class of det.D.E;F //. We conclude
this section by establishing Corollaries 1.8 and 1.10.

Definition 4.1 A system of local groups G on a path-connected topological space L

consists of

� a group Gx for every x 2L and

� a group isomorphism ˛xy W Gx ! Gy for every homotopy class ˛xy of paths
from x to y

such that the composition ˇyz ı ˛xy is the isomorphism corresponding to the path
˛xyˇyz .

Lemma 4.2 (Steenrod [16, Theorem 1]) Suppose p0 2L, G is a group and

 W �1.L;p0/! Aut.G/

is a group homomorphism. Then there is a unique system G D fGxg of local groups
on L such that G0 DG and the operations of �1.L;p0/ on G0 are those determined
by  .

1Recall that h is the number of boundary components of † .
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Two local system G and G0 on L are isomorphic if for every point x 2L there is an
isomorphism hx W Gx Š G0x such that hx D ˛

�1
xy hy˛xy for every path ˛xy between

x and y . Equivalently, two local system are isomorphic if the groups G and G0 are
isomorphic and the induced actions of �1.L;x0/ are the same. There are Aut.G/ of
such isomorphisms, and one is fixed by a choice of an isomorphism Gx0

ŠG0x0
.

Definition 4.3 Let
f W .L1;p1/! .L2;p2/

be a continuous map between path-connected topological spaces and let G D fGxg be
the local system on L2 induced by  W �1.L2;p2/! Aut.G/. The pullback system
G0 D f �G is the system of local groups induced by  ı f#W �1.L1;p1/! Aut.G/,
where f#W �1.L1;p1/! �1.L2;p2/.

Definition 4.4 The local system of orientations for a vector bundle F ! L is the
system induced by the homomorphism  W �1.L;p0/! Aut.Z/ D Z2 assigning to
˛ 2 �1.L;p0/ the value of hw1.F /; ˛i. We denote this system by Zw1.F / .

Remark 4.5 If L is a smooth manifold, the local system of orientations for TL,
Zw1.TL/ , is called the system of twisted integer coefficients in [16].

Given a vector bundle F!L, we now construct a local system ZF
.w1;w2/

on the h–fold
product of the Lagrangian and its free loop space L.L/, which traces the twisting
coming from the righthand side of (1-2). We begin by constructing a system over every
component of L�L.L/ and thus define a system over L�L.L/. We then pullback h

copies of it to the product .L�L.L//h via the projection maps. The system ZF
.w1;w2/

is defined as the tensor product of the pulled-back systems.

Let pi � j be a basepoint for a component Li �L.L/j �L�L.L/. Define a local
system over Li �L.L/j using the homomorphism

 W �1.Li �L.L/j ;pi � j /D �1.Li ;pi/��1.L.L/j ; j /! Aut.Z/D Z2;

.˛; ˇ/ 7! .hw1.F /; j iC 1/hw1.F /; ˛iC hw2.F /; ˇi:

Thus, the system ZF
.w1;w2/

over a component of .L�L.L//h with a basepoint . Ep; E /D
.p1; 1; : : : ;ph; h/ is given by the homomorphism

(4-1)  W �1

��
L�L.L/

�h
; . Ep; E /

�
! Aut.Z/D Z2;

.˛1; ˇ1; : : : ; ˛h; ˇh/ 7!

hX
iD1

.hw1.F /; iiC 1/hw1.F /; ˛iiC

hX
iD1

hw2.F /; ˇii:
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We next construct a natural isomorphism between the local system Zw1.det D.E;F // on
Hl;k

g;h.M;L;b/ and a pullback/pushdown of ZF
.w1;w2/

.

Proposition 4.6 Suppose there is at least one boundary marked point on each boundary
component of †. Then there is a map evW Hl;k

g;h.M;L;b/!
�
L�L.L/

�h such that for
every bundle pair .E;F /! .M;L/ the local system Zw1.det.D.E;F /// is isomorphic
to the pulled-back system ev�ZF

.w1;w2/
.

