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The origin of antiferroelectricity in PbZrO3

A.K. Tagantsev1,2, K. Vaideeswaran1, S.B. Vakhrushev2,3, A.V. Filimonov3, R.G. Burkovsky3,4, A. Shaganov3,

D. Andronikova3, A.I. Rudskoy3, A.Q.R. Baron5, H. Uchiyama5, D. Chernyshov6, A. Bosak4, Z. Ujma7,

K. Roleder7, A. Majchrowski8, J.-H. Ko9 & N. Setter1

Antiferroelectrics are essential ingredients for the widely applied piezoelectric and ferro-

electric materials: the most common ferroelectric, lead zirconate titanate is an alloy of the

ferroelectric lead titanate and the antiferroelectric lead zirconate. Antiferroelectrics them-

selves are useful in large digital displacement transducers and energy-storage capacitors.

Despite their technological importance, the reason why materials become antiferroelectric

has remained allusive since their first discovery. Here we report the results of a study on the

lattice dynamics of the antiferroelectric lead zirconate using inelastic and diffuse X-ray

scattering techniques and the Brillouin light scattering. The analysis of the results reveals that

the antiferroelectric state is a ‘missed’ incommensurate phase, and that the paraelectric to

antiferroelectric phase transition is driven by the softening of a single lattice mode via

flexoelectric coupling. These findings resolve the mystery of the origin of antiferroelectricity

in lead zirconate and suggest an approach to the treatment of complex phase transitions

in ferroics.
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T
he notion of antiferroelectricity dates back to the early
1950s. At that time, Kittel1 proposed a theory of anti-
parallel ionic displacements in dielectrics using the anti-

ferromagnetism scheme. In parallel, Sawaguchi et al.2,3 assigned
the perovskite lead zirconate, PbZrO3 (PZ), as antiferroelectric
because of its dielectric behaviour. Thereafter, materials that
exhibited a structural phase transition between two non-polar
phases with a strong dielectric anomaly at the high temperature
side of the transition were named antiferroelectrics, PZ remaining
the prototype for this large group of materials.

In contrast to antiferromagnetism, the description of anti-
ferroelectricity requires the introduction of two instabilities
at close temperatures (nearly simultaneous softening of two
lattice modes). In the context of Landau theory, this is quite an
improbable event. In real materials, PZ being a classical example,
the situation can be even more unusual. Here, in addition to the
softening of the lattice mode that is responsible for the critical
divergence of the dielectric permittivity, at least two other order
parameters corresponding to two different points in the Brillouin
zone are needed to describe the transition-driven structural
changes. Thus, it looks as if coincidentally, the material exhibits at
once three relevant, strongly softening lattice modes, one
responsible for the dielectric anomaly and two for the transition.
Despite systematic experimental and theoretical studies of PZ and
the discovery of some 100 other antiferroelectrics4 over the last
60 years5,7–13, the physical reason for this phenomenon remains
unknown.

In this paper, we revisit antiferroelectricity in PZ by first-time
application of the inelastic X-ray scattering (IXS) technique,
diffuse X-ray scattering and Brillouin light scattering to study
its pre-transitional lattice dynamics. Our experimental results
show that the transition in PZ is driven by the softening of a
single lattice mode, which is actually the ferroelectric soft mode in
perovskites, whereas the antiferroelectric state in PZ can be
viewed as a ‘missed’ incommensurate phase. An essential feature
of our scenario for the structural transformations in PZ is the
strain-gradient/polarization (flexoelectric) coupling14–17. It is this
coupling that ‘transforms’ the ferroelectric softening into an
antiferroelectric phase transition.

Results
Modes controlling antiferroelectricity in lead zirconate. At high
temperatures, PZ has the ideal cubic perovskite structure shown
in Fig. 1a.

After cooling through a first-order phase transition at TAB
500K, the structure changes from cubic m�3m to orthorhombic
mmm with an eightfold increase of the number of atoms per
unit cell2. In spite of both phases being centrosymmetric, the
phase transition is accompanied by a strong Curie–Weiss type
anomaly of the dielectric constant (up to 6,000 (ref. 8)) above the
transition. Because of this behaviour, PZ is classified as an
antiferroelectric. In contrast, in ferroelectrics, a similar dielectric
anomaly is imperatively combined with the transition to a non-
centrosymmetric low-temperature phase (for example, BaTiO3).

