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Exosomes are nanovesicles having a maximum size of 150 nm and is a newly emerging 
focus in various fields of research. Its role in cargo trafficking along with its differential 
expression is associated with the disrupted homeostasis and provides an opportunity to 
defend against different diseases like cancer. Furthermore, exosomes are rich in cargos, 
which contain proteins and nucleic acids that directly reflect the metabolic state of the 
cells from which it originates. This review summarizes recent studies on tumor-derived 
exosomes with an overview about biogenesis, their functions and potential of using 
as diagnostic and prognostic markers. We also discussed the current challenges and 
microfluidic-based detection approaches that might improve the detection of exosomes 
in different settings. More intricate studies of the molecular mechanisms in angiogenesis, 
pre-metastatic niche formation, and metastasis can give more promising insights and 
novel strategies in oncotherapeutics.
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iNTRODUCTiON

Exosomes are extracellular vesicles, which are functionally pleiotropic in nature. These nanoparti-
cles have a size of 50–140 nm and carry specific cargos in it. They act as a transporting system for 
various biomolecules including DNA, RNA, proteins, and lipids. These are bilipid-layered vesicles 
that can carry their cargos on the plasma membrane and also in its cytoplasmic core (Figure 1). 
Exosomes were first identified in the process of elimination of transferrin (Tfr) receptors that occur 
during the maturation of reticulocytes. Reticulocytes undergo drastic cellular reprogramming in 
the initial stage of their maturation. Toward the last phase of this process, transferrin receptors are 
exocytosed with the aid of multivesicular bodies (MVBs) that carry 50-nm sized small vesicles, 
further named as exosomes (1). The release of exosomes occurred when MVBs fused with plasma 
membrane. MVBs are defined as intracellular endosomal organelles characterized by single outer 
membrane containing several internal vesicles. They are usually round or oval in shape and play a 
major role in several endocytic and trafficking functions (2).

Exosomes are found to be present in almost all kinds of body fluids such as blood, plasma, cer-
ebrospinal fluid, bile, breast milk, etc. In normal homeostatic state, a basal level of exosomal release 
will aid in the elimination of cellular debris and also for cell-to-cell communication purposes. An 
increase in exosomal quantity and altered cargo expression can be considered as a potent biomarker 
for alteration of normal physiological states (1, 3, 4).

BiOGeNeSiS OF eXOSOMeS

Exosomes are surrounded by a lipid bilayer with a small fraction of cytosol and devoid of any kind of 
cellular organelles. Exosomes can be synthesized by means of two major pathways, and the process 
is highly regulated by multiple signal transduction cascades. Its release from the cell follows the 
normal exocytosis mechanism characterized with the vesicular docking and fusion with the aid of 
SNARE complexes (Figure 2). Mode of exosome biogenesis with details including the major proteins 
participating in the process is listed in Table 1.
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FiGURe 2 | Schematic representation of exosomal biogenesis. Biogenesis of exosome is mainly through two types of pathways: endosomal sorting complex 
required for transport (ESCRT) dependent and ESCRT independent. ESCRT-dependent pathway is characterized with a set of proteins including ESCRT 0, I, II,  
and III and various tetraspanins, namely, CD9, 63, 81, 82, etc. They participate in the formation of multivesicular bodies (MVBs) from the late endosomes. 
ESCRT-independent pathway is proceeded by lipids such as ceramides and cholesterol. Further docking of these MVBs with the main plasma membrane  
with the aid of different soluble SNARE (N-ethylmaleimide-sensitive factor attachment protein receptors) complexes leads to the release of 40–150-nm  
sized nanovesicles.

FiGURe 1 | Graphical representation of exosomes showing general exosomal cargos. Nucleic acids, proteins, and lipids are the major cargos found in exosomes. 
Nucleic acid includes DNA, RNA along with non-coding RNAs like miRNAs. Different categories of proteins are present abundantly in exosomes, namely membrane 
and cytoplasmic proteins. Tetraspanins are the major membrane proteins such as CD9, 63, 81, 82, etc. Various heat shock proteins, alix, TSG101, and clathrin are 
cytoplasmic in its distribution. Presence of MHCI and II as transmembrane proteins indicates its role in immune cell induction. Sphingolipids such as ceramide and 
cholesterol are the major lipid species found in exosomes.
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TaBle 1 | An account of mode of exosome biogenesis and proteins involved in the process of biogenesis.

Sl. No. Mode of biogenesis Proteins involved Cell line used Reference

1 Endosomal sorting complex required  
for transport (ESCRT) dependent

hsc73, annexin II, Gi2α Murine DCs (5)

