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Organisms vary widely in size from microbes weighing 0.1 picograms to trees weighing 23 
thousands of megagrams, a 1021-fold range similar to the difference in mass between 24 
an elephant and the Earth. Mass has a pervasive influence on biological processes but 25 
the effect is usually non-proportional; for example, a 10-fold increase in mass is 26 
typically accompanied by just a 4-to-7-fold increase in metabolic rate. Understanding 27 
the cause of allometric scaling has been a long-standing problem in biology. Here, we 28 
examine the evolution of metabolic allometry in animals by linking microevolutionary 29 
processes to macroevolutionary patterns. We show that the genetic correlation 30 
between mass and metabolic rate is strong and positive in insects, birds, and mammals. 31 
We then use these data to simulate the macroevolution of mass and metabolic rate, and 32 
show that the interspecific relationship between these traits in animals is consistent 33 
with evolution under persistent multivariate selection on mass and metabolic rate over 34 
long periods of time. 35 
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Animals expend energy to survive, forage, grow, and reproduce, and the processes that 36 cause variation in metabolic rate have fascinated biologists for over a century1-11. Metabolic 37 rates integrate many organismal functions12, and relate to several traits that enhance fitness 38 (e.g., social dominance, offspring growth, and lifetime reproductive success8,13-15). Because 39 energy turnover varies according to size, measurements of metabolic rate (MR) and body 40 mass (M) are usually strongly correlated. Among species of birds and mammals, for example, 41 more than 94% of the variance in MR can be explained by M alone16-18. Surprisingly, however, 42 
MR is not linearly proportional to M; instead, MR is proportional to Mb, where b is typically 43 less than one 6,9, especially for resting MR and daily mean MR of free-living animals19; b is 44 often higher and can approach isometry (b=1) for maximally-active animals7. Mechanistic 45 hypotheses proposed to explain the observed relationships between MR and M have invoked 46 variation in a range of physical constraints such as the geometry of circulatory networks4,5, 47 the need to dissipate heat7,20, or surface area-volume ratios that influence the flux of nutrients 48 or wastes21-23. Other approaches that explain variation in metabolic scaling have invoked 49 biotic and abiotic drivers such as lifestyle and temperature24, foraging25, predation26, and a 50 range of others7-9,27,28, or differences in body size optimization and the distributions of 51 intraspecific production and mortality parameters across species29. Here we complement 52 these studies by investigating microevolutionary and macroevolutionary processes 53 responsible for variation in scaling of metabolic rate in animals.  54 Theory predicts that microevolutionary processes can lead to macroevolutionary 55 associations between MR and M in at least two ways:  56 1. Metabolic allometry could arise due to constraints in the genetic architecture of 57 traits, with little to no role for selection coupled with random evolution30. When two traits 58 share genetic variance, through pleiotropy, they do not evolve independently31 thus the 59 evolution of MR and M could be constrained if the two traits are genetically correlated. Under 60 this scenario, a macroevolutionary relationship between MR and M is expected to arise and 61 persist even in the absence of selection. 62  2. Metabolic allometry could also arise through correlational selection increasing the 63 covariance between MR and M 30,32. Under this model, natural selection favours particular 64 combinations of MR and M over others, and it is the pattern of multivariate selection that 65 gives rise to the sub-linear scaling of MR with M. This model implies that fitness would differ 66 between individuals with the same mass-specific MR (= MR/M) and different M; fitness would 67 be highest for small individuals with high mass-specific MR and for large individuals with low 68 mass-specific MR.  69 
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To distinguish between these two explanations (hereafter random evolution, and 70 correlational selection), we took a three-pronged approach: first, we estimated the 71 distribution and strength of the genetic correlation between MR and M for a suite of species 72 across 800 million years of animal evolution. Using the distribution of genetic correlations 73 between MR and M and the distributions of the genetic variances of these traits, we next 74 simulated repeatedly the evolution of MR and M along a phylogeny. This process generated a 75 distribution of values for each of these traits, from which we could calculate the variation in 76 both the scaling exponent of MR and the magnitude of residual variation in MR (the variation 77 in MR that is not explained by variation in M). We then compared the distributions of the 78 simulated data with empirical data. If the distribution of simulated values of the scaling 79 exponent b and the distribution of simulated residual (mass-independent) variation in MR 80 both match their empirical distributions, the allometric scaling of MR with M could have 81 resulted from random evolution. If, on the other hand, the distribution of simulated values of 82 
