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Abstract

Background: In social Hymenoptera (ants, bees and wasps), various chemical compounds present on the cuticle
have been shown to act as fertility signals. In addition, specific queen-characteristic hydrocarbons have been
implicated as sterility-inducing queen signals in ants, wasps and bumblebees. In Corbiculate bees, however, the
chemical nature of queen-characteristic and fertility-linked compounds appears to be more diverse than in ants and
wasps. Moreover, it remains unknown how queen signals evolved across this group and how they might have
been co-opted from fertility signals in solitary ancestors.

Results: Here, we perform a phylogenetic analysis of fertility-linked compounds across 16 species of solitary and
eusocial bee species, comprising both literature data as well as new primary data from a key solitary outgroup
species, the oil-collecting bee Centris analis, and the highly eusocial stingless bee Scaptotrigona depilis. Our results
demonstrate the presence of fertility-linked compounds belonging to 12 different chemical classes. In addition, we
find that some classes of compounds (linear and branched alkanes, alkenes, esters and fatty acids) were already
present as fertility-linked signals in the solitary ancestors of Corbiculate bees, while others appear to be specific to
certain species.

Conclusion: Overall, our results suggest that queen signals in Corbiculate bees are likely derived from ancestral
fertility-linked compounds present in solitary bees that lacked reproductive castes. These original fertility-linked cues
or signals could have been produced either as a by-product of ovarian activation or could have served other
communicative purposes, such as in mate recognition or the regulation of egg-laying.
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Background

In order to be able to effectively organize themselves, insect

societies require reliable information and communication

systems [1]. In social insects, various communication

mechanisms have evolved, of which chemical cues and sig-

nals are likely the most important [2]. Chemical substances

present on the cuticle of individuals can serve various

purposes, from the primary function of preventing desicca-

tion [3] to having roles in nestmate and species recognition

[4–6], courtship regulation [7–9] and signalling caste or re-

productive status [10–19]. With respect to the latter, it has

recently been shown in some hymenopteran species that

fertility-linked cuticular compounds help to regulate the re-

productive division of labour between queens and workers

in one of several distinct ways. For example, in the buff tail

bumblebee, three ant species and the common wasp, it was

shown that specific long-chain linear and methyl-branched

alkanes act as sterility-inducing queen signals that stop the

workers from reproducing [11, 12, 16, 19–23], reviewed in

[24]. Moreover, in the common wasp, one of the main

sterility-inducing pheromones was also shown to be used

by the queen to mark her eggs, thereby enabling the

workers to recognize and “police” eggs laid by other

workers [25]. Finally, in two ants species, egg-laying

workers were shown to produce specific alkenes that enable

them to be recognized and policed via aggression by other

workers [23, 26, 27].

The important role of cuticular hydrocarbons as queen

pheromones in ants, wasps and the bumblebee contrasts
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with what is known from the honeybee, where most

existing studies have indicated that mandibular gland

compounds, including the keto acid 9-oxo-decenoic acid

(9-ODA), act as the principal sterility-inducing queen

signals [24]. Nevertheless, even there, it is likely that

some cuticular fertility-linked compounds are also active

as queen pheromones, since queens from which the

mandibular gland was removed still inhibited worker

reproduction [28, 29] and that extracts of the tergal

glands, which produce specific compounds on the dorsal

part of queen’s cuticle [30, 31], also partially inhibited

worker ovary development. In addition, in the stingless

bee Friesella schrottkyi, it has recently been shown that

specific linear and methyl branched alkanes were charac-

teristic for the queen and that non-polar cuticular queen

extracts inhibited worker reproduction [32].