2 ESCRT dependent hsc70, alix Rat erythrocytes (6)
3 ESCRT dependent CHMP4b, SKD1, alix HeLa, HEK293 cells (7)
4 ESCRT dependent TSG101, VPS4b DC2.4 cells (8)
5 ESCRT dependent Syndecan heparin sulfate, syntanin, alix MCF-7 cells (9)
6 ESCRT dependent Hrs, STAM, TSG 101, VPS4 HeLa cells (10)
7 ESCRT dependent ESCRT, VPS34, VPS4 Mouse embryonic stem cells (11)
8 ESCRT independent Ceramide Oli-neu cells (12)
9 ESCRT independent Rab27a, Rab27b HeLa cells (13)
10 ESCRT independent Rab35, Rab11, TBC1D10A-C Oli-neu cells (14)
11 ESCRT independent Sphingomyelinase 2 4T1 cells (15)
12 ESCRT independent Sphingomyelinase 2 GT1–7 cells (16)
13 ESCRT independent Sphingosine1 phosphate receptor HeLa cells (17)
14 ESCRT independent and Ca2+ dependent Transferrin receptors K562 cells (18)
15 ESCRT independent and senescence associated P53 LNCaP, 22Rv1, DU14 cells (19)
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endosomal Sorting Complex Required for 
Transport-Dependent Pathway
Endosomal sorting complex required for transport (ESCRT)-
dependent pathway relays on a complex of various proteins as 
well as certain carbohydrate molecules for the successful bio-
genesis of exosomes through MVB formation. ESCRT consists 
of five distinct protein complexes, namely, ESCRT 0, I, II, and 
III, AAA ATPase, and Vps4. This process is initiated within the 
endosomal system. Molecular characterization of dendritic cell 
(DC) exosomes suggested its endosomal origin by indicating 
the presence of hsc73, an endosomal chaperone (5). In addition, 
chaperon-dependent exosomal cargo sorting is also reported by 
Geminard et al. Interaction of Tfr cytosolic domain with hsc70 
is an important step in exosomal sorting of this particular 
receptor. Its further exit from reticulocyte is assisted by another 
protein called alix, which acts as an adaptor protein between 
hsc70 and Tfr receptor (6). Later in 2003, it was reported that 
two more proteins, CHMP4b (chromatin-modifying protein) 
and SKD1, cooperate with alix for the ESCRT-dependent exo-
somal biogenesis (7).

In vitro experiments conducted in Hrs-depleted cells 
revealed the significance of this particular protein in MVB 
formation. TSG101 and VPS4b (vacuolar protein sorting fac-
tor) are the two major ESCRT downstream proteins which were 
not found in Hrs-depleted DC exosomes and were enriched in 
control DCs (8). Baietti et  al. conducted studies that unravel 
the importance of certain proteoglycans in exosomal synthesis 
and release. They reported the role of syndecan heparan sulfate 
proteoglycans and its adaptor syntanin in MVB formation. 
Motif-specific interaction of syntanin with the ESCRT down-
stream protein alix, which connects it with syndecan, causes 
intraluminal endosomal budding and abscission and leads 
to successful FGF–FGFR sorting (9). In 2013, Colombo et al. 
reported a study with RNA interference screen targeting, 23 
ESCRT components and associated proteins in HeLa cells. This 
study reported ESCRT0 (Hrs, STAM1), ESCRT1 (TSG 101), 
and the late-acting VPS4 as the main genes responsible for 
exosomal biogenesis (10).

eSCRT-independent Pathway
Trajkovic et  al. conducted studies to figure out the ESCRT-
independent pathway of exosomal generation and found that 
ceramide has a significant role in MVB formation. The pathway 
was elucidated by tracking the PLP (proteolipid protein) traffick-
ing. A comparative study of endosomal sorting of EGF with PLP 
revealed the decreased sorting of EGF with RNA interference 
in the expression of ESCRT and its associated proteins, which 
was just opposite in the case of PLP sorting. Study suggests the 
presence of certain microdomains in endosomal membrane that 
is rich in sphingolipids from which ceramide is formed whose 
cone-shaped structure is responsible for membrane curvature, 
which finally results in PLP sorting and vesicular abscission 
into the endosomes (12). Five RabGTPases were reported in 
the exosome biogenesis from HeLa cells in 2009. The study 
emphasizes on two Rabs, namely, Rab27a and Rab27b, which 
are elucidated as non-redundant in their functions. At the same 
time, Rab27b is pleotropic and involved in MVB size regulation 
and also in the transfer of these vesicles to the actin-rich cell 
cortex. Rab27a causes vesicular docking and its silencing can 
result in the formation of large multivesicular endosomes by 
means of the fusion of adjacent intra-endosomal vesicles (13). 
In 2010, Hsu et al. reported the significance of another isoform, 
Rab35, along with its regulation by a GTPase-activating protein 
TBC1D10A–C in exosomal docking and its biogenesis in the 
central nervous system. Knockdown of Rab35 along with Rab11 
shows an increased accumulation of MVBs without its fusion and 
release (14). Experiments conducted in mouse 4T1 cells reveal 
the role of neutral sphingomyelinase 2 (nSMase2) enzymes in 
exosomal biosynthesis (15). Later in 2014, Guo et al. reported the 
significance of the same enzyme in exosomal packaging of prion 
protein. Knockdown of this particular enzyme in mouse model 
has shown the decreased release of exosomes from neuronal cells 
(16). These inferences emphasize on the importance of sphin-
golipids in exosomal cargo sorting and release.

Kajimoto et al. suggested the role of an inhibitory G-protein-
coupled sphingosine-1-phosphate receptor in cargo sorting and 
exosome release. Constant supply of sphingosine-1-phosphate 
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TaBle 2 | Expression status of microRNAs as the exosomal cargo in different cancer types.

