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Mechanism of Cardiac Fibrosis
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Fibroblasts are at the heart of cardiac function and are the principal determinants of cardiac fibrosis. Nevertheless, cardiac fibroblasts
remain poorly characterized in molecular terms. Evidence is evolving that the cardiac fibroblast is a highly heterogenic cell population, and
that such heterogeneity is caused by the distinct origins of fibroblasts in the heart. Cardiac fibroblasts can derive either from resident
fibroblasts, from endothelial cells via an endothelial–mesenchynmal transition or from bone marrow-derived circulating progenitor
cells, monocytes and fibrocytes. Here, we review the function and origin of fibroblasts in cardiac fibrosis.NB. The information given is
correct.
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Most cardiac diseases are associated with fibrosis in the
heart. Fibrosis, in general, is a scarring process which is
characterized by fibroblast accumulation and excess deposition
of extracellular matrix (ECM) proteins, which leads to
distorted organ architecture and function (Weber, 2000). The
development of cardiac fibrosis is similar to fibrosis in other
organs, such as the liver, lungs, and the kidney (Weber, 1997).
The contribution of fibrogenesis to impaired cardiac function is
increasingly recognized (Espira andCzubryt, 2009). The fibrotic
ECM causes increased stiffness and induces pathological
signaling within cardiomyocytes resulting in progressive cardiac
failure. Also, the excessive ECM impairs mechano-electric
coupling of cardiomyocytes and increases the risk of
arrhythmias (de Bakker et al., 1996; Spach and Boineau, 1997).
Fibroblasts are principally responsible for deposition of
the excessive fibrotic ECM and activated fibroblasts may
directly cause hypertrophy of cardiomyocytes via paracrine
mechanisms further contributing to impaired cardiac function
(Gray et al., 1998; Jiang et al., 2007).

Fibrosis manifests in two forms, that is, reactive interstitial
fibrosis or replacement fibrosis (Anderson et al., 1979;Weber,
1989). In animalmodels of left ventricular pressure overloading,
reactive interstitial fibrosis is observed which progresses
without loss of cardiomyocytes. This initial reactive interstitial
fibrosis is an adaptive response aimed to preserve the pressure
generating capacity of the heart but will progress into a state
of replacement fibrosis, characterized by cardiomyocyte
hypertrophy and necrosis (Isoyama and Nitta-Komatsubara,
2002). On the other hand, in animal models of acutemyocardial
infarction, an initial inflammatory reaction is followed
exclusively by myocyte death and replacement fibrosis
(Hasenfuss, 1998). Although both animal models represent
certain stages and mechanisms of human cardiopathy, they
also show distinct and non-overlapping fibroblast reactions
(Hasenfuss, 1998). Hence, researchers should be cautious
when generalizing results obtained by the use of a single animal
model and should validate their findings on human tissue
samples. These prerequisites have to be met, if we are to
unravel the definite contribution of cardiac fibroblasts (CF)
to human cardiopathy, which at present remains elusive.

Fibroblasts, and related myofibroblasts, are the principle
producers of ECM and contribute significantly to fibrosis in
the heart (Eghbali and Weber, 1990; Carver et al., 1993).
� 2 0 1 0 W I L E Y - L I S S , I N C .
However, the source of these myofibroblasts is not fully
resolved and remains an area of active research (Hinz et al.,
2007; Wynn, 2008). Typically, myofibroblasts are thought
to be derived through the activation of resident CF. However,
this limited view has been challenged by the demonstration
of phenotypic heterogeneity among fibroblasts (Chang et al.,
2002), not only between organs, but also within the same
organ during health and disease (Fries et al., 1994; Jelaska et al.,
1999).

