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Abstract In this paper, we introduce a variant of the orienteering problem in which travel and service times are

stochastic. If a delivery commitment is made to a customer and is completed by the end of the day, a reward is

received, but if a commitment is made and not completed, a penalty is incurred. This problem reflects the challenges

of a company who, on a given day, may have more customers than it can serve. In this paper, we discuss special cases
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of the problem that we can solve exactly and heuristics for general problem instances. We present computational

results for a variety of parameter settings and discuss characteristics of the solution structure.

Keywords orienteering · stochastic travel times · variable neighborhood search · dynamic programming

1 Introduction

This paper considers a new variant of the orienteering problem where travel and service times are stochastic. For this

problem, from a given set of customers, we want to select a subset, and for this subset, determine an ordering of the

subset that maximizes expected profit given a known deadline D. For all customers in the ordering that are reached

before the deadline, a customer specific reward is received, and for those not reached before the deadline, a customer

specific penalty is incurred. We call this the orienteering problem with stochastic travel and service times (OPSTS).

There are many applications where the OPSTS is relevant. Consider any business that involves deliveries or service

at its customers’ locations. The payments that the customers make for these deliveries or services can be considered

a reward. If the number of deliveries or service requests is more than can be accomplished within available business

hours, only a subset of customers can be served, at least on that day. The service provider must determine which

ones to schedule, and we propose that they should do so in a way that maximizes profit. This requires carefully

accounting for how long it takes to travel to and service each customer. However, in most urban environments, the

travel and service times between customers can vary greatly and can reasonably be modeled stochastically. Thus,

it is generally impossible to know with certainty which of even the scheduled customers can be visited before the

deadline. For those customers who are scheduled but who cannot be served, the provider pays a penalty. This penalty

may represent a direct payment to the customer, similar to payments made by cable companies when they miss their

service appointments, or a loss of goodwill. It is important to recognize there is a cost associated with a failure to

make a delivery, and deterministic models cannot consider such a cost. For many technicians, there is no need to

return to a depot, or whatever the point of origin is, at the end of the day, so an orienteering, rather than a traveling

salesman, model is appropriate.

Formally, let N = {1, . . . , n} be a set of customers. Node 0 represents the depot. We assume there is an arc (i, j)

between all i and j in N . Associated with each i ∈ N is a reward ri and penalty ei. This reward ri is earned by

visiting customer i at or before a known deadline D if i is selected to be served. The penalty ei is incurred if the visit

to customer i would occur after a known deadline D if i is selected to be served.
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Let Xij be a non-negative random variable representing the time required to traverse arc (i, j). We assume that the

distribution on Xij is known for all i and j. Let Si be a non-negative random variable representing the service time

at customer i. We assume that the distribution of Si is known for all i. Let the random variable Ai be the arrival time

at customer i. For a realization of Ai, Āi, we let R(Āi) be a function representing the reward earned at customer i

when arriving to i at time Āi. We assume that R(Āi) = ri for Āi ≤ D and ei otherwise.

Let τ be an order or tour of the customers in the selected set M ⊆ N which begins at the depot 0. Then, the expected

profit of the tour is v(τ) =
P
i∈τ [P (Ai ≤ D)ri − (1− P (Ai ≤ D))ei]. We seek a tour τ? such that v(τ?) ≥ v(τ) for

every τ .

In this paper, we study the OPSTS in detail. We will begin by reviewing the related literature in Section 2. In Section 3,

we identify versions of the problem that can be solved exactly, and we show how existing variable neighborhood

search heuristics can be used to solve general versions of the problem in Section 4. Section 5 discusses the datasets

we generated for the OPSTS. In Section 6, we examine how different problem parameters affect the solutions and

develop a good understanding of how deterministic and stochastic solution approaches differ in terms of the solutions

they yield. Finally, Section 7 suggests future work.

2 Literature Review

The orienteering problem (OP) has a long history in the literature. However, the research focuses on deterministic

variants of the problem. Feillet et al (2005) present a classification of orienteering literature. A broad overview of the

orienteering problem, it variants, and associated solution methods can be found in Vansteenwegen et al (to appear).