Type of cancer Name of RNa cargo Status of expression

Cervical cancer mir-21, mir-146a Overexpression (29)

Colorectal cancer let7a, mir-21, mir-192, mir-221 Overexpression (30)

Hepatocellular cancer mir-18a, mir-221, mir-222, mir-224 Overexpression (31)
mir-101, mir-106b, mir-122, mir-195 Downregulation (31)

Lung cancer mir-21, mir -21, mir-15, mir-200b-5p w, mir-200b-5p, mir-190b, mir-376a-5p, mir-378a,  
mir-379, mir-139-5p, mir-30a-3p, mir-629, mir-502-5p, mir-1974, mir-17, mir-100, mir-154-3p

Overexpression (32)

mir-139-5p, mir-30a-3p, mir-378a Downregulation (32)

Melanoma mir-17, mir-19a, mir-21, mir-126, mir-149 Overexpression (33)

Ovarian cancer mir-214, mir-140, mir-147, mir-135b, mir-205, mir-150, mir-149, mir-370, mir-206, mir-197, mir-634,  
mir-485-5p, mir-612, mir-608, mir-202, mir-373, mir-324-3p, mir-103, mir-593, mir-574, mir-483, mir-527,  
mir-603, mir-649, mir-18a, mir-595, mir-193b, mir-642, mir-557, mir-801, slet-7e, mir-21, mir-141, mir-200

Overexpression (34)

Prostate cancer mir-409, mir-141 Overexpression (35, 36)
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with the cytosolic localization of sphingosine kinase 2 enzyme 
to the receptor can cause continuous activation of the receptor 
and leads to cargo sorting and budding of intra-endosomal 
vesicles (17). The functional importance of calcium is already 
studied extensively in different cellular mechanisms. Senescence-
associated increase in exosome release was also reported from 
prostate cancer (PCa) studies, which is actually mediated by p53 
(19).

eXOSOMal CaRGOS

Exosomes are bioactive vesicles that carry different molecular car-
gos. Proteins are one of the dominant contributors among them. 
Cells release exosomes in normal physiological conditions, which 
are mainly for cell-to-cell communication. Ligand molecules that 
are packaged in exosomes can be targeted to the adjacent cells, 
where they can interact with specific receptors (20). Exosomal 
cargo compositions could be considered as a prominent indica-
tor of homeostatic aberrations in different body systems (21, 22). 
Exosomes can carry proteins, DNA, RNA including noncoding 
RNAs, and lipid species.

Both cytosolic and membrane bound proteins are present in 
exosomes, which are elucidated by different studies. Molecular 
characterization of DC exosomes revealed the presence of both 
the types of protein, among which hsc73 (hsp70 family member) 
is a predominant cytoplasmic protein that has a role in vesicular 
biogenesis. DC exosomal membrane is rich in tetraspanin pro-
teins including CD9, 63, 81, and 82, which are responsible for 
their immunological functions (8). Recent analyses of urinary 
exosomes using mass spectrometry accounted for 49 different 
proteins that are mostly involved in carbohydrate and lipid 
metabolism. This gives a scope for exosome protein profiling 
in therapeutic field of metabolic disorders (23). Along with the 
abovementioned common exosomal markers, cells can sort 
specific proteins according to their physiological conditions. 
Cancerous cells can sort oncoproteins in exosomes, which can 
be incorporated into the adjacent bystander cells that finally lead 
to their neoplastic transition. Exosomes are immunologically 
active vesicles that can present antigens. DC exosomes carry 
both MHCI and II. But the actual way of immune mechanism 

is not yet elucidated (5). Skotland et al reported 107 lipid spe-
cies from urinary exosomes of prostate cancer patients which 
include cholesterol, phospholipids and sphingomyelin (24). 
Sphingomyelin and ceramides indicates their association with 
exosomal biogenesis (12). In 2016, proteomic and lipidomic 
analyses of these vesicles revealed the presence of free fatty acid 
along with lysophosophatidyl derivatives as the positive curvature 
promoters and cardiolipin as the negative curvature promoter on 
exosomal membrane (25). The presence of 27-hydroxycholesterol 
(27-OHC) in breast cancer exosomes from ER+ breast cancer cell 
lines was also reported (26). 27-OHC is known to regulate the p53 
expression and enhances the proliferation of ER+ breast cancer 
cells (27). Oncogenic cells produce miRNAs that modulate the 
expression of specific caretaker and tumor suppressor genes in 
adjacent cells, which promote further cancer progression and 
spreading. Most of the exosomal miRNAs are used as potent 
diagnostic markers. Interestingly mRNA content of exosomes 
was found to be different from that of its mother cell composition 
but miRNA composition of exosomes was similar (28). A detailed 
status of miRNA expression in exosomal vesicles in different 
cancer types is discussed in Table 2.

eXOSOMeS iN CaNCeR

Although exosome release is a normal process, increase in its rate 
and its differential cargo expressions are favorable for oncogenic 
progression and metastases. Exosomes can be collected from 
blood, plasma, amniotic fluid, saliva, urine, etc, by ultracentrifu-
gation and assessed for the molecular components such as DNA, 
RNA, miRNA, and proteins (37). Exosome-mediated transfer of 
different cargos promotes cancer progression and spreading. It 
can be explained by the bystander effect through coulee promoted 
infection. Exo-miRNA can communicate with the neighboring 
cells of the same tissue or the adjacent tissue via gap junctions 
or extracellular coulee. It can cause bystander effect, which make 
the cells as cancerous or can lead to its autophagy. Most of the 
studies are focusing on the increased release and bystander 
integration of these vesicles in response to radiation which  
is specifically named as radiation-induced bystander effect 
(RIBE) (38–40).
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In esophageal squamous cell carcinoma, specific miRNAs 
have shown an increased expression with tumorigenesis and its 
aggressiveness. Exosomal miR-17, miR-19a, miR-21, miR-126, 
and miR-149 expression exhibited a positive correlation with 
the progression of metastatic sporadic melanoma by targeting 
around 40 genes (33). Exosomes isolated from the serum of 
PCa patients reported an overexpression of miR-141 (35). An 
increased expression of certain set of miRNAs including Let7a 
was also reported from the serum exosomal analysis of colorectal 
patients (20). Glioblastoma cells also exhibit miRNA upregula-
tion (41). MiR-409 released from stromal fibroblast cells were 
involved in human prostate tumorigenesis by inducing EMT and 
downregulating the expression of tumor suppressor genes (RSU1 
and STAG2) (36).