So, what exactly is a fibroblast? Fibroblasts are cells of
mesenchymal origin that produce a wide variety of matrix
proteins and biochemical mediators, such as growth factors and
proteases (Souders et al., 2009). Although synthesis and
deposition of ECM are key features of fibroblasts, they are not
commonly assessed in the identification of fibroblasts. This
implies that the characterization of fibroblasts in general
relies on morphological, proliferative, and phenotypical
characteristics. Morphologically, fibroblasts are flat spindle
shaped cells with multiple processes originating from their cell
body. In the cardiac tissue, fibroblasts are the only cell type that
are not associated with a basement membrane.
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Although much research has been performed examining the
fibroblast phenotype in various organs, no marker proteins
have been identified that are exclusively expressed by
fibroblasts (Table 1). However, some discriminative markers
exist for organ-specific fibroblast subsets. For example, in
the human and mouse cardiac tissue, the collagen-activated
receptor tyrosine kinase discoidin domain receptor 2 (DDR2)
and the intermediate-filament associated calcium-binding
protein S100A4 (or fibroblast-specific protein 1 (FSP-1)) are
expressed primarily by fibroblasts in the heart (Camelliti et al.,
2005; Banerjee et al., 2007).

The distinction between fibroblasts and myofibroblasts is
commonly based solely on the expression of contractile
proteins, which might be a principally unreliable determinant.
It is important to note that both the fibroblast and the
myofibroblasts are in principle motile cells that contain
actins and myosins, albeit at dissimilar amounts (Eyden, 2001).
Fibroblasts are pleiomorphic cells and it seems natural that
their expression and arrangement of contractile proteins
depends more on their microenvironment, for example,
cytokine milieu and mechanical parameters, than on their
differentiation to another distinctive cell type. Hence in this
review, fibroblasts and myofibroblasts will not be regarded as
separate entities.

It becomes clear that fibroblasts are not a static cell
population but rather display a large heterogeneity (Fries
et al., 1994; Jelaska et al., 1999; Sugimoto et al., 2006). This
heterogeneity may derive from different origins of fibroblast
subtypes and may contribute to the cardiac structure and
function during health and disease. Better understanding of
these fibroblast subtypes, as well as of the factors that regulate
their function, provides new insight into the development
of cardiac fibrosis and potentially identifies novel therapeutic
targets for its treatment. In this review we will address the
heterogeneity of CF origin and function during health and
disease. Furthermore, we will highlight emerging hypotheses
for further research.

The Origin of Cardiac Fibroblasts During Embryonic
Development

Although it is generally assumed that non-myocytes represent
the largest cell population in the mammalian heart, the actual
number of fibroblasts in the cardiac tissue remains unknown. It
TABLE 1. Commonly used fibroblast markers

Protein Function Expresse

a-Smooth muscle actin (aSMA) Intermediate-filament associated
protein

Smooth
myoe

Cadherin-9 Ca-dependent adhesion molecule Neuron
CD40 TNFa receptor family member Various
CD248 (TEM1) Collagen receptor Pericyte
Col1a1 Collagen type I biosynthesis Osteobl
Discoidin domain receptor 2

(DDR2)
Collagen-binding tyrosine kinase

receptor
Smooth

stellat
Fibroblast activation protein-1

(FAP1)
Serine protease (gelatinase) Activate

Fibroblast-specific protein-1
(FSP1/S100A4)

Intermediate-filament associated
Ca-binding protein

Smooth
carcin

Fibroblast surface antigen (FSA) Fibronectin-binding molecule Monocy
Heat shock protein-47 (HSP47) Collagen-binding serpin chaperone Monocy

collag
Platelet-derived growth factor

receptor-b (PDGFRb)
Receptor tyrosine kinase Smooth

Prolyl-4-hydroxylase Collagen biosynthesis Endothe

Thymus cell antigen-1
(THY1/CD90)

Cell adhesion molecule Leukocy
proge

Vimentin Intermediate-filament associated
protein

Endothe
pericy

Ca, calcium; TEM, tumor endothelial marker; TNF, tumor necrosis factor.
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has been stated that the adult mouse heart contains
approximately 55% myocytes and only 45% non-myocyte cells
(�27% fibroblasts). In contrast, the adult rat heart consists
of 30% myocyte cells and 70% non-myocyte cells (�67%
fibroblasts) (Vliegen et al., 1991; Banerjee et al., 2007). Although
there is no comparable human study, these data show that the
cardiac cellular makeup varies greatly between species and
one could speculate that these differences in cellular buildup
underlie differences in cardiac pressure generating capacity,
cardiac collagen content, heart rate, or cardiac conductance
(Banerjee et al., 2007).