Antiferroelectric behaviour of a crystal can be rationalized in
terms of a simple two-instability Landau-type theory18–20. The
dielectric anomaly is attributed to the softening of a transverse
optic polar mode at the G point of Brillouin zone. The Curie
temperature T0 for this softening is close to but lower than the
transition temperature TA. Such mode softening is identical to
that in ferroelectrics. However, in contrast to ferroelectrics, in
antiferroelectrics, this mode softening is interrupted at T¼TA
by a repulsive interaction between the polarization and the
structural order parameter appearing at the transition. If this
coupling is strong enough, the frequency of the ferroelectric

soft mode increases on cooling below TA. This entails a decrease
in the dielectric constant with lowering temperature below
the transition. Such evolution of the dielectric constant with
temperature is typical for antiferroelectrics.

This scenario can be modelled with the following free energy
expansion in terms of the polarization, P, and the structural order
parameter, x,

FðP; xÞ¼ 1
2
AðT �T0ÞP2 þ 1

2
dPP2x2 þ FAðxÞ; ð1Þ

where the coefficient dP40 controls the repulsive biquadratic
coupling between the polarization and the structural order
parameter. The transition at T¼TA is described by the
contribution to the free energy FA(x), implying softening of a
lattice mode associated with the order parameter x. The
corresponding critical temperature, Tstr

0 , should be equal to TA
or slightly lower than TA. Using the equation of state for
polarization qF/qP¼ E (E is the electric field), for the high-
temperature phase (with x¼ 0), equation (1) yields the Curie–
Weiss law wp 1/(T–T0) for the dielectric susceptibility defined as
w¼ dP/dE. Similarly, for the low-temperature phase where the
order parameter of the transition, x, acquires a spontaneous value
of x0, the susceptibility can be found in the form:

w¼ 1

AðT �T0Þþ dPx
2
0

: ð2Þ

Equation (2) corresponds to the aniferroelectric-type anomaly
if AðT �T0Þþ dPx

2
0 increases on cooling. This is possible if the

increase of x0 with lowering temperature dominates the
behaviour of this term. Such a condition can be assured by a
large enough coupling constant dP. (See Supplementary Fig. S1
and Supplementary Note 1 for more information about the
description of antiferroelectricity in terms of expansion (1).)

In the approach discussed above, the appearance of anti-
ferroelectricity requires the presence of at least two soft lattice
modes with close instability temperatures. In PZ, the situation is
even more complicated: the structural changes in the material
cannot be described by one order parameter. For a given
orientational domain state, the changes observed can be
presented as a combination of displacements in two lattice
modes21: one corresponding to the S point (the wave vector
k¼ kR � 2p=að Þð1=4; 1=4; 0Þ; a is the cubic lattice constant) on
the S direction in Brillouin zone and the other corresponding to
the R point (k¼ 2p=að Þð1=2; 1=2; 1=2Þ). Hereafter, we will refer
to these modes as S and R modes, respectively. The distortions
associated with the S point are mainly related to displacements of
lead ions, whereas the R mode is related to antiphase rotations
of the oxygen octahedra above the crystallographic axes of
the cubic phase. The displacement patterns corresponding to the
S and R modes are schematically shown in Fig. 1c,d. For
other orientational domains, the modulations of the ionic dis-
placements correspond to the other wave vectors from the star of
the wave vector kR.
Therefore, apparently three lattice modes control the behaviour

of PZ, schematically shown in Fig. 1b–d: the S and R modes
govern the structural changes at the transition, whereas the G
point mode is responsible for the dielectric anomaly. The fact that
all three modes soften at critical temperatures very close to one
another would be an unusual coincidence. Is there an intrinsic
mechanism that triggers this behaviour? We applied inelastic and
diffuse X-ray scattering techniques and Brillouin light scattering
to answer this question.