Literature on stochastic variants of the OP is limited. The most closely related problem to the OPSTS is the time-

constrained traveling salesman problem with stochastic travel and service times (TCTSP). Teng et al (2004) introduce

and solve the TCTSP. Unlike the problem discussed in this paper, their model is limited to discrete travel and service

time distributions. The problem only uses a single penalty parameter as a mechanism for maintaining the feasibility

of the solution. Teng et al use the L-shaped algorithm to solve problems of up to 35 customers. Their experiments

focus on demonstrating algorithmic performance only and do not examine solution structure.

Related to the TCTSP is the stochastic selective travelling salesperson problem (SSTSP) introduced by Tang and

Miller-Hooks (2005). With the SSTSP, the travel times and service times are stochastic. The key difference between

the OPSTS and the SSTSP is that the SSTSP incorporates deadlines via a chance constraint rather than modeling
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the economic cost of their violation as we do in this paper. The authors propose both exact and heuristic methods for

solving SSTSP. Their experiments focus on demonstrating algorithmic performance and consider only tight delivery

deadlines.

To the best of our knowledge, this paper, Tang and Miller-Hooks (2005), and Teng et al (2004) are the only papers

that address the selective traveling salesman or orienteering problem with stochasticity in service or travel times.

Ilhan et al (2008) examine a stochastic version of the orienteering problem, but the stochastic component is the

profits associated with individual customers. The objective is to maximize the probability of collecting a target profit

level within the time constraint or deadline. The authors propose an exact method for solving small instances and

genetic algorithms for solving larger problem instances.

While only a few papers address stochastic variants of the OP, many papers address the vehicle routing problem

(VRP) with random travel times and time constraints. Because of the key differences in the objectives of the problems,

solution techniques for the VRP with stochastic travel times cannot be used to solve the OPSTS. Recent work includes

Kenyon and Morton (2003) who consider a capacitated vehicle routing problem with stochastic travel times in which

the objective is to maximize the probability that all vehicle tours are completed by a given time. The authors propose

a Monte Carlo procedure that allows for the creation of a population of solutions from which a best solution can

be chosen. The authors test their algorithm on a single 28 customer problem with two vehicles. Wong et al (2003)

introduce a 2-stage stochastic integer program with recourse for a problem where customers have time windows and

travel times are discrete random variables. In the problem, the vehicle incurs a penalty if a customer is visited outside

of its time window. Ando and Taniguchi (2006) present a case study which illustrates the value of accounting for

travel-time variability in the construction of capacitated vehicle routes when customers visits are constrained by

time windows. Jula et al (2006) discuss a vehicle routing problem with stochastic travel times and time windows. To

overcome difficulties in computing arrival time distributions, the authors demonstrate how to compute the first and

second moments of the arrival time distribution. They propose a dynamic-programming-based solution approach that

is capable of solving problems of up to 80 customers with tight time windows. Russell and Urban (2007) consider

a problem with stochastic travel times in which violation of the time windows is penalized. The authors focus on

the shifted Gamma distribution and use the Taguchi loss function to compute the penalties for violating the time

windows. With considerable computational effort, problems of 100 customers are solved using a tabu search algorithm.

In addition to stochastic travel times, stochastic presence also affects the likelihood that time constraints can be

satisfied in vehicle routing problems. Campbell and Thomas (2008a) provide a review of the related literature.
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3 Exact Solution Methods for Three Problem Variants

In this section, we present three special cases of the general model that can be solved exactly. For the first case, we

can characterize the structure of the optimal tour. In the second case, we use a partial characterization of the optimal

policy to develop a simple dynamic programming approach. The third case also involves a dynamic programming

approach, but it applies to a broader class of instances than the second case.

3.1 Straight Line Distance and Negligible Service Times

In this case, we assume that we can order the customers such that, for i < j < k, P (Xik ≤ x) = P (Xij +Xjk ≤ x)

for every x and assume P (Xik ≤ x) ≥ P (Xij + Xjk ≤ x) for every x when i < j < k does not hold. That is, when

i < j < k does not hold, Xij + Xjk stochastically dominates Xik. We assume that the service times are 0 for all

customers. For this special case, we provide results analogous to those in Gendreau et al (1995) and Campbell and

Thomas (2008b), but modify them to account for rewards and penalties. This result holds for general penalty and

reward structures. With these assumptions, for any subset of customers C, the optimal order of the customers in C

is the identity order, c1, . . . , c|C|. The result follows from considering any other order of the customers in C. Let this

alternative order be τ . Let i be the first customer in C not in topological order in τ . Create τ ′ from τ by removing

i from τ and inserting i back into the tour in topological order. Let m be the last customer in τ before i, and n be

the first customer in τ after i. Let h be the last customer in τ ′ before i and j be the first customer in τ ′ after i.