Because of the lack of a robust CF specific marker (Table 1),
the late embryonic development of CF after the gross cardiac
morphogenesis, and the variability among current lineage
tracking tools, it is still conceivable that there are multiple
spatiotemporal sources of CF. Nonetheless, fibroblasts in the
cardiac interstitium and the annulus fibrosis are thought to
derive principally from mesenchymal cells in the embryonic
proepicardium (Norris et al., 2008) (Fig. 1). These cells migrate
over the surface of the embryonic heart and form the
epicardium, which in turn gives rise to the epicardium-derived
cells (EPDC) (Lie-Venema et al., 2007). EPDC in the cardiac
wall undergo epithelial–mesenchymal transition (EMT)
(Munoz-Chapuli et al., 2001) and progressively differentiate
into a fibroblast phenotype (Gittenberger-deGroot et al., 1998;
Zhou et al., 2010) under the influence of growth factors,
including platelet-derived growth factor (PDGF), fibroblast
growth factor (FGF), and transforming growth factor (TGF)
(Olivey et al., 2006).

In addition to the development of cardiac interstitial
fibroblasts, valvular fibroblasts originate from the cardiac
endothelium (de Lange et al., 2004). Endothelial cells in the
region of the forming cardiac cushion delaminate and undergo
endothelial–mesenchymal transformation (EndMT) under
the influence of various cytokines such as TGF-b, PDGF, and
Wnt. Thereafter, transformed cells invade the cardiac jelly and
mature into a fibroblastic phenotype (Armstrong and Bischoff,
2004; de Lange et al., 2004).

In summary, CF are interspersed in the collagen network
and the differential expression of motile and contractile
proteins observed between fibroblast and related
myofibroblasts represents a pleiomorphic continuum. The
origin of CF, however, remains to be elucidated more
comprehensively.
d by other cell type Refs.

muscle cells, pericytes,
pithelial cells

Akpolat et al. (2005); Azuma et al. (2009)

s; tumor vasculature Thedieck et al. (2007); Hirano et al. (2003)
antigen presenting cells Smith (2004)
s, endothelial cells Bagley et al. (2008); MacFadyen et al. (2005)
asts, chondroblasts Liska et al. (1994)
muscle cells, hepatic
e cells, endothelial cells

Vogel et al. (2006); Olaso et al. (2001);
Mohan et al. (2001)

d melanocytes Rettig et al. (1993); Ramirez-Montagut
et al. (2004)

muscle cells, invasive
oma cells

Strutz et al. (1995); Sugimoto et al. (2006)

tes/macrophages Wartiovaara et al. (1974)
tes/macrophages, various
en-producing cells

Shioshita et al. (2000); Sauk et al. (2005)

muscle cells, pericytes Lindahl et al. (1997); Kaur et al. (2009)

lial cells, epithelial cells Mussini et al. (1967); Langness and
Udenfriend (1974)

tes, endothelial cells, various
nitor cells

Wetzel et al. (2006); Dezso et al. (2007)

lial cells, smooth muscle cells,
tes, myoepithelial cells

Franke et al. (1979); Mork et al. (1990)



Fig. 1. Sources of cardiac fibroblasts. In the developing embryo,
cardiac fibroblast originate from the epithelial cells of the
proepicardium through a process termed epithelial–mesenchymal
transition (EMT). Valvular fibroblast arise through endothelial–
mesenchymal transition (EndMT) of the endocardium. The
development of fibroblast during cardiopathy involves considerably
more cell plasticity, with the pro-fibrotic cells being derived from
the endothelium and epithelium through mesenchymal transition
(EMT and EndMT). Also fibroblast may be derived from perivascular
cells, circulating monocytes and bone marrow-derived progenitor
cells and circulating fibrocytes.