In order to gain more insight into the origin and evo-

lution of social insect queen pheromones, several studies

have started to apply formal phylogenetic methods, and

these show that there is remarkably high evolutionary

conservation of queen signals [12, 16, 33]. For example,

an ancestral state reconstruction has shown that struc-

turally related saturated hydrocarbons were the most

common chemical class of fertility-linked cues across

more than 60 species of ants, bees, and wasps [12]. In

addition, identical or structurally related saturated hy-

drocarbons were found to be bio-active across different

Lasius ants [16] and even across several independently

evolved social insect lineages, such as ants, wasps and

bumblebees [12]. These results were interpreted as im-

plying that queen pheromones likely evolved from pre-

existing fertility signals in solitary ancestors, in which

they may have had a different function [12, 24]. Further-

more, it has been suggested that the presence of honest

signals of fertility in primitively eusocial species could

lead to conditional helping strategies, whereby the most

fecund individuals receive most help, thereby facilitate

the transition to advanced eusociality with a pronounced

reproductive division of labour [34]. Yet despite the po-

tentially huge importance of fertility signals in the evolu-

tion and maintenance of eusociality, many questions

remain. For example, it remains unknown why in bees

the chemical nature of queen-characteristic and fertility-

linked compounds is much more diverse than in ants

and wasps [12], how queen signals evolved across this

group and how they might have been co-opted from fer-

tility signals in solitary ancestors. In fact, in the current

most extensive phylogenetic analysis of fertility signals

across over 60 social insect species, bees were the least

represented, with only eight species. Furthermore, the

published analysis [12] did not comprise any solitary

outgroups, thereby limiting the power to infer how

queen pheromones could have evolved from ancestral

fertility-linked signals in solitary ancestors.

In the present study, we test the hypothesis that queen

signals evolved from fertility-linked cues present in soli-

tary ancestors [24] and perform a phylogenetic analysis

of such compounds across 16 species of solitary and eu-

social bee species. We use data from literature but also

include new primary data from a key solitary outgroup

species, the oil-collecting bee Centris analis, which is

the sister taxon of all Corbiculate bees [35, 36], as well

as data from the highly eusocial stingless bee Scaptotri-

gona depilis. Including Centris as an outgroup in our

analysis allowed us to study character states present just

before the transition from a solitary to a social lifestyle.

In this way, we are able to obtain important insight with

respect to what ancestral signals queen pheromones

could have evolved from, and provide important clues as

to what could be bioactive queen pheromones across dif-

ferent groups of bees.

Methods
Data collection

Chemical data on the identity of fertility signals across dif-

ferent species of solitary and social bees were collected

from the literature through a systematic review of published

studies, in which we compiled chemical data from fourteen

different species (Additional file 1: Table S3), as well as

through inclusion of new primary data of two more species

(see below). Chemical compounds were classified as fertility

linked whenever they were overproduced by queens in

comparison to workers in eusocial species, or mature fe-

males versus non-egg laying virgin females in solitary spe-

cies. These differences in chemical profiles could be either

quantitative or qualitative. In order to standardize our data

as much as possible, we mainly focused on studies that ana-

lysed apolar whole-body extracts, which recovers primarily

cuticular compounds, but also smaller amounts of gland-

derived compounds, such as 9-ODA in the honeybee [37,

38]. In addition, we obtained new data on the identity of

fertility-linked signals in a key solitary outgroup, the solitary

Centridini bee Centris analis, which is the closest extant

relative of the Corbiculate bees [35, 36], as well as data on

the queen signals produced by the highly eusocial stingless

bee Scaptotrigona depilis. The oil collecting bee Centris

analis was sampled using trap-nests for solitary bees [39].

Egg laying females (n = 5) were sampled when they visited

their nest cavities whereas virgin females (n = 8) were col-

lected on the day they emerged from trap-nests that were

placed in the laboratory. Egg-laying queens (n = 5) and

workers (n = 15) of the stingless bee Scaptotrigona depilis

were sampled from the experimental meliponary from the

University of São Paulo. Cuticular chemical data for the

two bee species were obtained through gas chromatography

and mass spectrometry analysis. Detailed sampling methods

and details on the chemical analyses are provided in supple-

mentary material.
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Ancestral state reconstruction

Our total dataset comprised data on fertility-linked cuticu-

lar compounds across sixteen bee species, of which five

were solitary and eleven eusocial (Additional file 1: Table

S3). Compounds that were characteristic for either mature

queens in social species or mature egg-laying females in

solitary ones were grouped into different classes that cor-

respond to known or presumed biosynthetic pathways

(linear alkanes, branched alkanes, alkenes, alkadienes, al-

dehydes, alcohols, fatty acids, keto acids, esters, terpenes,

terpene alcohols or lactones) [10, 40–44]. Subsequently,

the presence or absence of at least one fertility-linked or

queen characteristic compound belonging to one of each

of these classes were coded as binary characters and an-

cestral states were reconstructed with Mesquite 3.01 [45]

using maximum likelihood, based on the Markov k-state 1

parameter model, assuming equal rates of changes for

both gains and losses. Phylogenetic relationships among

species were based on the molecular phylogenies given in

refs. [36, 46–48]. As branch lengths were not available in

all cases, branch lengths were set equal to 1, which corre-

sponded to assuming a punctuational mode of evolution-

ary change [49]. The likelihood threshold of 50% was used

to consider that a given character state was likely present.