Thus, in creating τ ′ from τ , we no longer travel from h to j, from m to i, or from i to n and instead travel from

h to i, from i to j, and from m to n. Because of our choice of i, we know h < i < j and hence, by assumption,

P (Xhj ≤ x) = P (Xhi + Xij ≤ x). Thus, by inserting i between h and j, the arrival-time distribution at j and

consequently all succeeding customers through m is unchanged in τ ′ from τ . Further, the likelihood of reaching i

in τ ′ before the deadline D is greater than in τ , increasing the expected value of the reward earned at i. From our

assumptions, we also know that, by removing i from between m and n, P (Xmn ≤ x) ≥ P (Xmi +Xin ≤ x) for every

x. Thus, the expected value of the reward at n increases in τ ′ from τ .

Thus, we are left to determine an optimal subset of customers to visit. Because we know that we will visit the customers

in topological order, we can characterize the arrival distribution for each customer 1, . . . , n a priori, regardless of which

customers are included on the tour. The optimal subset is then those customers who have a positive expected profit.
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3.2 Independent Homogeneous Travel and Service Time Distributions

For this solvable case, we assume that P (Xij ≤ x) = P (Xkl ≤ x) for i, j, k, l and for every x. We also assume that

P (Si ≤ s) = P (Sj ≤ s) for all i and j and for all s. Thus, the arrival time distribution at the qth customer is the

same regardless of who the q− 1st customers are and of their order. This result holds for general penalty and reward

structures. For simplicity, we write P (Aq ≤ D) as pq. Then, customer i in the qth position has a positive profit if

pqri − (1− pq)ei = pq(ri + ei)− ei > 0.

Consider an optimal tour τ? and an alternate tour τ in which the qth and (q + 1)st positions in τ? have been

interchanged. In τ?, let the customer in the qth position be i and the customer in the (q + 1)st be j. Then,

v(τ?)− v(τ) = pq(ri + ei)− ei + pq+1(rj + ej)− ej − (pq(rj + ej)− ej + pq+1(ri + ei)− ei).

It follows from the optimality of τ? that

pq(ri + ei)− ei + pq+1(rj + ej)− ej ≥ pq(rj + ej)− ej + pq+1(ri + ei)− ei,

implying

ri + ei ≥ rj + ej .

Unfortunately, the optimal solution is not found by simply ordering the customers on the tour in nonincreasing order

of ri + ei and then dropping any customers whose expected contribution is negative. Consider the following two

customer example. Let r1 = 1 and e1 = 10 while r2 = 5 and e2 = 3. Assume that the probability of reaching the first

customer in the tour before the deadline is 1 and the probability of reaching the second is 0.5. The expected profit

from ordering the customers in nonincreasing order of ri + ei is 1 + 0.5(5)− 0.5(3) = 2. Yet, including only customer

2 in the tour yields an expected profit of 5.

Our result, though, does suggest a simple dynamic programming solution approach. Since we know that ri+ei ≥ rj+ej

if i is visited before j on the tour, we begin by ordering the customers in nonincreasing order of ri + ei. Define (i, k)

as the state where i is the current customer being considered and k is the number of customers already included on

the tour including i. The correctness of the state follows from the fact that our assumptions result in arrival time

distributions depending on only the number of customers in the tour up to customer i and not on their order. Then,

letting f(i, k) be the expected profit up to customer i when k customers are on the tour, we initialize f(i, k) = 0 for

every i and k. Next, letting f(0, 0) = 0, we can use the recursion f(i, k) = max{f(i−1, k), f(i−1, k−1)+pkri− (1−

pk)ei}. The optimal value is then obtained by maxk{f(|N |, k)}. Overall, the complexity is O(|N |2), which follows
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from noting that there are O(|N |2) states. A dynamic programming approach analogous to that presented in the next

subsection would result in a complexity of O(|N |3).

3.3 A Restricted Set of Travel and Service Time Distributions

Next, we discuss an exact solution approach for the case in which the travel and service time distributions differ only

in a single characterizing parameter, the sum of which characterizes the convolution of the arrival time distributions.