Fig. 2. Pleiotropic functions of cardiac fibroblasts. Cardiac
fibroblasts are at the heart of cardiac development and function.
Cardiac fibroblasts are involved in the production and degradation of
the cardiac extracellular matrix through the production of amongst
others collagens, proteoglycans, matrix metalloproteinases and
TIMPs. Additionally, cardiac fibroblasts secrete various bioactive
mediators (e.g., VEGFa, FGFs, TGFb, PDGF) which influence cardiac
angiogenesis and myocyte proliferation. Furthermore, cardiac
fibroblasts influence cardiac electrophysiology by insulating myocyte
bundles, transmitting electrical signals, and converting mechanical
stimuli into electronic signals.
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Pleiotropic Functions of Cardiac Fibroblasts

Although CF are mostly known for their role in the synthesis
and degradation of the cardiac ECM, it must be noted that CF
are more than matrix producing cells. Fibroblast sense changes
in their microenvironment and react to these changes to
preserve organ function. As such, CF contribute to the
structural, mechanical, biochemical, and electrical properties
of the heart.

Homeostasis of the ECM

CF maintain the ECM, which includes the interstitial collagens,
proteoglycans, glycoproteins, cytokines, growth factors, and
proteases (Corda et al., 2000; Bowers et al., 2010). The
ECM serves multiple purposes; (1) it forms an organizational
network that surrounds and interconnects cells and provides
scaffold for cardiac cell types, (2) it distributes mechanical
forces throughout the cardiac tissue and conveys mechanical
signals to individual cells, and (3) electrically separates the atria
and the ventricles to facilitate proper cardiac contraction.

CF are at the heart of ECM homeostasis because of their
ability to secrete and breakdown the proteins that form the
ECM (Fig. 2). In response to several growth factors (e.g., TGFb,
PDGF), cytokines (e.g., TNFa, IL1b, IL6) or mechanical
stimulation (e.g., stretch), CF produce the fibrillar type
collagens I and type III that together comprise approximately
90% of all collagen in the heart, as well as the less abundant ECM
molecules collagen types IV, V, VI, elastin, and laminin (Bosman
and Stamenkovic, 2003). Alternatively, CF modulate the
JOURNAL OF CELLULAR PHYSIOLOGY
degradation of ECM breakdown by modulating the expression
of the matrix metalloproteinases (MMP) and their natural
inhibitors (tissue inhibitor ofMMP; TIMP) (Tsuruda et al., 2004).

Production of bioactive molecules

A second major function of CF is to produce and secrete
growth factors, cytokines, and other signaling molecules. These
bioactive molecules can subsequently exert autocrine and
paracrine effects on the cardiac cell types, thereby directing cell
proliferation, contractions, and apoptosis, amongst others.

Homeostasis of cardiac vessels

Significantly, CF contribute to cardiac vessel homeostasis.
Angiogenesis (i.e., the formation of capillaries from pre-existing
blood vessels) depends on environmental signals that modulate
endothelial cell behavior (Risau, 1997). The interaction
between fibroblasts and endothelial cells during vessel
formation was already reported several years back (Villaschi
and Nicosia, 1994), but remains to be fully resolved. FGFs and
vascular endothelial growth factor (VEGF) are potent inducers
of angiogenesis produced and secreted by CF (Zhao and
Eghbali-Webb, 2001; Chintalgattu et al., 2003). Contrary, the
expression and secretion of connective tissue growth factor
(CTGF) and PDGF by CF poses an antiangiogenic effect (Inoki
et al., 2002; Zhao and Eghbali-Webb, 2001). These data indicate
thatCF have the ability to either induce, or inhibit the formation
of new blood vessels (Fig. 2). However, the exact functions of
CF during cardiac vessel formation need further investigation.
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Also, CF producemitogens that play a major role in myocyte
development and maintenance of the adult phenotype. As
such, CF may orchestrate the proliferation of cardiomyocytes
directly. Although cardiomyocytes were thought to be
terminally differentiated and incapable of proliferation, recent
data indicate that adult cardiomyocytes in fact proliferate
slowly, which may be an essential part of cardiac homeostasis
and turnover (Bergmann et al., 2009). CF produce factors such
as FGF and periostin which were shown to induce adult
myocyte proliferation in vitro as well as in vivo (Engel et al.,
2005; Kuhn et al., 2007). Hence, it is tempting to speculate that
CF modulate the turnover of myocytes in a paracrine manner
(Fig. 2).