Oncogenic proteins enclosed in exosomes can lead to spread-
ing of tumor to the adjacent tissues. Recently, a novel protein, 
myoferlin is reported to be present in pancreatic and breast 
cancer cells, described as a common protein in cancer cell releas-
ing exosomes. The study unravels the importance of myoferlin 
in cancer progression and metastases with increased exosomal 
biogenesis and packaging of nucleic acid cargo to adjacent cells 
(42). The oncogenic receptor EGFRvIII was shown to be trans-
ported between glioma cells with the aid of exosomes resulted 
in the transfer of oncogenic activity, transforming phenotype 
and EGFRvIII-dependent transcription (43). Proteomic analysis 
of urinary exosomes identified 49 proteins that were considered 
as significant. Interestingly, functional and biological interpreta-
tions of the proteins revealed that they have diverse functions 
but none related to reproductive functions. This further explained 
that outer part of urinary exosomes chiefly contributes to various 
biological functions attributed to exosomes (23). A comparison 
of different exosomal studies reveal that during the course of 
progression of cancer, it shows differential sorting of exosomal 
content. Release of certain proteins will be higher during the 
onset of cancer, but toward the phase of metastases, a decrease 
in its expression can be found with the increased release of other 
proteins. Cancer onset related exosomal markers differ from that 
of the metastases related exosomal markers such as integrins and 
tetraspanins (44). DNA fragments are also found associated with 
exosomes including full-length H-ras and sequences of N-ras 
oncogenes were reported as the exosomal contents, released by 
mouse brain tumor cells (45).

eXOSOMeS aND TUMOR 
MiCROeNviRONMeNT

Tumor microenvironment consists of cellular and acellular 
factors contributed by the tumor and its surroundings. Its main 
composition includes extracellular matrix (ECM), cancer-
associated fibroblasts (CAFs), inflammatory immune cells and 
tumor-associated vasculature. CAFs play a major role in the 
maintenance of tumor microenvironment with the release of dif-
ferent proteins to the extracellular sites that are involved in vari-
ous signal transduction pathways and their regulations. Almost 
all these factors are released with the aid of exosomes (46). 
Inflammatory immune cells are one of the major contributors 

in the tumor microenvironment. Exosomes can maintain this 
microenvironment by immune system activation. Most of the 
studies focus on DC-derived exosomes. Molecular characteriza-
tion of DC-derived exosomal studies conducted in 1999 unravel 
exosome-mediated immunological induction in tumor progres-
sion. These vesicles may interact with T  cells directly or indi-
rectly with the aid of antigen-presenting cells (APCs) and can 
trigger immune responses. Proteomic data show the presence 
of class 1 and 2 MHCs on exosomal membrane and can present 
antigens to induce T cells. Tetraspanin membrane proteins are 
also reported as DC exosomal proteins that can trigger immune 
system. Presence of a membrane protein MAC1 (a β2 integrin 
also known as the type 3 complement receptor, CR3) also sug-
gests the possibilities of dendritic exosomal interactions with 
different immune cells such as lymphocytes. Detailed studies 
revealed a major fact that exosomes cannot interact with T cells 
directly; they are mostly involved in the sensitization of other 
DCs, which is concluded with the report of increased rate of exo-
somal release from the immature DCs (5). Antigen-presenting 
capacity of exosomes is elucidated with experiments in murine 
DCs. Hrs-depleted DCs have shown decreased MHC expression 
which is opposite in the case of control DCs. Absence of ESCRT 
pathway downstream proteins decreases MHC expression, this 
is an indication of active sorting of MHC molecules in dendritic 
exosomes which can possibly make significant immunological 
triggers (8).

Fc receptor-mediated recognition of exosomes by mac-
rophages promotes tumor growth and metastasis. These vesicles 
with functional proteins induce the immune system with the 
activation of macrophages, accomplished with the cytoskeleton 
rearrangements of the cell (11). Conditioning of tumor micro-
environment with the modulation of cytoskeleton-associated 
protein has proved in PCa also (47). Increased expression of 
pro-inflammatory markers on macrophages in response to 
exosomes derived from gastric cancer cells is an evidence of 
tumor-promoting inflammatory cellular environment. Enhanced 
NF-κB activation that is already established as the key molecule 
involved in inflammatory responses is also reported from the 
above study (48). One of the major cellular elements of tumor 
microenvironment is stromal fibroblast cells. Exosome-mediated 
horizontal gene transfer between cancer cells and the stromal 
cells contribute a lot to the maintenance of cancer favorable 
inflammatory environment. Increased release of unshielded exo-
somal RN7SL1, RNA acts as the ligand for pattern recognition 
receptors from stromal fibroblast cells, can promote aggressive 
cancer progression with increased inflammatory responses (49). 
Exosome-mediated metabolic reprogramming of cancer cells by 
herpes viruses results in the development of tumor microenvi-
ronment. The transfer of virus-encoded miRNA to the cancer 
cells leads to the shift toward aerobic glycolysis and promotes 
the growth of the infected cell thereby increase the fitness of the 
virus (50).