b does not match the empirical distribution, or if the simulated residual variation of MR is 83 greater than that of the empirical data, this would demonstrate that the allometric scaling of 84 
MR with M is instead consistent with evolution under correlational selection. 85 
Results 86 As was the case in previous studies of birds33-35 and mammals36, our own empirical 87 estimates for three species of insects revealed that the genetic correlation (rG) between M and 88 resting MR is positive and strong (Fig. 1). In a previous study of speckled cockroaches 89 
Nauphoeta cinerea37, we determined the additive genetic correlation using a paternal half 90 sibling-full sibling breeding design (n = 637 individuals; 48 half-sibling families, 126 full-91 sibling families). In a previous study of fruit flies Drosophila melanogaster (n = 247 92 individuals), we measured the metabolic rates and dry body masses of 85 isofemale lines38. In 93 the present study, we measured metabolic rates and body masses of 438 individual 94 
Drosophila serrata from 45 isofemale lines created from natural populations. For both species 95 of Drosophila, we determined genetic correlations among isofemale lines (see Supplementary 96 Information for details). For all three species of insect, a strong positive genetic correlation 97 was observed (Nauphoeta cinerea males: 0.98 ± 0.18 [SE], females: 0.50 ± 0.37; Drosophila 98 
melanogaster: 0.48 ± 0.17; Drosophila serrata: 0.99 ± 0.17). For the full data set including 99 birds and mammals, rG values range from 0.40 ± 0.35 to 1.18 ± 0.46 (Fig. 1).  100 To evaluate theoretical predictions, we first explored whether random evolution could 101 have produced the observed distribution of interspecific scaling exponents (b). We simulated 102 
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the evolution of MR and M along phylogenies (e.g. Fig. 2), and compared our simulated data 103 with an empirical distribution of b estimated from 4,794 means of MR and M for 2,168 species. 104 These data include 3,799 of our own measurements of MR for 2,936 individuals of 32 species 105 in addition to those compiled from the literature (all data are provided in the Supplementary 106 Material). 107 The empirical estimates of b for resting, free-living, and active animals (Supplementary 108 Figure 1) fall within the simulated distribution based on the genetic correlation between MR 109 and M and their genetic variances (Figs 3a,b). The empirical values for the residual variances 110 also fall within the simulated distribution (Fig. 3c,d). The tails of the simulated distributions 111 are long (Fig. 3), however, and the 95% density contour of the simulated data includes regions 112 of parameter space far outside of the narrow region occupied by the empirical data (Fig. 4). 113 The relationship between MR and M is therefore far more constrained than expected by 114 chance, and we conclude that the macroevolutionary relationship between MR and M arises as 115 a consequence of correlational selection on these traits. This conclusion is robust to the 116 underlying distribution of the ratio of  to  used in the simulations (Supplementary 117 Figures 2-4) 118 
Discussion 119 Theory predicts that responses to selection on a trait initially depend on the genetic 120 correlations between traits, but they are determined by a balance between the intensities of 121 stabilizing and directional selection over longer time scales32. Genetic correlations can arise 122 by chance39 and as a consequence of multivariate selection40-42. We hypothesise that the 123 apparent persistence of the genetic correlation between MR and M over at least some narrow 124 regions of the tree of life suggests that multivariate selection is likely responsible for the 125 distribution of genetic correlations observed in extant species (Fig. 1). Such multivariate 126 selection acting on MR and M could also act to constrain the observed distributions of these 127 traits, restricting the empirical distributions of b and residual variances to the narrow range 128 observed relative to simulations (Fig. 4).  Genetic correlations can vary among 129 environments43, as can intraspecific metabolic scaling relationships24,26,27,44, and so 130 comparisons of the genetic (co)variances of MR and M for animals reared or evolved in 131 multiple environments would also be valuable and might provide insight into how the 132 strength and direction of multivariate selection varies among environments. Such data may be 133 particularly useful in explaining the shifts in metabolic scaling that are observed across the 134 tree of life11. 135 