Our approach is motivated by the discussion in Kao (1978) that develops a dynamic programming solution approach

for the traveling salesman problem with stochastic travel times. In particular, for Poisson, gamma (with common

scale parameter λ), binomial and negative binomial (with common parameter p), and the normal (when the variance

is a constant multiple of the mean) distributions, we can completely characterize the arrival-time distribution with a

single distinguishing parameter. For each arc (i, j), we denote this distinguishing parameter as mij . For each customer,

we denote the service time parameter as mi. For the named distributions, the convolution of of the travel time and

service time distributions is then characterized by the sum of the distinguishing parameters.

Assuming travel and service time distributions are independent but follow identical distributions differing in their

parameters as noted above, we formulate the dynamic program for this model as follows. Let i ∈ N represent the

last node visited. We let the set K represent the nodes visited prior to and including i. We also let m represent the

value of the distinguishing parameter for the arrival time distribution at the last node visited. The triple (i,K,m)

then characterizes the state of the dynamic program.

For a given state (i,K,m), the available actions are to travel to a node in the set N \ K or to end the tour. The

action to travel from i to j results in a transition to state (j,K ∪ j,m + mij + mi). We note that the transition of

the distinguishing parameter follows from the restriction to the particular set of distributions mentioned previously.

Further, because m characterizes the arrival time distribution, the computation of the expected profit earned for

traveling to a customer j is straightforward. Choosing to visit j from state (i,K,m) results in the expected profit

R(i,K,m, j) = Fm′(D)rj + (1 − Fm′(D))ej , where Fm′ is the cumulative distribution function with parameter

m′ = m+mij +mi. Choosing to end the tour yields no profit.

Another feature of our set of available actions for each state (i,K,m) is that it clearly demonstrates that there exists

an acyclic order of the states. Given this acyclic order and our objective, we have the following functional equation:

f(j,K′,m′) = max
(i,K,m):K=K′\j,m′=m+mij+mi

{f(i,K,m) +R(i,K,m, j)}. (1)
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As noted in Fox and Denardo (1979), Equation 1 can be solved recursively. To take advantage of pruning opportunities

(described subsequently), we look to solve this described problem using the well known reaching algorithm for dynamic

programming (see Denardo (2003)). To initialize the algorithm, we set the functional value for each state f(i,K,m) =

−∞. For each successor of a state (i,K,m), we “reach” out from (i,K,m) to each of its successors (j,K ∪ j,m +

mij + mi) such that j /∈ K. For each successor (j,K ∪ j,m + mij + mi), we update f(j,K ∪ j,m + mij + mi) =

max{f(j,K∪j,m+mij+mi), f(i,K,m)+R(i,K,m, j)}. We begin the algorithm by reaching from the state (0, ∅, 0).

We note that, for two states (i,K,m) and (i,K,m′) such that m ≤ m′ and for any set and sequence of nodes chosen

to complete the tour, say τ , we have P (Aj ≤ D) ≥ P (A′j ≤ D) for every j ∈ τ and Aj and A′j (the random

variables representing the arrival time to node j starting from states (i,K,m) and (i,K,m′), respectively). Thus,

E
ˆ
R(Aj)

˜
≥ E

ˆ
R(A′j)

˜
for all j ∈ τ (see Puterman (1994, p. 106)). Thus, if, for states (i,K,m) and (i,K,m′) such

that m ≤ m′, f(i,K,m) ≥ f(i,K,m′), then (i,K,m) dominates (i,K,m′) and we can prune (i,K,m′) from the states

which need to be considered for expansion in our dynamic program. To make the comparison of states more efficient,

as in Feillet et al (2004), we augment our state space with l which is the cardinality of the set of visited nodes K.

Further, we note that, when reaching from a state (i,K,m) to a state (j,K ∪ j,m + mij + mi), if R(i, k,m, j) ≤ 0,

then we never travel to node j from state (i,K,m).