Lattice dynamics of PZ from X-ray and Brillouin scattering.
For information on the lattice vibration softening in the high-
temperature phase, we examined the S, G and R points of the
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Brillouin zone, using IXS technique. First, we addressed the low-
frequency spectra of lattice vibrations for wave vectors close to
the S direction of the Brillouin zone, containing the S and G
points. We found the TA branch with polarization along [�1,1,0]
to be of anomalously low frequency (energy) and heavily damped
for all the wave vectors in the S direction (Fig. 2a). Remarkably,
such a low energy of the branch in the interior of the Brillouin
zone coexists with the ‘normal value’ of the corresponding sound
velocity obtained from our Brillouin light scattering data, shown

as the dashed line in Fig. 2a. For other wave vectors and polar-
izations, the situation is not striking—the phonons are weakly
damped and have ‘normally large’ frequencies (Supplementary
Figs S2 and S3, Supplementary Note 2). Apparently, the spectrum
of the in-plane polarized TA mode is strongly anisotropic:
once the wave vector deviates from the S direction, its frequency
increases steeply, and a ‘valley’ is seen along the S direction when
the mode frequency is plotted against the wave vector in the (001)
plane (Fig. 2b).
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Figure 1 | High-temperature structure of PbZrO3 and the main modes of its distortion. (a) Unit cell of lead zirconate in the cubic phase. (b) The

G-point polar mode controlling the dielectric anomaly (shown schematically for one of the possible orientations of its dipole moment). (c) Lead

displacements in the S mode. (d) Oxygen-octahedron rotations in the R mode. Directions of the cubic crystallographic axes in the ab plane are shown as

dotted lines. In c and d, the projections of the orthorhombic unit cell onto the ab plane are shown.
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Figure 2 | Dispersion of the TA phonons in lead zirconate in the cubic phase evaluated from the data on the inelastic X-ray scattering and Brillouin light

scattering. (a) Dispersion curves for the phonons, propagating in S direction (q¼ (q,q,0)) of the reciprocal space and polarized in (0,0,1) plane: blue circles

� 780K, red squares � 550K (X-ray scattering data). Errorbars correspond to 95% confidence interval. The dashed line indicates the slope of the dispersion

curves in the vicinity of the G point, extracted from Brillouin light scattering data (Supplementary Fig. S4, Supplementary Note 3). Comparison of the X-ray and light

scattering data suggests that the phonon energy is anomalously low in the interior of the Brillouin zone. (b) Dispersion surface for the lowest TA phonons,

propagating and polarized in the (0,0,1) lattice plane at 780K. The wave vectors are measured in the units of the reciprocal cubic lattice constant a*¼ 2p/a.
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Along the valley, the orientation of the ionic displacements in
the anomalous acoustic mode coincides with that of the lead ions
in the low-temperature phase. Thus, the freezing of this mode
with the wave vector kR might be considered as the origin of the
phase transformation at T¼TA. However, no minimum was
found at this point on the dispersion curve. The frequency of the
transverse mode at the bottom of the valley decreases slightly on
approaching TA, however, no traces of criticality are seen (see the
data points in Fig. 2a).

Another remarkable feature of the low-frequency spectra
is a central peak for wave vectors along the S direction
(Supplementary Fig. S2, Supplementary Notes 2 and 4). It is
polarized identically to the anomalous transverse acoustic mode.
Its integral intensity increases appreciably upon cooling towards
the transition temperature (see Fig. 3). This peak corresponds to
the G point softening of a relaxational polar lattice excitation,
which was earlier identified in PZ by Ostapchuk et al.21 by far
infrared and dielectric spectroscopy. Similar non-phonon soft
modes were also identified in other materials22,23.

The temperature dependence of the central peak intensity
observed in our experiments is consistent with the prediction of
mean-field theory24 for the critical dependence of the integral
intensity:

Icritðq;TÞ¼ T
T �T0 þ gq2

; ð3Þ

where q is the scattered wave vector, g is a constant and
T0¼ 485K is taken from the dielectric data3 (Fig. 3). Thus, our
data attest to the softening of a relaxational ferroelectric polar
mode at the G point when approaching the Curie temperature, T0.

Our analysis of the modes at the R point did not reveal
any softening relevant to the phase transition in question
(Supplementary Figs S5 and S6, Supplementary Note 5).

Antiferroelectricity in PZ as a missed incommensurate phase.
Unexpectedly, our data suggest that there is no critical softening
in the lattice except for the G relaxational mode. Therefore, the
next objective becomes the understanding of the relationship
between this critical process and other observed phenomena,

namely, (1) the anomalous dispersion and non-critical softening
of the TA branch and (2) the development of the long-range
structural order corresponding to the S and R points.