Cardiac electrophysiology

CF are non-excitable cells, however CF do contribute to
cardiac electrophysiology (Fig. 2). Passively, CF can obstruct the
orderly spread of electrical stimuli by producing an insulating
layer of ECM which physically separates groups of myocytes.
This can clearly be observed in the annulus fibrosis, which
electrically separates the atria and ventricles and thus allows for
the sequential contraction of these structures which is needed
for proper cardiac function (Zhou et al., 2010).

The possibility thatCFmay also contribute actively to cardiac
electrophysiology has emerged only recently. CF have a high
cell membrane resistance, which makes them good conductors
for electrical signals (Kohl, 2003). Also, CF are coupled to
myocytes through connexins-43 and connexin-45 (Kohl, 2003;
Chilton et al., 2007) and recent in vitro evidence shows that this
coupling of myocytes and fibroblasts allows for electrical signal
transduction (Gaudesius et al., 2003; Miragoli et al., 2006).
These data suggest that CF can form bridges that link regions of
myocytes that would normally be separated by an insulating
layer of ECM. Also, interconnectivity between myocytes and
fibroblasts may provide synchronization of spontaneous
activity in distant cardiac myocytes (Rohr, 2004). However, the
in vivo relevance of active CF contribution to electrical signaling
needs further elucidation.

Another active contribution of CF to the cardiac
electrophysiology may be found in their mechano-sensitivity.
CF express multiple stretch-activated ion channels that are
permeable to Naþ, Kþ, and Caþ (Hu and Sachs, 1997; Li et al.,
2009). In response to mechanical stimuli, imposed by the
contractile activity of the surrounding myocardium, these ion
channels open and lower fibroblastmembrane potential making
the fibroblast an efficient mechano-electrical transducer
(Isenberg et al., 2003; Kamkin et al., 2003). The physiological
relevance of this mechano-electrical transduction, however,
needs further investigation.

In summary, the CF is a multi-functional cell that is at the
heart of cardiac development and function (Fig. 2). The CF not
only provides the cardiac scaffold for all the cardiac cell types, it
also orchestrates myocyte growth and cardiac vessel
formation. Furthermore, CF are actively involved in cardiac
electrophysiology, allowing for proper functioning of the heart.

The Cardiac Fibroblast in Cardiopathy

In general, net deposition of collagen in the healthy heart is
limited. However during cardiopathy, collagen deposition is
dramatically increased in response to injury, which results in
distorted organ architecture and function. Although collagen-
producing fibroblasts undergo apoptosis and leave a mature
scar composed of cross-linked collagen and other matrix
components during wound healing (Gurtner et al., 2008),
following cardiopathy CF overcome this regulatory mechanism
and cardiac fibrosis often becomes a persistent process which
progresses into cardiac failure over time. To date, it is unclear
JOURNAL OF CELLULAR PHYSIOLOGY
why CF seem insensitive to this regulatory mechanism and
persist in the heart.

Fibrosis of the cardiac tissue has significant consequences on
cardiac function. Increased EMC synthesis and decreased
degradation result in increased mechanical stiffness and
diastolic dysfunction (Chaturvedi et al., 2010). Moreover,
increased ECM deposition between layers of cardiomyocytes
may disrupt their electrical coupling, leading to impaired cardiac
contraction (Spach and Boineau, 1997). Furthermore,
inflammation and fibrosis in the perivascular areas may
decrease the flow of oxygen and nutrients and increase the
pathological remodeling response (Kai et al., 2006).

As previously mentioned, the phenotypes of the fibrous
tissue can be divided into two distinct types: (1) replacement
fibrosis, which occurs throughout the myocardium and is
associated with loss of cardiomyocyte mass and (2) reactive
interstitial fibrosis, which originates from areas surrounding the
microvasculature and spreads throughout the myocardium
(Anderson et al., 1979; Weber, 1989). Since both types of
fibrosis originate at distinct sites in the cardiac tissue, it is
tempting to speculate that fibroblasts of distinct origins are
involved in the development of these cardiopathies. The origin
of proliferating collagen-producing fibroblasts in the heart
during cardiopathy is currently an area of active research.