4 Variable Neighborhood Search Heuristic

While the proposed dominance relations in Section 3.3 improve the computational efficiency of the proposed dynamic

program, the state space still grows exponentially in the size of the node set N , limiting the size of the problem that can

be solved. To be able to explore problem characteristics of the OPSTS on realistically sized problems for distributions

with a single characterizing parameter as well as to be able to consider other distributions, we need a heuristic capable

of generating high quality solutions in a reasonable time. Inspired by the success in Sevkli and Sevilgen (2006) who

use a variable neighborhood search (VNS) metaheuristic for the deterministic orienteering problem, we develop a

variant of this well known metaheuristic that works well for the OPSTS.

4.1 Our Implementation of VNS

The general concept of the VNS was first introduced by Mladenović and Hansen (1997), and an extensive review of

the literature is available in Hansen et al (2010). VNS operates by changing search neighborhoods to escape local
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minima. VNS has two components: a shaking phase and a local-search phase. In the shaking phase, a given solution is

perturbed. The local-search phase improves the perturbed solution returned by the shaking phase. A general outline

of the procedure can be found in Algorithm 1.

Algorithm 1 Variable Neighborhood Search

Input:
Data for an OPSTS Instance including a function v for determining the cost of an OPSTS solution
Ordered set of OPSTS neighborhoods Ns

Output: OPSTS solution, τ?

Initialization:
Determine initial feasible OPSTS solution τ
t = 1, k = 1

repeat
τ ′ ← Shake(τ, k).
τ ′′ ← LocalSearch(τ ′)
if v(τ) > v(τ ′′) then

if k < |Ns| then
k ← k + 1

else
k ← 1

end if
else

τ ← τ ′′

end if
t← t+ 1

until t > tmax

In our implementation, through experimentation, we determined a tmax value of 100 was robust enough to return good

solutions across the various datasets and parameter settings. The shaking phase simply chooses a random solution

from the neighborhood k ∈ Ns, where Ns is an ordered set of neighborhoods used in the shake phase. We use five

neighborhoods in the set Ns. The first four neighborhoods are the neighborhoods that Feillet et al (2005) identifies as

being most commonly used in local-search heuristics for orienteering-type problems. The operations are: resequencing

the route, replacing a customer on the route with one not on the route, adding a customer to the route, and deleting

a customer from the route. To resequence the route, we use the well known 1-shift neighborhood. The other three

neighborhoods are implemented exactly as their names imply. To create even larger changes in the current solution,

we include a fifth neighborhood inspired by the ruin and recreate heuristic introduced in Schrimpf et al (2000). Our

particular implementation is adapted from Goodson (2008). Each time the ruin and recreate neighborhood is called,

we remove from the tour bnk10 c customers, where n is the number of customers served by the current tour and k is

the current iteration of the VNS algorithm. We then add a random selection of customers who were not previously

on the tour.

For our local-search phase, we implement a form of the method known as variable neighborhood descent (VND). For

our VND, we search a particular neighborhood of a current solution until no improving solution can be found and
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Algorithm 2 Variable Neighborhood Descent

Input:
Data for an OPSTS Instance including a function v for determining the cost of an OPSTS solution
Ordered set of OPSTS neighborhoods Nd

Output: OPSTS solution, τ?

Initialization:
Feasible OPSTS solution τ

repeat
τ ′ ← τ
k ← 1
repeat

τ ′′ ← BestImproving(τ, k)
if v(τ) > v(τ ′′) then

k ← k + 1
else

τ ← τ ′′

end if
until k > |Nd|

until τ ′ = τ

then the process is repeated with a different neighborhood. Typically, and in our implementation, the search is done

using a steepest descent criteria. A description of our VND is given in Algorithm 2. The function BestImproving

returns the best solution in the neighborhood k of a given solution τ . Of note, we increment the search neighborhood

only when the search of the neighborhood does not return an improving solution. For our neighborhood set, we use

the four neighborhoods suggested by Feillet et al (2005).

4.2 Comparing An Exact Solution Approach with VNS

To demonstrate that the VNS can return high quality solutions for the OPSTS, we compare its performance to that

of the dynamic program introduced in Section 3.3. Details of the datasets and implementation can be found in the

next section.