To answer the first question, we compare the spectrum shown
in Fig. 2a with the classical phonon spectra for cubic ferroelectric
perovskites PbTiO3 (ref. 25) and KTaO3 (ref. 14). The frequency
of the transverse acoustic mode in these crystals is strongly
suppressed with increasing wave vector due to the interaction of
this mode with the soft optic mode via the flexoelectric coupling.
In continuum theory, this coupling is controlled by the
flexocoupling tensor fijkl in the free-energy expansion in terms
of polarization vector Pi and strain tensor uij26:

F¼ a
2
P2 þ cijkl

2
uijukl þ

gijkl
2

@Pi
@xj

@Pk
@xl

� fijkl
2

Pk
@uij
@xl

� uij
@Pk
@xl

� �
;

ð4Þ

where a¼A(T–T0). Hereafter, the Einstein summation
convention is adopted. The flexoelectric coupling induces a
repulsion between the optic and the acoustic modes. Via this
repulsion, the critical softening of the optic mode leads to a
suppression of the frequency of the acoustic mode. The similarity
between the spectrum of the anomalous mode in PZ and those in
cubic ferroelectric perovskites suggests that the low energy and
weak dispersion of the anomalous mode is conditioned upon its
flexoelectric coupling with the soft polar optic mode. Therefore,
the critical softening of the G-point mode is responsible for both
the dielectric anomaly at the high-temperature side of the
transition and for some reduction in the TA mode frequency on
approaching the transition (see Fig. 2a).

Determining the decisive role of flexoelectricity in the phase
transformation of PZ is more challenging than for PbTiO3 and
KTaO3. The ferroelectric soft mode in these crystals is a phonon-
type excitation, and its temperature evolution can be readily
traced experimentally14,25. By contrast in PZ, as was mentioned
above, the lattice mode related to the dielectric anomaly manifests
itself in dynamical response as a relaxation excitation rather
than as a phonon. The critical central peak observed in our
measurements (Fig. 3) is a trace of this excitation. However, the
accuracy of our IXS experiment does not suffice to evaluate the
spectral parameters of this soft mode, needed for further
justification of the ‘flexoelectric scenario’. At the same time, our
analysis (see Supplementary Note 6) shows that the flexoelectric
coupling should result in a specific correlation pattern of thermal
atomic displacements that can be tested with X-ray diffuse
scattering. We carried out X-ray diffuse scattering measurements
and fit the experimental data to a lattice dynamics model in-
corporating the flexoelectric coupling27,28. Figure 4 shows the
experimental data and the fit for six two-dimensional cross-
sections of the diffuse scattering intensity maps around the (0,0,�2)
and (0,1,�2) reciprocal lattice points.

A very good qualitative agreement is provided with the model
that takes into account the flexoelectric coupling, whereas without
this coupling, the specific features of the DS maps cannot be
reproduced. Thus, our analysis of the data on inelastic and diffuse
X-ray scattering and Brillouin scattering identifies unambiguously
the softening of the ‘ferroelectric’ optical mode as the driving
force (via the flexoelectric coupling) for the specific form of the
anomalous transverse acoustic mode.

It was pointed out in the classical paper by Axe et al.14 that the
flexoelectric coupling can drive the phonon frequency to zero at a
certain wave vector inside the Brillouin zone, leading to the
formation of an incommensurate phase. For the anomalous TA
mode polarized along the [�1,1,0] direction, it is the component
f11–f12 of the flexocoupling tensor that controls the effect
(hereafter, the Voigt notations are used for all fourth-rank
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Figure 3 | Temperature dependence of the central peak integral intensity.

The dependence corresponds to the the momentum transfer

Q¼ (2.15,2.85,0) (reduced scattered wave vector q¼ (0.15,�0.15,0)).