Heterogeneous Origins of (Myo)Fibroblasts During
Cardiopathy
The resident cardiac fibroblast and its progenitor cells

The traditional view is that activated fibroblasts in fibrotic
hearts derive from resident fibroblasts through proliferation
and activation. Such belief is based on the observation that
cardiac fibroblasts are sensitive to circulating signaling
molecules thatmay affect their proliferative response towards a
pathologic stimulus (Fredj et al., 2005; Lucas et al., 2010). This
response could, theoretically, take place at any injury site in the
cardiac tissue, making resident fibroblasts a highly feasible
source of matrix-producing cells during replacement fibrosis.
However, investigations that tracked proliferating cell
populations during cardiac hypertrophy (i.e., during reactive
interstitial fibrosis) showed only proliferating fibroblast-like
cells in the vicinity of the blood vessels (Ljungqvist and Unge,
1973; Mandache et al., 1973). These data suggest that
proliferating pro-fibrotic cells in this context may not be
derived from cardiac resident fibroblasts, but are actively
recruited fromother cellular sources during reactive interstitial
fibrosis.

Endothelial–mesenchymal transition

In experimental models of cardiac fibrosis, about 30% of
activated fibroblasts are generated from endothelial cells
via a cellular transition which is referred to as endothelial–
mesenchymal transition (EndMT) (Zeisberg et al., 2007).
Endothelial cells, under pressure of pro-fibrotic stimuli
(e.g., TGFb and hypoxia) respond by acquiring a fibroblast-like
phenotype while losing characteristics of endothelial cells
(Krenning et al., 2008; Moonen et al., 2010). Upon phenotypic
conversion these cells leave the microvascular bed and enter
the interstitium where they appear as fibroblasts. Hence,
EndMT contributes to cardiac fibrosis both by contributing to
fibroblast accumulation and also to microvascular rarefication
(Zeisberg et al., 2007).

The concept of EndMT emerged from fate mapping studies
which demonstrated that up to 30% of fibroblasts originate
from endothelial cells. Interestingly, none of the genetic fate
mapping studies which utilized different endothelial-specific
reporter genes (i.e., Tie1, Flk1, VE-Cadherin) showed
significant endothelial contribution to the fibroblast population
in the normal heart (Kisanuki et al., 2001; Alva et al., 2006; Lugus



Open issues on cardiac fibroblast biology

� What is the number of cardiac fibroblasts in the
developing and adult mammalian heart?

� Do differences in pressure generating capacity
underlie differences in cellular buildup of the cardiac
tissue?

� Are there multiple subtypes of cardiac fibroblast
progenitors involved in the generation of the adult
mammalian heart?

� Do different subtypes of fibroblast have distinct
physiological functions in the mammalian heart?

� Why do (myo)fibroblasts in the mammalian heart
persist in the normal heart and not in other normal
tissues?

� Are distinct fibroblast subtypes involved in the
different fibrosis processes (i.e., reactive interstitial
and reparative fibrosis)?

� What is the contribution of the cardiac epithelium
to the pool of pro-fibrotic fibroblast during
cardiopathy?
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et al., 2009), but only in the damaged myocardium (Zeisberg
et al., 2007), indicating distinct origins of fibroblasts under
physiological and pathological conditions.

Recent studies suggested that epicardial epithelium may
similarly contributes to accumulation of fibroblasts by
undergoing an EMT (van Tuyn et al., 2007; Zhou et al., 2010).
Both EndMT and EMT are considered to follow similar
pathways and are considered closely related cellular events.
During development, EndMT contributes to formation of the
AV-canal (Arciniegas et al., 2005; Niessen et al., 2008) and EMT
generates mesenchyme of the annulus fibrosis (Zhou et al.,
2010), hence both events are considered remnants of persisting
embryonic pathways which can be activated in adult
cardiopathy. Both EndMT and EMT are considered economical
means of the body to recruit substantial numbers of fibroblasts
to perivascular and subendocardial areas during injury as
opposed to recruitment and proliferation of distant fibroblasts.