The results of our tests are found in Table 1. Because of the time-consuming nature of the dynamic programming

approach for large problem sizes, only a subset of problems were tested using both approaches. In our 18 tests, both

approaches yield solutions with the exact same objective values, indicating our VNS heuristic is capable of finding

good, if not optimal, solutions for these types of problems. Because both approaches yield identical objective values,

we do not report these in Table 1, but instead provide details about the runtimes of each approach and details about

the solution process of the dynamic program. We see in Table 1 that the dynamic program is quite fast with low

deadlines, but grows exponentially in runtime with increasing deadlines. This increased runtime is a reflection of the
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number of nodes being considered, even though our approach clearly prunes a significant number of them. Based on

these results, the value of a VNS approach becomes quite clear for deadlines as low as 20.

Dataset Deadline Scale Penalty-Reward Ratio Nodes Nodes Pruned DP Runtime VNS Runtime

221 15 1 0.1 1699710 1459782 62 13

221 20 1 0.1 9053007 7669717 4192 16

221 23 1 0.1 21473490 17701719 46890 17

221 25 1 0.1 33962690 27082892 129566 19

333 15 1 0.1 7402721 7010963 545 48

333 20 1 0.1 79018109 74064133 76012 57

432 10 1 0.1 177737 170127 0 28

432 15 1 0.1 3834790 3643130 124 38

432 20 1 0.1 54497662 51280727 37070 66

221 15 1 0.5 556584 487106 0 13

221 20 1 0.5 2455483 2098135 299 14

221 23 1 0.5 6054943 5132692 2097 15

221 25 1 0.5 10632274 8917989 6599 17

333 15 1 0.5 1264812 1201753 4 42

333 20 1 0.5 13333799 12588779 1359 57

432 10 1 0.5 29079 27917 0 28

432 15 1 0.5 556088 530573 1 36

432 20 1 0.5 7460384 7062242 416 54

Table 1 Comparison of Dynamic Programming and Heuristic(VNS) Approaches

5 Dataset Generation and Implementation Details

As the problem explored in this paper is new, no datasets exist. We generate datasets based on five datasets from the

deterministic orienteering literature. Two of the sets first appear in Tsiligirides (1984). These sets contain 21 and 33

customers, respectively, and 11 and 20 different deadlines, respectively. Using the convention of Sevkli and Sevilgen

(2006), we label these sets 221 and 333.

The other three sets are introduced in Chao et al (1996). The sets contain 32, 66, and 64 customers, respectively, and

18, 26, and 14 different deadlines, respectively. Again using the convention of Sevkli and Sevilgen (2006), we label

these sets 432, 566, and 664.

For all of the datasets, we assume that the customers are fully connected and that the travel times on the arcs are

gamma distributed. As noted in Russell and Urban (2007), distributions of this form are good approximations of travel



12

time distributions. For these empirical tests, we ignore the service times as they can be accounted for by setting the

travel time distributions for outgoing arcs to the convolution of the service time and arc distributions. For each arc,

we set the mean travel time to the Euclidean distance between the two customers constituting the end nodes of the

arc. For each instance, we fix the scale parameter of the gamma distribution to the same value for every arc. The effect

of fixing the scale parameter to the same value for every arc is that the arrival time distributions can be characterized

by the sum of the shape parameters for the arcs traversed. With the mean and scale determined, it follows that the

shape parameters are found by dividing the mean by the scale parameter. To see the impact of increasing travel time

variance, we consider scale parameter values of 1, 2, 3, and 4. Larger scale parameters correspond with larger travel

time variances.

While the original datasets contain rewards, they do not have penalty data. Traditionally, orienteering problems

are solved assuming deterministic travel and service times. In the solution of such problems, the size of the reward

associated with each customer is important because only a limited number of customers can be served before the

deadline. There is no need to consider the economic cost of violating a time constraint as any such violation renders

the deterministic problem infeasible. Thus, we explore how a stochastic approach that incorporates both penalties

and rewards improves solution quality and changes the structure of the solutions. To generate penalty values, we set

the penalty to a fraction of the reward. We consider fractions of 0.1, 0.2, 0.5, and 1.0.

Because of the stochastic nature of the VNS algorithm, we run the VNS 10 times on each instance. For the presented

results, we seed the VNS with deterministic solutions (produced by modifying the code used in Sevkli and Sevilgen

(2006) to account for the fact that a return to the depot is not required in the OPSTS). The deterministic solutions

use the Euclidean distance between any two customers as the deterministic travel time. In general, random seeds

produce comparable solution values, but require greater computation time. For brevity, we omit the results of the

random seeded runs.