Errorbars correspond to 95% confidence interval. Fit to equation (3) is

shown as solid line. The wave vectors are measured in the units of the

reciprocal cubic lattice constant a*¼ 2p/a.
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tensors). Following the analysis from Axe et al.14, one can show
that an incommensurate phase is expected when the factor
Y¼ðf11 � f12Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc11 � c12Þðg11 � g12Þ

p
becomes larger than one,

where c0s and g0s are the components of the elastic stiffness and
correlation energy tensors, respectively. Order-of-magnitude
estimates suggest that perovskite ferroelectrics are not far
from an incommensurate instability (Supplementary Note 7).
Indeed, incommensurate states were observed in these materials,
specifically in modified lead zirconate29,30. As for pure PZ, based
on the parameters used for the simulation of diffuse X-ray
scattering (Fig. 4), one can roughly estimate the parameter Y as
0.9, which is quite close to its critical value (see Supplementary

Note 6). Thus, our data on the inelastic diffuse X-ray scattering
suggest that, in PZ, on approaching the phase transition, the
crystal is ready to go to an incommensurate phase but a low-
temperature antiferroelectric commensurate state forms instead.
Namely, an incommensurate phase is avoided on the account of
the appearance of an antiferroelectric phase.

To introduce this scenario, we start with the description of the
possibility of formation of an incommensurate phase with a wave
vector parallel to the [1,1,0] direction, having an absolute value
k0. We consider an order parameter, Ak, corresponding to the
low-lying acoustic mode for a wave vector k parallel to this
direction. Atomic displacements in the corresponding modulated
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Figure 4 | Distributions of the diffuse scattering intensity at 550K. Rows 1 and 3 correspond to the experimental maps, and rows 2 and 4 show

corresponding calculations. Taking into account the flexoelectric coupling in these simulations enables a good qualitative description of the peculiar shapes

of these maps.
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structure are proportional to the real part of the complex wave:

xk ¼Akexp½ikx�: ð5Þ
For any k, one can always write the following contribution to

the free energy corresponding to this order parameter24:

Fk ¼
akðTÞ
2

j Ak j 2 þ bk
4

j Ak j 4 þ gk
6

j Ak j 6; ð6Þ

where ak(T) decreases with falling temperature and gk40 to
provide the global stability of the system. A second-order phase
transition to an incommensurate phase with a structural
modulation corresponding to wave vector k0 occurs at T¼Ti if
(i) bk040, (ii) ak(T) has a minimum at k¼ k0 and (iii) ak0 (Ti)¼ 0.
If bk0o0, a first-order phase transition will take place at a
temperature higher than Ti.

This framework also enables a competing scenario with the
formation of a commensurate modulated structure corresponding
to the wave vector k¼ kR � 2p=að Þð1=4; 1=4; 0Þ. The point is
that, in view of a spatially oscillating form of the order parameter
given by equation (5), for a general point of the Brillouin zone,
only its absolute value (where the oscillations are eliminated) can
enter the expression for the free energy (cf equation (6)).
Meanwhile, for the points corresponding to 1/4 of a reciprocal
lattice vector, taking the 4th power of the order parameter
eliminates these oscillations as well. This way the so-called
Umklapp invariant (Ak)4þ (A� k)4 enters the Landau expan-
sion24. Thus, the energy describing a transition with the wave
vector kS can be presented in the form:

F� ¼ a
2
r2 þ b�

4
r4 þ bU

4
r4cos4jþ g

6
r6; ð7Þ

where the third term on the right-hand side is conditioned by the
Umklapp invariant. Here, a, bS and g are respectively ak(T), bk,
and gk taken at k¼ kS, and the amplitude of the complex order
parameter is expressed in terms of its modulus r and phase j:

Ak ¼ rexpðijÞ: ð8Þ
The ground state described by equation (7) occurs at the

values of the order-parameter phase j, satisfying the condition
qFS/qj¼ 0. For bU40, it corresponds to j¼p/4, 3p/4, 5p/4,
7p/4, whereas, for bUo0, it corresponds to j¼ 0, p/2, p, 3p/2.
Inserting these values of j into equation (7), one finds the free
energy in terms of the modulus of the order parameter:

F� ¼ a
2
r2 þ b

4
r4 þ g

6
r6; ð9Þ

where b¼ bS�bU for bU40 and b¼ bSþ bU for bUo0. Note
that bobS irrespective of the sign of bU.