The advantage of our analysis being performed at the

level of broad biosynthetic series is that in this way we

were able to detect evolutionary conservation of fertility-

linked compounds even if there would be small changes

in the bioactivity of particular compounds across the

study species. For example, overexpression of an elon-

gase in queens of one particular lineage could result in

an increase in chain length of fertility-linked linear or

methyl-branched hydrocarbons [10, 50, 51] and would

likely result in a change in the bioactivity of particular

individuals compounds, but the use of this particular

class of compounds as queen pheromones would still

qualify as evolutionarily conserved. We should note,

however, that the use of compounds belonging to a

particular class as queen or fertility signals does not pre-

clude other compounds of that same class also being

used for other biological functions.

Ethical note

Data collection with live animals during this experiment

was carried out at the University of São Paulo within the

framework of a research project approved by the federal

government (CNPq-Brazil 402661/2012-5). According to

the country’s law, research with bees is exempted from

ethics committee approval when performed in research

institutions.

Results
Our results show that, in comparison to ants and wasps

[12], there is a strikingly high diversity of fertility-linked

chemical compounds in both solitary and eusocial bees.

In particular, specific linear alkanes, alkenes, esters

and fatty acids were already present with high likeli-

hood (>50 %) as fertility-linked compounds in the

ancestor of all solitary and social bees included in our

analysis (Fig. 1, Table 1), whereas branched alkanes

first appeared as fertility-linked compounds in the

common ancestors of the Megachilidae and Apidae

(Fig. 1, Table 1). In general, bees present odd long

chain linear alkanes and alkenes ranging from henei-

cosane to hentriacontane, but other chain lengths

including even chain length substances were also

present in lower frequencies. Furthermore, specific

terpenes also feature with high likelihood as fertility-

linked signals in the common ancestor of Centris and

the Corbiculate bees (Fig. 1, Table 1). Whereas both

linear alkanes and alkenes are relatively conserved as

fertility signals across all species analysed, fatty acids

seem to have been lost in the common ancestor of

stingless bees and bumblebees, and esters appear to

have been gained and lost as fertility signals several

times (Fig. 1). The use of keto acids, such as 9-ODA,

as well as aldehydes, alcohols, alkadienes, terpene

alcohols and lactones as queen or fertility signals ap-

pears to be restricted to specific lineages (Additional

file 1: Figure S1).

Discussion
Overall, our results provide the first direct demonstra-

tion that many of the queen signals of Corbiculate bees

are likely derived from fertility cues that were already

present in solitary ancestors that lacked reproductive

castes. In particular, our ancestral state reconstruction

demonstrates that queen signals belonging to several

distinct chemical classes, including linear alkanes, al-

kenes, ester and fatty acids, are likely derived from an-

cient fertility signals present in the common ancestor of

all extant bee species, and originated at least ca. 120

Mya [36]. Similarly, we find that branched alkane and

terpene queens signals are probably also derived from

ancestral fertility signals, and started to be used before

the origin of eusociality in Corbiculate bees, ca. 65 Mya

[35, 52, 53], even though they had a more recent origin.

By contrast, keto acids, such as 9-ODA, as well as alde-

hydes, alcohols, alkadienes, terpene alcohols and lac-

tones are found to be used as queen or fertility signals

only in very specific lineages. Overall, the diversity of

fertility-linked compounds in both social and solitary

bees was much higher than in other hymenopteran

groups, including ants or wasps [12].