Proof The map ev to the i th L factor is given by the evaluation at the first marked
point on the i th boundary component. We now construct the map to the L.L/ factors.
Denote by Db and Dx1

the groups of orientation-preserving diffeomorphisms of †
that restrict to the identity on @† and fix a point x1;i on each component of @†,
respectively. The group Db is a normal subgroup of Dx1

, and the quotient Dx1
=Db is

contractible. Thus,

.Bl;k
g;h.M;L;b/�J†/=Db! .Bl;k

g;h.M;L;b/�J†/=Dx1

has a contractible fiber and we can choose a section s . Any two such sections are
homotopic. Since the elements of Db fix the boundary of † pointwise, there is a map

ei W .Bl;k
g;h.M;L;b/�J†/=Db! L.L/; Œu; z;x1; : : : ;xh� 7! uj.@†/i :

The map to the i th L.L/ factor Hl;k
g;h.M;L;b/ is the composition

evi WHl;k
g;h.M;L;b/ ,! .Bl;k�1.†;b/�J†/=Dx1

eiıs
���! L.L/:

We restrict ourselves to a particular connected component. Let u0 2Hl;k
g;h.M;L;b/

map under ev to the basepoint

Ep� E 2
�
L�L.L/

�h
:

It is enough to show that the action of �1.Hl;k
g;h.M;L;b/;u0/ on the group Zu0

induced
by the system Zw1.det.D.E;F /// is the same as the one induced by the pulled-back system
ev�ZF

.w1;w2/
.

By definition, the action induced by Zw1.det.D.E;F /// is given by hw1.det.D.E;F ///;  i

for  2 �1.Hl;k
g;h.M;L;b/;u0/. By Corollary 1.5,

hw1.det D.E;F //;  i D

hX
iD1

�˝
w1.F /; bi

˛
C 1

�
hw1.F /; ˛iiC

hX
iD1

˝
w2.F /; ˇi

˛
;

where ˇi is the torus in L traced by the i th boundary .@†/i and ˛i is the loop in L

traced by the boundary marked point x1;i .
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The action of  2 �1.Hl;k
g;h.M;L;b/;u0/ induced by the pullback system is by defini-

tion the action of the image e 2 �1..L�L.L//h; . Ep0; E0// of  under the map ev.
By construction, it is given by

hX
iD1

.hw1.F /; iiC 1/hw1.F /; ˛iiC

hX
iD1

hw2.F /; ˇii:

This shows the two actions are the same.

Lemma 4.7 Let fW Hg;h

l;1
.M;L;b/!Hg;h

l;0
.M;L;b/ be the map forgetting the bound-

ary marked points. The system ev�ZF
.w1;w2/

pushes down to a system

eev�ZF
.w1;w2/

D f� ı ev�ZF
.w1;w2/

over Hg;h

l;0
.M;L;b/ isomorphic to Zw1.det D.E;F // .

Proof It is enough to show that the system pushes down under the map forgetting
the boundary points on a particular boundary component .@†/i . Since the fiber of the
forgetful map is connected, we need to show only that the system is trivial along the
fiber. The fiber is homotopic to S1 . Let  be a loop in the fiber. Its image under the
map ev is a degenerate torus, since the image of any point in the fiber is the same loop
in L up to reparameterization. Thus, the w2.F / term in (4-1) vanishes. The image
that a point on the boundary traces along the loop is the boundary itself, and therefore
the remaining term in (4-1) becomes

.hw1.F /; biiC 1/hw1.F /; bii � 0:

Thus, the system is trivial along the fiber. Since �1.Hg;h

l;1
.M;L;b// surjects on

�1.Hg;h

l;0
.M;L;b//, every loop  in Hg;h

l;0
.M;L;b/ lifts to a loop e in Hg;h

l;1
.M;L;b/

and ˝
w1

�
det.D.E;F //

�
; 
˛
D
˝
w1

�
det.D.E;F //

�
; e ˛:

By Proposition 4.6, the induced action of Zw1.det.D.E;F /// on �1.Hg;h

l;1
.M;L;b// is

the same as the one induced by ev�ZF
.w1;w2/

. Thus, the local systems eev�ZF
.w1;w2/

and Zw1.det D.E;F // are isomorphic.