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Multivariate selection on MR and M could result from physical constraints associated 136 with nutrient mobilisation23,45,46, nutrient transport4,5, heat dissipation7,20, the exchange of 137 nutrients or wastes across surfaces21,22, or combinations of these acting on different 138 combinations of MR and M. Variation in the relative contribution of these physical constraints, 139 or their mediation by environmental context, might also contribute to variation in the scaling 140 exponent of metabolic rate8,23,45,46. Yet despite the considerable interest in these mechanistic 141 hypotheses, variation in these functional characteristics of organisms have not been 142 empirically linked to measurements of fitness, either directly or indirectly via variation in MR; 143 indeed, measurements of the link between lifetime reproductive success and MR are 144 exceedingly rare10. Future work could fill this knowledge gap by examining how the putative 145 mechanistic drivers of metabolic scaling determine the functional basis of variation in fitness. 146 Our results show that interspecific relationship between metabolic rate and body mass 147 in animals is consistent with evolution under persistent multivariate selection. The strong 148 positive genetic correlation between MR and M is present in species of insect, bird, and 149 mammal spanning around 800 million years of evolution (Fig. 1) and might have arisen as a 150 consequence of persistent multivariate selection. These factors – random evolution, 151 multivariate selection, and a persistent genetic correlation – link the micro- and macro-152 evolution of MR and M thereby explaining the multivariate distributions of these fundamental 153 traits across the animal tree of life (Fig. 5): microevolutionary processes dictate the trait space 154 available to organisms, and macroevolutionary patterns describe the regions of trait space 155 that are selected over long periods of time.  156 
Methods 157 
Measurements of metabolic rates 158 Metabolic rates were measured using standard positive pressure flow-through 159 respirometry47, using techniques that are described in detail elsewhere (e.g. 37,38) and in the 160 supplementary material. Briefly, air was scrubbed of CO2 and water vapour before being 161 passed at a known flow rate through a chamber containing an animal, and the concentration 162 of CO2, or the concentrations of O2 and CO2, were measured in the excurrent air. Rates of CO2 163 production and O2 consumption were then calculated using standard equations47. For systems 164 in which only CO2 was measured, rates of CO2 production were converted to rates of O2 165 consumption assuming a respiratory exchange ratio (RER) of 0.8 (RER = rate of CO2 166 production divided by rate of O2 production). 167 
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Determination of genetic correlations 168 For Drosophila serrata, genetic (among-line) correlations between body mass and 169 metabolic rate, conditioned on activity and age (ref 48), were calculated using ASReml-R v3.0 170 (ref 49) in R v2.0.2. Approximate standard errors for the estimate of the genetic correlation 171 were calculated using the R ‘pin’ function50. For Drosophila melanogaster, genetic (among-172 line) correlations between dry body mass and metabolic rate, conditioned on temporal block, 173 population, and measurement temperature (ref 48), were calculated. 174 
Simulations of trait evolution 175  We simulated the evolution of log10M and log10MR over randomly generated 176 phylogenies with 4,000 tips using the ‘pbtree’ function of the phytools51 package in R52. 177 Preliminary analyses showed that the results were qualitatively similar when larger trees 178 were used, but processing time was considerably increased; we therefore selected a value of 179 4,000 tips because it is similar to the number of extant species of mammal. Results were also 180 similar if a real tree with branch lengths in units of time was used53. We simulated trait values 181 using the ‘sim.corrs’ function of phytools to conduct Brownian motion simulation on a tree 182 with evolutionary correlations between characters51. We set the starting values for the 183 simulation as the medians of log10-transformed M and basal MR for mammals54; the simulated 184 distributions of b and mass-independent MR are unaffected by these starting values, which 185 influence only the means of log10M and log10MR for the simulated data, not their 186 (co)variances. We set the variance for log10M ( ) at 0.025 to yield simulated body masses for 187 extant taxa at the tip of the tree that span a biologically realistic range. We calculated the 188 variance for log10MR ( ) based on a distribution of 100,000 values generated using a 189 Weibull distribution (shape = 3.23, scale = 0.818) fitted to the empirical distribution of four 190 values of the ratio of  to  calculated using log-log transformed data for Drosophila 191 