Tables 2 - 6 in the appendix present important experimental data that is not reflected in Section 6. Each table

presents the runtimes required by the VNS to create the solutions discussed below. The runtime value reflects the

total for the 10 runs. Each table also provides the standard deviation of the objective values from the 10 solutions.

Tables 2 - 6 show that, across all datasets, runtimes initially increase with deadlines but stabilize once deadlines

reach 35 for all scale parameters and penalty-reward ratios. The increase in runtimes occurs because more solutions

offer a positive expected profit as deadlines increase. For a similar reason, with low deadlines and increasing scale

parameters, lower penalty-reward ratios, or both, runtimes increase. Across all instances, the tables indicate that

the standard deviations in solutions values are usually low. This low value is a reflection that the heuristic tends
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to converge to the same value for each run of an instance. Such behavior suggests that computation time might be

reduced by reducing the number of runs and without affecting solution quality.

We implement our solution methods in C++ and run the instances on 2.40 GHz Intel Core 2 Quad processors using

SuSE Linux 10.3. While memory consumption was never a bottleneck, four processors shared 3077 MB of RAM.

6 Computational Experiments

This section presents the results of computational experiments. We designed our computational experiments with two

purposes in mind. First, we want to determine the effect that problem parameters have on the objective value of the

problem. The second goal of our experiments is to understand the changes in the routes that result from modeling

the problem stochastically.

6.1 Examining the Impact of Scale Parameters on Objective Values

Figure 1 examines how changing the scale parameter impacts the objective value in each of the different datasets

using our VNS solution approach. In Figure 1, we see that all scale parameters yield very similar expected profits

for short deadlines across all datasets. As deadlines increase, though, scale values tend to make more difference, with

lower scale values yielding larger rewards and higher scale values yielding lower rewards. The outcome is expected

as higher scale values correspond with a higher variance in arc travel times, which we would expect to create lower

objective values. We note that the unexpected dip in Figure 1(b) which reflects a lower objective at a deadline of 90

than at 85. This case is an example of one of the rare occurrences where starting from the solution to the deterministic

problem and using our VNS approach clearly led us to a suboptimal solution. When we solved this problem with a

random seed, we found a problem with a better objective value but a significantly longer runtime.

Figure 2 compares the expected profit of the seed solution (the solution generated using deterministic data evaluated

with the stochastic objective function) with the expected profit of the best solution found by VNS. We express the

difference relative to the stochastic solution value by a percentage and graph these percentages for the different scale

parameters. These graphs reflect that including stochastic information in the model can dramatically improve the

objective value. We observe that the higher the scale, the higher the percentage difference in objective values. As

noted earlier, higher scale values are associated with higher variances in the travel time distributions. Thus, the
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(e) Dataset 664

Fig. 1 Deadline vs. Objective Value for Different Scale Parameters and Datasets

increase in the percentage differences is a reflection of the value of including stochastic information in the model

as problem variance increases. We also see that these percentages decrease for all scale parameters as the deadline

increases, with a convergence across all scale parameters for the highest deadlines. The latter results because, as the

deadlines increase, it is more likely that all customers will be on the tours, and thus the penalties will have less impact

on the objectives.
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Fig. 2 Percentage Difference in Expected Reward from Solving Stochastic vs. Deterministic Problem Versions for Different

Scale Parameters and Datasets

6.2 Examining the Impact of Penalty-Reward Ratios on Objective Values

Next, we examine how changing the penalty-reward ratio impacts the objective value in each of the different datasets.

Figure 3 shows the results of the experiments. As expected, the figure shows that the lowest penalty-reward ratio

yields the highest expected profits, and expected profit decreases as the penalty increases. We can also observe that the

amount of impact that the penalty ratio has on the objective seems to be somewhat dataset specific. Across datasets,
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the objective values increase with deadlines, but, unlike with scale parameters, the values tend to converge rather

than diverge with increasing deadlines. This trend reflects the fact that higher deadlines create smaller penalties since

customers are more likely to be served. We again see the unexpected dip in Figure 3(b) which is a reflection of the

starting solution.
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Fig. 3 Deadline vs. Objective Value for Different Penalty-Reward Ratios and Datasets
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6.3 Examining the Impact on Solution Structure