Remark 4.8 An isomorphism between

ev�ZF
.w1;w2/

and Zw1.det D.E;F //

over Hg;h

l;1
.M;L;b/ determines an isomorphism between their pushdowns by f over

Hg;h

l;0
.M;L;b/ since the systems are trivial over every fiber of f.
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In order to describe an isomorphism between the local systems of Proposition 4.6, we
choose a trivialization of the determinant line det.D.E;F // over the element u0 of
Hg;h

l;k
.M;L;b/ used in the proof of Proposition 4.6. This fixes the group Z at u0 and

thus an isomorphism between the two systems.

Proposition 4.9 A trivialization of det.D.E;F //ju0
is induced by trivializations of

F1D det.F / over u0.x1;i/ for some x1;i 2 .@†/i and trivializations of eF DF˚3F1

over u0..@†/i/ for i D 1; : : : ; h. The effect on the orientation of det.D.E;F //ju0
under

the changes si
zF2�1.SO.n//Šf0; 1g and oi

F 1 in the trivializations of eF ju0..@†/i / and
of F1

ju0.x1;i /
is the multiplication by .�1/� , where

� D s
eF

i C .hw1.F
1/; biiC 1/oF 1

i :

Proof By (2-1), we have a canonical isomorphism

det
�
D.E;F /

�
˝ det

�
N@.4E1;4F 1/

�
Š det

�
N@.eE;eF /�˝ det

�
N@.E1;F 1/

�
:

Thus, a choice of trivializations over u0 each of of det.N@.4E1;4F 1//, det.N@.eE;eF // and
det.N@.E1;F 1// induces one on det.D.E;F //.

By the proof of Proposition 3.1, det.N@.eE;eF //ju0
is canonically isomorphic to the deter-

minant lines of operators over disks tensored with the determinant line over a closed
surface and the top exterior powers of complex bundles. The last two have canonical
orientations coming from the complex structures, and thus we only need to choose a
trivialization of the determinants over the disks. The bundle pairs over the disks are
trivial. A trivialization of eF over each .@†/i determines a trivialization of . eE ; eF / over
the corresponding disk D2

i , uniquely up to homotopy; see the proof of Lemma 3.4. The
resulting trivialization of . eE ; eF / identifies each determinant line with the determinant
line of the standard Cauchy–Riemann operator over the disk, which is canonically
oriented. This implies that a choice of trivializations of eF over u0

�
.@†/i

�
, with

i D 1; : : : ; h, induces a trivialization of the determinant line det.N@.eE;eF //ju0
. Changing

the homotopy type of the trivialization of eF ju0..@†/i / changes the induced orientation
of the determinant line over D2

i and thus of det N@.eE;eF / ; see the proof of Lemma 3.4.

Likewise, a choice of trivializations of 4F1 over u0..@†/i/, with i D 1; : : : ; h, induces
a trivialization of the determinant line det.N@.4E1;4F 1//. However, the bundle 4F1 has
a canonical (up to homotopy) trivialization over each .@†/i , which is induced by any
trivialization of 2F1 over .@†/i . Thus, det N@.4E1;4F 1/ has a canonical orientation.

By the proof of Proposition 3.2, det.N@.E1;F 1//ju0
is isomorphic to the determinant

lines of operators over disks tensored with the determinant line over a closed surface
and the top exterior powers of complex vector bundles. The last two are canonically
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oriented, and again we only need to choose a trivialization of the determinant lines
over the disks. By Lemma 3.5, if hw1.F

1/; bii D 0, the index of the operator on D2
i

is isomorphic to F1
ju0.x1;i /

. Hence, a choice of a trivialization of F1
ju0.x1;i /

induces a
trivialization of its determinant line; changing the homotopy type of the trivialization of
F1
ju0.x1;i /

changes the induced orientation of the determinant line over D2
i and thus

also of det N@.E1;F 1/ . If hw1.F
1/; bii D 1, the index is isomorphic to the direct sum

of the fibers of F1 over the images of two points x1;i ;x2;i 2 .@†/i . We can use the
orientation of the boundary of † to transport a choice of a trivialization of F1

ju0.x1;i /

to F1
ju0.x2;i /

. In this way again, a choice of trivializations of F1
ju0.x1;i /

determines
trivializations of the determinant lines of the operators on the disks. However, in this
case, changing the homotopy type of the trivialization of F1

ju0.x1;i /
does not change

the induced orientation of the determinant line over D2
i and thus of det N@.E1;F 1/ .