serrata (0.81), Drosophila melanogaster (0.55), and male and female Nauphoeta cinerea (1.1 192 and 0.47, respectively). We set covariances at , where we generated a distribution 193 of 100,000 values of rG based on the distribution of Fisher’s Z-transformed values of rG for 194 extant species (mean Z = 1.55, s.d. = 1.18, n = 9; for Z-transformation, estimates of rG ≥ 1 were 195 substituted with values of 0.999; there was no systematic difference between estimates of Z 196 calculated using log-transformed or untransformed data [t7 = 0.156, p = 0.86], and so all data 197 were pooled). In each simulation, traits evolved randomly by Brownian motion along the tree 198 (e.g., Fig. 2), and we replicated the simulation 100,000 times.  199 
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Compilation of comparative data for body mass and metabolic rate 200 To test the predictions of our simulations, we assembled a database of body mass and 201 metabolic rate data, which includes measurements of resting animals (basal metabolic rate55 202 for birds and mammals, standard metabolic rate55 for insects, fish, amphibians, and reptiles), 203 free-living animals (daily energy expenditure56 for reptiles, birds, and mammals) and animals 204 exercising at or near their aerobic limits in a laboratory setting (maximum aerobic metabolic 205 rate57 for terrestrial mammals and cursorial birds, maximum rate of oxygen uptake for fish58, 206 and MR during flight for insects, bats, and birds). In addition to our measurements of 207 metabolic rate (Supplementary Table 1), we assembled published databases and generated 208 new compilations where published databases were not available (Supplementary Table 2). 209 For our new compilations of insect standard metabolic rate (Supplementary Table 3) 210 and flight metabolic rate (Supplementary Table 4), reptile field metabolic rate 211 (Supplementary Table 5), and bird field metabolic rate (Supplementary Table 6) and 212 maximum metabolic rate (Supplementary Table 7), we searched online databases (Google 213 Scholar and Web of Science) using key words that identified the measurements of interest 214 (“metabolic rate” or “rate of oxygen consumption” or “rate of carbon dioxide production” or 215 respirometry or calorimetry or “doubly labelled water” or “daily energy expenditure” or 216 “aerobic capacity”). For each of the records identified by this search, we first scanned the title 217 to determine if a record was likely to contain data or citations to data. If the title was 218 promising, we reviewed the abstract, and if that was promising we reviewed the full text. For 219 each record that was reviewed at the full text level, we also searched for cited papers that 220 might contain data. We did not, unfortunately, maintain a tally of how many records were 221 retrieved or how many papers were reviewed at each level. The full database of metabolic 222 rates includes species that vary in size from ants to elephants (0.1 miligrams - 2.6 223 megagrams). Metabolic rates ranged from 35 picolitres of O2 per minute for resting weevils 224 (0.5 mg) to 3.6 litres of O2 per minute for exercising horses (450 kg). 225 
Determination of empirical scaling exponents 226 We calculated the scaling exponent of metabolic rate, b, for each taxonomic group 227 (insects, fish, amphibians, reptiles, birds, and mammals) and each metabolic state (resting, 228 free-living, and exercising) using phylogenetic mixed models59-61 with phylogenetic 229 relationships from v3 of the open tree of life62. We implemented phylogenetic mixed models 230 using ASReml-R v3.0 (ref 49) and R v3.0.2, with inverse relatedness matrices calculated from 231 phylogenetic covariance matrices using the MCMCglmm package v2.21 63. Models for 232 endotherms and free-living reptiles included log10MR as a response and log10M as a predictor, 233 
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and all other models for ectotherms included log10MR as a response and both log10M and 234 measurement temperature as predictors. The parameter estimate for log10M in each of these 235 models represents the scaling exponent of MR (see ref 9).  236 
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Fig. 1. Phylogenetic distribution of the genetic correlation (rG) between metabolic rate 401 
and body mass. Species are (from top to bottom): African stonechat Saxicola torquata33 402 (estimate for Saxicola torquata axillaris plotted above that for Saxicola torquata rubicola), 403 blue tit Cyanistes caeruleus34, zebra finch Taeniopygia guttata35, deer mouse Peromyscus 404 