Perivascular cells

Another fibroblast cell source may lie in the perivascular
space of the cardiac vessels. Pericytes have been shown to
differentiate into collagen-producing cells in models of dermal
scarring (Sundberg et al., 1996). Furthermore, retinal pericytes
were shown to display a large phenotypical and functional
overlap with fibroblast in vitro (Covas et al., 2008) and recent
lineage tracing studies in the kidney revealed that CD73þ

pericytes were a source of fibroblast in the injured kidney
(Humphreys et al., 2010). However, in the absence of definite
pericyte and fibroblast markers (Table 1) and of specific fate
mapping techniques, the discussion on pericyte contribution to
cardiac fibrosis remains active.

Circulating bone marrow-derived progenitor cells,
monocytes and fibrocytes

Bone marrow-derived progenitor cells are considered another
substantial source of fibroblasts in the fibrotic heart (Fig. 1).
Such thinking is based on studies in which green fluorescent
protein (GFP)-expressing cells were found in the fibrotic
cardiac tissue of mice that received a transplant with GFP-
expressing bone marrow cells prior to myocardial infarction
(van Amerongen et al., 2007a; Kania et al., 2009) or aortic
banding (Zeisberg et al., 2007). Although it is reported that
these bone marrow-derived fibroblasts can represent 25–60%
of all fibroblasts at the site of cardiac injury, it is unlikely that
these fibroblasts contribute significantly to the formation
of a persistent fibrotic reaction, since their number is highly
reduced 14 days post-myocardial infarction (van Amerongen
et al., 2007a). Furthermore, there is a debate if the bone
marrow-derived cells are fibroblasts or present a specific
phenotype of inflammatory cells.

Monocytes (Fig. 1) have also been suggested as potential
source of pathology-associated fibroblasts. Invading fibroblast-
like cells in the infarcted cardiac tissue were found to
co-express monocytic (CD45; CD11b) and myofibroblast
markers (S100A4, aSMA) (Haudek et al., 2006). Moreover,
inhibition of monocyte recruitment diminished the CF
population and myocardial remodeling following myocardial
infarction (van Amerongen et al., 2007b).

Fibrocytes represent a unique fibroblast progenitor
population in the circulation that co-express markers of
the mesenchyme and hematopoietic system (CD45, CD34,
procollagen 1, vimentin) (Abe et al., 2001). Circulating
fibrocytes originate from the hematopoietic stem cells in the
bone marrow and display phenotypic similarities to other
leukocytes such as CD14 expressed by monocytes (Ogawa
et al., 2006). However, if this phenotypic overlap represent
common descent (Niedermeier et al., 2009) or represents
functional overlap remains unclear.
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Taken together, the origin of fibroblasts during cardiopathy
is currently not established beyond doubt. Following
cardiopathy, activated fibroblasts are found in the cardiac tissue
which originate in the endothelium, bone marrow, circulation
or perivascular spaces. The relative contribution of each of
these compartments to the collagen-producing proliferating
fibroblasts remains elusive, as is the cellular function of these
fibroblast from different origins.

Conclusions

Recent investigations have yielded remarkable insights into the
development of the cardiac tissue. Although CF have long been
regarded as a uniform and static cell population, recent
evidence has revealed it as a complex and diverse cell
population with multiple origins and functions. Understanding
how the complex process of CF differentiation and function
is regulated during health and cardiopathy are hampered
by the lack of suitable fibroblast markers and appropriate
lineage mapping tools. Hence, processes toward understanding
the molecular, cellular, and morphological events required
to make the cardiac interstitium function continue to be a
challenge for investigators (see also Box 1).
A challenge facing cardiac scientists alike is the
characterization and isolation of the key progenitor cells
of the CF lineage. The identification of unique cell surface
markers of CF and their progenitors will be invaluable in
these investigations and a prerequisite for understanding CF
heterogeneity. Current results show that theCF is a pleiotropic
cell that is involved in the vast majority of cardiac functions.
Moreover, evidence is emerging that fibroblasts of different
origin show distinct and overlapping functions during cardiac
physiology and pathology. Better understanding of the CF
biology in general would also allow for the study of CF function
during cardiopathy and may shed insights essential for the
development of novel therapies.
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