On the other hand, immune suppression is a major trait of 
tumor microenvironment. Cancer cells show different strategies 
to inhibit the immune system action for the clearance of tumor 
deposition. Recent studies revealed that exosomes are potent 
players in this process. Hypoxic tumor-derived microvesicles 
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can block NK  cells, well known for tumor surveillance. These 
vesicles are loaded with miR-23a which is absent in vesicles from 
normoxic cancer cells. This emphasizes hypoxia as a prominent 
characteristic for an immunocompromised tumor microenvi-
ronment (51). Hypoxic PCa exosomes can be responsible for 
the enhanced invasiveness, stemness, and microenvironment 
changes in PCa cells. Further exosomes secreted by PCa cells 
under hypoxic conditions cause neoplastic transition of fibro-
blasts in tumor microenvironment (52).

eXOSOMeS iN aNGiOGeNeSiS

Angiogenesis is a major process which regulates nutrient avail-
ability of fast growing solid tumors. Exosomal interaction and 
uptake of endothelial cells (ECs) will induce angiogenesis with 
the incorporation of vesicular cargos such as tetraspanin 8 and 
CD106 and 49d, which can activate vascular endothelial growth 
factors (VEGFs). VEGFs can cause EC proliferation, migration, 
sprouting, and maturation of EC progenitors (53). Exosomes 
released from the endothelial progenitor cells also interact with 
mature ECs and its cargo integration triggers AKT signaling, 
resulting in angiogenesis (54). Hypoxia is a major factor that 
induces angiogenesis. Exosomes also play a major role in the 
communication between hypoxic tumors and its microenviron-
ment. Alterations in molecular constituents of exosomes during 
hypoxic conditions will induce the EC proliferation and tube 
formation. In vitro studies of tube formation in normoxic and 
hypoxic human umbilical vein endothelial cells (HUVECs) that 
were incubated with exosomes released from human leukemic 
cells have suggested differential cargo expressions in hypoxic 
vesicles and its role in angiogenesis (55). Beyond endothelial 
cell-to-cell interaction, communication between metastatic 
tumor cells and ECs can activate various cytoskeletal proteins 
such as RAC1, which induce angiogenesis (56). Role of melanoma 
exosomes in the regulation of endothelial tubular morphology 
by inducing tubular sprouting and spheroid formation was also 
reported (57). Tetraspanins were discussed for its role in exosome 
biogenesis, cargo sorting, cancer progression, etc. Studies suggest 
that tetraspanins are key players in the process of angiogenesis 
(58). Expression of genes related to vascular remodeling, such 
as ephrin A3 and PTP1B, were also reported in response to the 
exosomal miR-210 that is involved in the formation of blood 
vessels in hypoxic tumor tissues (59).

eXOSOMeS aND MeTaSTaSiS

Metastasis is the process of detachment and successful invasion 
of cancerous cells from the primary site of tumor to the second-
ary one mainly through blood flow. It is mainly characterized by 
different steps including metabolic reprogramming of cells, loss 
of cell connections with increased action of matrix metallopro-
teases, and diapedesis of cancerous cells and its integration to spe-
cific target sites. Metastasis is the process that makes the disease 
more dreadful with its recurrence (60). The process of epithelial 
mesenchymal transition (EMT) is also a major contributor for 
metastasis (61). EMT is characterized by the transformation of 
tightly packed epithelial cells to loose motile mesenchymal cells, 