Proof of Theorem 1.7 Suppose there is at least one boundary marked point on each
boundary component of †. By Proposition 4.6, there is an isomorphism

pW Zw1.det D.E;F // Š ev�ZF
.w1;w2/

:

By Proposition 4.9, a choice of a basepoint u0 2Hl;k
g;h.M;L;b/, with image under the

map ev equal to the basepoint of .L�L.L//h , determines an isomorphism. We claim
that the isomorphism is independent of the choice of such u0 . Let us first describe the
isomorphism p for a given u0 . The trivializations of eF and F1 over u0..@†/i/ and
u0.x1;i/, for i D 1; : : : ; h, respectively, induce an isomorphism Zw1.det D.E;F //ju0

ŠZ.
By construction ev�ZF

.w1;w2/ju0
D Z and

Zw1.det D.E;F //ju0
Š Z

p
�! ZD ev�ZF

.w1;w2/ju0
; p.1/D 1:

If v 2 Zw1.det D.E;F //ju , then p.v/ D  �1p.� v/, where  is a path from u to u0 ,
� is the isomorphism induced by the path in the system Zw1.det D.E;F // , and   is
the isomorphism in ev�Z.w1;w2/F

. This is independent of the path  .

Let u0
0

be another point, with image under the map ev equal to the basepoint of
.L�L.L//h , and denote by p0 the induced isomorphism. We show that

p.v/D p0.v/ 8u 2Hl;k
g;h.M;L;b/; v 2 Zw1.det D.E;F //ju:

It is enough to confirm this equality for uD u0
0

and v D 1 2 Zw1.det D.E;F //ju
0
0
Š Z.

Since ev.u0/D ev.u0
0
/, the isomorphism

ZD Zw1.det D.E;F //ju
0
0
Š Zw1.det D.E;F //ju0

D Z;
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induced by a path  between u0
0

and u0 is given by multiplication with .�1/� , where

� D

hX
iD1

.hw1.F /; biiC 1/hw1.F /; evx1;i
. /iC

hX
iD1

hw2.F /; evi. /i;

since this expression traces the change in trivializations of eF and F1 . By definition,
the isomorphism   equals 'ev. / , where 'ev. / is the isomorphism in ZF

.w1;w2/

corresponding to the loop ev. /. By definition, 'ev. / is also the multiplication by
.�1/� . Therefore,

p.v/D  �1p
�
� .1/

�
D 'ev. /p

�
.�1/� � 1

�
D .�1/�.�1/�p.1/D 1D p0.v/:

Lemma 4.7 and Remark 4.8 now conclude the proof of Theorem 1.7.

Remark 4.10 We can choose the basepoint of Hl;k
g;h.M;L;b/ for different .l;k/ in

a systematic way, thus fixing an isomorphism

f�Zw1.det.D.E;F /// Š Zw1.det.D.E;F ///:

We first choose elements in Bl;k
g;h.M;L;b/�J† inductively. Let u02B

g;h
0;0
.†;b/�J†

be a map with u0j.@†/i D i . If we have chosen an element in Bl;k
g;h.M;L;b/�J† ,

select an element in the space with an additional marked point Bg;h

l 0;k0
.†;b/ � J† ,

l 0Cjk0j D lCjkjC1, by adding a marked point to the given collection. We choose the
basepoint Œu0; z;x1; : : : ;xh� of Hl;k

g;h.M;L;b/ to be the class of the chosen element
in Bl;k

g;h.M;L;b/�J† and construct the map

evW Hl;k
g;h.M;L;b/!

�
L�L.L/

�h
to send Œu0; z;x1; : : : ;xh� to the basepoint of the corresponding component.