In general, our phylogenetic analysis adds credence

to the idea that also in bees, compounds present on

the cuticle, including both saturated and unsaturated

hydrocarbons as well as other classes of compounds,
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Fig. 1 Maximum likelihood ancestral state reconstruction of six major classes of fertility signals in bees. Pies show the likelihood in percentage of
a given character being present in the node and coloured branches represent branches for which the likelihood was greater than 50 %
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such as ester and fatty acids, may act as conserved

and ancient queen pheromones [12, 24]. In fact, dir-

ect evidence for cuticular compounds being used as

sterility-inducing queen signals are now available for

bumblebees, and strong suggestive evidence for their

use has been provided also in honeybees and sting-

less bees. In particular, in the buff-tailed bumblebee

Bombus terrestris, it has been shown that the linear

alkane pentacosane inhibits worker ovary develop-

ment [12, 21] but that some queen-characteristic es-

ters did not suppress worker reproduction [12], even

though they were still suggested to have a role in

signalling fertility [20]. Similarly, in the stingless bees

Friesella schrottkyi, queen cuticular extracts have

been shown to inhibit worker ovary activation, and

several hydrocarbons, including pentacosane, elicited

an electroantennographic response, which suggests

that cuticular compounds may act as queen phero-

mones in this species as well [32]. Finally, even in

the well-studied honeybee, it is likely that some cuticular

compounds complement the well-characterised mandibu-

lar gland compounds [54–56] in producing bio-active

queen pheromone, since queens from which the mandibu-

lar gland was removed still inhibited worker reproduction

[28, 29] and that extracts of the tergal glands, which

produce specific compounds on the dorsal part of queen’s

cuticle [30, 31], also partially inhibited worker ovary devel-

opment. Specific bioactive cuticular compounds have as

yet not been identified, but queen-specific N-15 long-

chain alkenes [31] or specific esters or fatty acids [30],

such as hexadecanoic acid, (Z)-9-octadecenoic acid, hexa-

decanoic and octadecenoic acid methyl ester or decyl

decanoate [57, 58], are amongst the possibilities.

If it is correct that some groups of social insect queen

pheromones were co-opted from fertility signals that

were already present in solitary ancestors, the question

arises what function these fertility-linked compounds

had in the solitary species. Previously, three main possi-

bilities have been suggested, namely that they originally

served as sex pheromones, that they were a by-product

of ovarian activation, or that they were involved in regu-

lating egg-laying, reviewed in [24]. Although these

hypotheses are not mutually exclusive, for bees, espe-

cially this first hypothesis appears to be well supported,

given that in Apis honeybees, the major queen phero-

mone component 9-ODA [54, 56, 59, 60] also doubles

up as a male attractant sex pheromone [61–63], and that

queen tergal gland secretion has been shown to enhance

the effect of 9-ODA both in terms of inhibiting worker

ovary activation [64] as well as in enhancing the queen’s

attractiveness to drones [65]. Moreover, in the eusocial

Halictine bee Lasioglossum malachurum, a synthetic

blend of the fertility-linked saturated lactones applied

onto dummy bees was able to induce male inspection

and pouncing behaviour (though not actual copulation

behaviour, which appeared to be regulated by isopente-

nyl esters of unsaturated fatty acids) [66]. In addition, in

the solitary bee Colletes cunicularius, several fertility-

linked long-chain alkenes have also been shown to act as

contact sex pheromones [67, 68] and in Megachile

rotundata, alkene fraction extracts from virgin females,

containing also the compounds linked to fertility, were

shown to attract males in bioassays [69]. In all cases

mentioned above, sex pheromones were characterised or

presumed to be a blend of compounds functioning syn-

ergistically to attract males and elicit mating behaviour,

Table 1 Maximum likelihood, in percentage, of a given fertility signal being present as ancestral state of different bee clades.

Compound Class Apidae sensu lato Megachile + Apidae
sensu strictu

Apidae sensu strictu Centris + Corbiculate bees Corbiculate bees Meliponini Bombini