afterward they move freely through blood or by other means. 
This complex process is characterized by altered expression 
patterns of transcription factors including Snail, Twist, etc, 
which are mainly regulated at the transcriptional, translational, 
and post-translational levels. This is actually preceded by the 
complex interplay between various signaling molecules, among 
which one of the major one is TGF-β (62). Recent studies have 
suggested possible roles of exosomes in the process of metastasis. 
Early metastatic expression of exosomal miR-105 is reported in 
the transformation of non-metastatic cells to metastatic cells. 
Further suppression of miR-105 expression restores vascular 
integrity and inhibits the process of metastasis in breast cancer. 
This miRNA targets ZO-1a, tight junction protein, and observed 
an inverse correlation between the expression of miR-105 and 
ZO-1 (60). The study also suggested the possible role of miR-105 
as a non-invasive marker for the prediction or early diagnosis 
of breast cancer metastasis (60). Role of exosomes in metastatic 
cell invasion can be explained by seed and soil theory in a dif-
ferent perspective. Primary metastatic cells can send oncogenic 
biomolecules to the target site before cell invasion itself. This will 
architect a pre-metastatic niche in the target organ that leads 
to the successful metastasis of these cells (Figure 3). Exosomal 
release of CD97 plays a critical role in pre-metastatic niche for-
mation in gastric cancer cells (63). Uptake of exosomes released 
from stromal cells by breast cancer cells and vice versa suggested 
the role of these nanovesicles in metastases (64). Pre-metastatic 
niche will be mainly programmed by the altered expression of 
various signal transduction pathways. Macrophage migratory 
inhibitory factors packaged in pancreatic ductal adenocarci-
noma exosomes will be taken up by Kupffer cells that can secret 
TGF-β, leads to the increased expression of fibronectin in hepatic 
stellate cells which finally cause the infiltration of macrophages 
to liver (65). Exosomal miR-21 and 29a can act as ligands for 
toll-like receptors and can induce inflammatory responses in 
pre-metastatic niche formation (55). Pre-metastatic niche for-
mation contributes to the organotropic metastasis as reported 
by the studies with hematopoietic bone marrow cells. These 
progenitors have shown an increased expression of VEGF-1 
in target sites and formed cellular clusters before cancer cells 
have been invaded and induced an overexpression of fibronectin 
in resident fibroblast cells. Thereby the secondary site will be 
favorable for the easy invasion of the primary cancer cells (66). 
Integrins are transmembrane receptors involved in adhesion, 
migration, cell differentiation, etc. Increased expression of these 
proteins in late stages of cancer is considered as an indication 
of metastasis. Invasive integrin positive PCa cells can package 
these transmembrane receptors in exosomes and will be targeted 
to the integrin negative cells and there they can promote cell 
invasion (67). Organotropic metastases promoted by the expres-
sion of different isoforms of integrins in various tissues were 
also reported (68). A comparative proteomic characterization 
of metastatic and non-metastatic cellular exosomes accounted 
the differential expression of proteins between the samples. 
Vimentin, hepatoma-derived growth factors on exosomal 
membrane and casein kinase II, and α annexin-like molecules 
in its cytoplasmic lumen were reported from murine metastatic 
bladder cell lines (69). Exosome-packaged MET oncogenes will 
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FiGURe 3 | Role of exosomes in pre-metastatic niche formation. Exosomes will be released from the primary cancer cells into the extracellular sites.  
Distribution and specific organotropic integration of these vesicles with oncoproteins or nucleic acids as cargos lead to the development of pre-metastatic  
niche in the secondary site of cancer metastasis. Induction of different signaling pathways and activation of different immune cells in the secondary site  
helps in the maintenance of cancer favorable inflammatory microenvironment that promotes successful cancer cell metastasis.
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have the potency to promote cellular transformation, tumor 
cell proliferation, survival, motility, invasion, and metastasis 
(70). Proteomic analysis of exosomes released from A431 cells 
revealed the presence of various signaling molecules related to 
cellular movements including integrin and tetraspanin (71). 
Exosomal hsp90 along with annexin-II released to the extracel-
lular sites have important role in the activation of plasminogen, 
its conversion into plasmin will degrade ECM and cell adhe-
sion junctions between adjacent cells and promote EMT (72). 
MiR-409, packaged in extracellular vesicles, was reported to 
promote metastatic progression in human PCa (36). nSMase2, 
which mediates miRNA sorting in to exosomes, can be induced 
by hypoxia leading to the secretion of angiogenic miRNAs, 
such as miR-210, to facilitate tumor angiogenesis and thereby 
promote metastasis (15). MiRNAs from astrocytes have the 
potency for epigenetic regulation of PTEN mRNA and protein. 
Astrocyte-derived exosomes are found to mediate trafficking of 
PTEN-targeting miRNAs to metastatic tumor cells and promote 
the process of metastasis (73). Gastric cancerous cells produce 
Let-7-containing exosomes and may have oncogenic metastatic 
activity which is contradictory to its normal tumor suppressor 
activity (74). Tumor microenvironment is playing a major role 
in metastasis. It is reported that exo-annexin II released from 
breast, lung, and brain cancer cells can promote metastases 
by triggering macrophage-mediated activation of p38MAPK, 
NF-κB, and STAT3 pathways and increased secretion of IL-6 
and TNF-α in tumor microenvironment (75). Autocrine induc-
tion of Wnt-planar cell polarity (PCP) signaling in stromal 
fibroblast cells in breast cancer can maintain a metastatic 

microenvironment, which will also promote cell invasion (46). 
Exosomal recruitment of CXCR4 expressing stromal cells leads 
to metastatic microenvironment formation and promotes liver 
metastasis of colorectal cancer cells (76). Hypoxic studies in 
cancer cells proved differential expression pattern of proteins in 
hypoxic tumor exosomes and their importance in cell stemness 
and metastasis. A comparative study of hypoxic and normoxic 
prostate exosomes accounted for higher metalloprotease activ-
ity and increased levels of diverse signaling molecules such as 
TGF-β2, TNF-α, IL-6, TSG101, Akt, ILK1, and β-catenin (52). 
Repeated secretomic studies accounted for more proteins includ-
ing metastatic markers (MET, S100A8, S100A9, TNC), signal 
transduction molecules (EFNB2, JAG1, SRC, TNIK), lipid rafts, 
and lipid raft-associated components (CAV1, FLOT1, FLOT2, 
PROM1) in exosomes derived from metastatic SW620 cells (77).

eXOSOMeS aS DiaGNOSTiC aGeNTS  
OR iN CaNCeR THeRaPeUTiCS

Cancer is one of the major diseases which show a high rate of 
resistance toward various therapeutic strategies. Recent studies 
suggest exosomes as major players in increased survival rate of 
cancerous cells after chemotherapy. Drug-resistant breast cancer 
cells transfer the resistive power to the adjacent sensitive cells 
through exosomes. Horizontal transfer of specific cargos with the 
aid of these biological nanovesicles alters specific gene expres-
sion patterns in recipient cells (78). Several potential biomarkers 
were identified through proteomic analyses of cancer-derived 
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TaBle 3 | List of major exosome isolation kits including name of the kit, principle 
of action, and final state of yield.

No. Name of the kit Catalog no. Principle of the kit Final 
product

1 Capturem 
(clontech)

635723 Isolation with exosome 
interacting non-antibody 
molecules

As elute

2 ExoQuick EXOQ20A-1 Precipitation As pellet

3 Miltenyi 130-110-913 Pulling out the exosomes 
with immunolabelled 
magnetic beads

As elute

4 MiRCURY 
(Qiagen)

76743 Precipitation As pellet

5 PureExo (Bio) P100 Precipitation As pellet

6 ThermoFisher 4478359 Precipitation As pellet
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exosomes from various types of cancers (23, 28, 41). Various 
studies in different cancer subtypes showed that exosomes can 
be considered as potential biomarkers owing to its ubiquitous 
presence in different body fluids.