maniculatus36, Drosophila melanogaster, Drosophila serrata, Cockroach Nauphoeta cinerea 405 (the estimate for females is plotted above that for males). Dotted lines correspond with values 406 of rG of -1 and +1; the dashed line corresponds with rG = 0. Data are shown ± SE, the tree was 407 dated using www.timetree.org, endothermic species are coloured red, ectothermic species are 408 coloured blue. 409  410 
Fig. 2. Relationship between metabolic rate and body mass predicted by random 411 
evolution. Results are for 4000 tips evolving on a random tree, with a genetic correlation 412 between metabolic rate and body mass (rG = 0.78, Fig. 1), a variance of 0.025 for log- 413 transformed body mass and a variance of 0.0183 for log-transformed metabolic rate, 414 calculated from the mean ratio of  to ; 0.73, see text for details). Orange lines are 415 density contours corresponding to (from inner to outer contour) the 50th, 80th, 90th, and 95th 416 percentiles. Dashed lines represent (from top to bottom) scaling exponents of 1, 0.75, and 0.5. 417 
 418 
Fig. 3. Empirical and simulated distributions of metabolic scaling exponents and mass-419 
independent variation in metabolic rate. (a) Empirical scaling exponent of metabolic rate 420 for a range of species measured at rest (circles), while free living (squares), or during intense 421 activity (diamonds) shown ± 95% CI. Groups that are predominantly endothermic are 422 coloured red, groups that are predominantly ectothermic are coloured blue. (b) Grey bars 423 depict the distribution of simulated scaling exponents under a model of random evolution 424 with a genetic correlation. The vertical dashed line represents the scaling exponent of ¾ 425 predicted by several metabolic theories4,5,45,46. (c) Standard deviation of the variation in 426 metabolic rate that is not explained by variation in body mass or temperature (residual 427 variation) for the relationships in (a). (d) Standard deviation of the variation in metabolic rate 428 that is not explained by variation in body mass for the relationships in (b). 429  430 
Fig. 4. Metabolic scaling relationships are not consistent with random evolution under 431 
a genetic constraint alone. In the upper panel, the black dots depict the combinations of 432 scaling exponents and residual standard deviation that are produced by 100,000 simulations 433 of the evolution of metabolic rate and body mass by random evolution under a genetic 434 constraint with genetic correlations modelled based on their empirical distribution (see text 435 for details). Orange lines are (inner to outer) 50th, 70th, 90th and 95th percentile density 436 contours of the 100,000 simulated exponents. Red and blue symbols represent empirical 437 metabolic scaling exponents for endotherms and ectotherms, respectively, for animals 438 measured at rest (circles), while free living (squares), or during intense activity (diamonds) 439 shown ± 95% CI. The area enclosed by the dashed box in the upper panel is reproduced in the 440 lower panel for clarity. 441  442 
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Fig. 5. The phylogenetic diversity of metabolic rate and body mass. (A) Ellipse outlining 443 the additive genetic ("breeding") values of individuals within a population. The shading in 444 panel a) depicts the fitness surface (darker shading corresponds with higher fitness) 445 describing the pattern of correlational selection on metabolic rate and body mass 446 hypothesized to generate the additive genetic correlation between metabolic rate and mass, 447 and to constrain the evolution of mass-independent metabolic rate. The long axis of the ellipse 448 is the direction of greatest genetic variance, gmax, which represents the genetic line of least 449 resistance64 depicted by the dashed line. If the additive genetic variance-covariance matrix is 450 stable through time, evolution should proceed along the direction of gmax in the absence of 451 selection, yielding strongly correlated phenotypic values of metabolic rate and body mass, as 452 is observed for extant species (the lengths of the light grey bars in panel b are proportional to 453 log10-transformed body mass; dark grey bars are proportional in length to log10-transformed 454 resting metabolic rate). The observed additive genetic correlation between metabolic rate and 455 body mass for a range of animals (Fig. 1) predicts the among-species relationship between 456 metabolic rate and body mass (the slopes of the solid lines for the scaling of resting metabolic 457 rates in panels c-h) are the median simulated values for endotherms and ectotherms from Fig. 458 3b; colours correspond with clades in panel b). 459  460 
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