Proof of Corollary 1.8 Suppose the moduli space of maps Ml;k
g;h.M;L;b/ and the

moduli space of domains M
g;h

l;k
are manifolds. The map

f W Ml;k
g;h.M;L;b/!M

g;h

l;k

then induces a canonical isomorphism
t̂op

TMl;k
g;h.M;L;b/Š f �

t̂op
TM

g;h

l;k
˝

t̂op
TMl;k

g;h.M;L;b/Vert

Š f �
t̂op

TM
g;h

l;k
˝

t̂op
ker D N@:

Thus, the local system of orientations on the moduli space of maps is the restriction of
the local system of orientations of the bundle

f �
t̂op

M
g;h

l;k
˝ det D N@!Hl;k

g;h.M;L;b/:
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The moduli space of domains, Mg;h

l;k
, is canonically oriented as follows. Let Mg;h

l;k0

be the moduli space with one more boundary marked point. The map f forgetting the
additional marked point induces a canonical isomorphism

t̂op
TM

g;h

l;k0
Š f�

t̂op
TM

g;h

l;k
˝

t̂op
.TM

g;h

l;k0
/Vert:

The fiber of the map forgetting the boundary marked point is canonically isomorphic to
a subset of the boundary component the point lies on and is thus canonically oriented.
The transition maps of

Vtop
.TM

g;h

l;k0
/Vert are diffeomorphisms of the domain preserving

the orientation and each boundary component. Therefore, the bundle
Vtop

.TM
g;h

l;k0
/Vert

is orientable and canonically oriented by the orientation of a fiber. This implies that if
either Mg;h

l;k
or Mg;h

l;k0
has a canonical orientation, so does the other. By Ivashkovich and

Shevchishin [6], the moduli space M
g;h

l;k
, with kD .1; : : : ; 1/, possesses a holomorphic

structure and in particular is canonically oriented. Therefore, Mg;h

l;k
is canonically ori-

ented and the orientation is compatible with the maps forgetting the marked points. Thus,
the bundle f �

Vtop M
g;h

l;k
˝ det D N@ is canonically isomorphic to det D N@ . Theorem 1.7

now implies the result.

The case when Ml;k
g;h.M;L;b/ is a manifold but Mg;h

l;k
is not can be treated as follows.

Consider the moduli space M
g;h

l 0;k0
.M;L;b/ with enough marked points so that Mg;h

l 0;k0

is a manifold. Then,
t̂op

TM
g;h

l 0;k0
.M;L;b/Š det D N@:

Moreover, the map forgetting the additional marked points

fW M
g;h

l 0;k0
.M;L;b/!Ml;k

g;h.M;L;b/

induces a canonical isomorphism
t̂op

TM
g;h

l 0;k0
.M;L;b/Š f�

t̂op
TMl;k

g;h.M;L;b/˝
t̂op�

TM
g;h

l 0;k0
.M;L;b/

�Vert
:

As above, the bundle
Vtop�

TM
g;h

l 0;k0
.M;L;b/

�Vert is canonically oriented and thus,

f�
t̂op

TMl;k
g;h.M;L;b/Š

t̂op
TM

g;h

l 0;k0
.M;L;b/Š det D N@ Š f� det D N@:

Since f is surjective on �1 ,
t̂op

TM
g;h

l;k
.M;L;b/Š det D N@I

see the proof of Lemma 4.7. The result follows from Theorem 1.7.

Proof of Corollary 1.10 The line bundles
t̂op

R
VR

nIa Š det N@.Ln;a;LR
n;a/
;

t̂op

R
TM

g;h

l;k
.CPn;RPn;b/!M

g;h

l;k
.CPn;RPn;b/
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are isomorphic if their first Stiefel–Whitney classes evaluate to the same number over
every loop  . By Corollary 1.5, the first Stiefel–Whitney class of Vn;a evaluated on a
loop  is given by

(4-2)
hX

iD1

.hw1.LR
n;a/; biiC 1/hw1.LR

n;a/; evx1;i
. /iC

hX
iD1

hw2.LR
n;a/; evi. /i:

Let OR.a/ denote the tensor product of a copies of the tautological line bundle over
RPn and �D w1

�
OR.1/

�
be the generator of H 1.RPn;Z2/. Since

LR
n;a D

M
i

OR.ai/;

we have

w1.LR
n;a/D

mX
iD1

ai�; w2.LR
n;a/D

mX
i;j

aiaj�
2:

Since w2.LR
n;a/ is a square of a class, it evaluates to zero on each torus evi. /. By

Corollary 1.5, the first Stiefel–Whitney class of Mg;h

l;k
.CPn;RPn;b/ evaluated on the

loop  is given by (4-2) with LR
n;a replaced by T RPn . Since w2.RPn/ is a square

of a class, the second sum vanishes in this case as well. The condition n�
P

ai is odd
implies that

w1.LR
n;a/D .nC 1/�D w1.RPn/:

Thus, the two line bundles are isomorphic.

By Proposition 4.9, a choice of trivializations of LR
n;a ˚ 3 det.LR

n;a/ and det.LR
n;a/

over evi.u0/ and u0.x1;i/, respectively, with i D 1; : : : ; h, determines a trivialization
det N@.Ln;a;LR

n;a/ju0
ŠR. Similarly, a trivialization

t̂op

R
TM

g;h

l;k
.CPn;RPn;b/ju0

ŠR

is determined by a choice of trivializations of T RPn˚3 det.T RPn/ and det.T RPn/

over evi.u0/ and u0.x1;i/, respectively, with i D 1; : : : ; h.

If OR denotes the trivial line bundle, there are canonical isomorphisms

OR
˚T RPn

Š .nC 1/OR.1/; det.T RPn/ŠOR.nC 1/:

Thus, a choice of a trivialization of .nC1/OR.1/˚3OR.nC1/ over evi.u0/ determines
one on T RPn˚ 3 det.T RPn/. A choice of a trivialization of OR.1/ over u0.x1;i/

and the canonical trivialization

2OR.1/ŠOR
˚T RP1

Š 2OR

Geometry & Topology, Volume 17 (2013)



The orientability problem in open Gromov–Witten theory 2511

over evi.u0/ determine an isomorphism

(4-3) .nC 1/OR.1/˚ 3OR.nC 1/

Š

(
n
2
.2OR/˚OR.1/˚ 3OR.1/Š .nC 4/OR if 2 j n;

nC1
2
.2OR/˚ 3OR if 2 6 j n;

over evi.u0/. A nontrivial change in the trivialization of OR.1/ over u0.x1;i/ does not
affect the trivialization of 3OR.nC1/ in (4-3) when n is odd. Thus, the trivialization
in (4-3) is canonical. A choice of a trivialization of OR.1/ over u0.x1;i/ determines
one on OR.nC1/Š det.T RPn/. A nontrivial change in the trivialization of OR.1/

over u0.x1;i/ results in a nontrivial change of trivialization of OR.nC1/ over u0.x1;i/

if and only if n is even.

There are canonical isomorphisms

LR
n;a Š .m� em/OR

˚ emOR.1/; det.LR
n;a/ŠOR.em/;

where em is the number of odd ai . By (4-3), LR
n;a ˚ 3 det.LR

n;a/ has a canonical
trivialization over evi.u0/. A trivialization of OR.1/ over u0.x1;i/ induces one on
OR.em/, and a nontrivial change in the former results in a nontrivial change in the
latter if and only if em is odd. Thus, a choice of trivializations of OR.1/ over u0.x1;i/

determine isomorphisms
t̂op

R
TM

g;h

l;k
.CPn;RPn;b/ju0

ŠR;
t̂op

R
VR

nIaju0
ŠR:

If em � nC1 mod 2, a change in the trivialization OR.1/ju0.x1;i / affects both isomor-
phisms in the same way. Thus, in this case, the composite isomorphism

t̂op

R
TM

g;h

l;k
.CPn;RPn;b/ju0

ŠRŠ
t̂op

R
VR

nIaju0

is canonical.
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