Let us see under which condition the free energy given by
equation (9) can describe the modulated structure with k¼ kS
observed in PZ (lead displacements in this structure are
schematically shown in Fig. 1c). First of all, if b40, this free
energy cannot describe such a structure at all. In this case, due to
b40, a second-order phase transition to the low temperature
phase might occur, provided that ak(T) has a minimum at k¼ kS.
However, the latter is not the case because the anomalous
transverse mode does not have minimum at k¼ kS as seen from
Fig. 2a. If bo0, the free energy given by equation (9) does
describe a first-order phase transition to a modulated structure
with k¼ kS. Remarkably, in this case, there is no need for a
minimum of ak(T) at k¼ kS. In contrast to the case of the
second-order phase transition, the priority of the commensurate
modulation is not ensured by the corresponding minimum on the
dispersion curve of the relevant lattice excitation but rather by the
fact that the coefficient for anharmonic term, b (controlling the
transition at k¼ kS) is always smaller than bS, which controls
possible transitions at the neighbouring wave vectors. Note that

the energy of the anomalous acoustic mode at these wave vectors
at the transition temperature,E1.5 meV, is comparable to that of
the ferroelectric soft mode in BaTiO3 just above the first-order
phase transition, E1.8meV (evaluated from the dielectric data).
Thus, we can consider the energy of the anomalous acoustic
mode to be low enough to trigger a first-order phase transition.

Thus, the weak softening of the anomalous transverse mode
with lowering temperature is compatible with the formation of a
modulated structure with k¼ kS via a first-order phase transition.
The characteristic pattern of the lead displacements in PZ shown
in Fig. 1c can be readily reproduced by our framework under the
condition that bU40 (Supplementary Note 8).

This scenario can be viewed as an incommensurate phase
transition going directly to the lock-in phase skipping the
incommensurate phase, with the flexoelectric coupling being the
driving force of the effect. This recalls a recent study by
Borisevich et al.31 on the bridging phase between a ferroelectric
and antiferroelectric state in modified BiFeO3, where this phase
was treated as a manifestation of flexoelectricity. The framework
presented above may also be applied to this system.

Now that the order parameter of the transition is identified, we
can specify the repulsive coupling that suppresses the G-point
‘ferroelectric’ instability at the transition. The free-energy terms
corresponding to this coupling in the orientational domain state
specified above read 1=2ð ÞdP1ðP2

1 þP2
2Þr2 þ 1=2ð ÞdP3P2

3r
2. Using

these terms in equation (1) and following the explanations above,
we conclude that the antiferroelectric-type dielectric anomaly will
take place if the coupling constants dP1 and dP3 are positive and
large enough. Such phenomenological scenario is consistent with
the first-principles results by Waghmare and Rabe11, which
suggest a competition between the S and G modes.

Finally, we address the R-point-related oxygen-octahedron
rotations (Fig. 1d). This can be incorporated into our model via
the Holakovsky ‘trigger’ mechanism32. This mechanism was
recently identified with ab initio calculations in perovskite
ferroelectrics33. Following Holakovsky32, we introduce an
attractive biquadratic coupling between the order parameter of
the transition xk and another order parameter—a real
pseudovector F describing the oxygen-octahedron rotations in
question. For the orientational domain state corresponding to the
wave vector k¼ kS, the free energy taking into account the
oxygen-octahedron rotation and its coupling with the order
parameter of the transition reads:

FF ¼ 1
2
aFF2 þ 1

2
dF1ðF2

1 þF2
2Þr2 þ

1
2
dF3F

2
3r

2 þ F�

þ high order terms in F;
ð10Þ

where FS is a function of the order parameter only. If at least one
of the coupling constants dF1

and dF3
is negative, the appearance

of the spontaneous order parameter of the transition, r0, may
trigger that of the order parameter F. This happens if at the
transition point either aF þ dF1r

2
0 or aF þ dF3r

2
0 is negative. In

the case of PZ, in the considered orientational domain state,
F1¼F2a0, whereas F3¼ 0 (ref. 5). The considered pheno-
menological framework describes this situation if dF1

o0 and at
the transition aF þ dF1r

2
0 o 0: Thus, in our scenario, the oxygen-

octahedron rotations in PZ are induced by the anti-polar lead
displacements via an attractive biquadratic mode coupling. Such a
phenomenological scenario is consistent with the conclusion
drawn by Waghmare and Rabe11 from their first-principles
calculations concerning the cooperation between the S and R
modes. At the same time, our phenomenological model differs
from the effective hamiltonian, which is partially based on
first-principles calculations, applied by Leung et al.34 to describe
the mmm phase in PbZr0.95Ti0.05O3. Specifically, in their work,
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biquadratic couplings with non-zone-boundary, non-zone-centre
displacements are not explicitly treated, although such couplings
(with the mode at k¼ 2p=að Þð1=4; 1=4; 0ÞÞ are the principle
ingredients of our model.