Linear alkanes 96.9 % 99.0 % 98.8% 95.2 % 70.8 % 94.2 % 72.8 %

Branched alkanes 47.5 % 69.2 % 73.4 % 68.4 % 44.3 % 60.3 % 79.3 %

Alkenes 61.8 % 72.7 % 55.5 % 83.7 % 90.4 % 86.2 % 94.7 %

Esters 52.4 % 36.5 % 38.3 % 62.2 % 65.0 % 51.8 % 51.0 %

Fatty acids 99.0 % 99.3 % 95.7 % 49.7 % 50.3 % 0.4 % 0.4 %

Alcohols 1.4 % 1.4 % 9.3 % 0.8 % 0.1 % 0.0 % 0.0 %

Alkadienes 0.8 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.1 %

Aldehydes 0.8 % 0.2 % 0.8 % 9.3 % 1.4 % 0.2 % 8.7 %

Keto acids 0.0 % 0.0 % 0.0 % 0.0 % 3.7 % 0.0 % 0.0 %

Terpenes 1.1 % 0.0 % 4.6 % 54.1 % 54.1 % 0.0 % 0.0 %

Terpene alcohols 0.0 % 0.0 % 0.1 % 9.3 % 1.4 % 0.0 % 8.7 %

Lactones 3.7 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

In our analysis of 16 species, the Bombini (bumblebees) include the genus Bombus, Meliponini (stingless bees) include the genera Melipona, Scaptotrigona,

Friesella and Schwarziana, Corbiculate bees correspond to all Bombini, Meliponini and Apis mellifera honeybees, Centris + Corbiculate bees to Centris analis and all

Corbiculate bees, Apidae sensu strictu to Amegilla dawsoni, Centris analis and all Corbiculate bees, Megachile + Apidae sensu strictu to Megachile rotundata plus all

Apidae s. s. and,Apidae sensu lato to all species included in our analysis. Likelihoods higher than 50 % are shown in bold
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and could contain both fertility-linked compounds as

well as compounds which were produced mainly by vir-

gin females. Reduced production of non-fertility linked

sex pheromones or increased production of compounds

that inhibit male copulatory behaviour could explain the

loss of the attractiveness of females after mating [70, 71],

although change in context [72] or transfer of anti-

aphrodisiac pheromones by the males themselves during

mating has also been shown to be important in some

cases (e.g. the transfer of anti-aphrodisiac s fatty acid,

which are transferred as part of the male mating plug in

bumblebees, [73], or the direct transfer of anti-

aphrodisiac male cuticular compounds during mating in

Lasioglossum zephyrum, L. malachurum and Osmia rufa

[70, 74]. Either way, it is clear that a subset of fertility-

linked sex pheromones could readily be co-opted as

queen pheromones after the origin of eusociality [24].

Possibly, the fact that queen and fertility signals double

up as sex pheromones in several bee species may also

explain the relatively large diversity found in fertility-

linked compounds, as sex pheromones are generally sub-

ject to diversifying selection [75, 76].

In the future, several of the hypotheses supported by our

current dataset may be further validated by looking at the

degree of evolutionary conservation in the expression

levels of the actual underlying enzymes involved in the

biosynthesis of different fertility-linked compounds [10,

40, 43], as well as by investigating conservation at the re-

ceptor level [77, 78]. Indeed, much ongoing research is tar-

geted towards elucidating the roles of different enzymes in

synthetizing different cuticular compounds in social in-

sects, including those of different desaturases, elongases

and decarboxylases involved in hydrocarbon biosynthesis

[50, 79, 80], as well as those of lipophorins, involved in

hydrocarbon transport [81, 82]. Recently, the enzymes

involved in the production of the honeybee QMP blend

were also described [83, 84], and the olfactory receptor

AmOR11 was identified as the putative receptor for 9-

ODA [85]. Together with targeted bioassays to test the

bioactivity of particular fertility signals, such genomic

studies may in the future yield unprecedented insight into

the evolution of a key signalling system in insects, and

allow us to uncover how social signalling systems were

built on the groundplan of solitary ancestors [86, 87].

Conclusions
In a recent study, it was suggested that queen phero-

mones in different groups of social insects had been co-

opted from ancient fertility signals present in common

solitary ancestors [12]. Based on the analysis of fertility-

linked compounds in different species of social bees and

their solitary ancestors, our analysis provides direct sup-

port for this hypothesis. In particular, our results show

that compounds belonging to four different chemical

classes (linear alkanes, alkenes, esters and fatty acids) are

used as queen signals across several species of social

bees, and that these same types of compounds were also

present as fertility signals in their solitary ancestors.

Other classes of compounds, however, only emerged

later on in the evolutionary history of bees, or are spe-

cific to particular lineages.

Additional file

Additional file 1: Detailed data collection methodology, additional

figure S1 with ancestral state reconstruction of the remaining six

classes of chemical compounds and datasets used for the

phylogenetic analysis. (DOCX 2511 kb)
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