Rabinowits et al. reported that in lung adenocarcinoma, cir-
culating total miRNAs can be used as a screening tool because 
they observed a significant difference between patients and 
healthy controls (79). Several miRNAs (miR-17-5p, miR-
21, miR-550, miR-10b) were characterized from exosomes 
isolated from peripheral blood of pancreatic cancer patients, 
suggesting the use as early biomarkers (80). Similarly, miR-373 
was significantly elevated in the serum of TNBC patients as 
compared to control subjects (81). A panel of 16 miRNAs was 
abundant in serum exosomes isolated from CRC patients (82), 
and Matsumura et al. showed that miRNAs overexpressed in 
CRC tissue samples were mostly converged into miR-17–92 
cluster. They also showed that circulating levels of exosomal 
miR-19a was a marker which can be used to assess both the 
overall and disease-free survival (83). LINC00152, AK001058, 
INHBA-AS1, MIR4435-2HG, UCA1, and CEBPA-AS1 were 
the long non-coding RNAs found in exosomes, and it was 
shown that they can be used as a blood-based biomarker in 
gastric cancer (84, 85). Caludin-4 (a tight junction protein) 
containing exosomes released from ovarian cancer cells was 
found in the peripheral blood system, and studies suggested 
that developing sensitive assays for determining caludin-4 
levels can be a screening criteria for ovarian cancer (86).  
Pre-clinical studies confirmed that MIF present in exosomes 
can predict the liver metastasis (65). Yet another study 
reported the potential diagnostic use of glypican-1 (GPC1), 
a cell surface proteoglycan which was significantly elevated 
in exosomes of pancreatic cancer patients. When we analyzed 
the published literature on cancer-derived exosomes, it was 
observed that majority of studies were focused on cancer 
progression and made attempt to establish its usefulness to 
predict prognosis.

However, the potency of these vesicles in the field of disease 
diagnosis and therapeutics are entangled in fundamental techni-
cal challenges. The major hurdle is its isolation and the chance 
of contamination with other extracellular vesicles which is fol-
lowed by the limited life span of its surface markers once it is 
out of the living system. Conventional strategy for the isolation 
of exosomes is differential centrifugation including ultracen-
trifugation at 100,000 g followed by sucrose gradient centrifuga-
tion as a purification step. Inconsistent results of this practice 
further lead to the development of different exosome isolation 
kits (87). An account of commercially available exosome kits is 
listed in Table 3. But research in the field of nano-microfluidics 
provides more promising alternatives instead of conventional 
methods (88). With advanced technologies, there is a strong 
interest in developing the rapid and high-throughput platform 
for exosome-based diagnostics in clinical settings without the 
purification of exosomes. Ex-Chip is one such approach and is 
a microfluidic device that captures and stains exosomes with 
CD63 antibody and a fluorescent dye (89). In ExoScreen system, 
exosomes were captured by two types of antibodies (CD9 and 
147) and are detected by photosensitizing beads (90). ExoSearch, 

yet another microfluidic device, allows enriched preparation 
of blood plasma exosomes for in  situ, multiplexed detection 
using immunomagnetic beads (91). Furthermore, the authors 
demonstrated the potential of ExoSearch in ovarian cancer using 
three plasma exosomal markers (CA-125, EpCAM, and CD24) 
in diagnostics.

At the same time, exosomes can be used for drug target-
ing. Researchers are trying to use exosomes in packaging of 
drugs instead of using synthetic nanoparticles. Exosomes are 
promising agents for drug delivery with its properties such as 
low immunogenicity, innate stability, and high delivery effi-
ciency. Peptide-conjugated exosomes loaded with curcumin 
as a drug has been proved as a good system for the effective 
drug delivery for brain ischemia (92). This strategy can reduce 
the rate of loss of drug in blood stream with its tissue specific 
targeting. Exosome-mediated intranasal administration of 
catalase has been proved for its decreased protease degrada-
tion and sustained release into the brain for Parkinson’s disease  
(93). Natural polyphenols are established against different 
forms of cancer. But its decreased bioavailability and stabil-
ity is found to be as a major issue in this therapeutic field. 
Treatment of mesenchymal stromal cells with paclitaxel,  
a drug for cancer, leads to its uptake and release in exosomes 
proclaim the scope of more studies in this field (94). Ovarian 
xenograft studies using A2780 cells revealed the increased 
anticancer activity of anthocyanin than that of the conven-
tional drugs (paclitaxel) (95). As we discussed in the Section 
“Introduction,” all the body fluids have exosomes. Most of the 
drug delivery works are done with the vesicles isolated from 
the bovine milk. It is considered as a good exosomal source for 
the drug delivery purposes because of no adverse immune and 
inflammatory effects (96). The ongoing and completed clinical 
trials using exosomes as diagnostic or therapeutic agents in 
cancer are listed in Table 4.

A couple of studies were reported on the importance of 
exosomes in vaccine development. Serum-derived exosomes 
from pigs are revealed for its use for the development of the 
vaccine against porcine reproductive and respiratory virus 
(PRRSV) (97). Studies conducted with the exosomes isolated 
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TaBle 4 | Ongoing and completed clinical trials involving exosomes as therapeutics or diagnostic agents [Source: National Institute of Health (NIH) clinical trial registry].