Discussion
We addressed the lattice dynamics of prototypical antiferro-
electric PbZrO3, using inelastic and diffuse X-ray scattering
and Brillouin light scattering. Based on our experimental data,
we showed that the driving force for antiferroelectricity is a single
(ferroelectric) instability. Through flexoelectric coupling, it
drives the system to a state, which is virtually unstable against
incommensurate modulations. However, the Umklapp interac-
tion allows the system to go directly to the commensurate lock-in
phase, leaving the incommensurate phase as a ‘missed’ opportu-
nity. By this mechanism, the ferroelectric softening is transformed
into an antiferroelectric transition. The remaining key parts of the
whole scenario are the repulsive and attractive biquadratic
couplings, which suppress the appearance of the spontaneous
polarization and induce the anti-phase octahedral rotations in the
low-temperature phase. Such couplings are readily allowed by the
crystalline symmetry of perovskite ferroelectrics and antiferro-
electrics, and are likely therefore to control or at least have a
dominant role in similar phenomena (for example, antiferroelec-
tricity in BiFeO3 derivatives (Borisevich et al.31 and Goian
et al.35).

Methods
Samples. Lead zirconate crystals were grown from high-temperature solutions
(flux growth method) by means of spontaneous crystallization. The Pb3O4–B2O3

mixture (soaking at 1,350 K) was used as a solvent. The temperature of the melt
was reduced at a rate 3.5 K h� 1 down to 1,120K. The remaining melt was dec-
anted, and as-grown crystals attached to the crucible walls were cooled to room
temperature at a rate of 10K h� 1. In the final step, the as-grown crystals were
etched in dilute acetic acid to remove residues of the solidified flux.

The crystal studied exhibited a narrow intermediate phase on heating with a
lattice distortion corresponding to the M point (k¼ 2p=að Þð1=2; 1=2; 0Þ) of the
Brillouin zone, which had been earlier reported by Fujishita and Hoshino7.
Tentatively, it may correspond to the phase reported by Roleder et al.6 The samples
for the X-ray scattering experiments were taken from the same batch, whereas the
Brillouin measurements were carried out with separately grown crystals.

IXS measurements. The lattice dynamics of the PbZrO3 crystal was studied using
the IXS technique. The experiment was done at BL35XU high-resolution IXS
beamline of the SPring-8 synchrotron radiation source. A Si(11 11 11) mono-
chromator (E¼ 21.748 keV) was used, giving 1.5meV full width at half maximum
resolution. X-rays scattered by the sample were analysed by 12 analysers, providing
information for 12 values of the scattering vector. Experimentally measured spectra
were fitted using the least-square technique to a sum of phonon resonances
approximated by the damped harmonic oscillator lineshape convoluted with
experimental resolution and Lorentzian-shaped quasi-elastic peak at zero
transmitted energy.

Diffuse scattering measurements. Measurements of diffuse scattering were
carried out using general purpose KUMA6 diffractometer at BM01A Swiss-Nor-
wegian Beamline of ESRF. A sagittally focusing Si(1 1 1) monochromator was used,
and wavelength l¼ 0.99Å was selected and calibrated with a NIST LaB6 standard.
Diffraction patterns were recorded using a MAR345 detector. All the measure-
ments were performed with a small single crystal having the shape of a rectangular
parallelepipedon of about 20� 20� 500 mm3. The sample was mounted at the
goniometer and heated by a flow of hot nitrogen. The temperature was regulated
with an ESRF heat blower with a stability of 0.5 K. Three-dimensional recon-
structions of the scattering intensity in reciprocal space and two-dimensional cross-
sections of these reconstructions were performed using Volvox program.
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