To gain further insight into the effect of modeling the problem with stochastic information, we examine the final

tours created by deterministic and stochastic approaches to understand how they differ in structure. Because the

tours for the deterministic version of the problem must be feasible, these deterministic tours are generally smaller in

terms of the number of customers. The stochastic tour includes customers that may not necessarily be reached, but

the probability is high enough that the expected profit from the additional customers is positive. For example, for

Dataset 333, scale of 4, and penalty-reward ratio of 1, we find with a deadline of 15 that the deterministic tour has

8 customers where the stochastic one has 12. With a deadline of 60, the difference is 22 versus 28 customers. With a

deadline of 110, the routes have the same number of customers, all of them in fact, because the large deadline is not

constraining. In terms of which customers appear on the shorter tours, across most examples, the deterministic tour

contains customers that are a subset of the customers on the stochastic ones, and the customers that are excluded

are ones from near the end of the stochastic tour. For example, see Figures 4(a) and 4(b) which represent Dataset

333, scale of 4, ratio of 1, and deadline of 60. The routes begin the same, but the deterministic route skips 6 of the

last 9 customers on the tour. We also see that on the last part of the stochastic tour, the tour crosses itself which

would never happen on a deterministic tour. The customers near the end of the stochastic tours are typically ones

with low rewards, and thus not a priority, so they are placed at the end of the tour where there is a low chance of

them being reached. This type of ordering would not occur with the deterministic counterpart.

(a) Deterministic Tour (b) Stochastic Tour

Fig. 4 Comparing Stochastic and Deterministic Routes

We also explore the impact of the penalty-reward ratios on the actual structure of the routes. As the penalty gets

larger, it is not surprising that the number of customers on the stochastic tours tends to get smaller. This is because
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each additional customer on the longer routes has a very low probability of being reached by the deadline and thus a

high probability of causing a penalty. Here, we found that the customers on the shorter routes (with higher penalties)

are usually a subset of the larger routes (with lower penalties) except for a few exchanges in order to make the routes

with the higher penalties more likely to be feasible. This type of result is best portrayed through an illustrative

example. In Figure 5, we will examine Dataset 333 with a deadline of 15, scale of 10, and the different penalty-reward

ratios. The results for this dataset are very similar to the results found for the other datasets. Here, the ratios of 0.1

and 0.2 yield the longest tours, and the ratio of 0.2 yields a tour that is identical except for the last customer. The

last customer on the tour with ratio of 0.2 can be reached with a slightly higher probability than the last customer

on the tour with ratio of 0.1, creating a lower expected penalty. The reduction in penalty is sufficient to cause a

customer to be selected with a lower potential reward to end the tour than the tour with ratio of 0.1. The tour of

ratio of 0.2 has one more customer at the end than the tour with ratio of 0.5. With a higher penalty, it is not worth

the added risk to include this last customer. The tour with ratio of 1 has one fewer customer than the tour with ratio

of 0.5, but the customers that are different are early on the tour. The fourth and fifth customers on the other tours

are replaced by a different single customer on the tour with ratio of 1. This one customer can be reached in much

shorter time than the two customers, thus decreasing the expected penalty for this customer and for all subsequent

customers.

Penalty	  =	  0.1	  

Penalty	  =	  0.2	  

Penalty	  =	  0.5	  

Penalty	  =	  1	  

Fig. 5 Routes for Different Penalty-Reward Ratios

7 Future Work

A number of directions exist for future work. For one, this paper is limited to a single tour of the customers. A

multiple tour version is relevant in many real-world situations where there exists a fleet of vehicles to serve customers

and/or make deliveries. Also, many real-world implementations are likely to include individual time windows for the
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customers. It also may be interesting to incorporate stochastic rewards, because for service companies, the actual

service that must be completed and its associated “reward” are often not known until the service is completed. Finally,

in this paper, we have ignored the fact that customers not served today must be served in the near future. Including

this consideration would make for an interesting extension and could make a big impact on which customers are

selected on a given day.

From a computational standpoint, there are opportunities to improve the runtime of the VNS heuristic for instances

of this problem with discrete travel and service time distributions. Applying approximation ideas such as those

discussed in Campbell and Thomas (2009) offers a direction for future research. In addition, our solution approach

is an adaptation of a well known heuristic. A more tailored approach may yield improved solutions. To promote such

work, our datasets and corresponding solution values are available at http://myweb.uiowa.edu/bthoa/Research.htm.
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