S.No Title of the study Type of cancer Study design Starting date NCT number

1 Interrogation of exosome-mediated intercellular  
signaling in patients with pancreatic cancer

Pancreatic  
cancer

Prospective trial:  
observational

March 2015 NCT02393703

2 Circulating exosome RNA in lung metastases  
of primary high-grade osteosarcoma

Osteosarcoma Prospective trial:  
observational

May 2017 NCT03108677

3 ncRNAs in exosomes of cholangiocarcinoma Cholangio  
carcinoma

Prospective translational  
study with preclinical and  
clinical phases 

May 2017 NCT03102268

4 Edible plant exosome ability to prevent oral mucositis  
associated with chemoradiation treatment of head  
and neck cancer

Head and neck  
cancer

Intervention model: parallel 
assignment

August 2012 NCT01668849

5 Exosome testing as a screening modality for human  
papillomavirus-positive oropharyngeal squamous  
cell carcinoma

Oropharyngeal squamous  
cell carcinoma

Observational, single- 
institution pilot/feasibility  
study

February 2015 NCT02147418

6 Diagnostic accuracy of circulating tumor cells (CTCs)  
and onco-exosome quantification in the diagnosis  
of pancreatic cancer – PANC-CTC (PANC-CTC)

Pancreatic  
cancer

Prospective trial:  
observational

February 2017 NCT03032913

7 Metformin hydrochloride in affecting cytokines  
and exosomes in patients with head and neck cancer

Head and neck  
cancer

Intervention model:  
parallel assignment

March 2017 NCT03109873

8 Study of molecular mechanisms implicated in the  
pathogenesis of melanoma. Role of Exosomes  
(EXOSOMES)

Melanoma Intervention model:  
single Group assignment

December 2014 NCT02310451

9 Olmutinib trial in T790M (+) NSCLC patients detected  
by liquid biopsy using BALF extracellular vesicular DNA

NSCLC Intervention model:  
single Group assignment

July 2017 NCT03228277

10 Study investigating the ability of plant exosomes to  
deliver curcumin to normal and colon cancer tissue

Colon cancer Intervention model:  
factorial assignment

January 2011 NCT01294072

11 Effect of plasma derived exosomes on cutaneous  
wound healing

Ulcer Intervention model:  
single group assignment

September 2015 NCT02565264

12 Circulating exosomes as potential prognostic and  
predictive biomarkers in advanced gastric cancer  
patients (“EXO-PPP Study”)

Gastric cancer Observational model:  
case control

January 2013 NCT01779583

13 Clinical research for the consistency analysis of PD-L1  
in cancer tissue and plasma exosome (RadImm01)

 Non-small cell lung  
cancer (NSCLC) 

Intervention model:  
single group assignment

October 2016 NCT02890849

14 Clinical validation of a urinary exosome gene signature  
in men presenting for suspicion of prostate cancer

Prostate cancer Observational  
model: cohort

May 2014 NCT02702856

15 Trial of a vaccination with tumor antigen-loaded dendritic  
cell-derived exosomes (CSET 1437)

 Unresectable non-small cell 
lung cancer responding to 
induction chemotherapy

Intervention model:  
single Group assignment,  
Phase II trial

December 2009 NCT01159288

16 Clinical research for the consistency analysis of PD-L1  
in lung cancer tissue and plasma exosome before and  
after radiotherapy (RadImm02)

Lung cancer Intervention model:  
single Group assignment

October 2016 NCT02869685

17 Anaplastic thyroid cancer and follicular thyroid cancer- 
derived exosomal analysis via treatment of lovastatin  
and vildagliptin and pilot prognostic study via urine  
exosomal biological markers in thyroid cancer patients

Thyroid cancer Observational model:  
cohort

August 2016 NCT02862470
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from advanced stage of T-cell lymphoma have proved its role in 
triggering the immune response (98). It is found that exosomes 
released from glioma cells have the potency to act as antigen 
sources for immune system activation (99). Experiments 
conducted with dendritic exosomes revealed its anti-tumor 
activity by the induction of T-lymphocytes (100). Anti-cancer 
immunity of DC-derived exosomes has also proved in B16F10 
melanoma model (101). It gives the scope of exosomes in devel-
oping vaccines against cancer, one of the dreadful diseases to 
tackle.

FUTURe PeRSPeCTiveS ON CaNCeR 
eXOSOMeS

Exosomes are considered as heterogeneous entities, and the 
complexity of exosomes is still not thoroughly understood. We 
propose following areas which require an urgent attention to 
understand the complexity of exosomes.

 1. More sophisticated techniques and methodologies for isolat-
ing cancer exosomes.
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 2. The nature of the cargo in the exosomes majorly depends on 
the origin of the cells from where the exosomes get released. 
Therefore, how the cargo is packed in exosomes needs to be 
fully elucidated. It is important because cancer cells are known 
for their heterogeneity and nature of cargo from each cancer 
cell will be different. This will further help us in designing 
strategies for early diagnosis and monitoring response to 
treatment using exosomes.

 3. The role of exosomes in diagnostics and therapeutics is mostly 
confirmed using cancer cell lines and animal models. A large-
scale, randomized clinical trials must be conducted in differ-
ent types of cancers for further validation and establishing the 
use of exosomes as point of care diagnostics.

 4. Identification of exosomes based biomarkers in response to 
conventional cancer therapies to study the treatment response.

 5. The potential use of exosomes as delivery vector needs 
more critical evaluation. How tractability can be improved? 
Whether multiple drugs can be packaged in exosomes? As we 
are in the era of personalized medicine, whether we can make 
personalized approach for delivering therapeutically relevant 
exosomes?

 6. Till date, there is a dearth of well-defined guidelines for 
manufacturing, storage and administration of therapeutically 
relevant exosomes. There is an urgent need to develop guide-
lines with respect to safety and quality of exosomes and GMP 
standards to be followed.

CONClUSiON

These studies on the composition and biogenesis of exosomes 
provide us with detailed insight into the role of cancer-derived 
exosomes in tumor growth, drug resistance, metastasis, and 
angiogenesis. The exosomes are rich in different types of 
cargo and reflect the state of tumor cells from which it is 
derived and can be explored as minimally invasive biomarkers 
for early detection, diagnosis and prognosis of different type 
of cancers.
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