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Abstract. A high-temperature origin of life has been 

proposed, largely for the reason that the hyperthermo- 

philes are claimed to be the last common ancestor of 

modern organisms. Even if they are the oldest extant 

organisms, which is in dispute, their existence can say 

nothing about the temperatures of the origin of life, the 

RNA world, and organisms preceding the hyperthermo- 

philes. There is no geological evidence for the physical 

setting of the origin of life because there are no unmeta- 

morphosed rocks from that period. Prebiotic chemistry 

points to a low-temperature origin because most bio- 

chemicals decompose rather rapidly at temperatures of 

100°C (e.g., half-lives are 73 rain for ribose, 21 days for 

cytosine, and 204 days for adenine). Hyperthermophiles 

may appear at the base of some phylogenetic trees be- 

cause they outcompeted the mesophiles when they 

adapted to lower temperatures, possibly due to enhanced 

production of heat-shock proteins. 
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Introduction 

Although considerable efforts have been made to under- 

stand the emergence of the first living systems, we still 

do not know when and how life originated. Since it is 

Correspondence to: S.L. M i l l e r  

sometimes possible to correlate major evolutionary 

changes with environmental conditions, several attempts 

have been made to infer the conditions in which life 

arose by studying the oldest known organisms. As sum- 

marized by Pace (1991), molecular evolution analysis 

has suggested that the oldest recognizable prokaryotes 

are the anaerobic sulfur-reducing chemosynthetic hyper- 

thermophiles, i.e., organisms that grow optimally at 90°C 

and above. This observation has been interpreted to im- 

ply that the first living systems may have originated in a 

high-temperature environment, such as those found to- 

day in deep-sea hydrothermal vents (Holm 1992) al- 

though terrestrial hot springs would be equally consis- 

tent. This is a simple extrapolation of the growth 

temperature of extant hyperthermophiles to the origin of 

life (Fig. 1, dotted line tree). There is no more justifica- 

tion for this extrapolation than for a mesophilic origin 

(Fig. 1, solid line tree) or an even higher temperature 

origin (not shown). 

How Old Are the Hyperthermophiles? 

A thermophilic origin of life is not a new idea. It was first 

suggested by Harvey (1924) that the first forms of life 

were heterotrophic thermophiles that had originated in 

hot springs. The antiquity of hyperthermophiles is now 

widely accepted not only for archaebacteria but also for 

the less well-known eubacterial extremophiles (Stetter 

1994). However, alternative opinions have developed 

since Pace's article in 1991. For example, the archaea 

may not be the oldest lineage (Doolitfle 1995), and there 

are some indications for separation of the three domains 

as late as 2 x 10 9 years ago (Doolittle et al., 1996). In 
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Fig. 1. Some alternative temperature regimes for the origin and early 

evolution of life. The dotted line shows a hot origin of life followed by 

adaptation to several lower temperatures. Only the hyperthermophiles 

would survive the last asteroid impact which boiled the ocean. The 

solid line shows a low temperature origin of life followed by adaption 

to higher temperatures, with survival of only the secondarily adapted 

hyperthermophiles after the asteroid collision. Not shown are earlier 

collisions that may have frustrated the origin of life or its survival. 

addition, some hyperthermophile sequences are dis- 

placed from their basal position if molecular markers 

other than elongation factors or ATPase subunits are em- 

ployed (Forterre et al. 1993; Klenk et al. 1994), i.e., other 

molecular trees also open up the possibility that the last 

common ancestor of all living beings was not a thermo- 

philic prokaryote. It could be argued that the discovery of 

frigid archaea living in Antarctic waters (DeLong et al. 

1994) supports a low-temperature origin of life, but the 

same considerations of Fig. 1 apply to these organisms. 

Thus, the base of the tree at 0 ° would correspond to the 

growth conditions of low-temperature archaea (-5°C, in- 

stead of 100 to ll0°C). 

catalysts. The RNA world was followed by a DNA/ 

protein world with rather limited biosynthetic capabili- 

ties, and in the subsequent stages of biological evolution, 

the basic characteristics of metabolic pathways were es- 

tablished. In view of this enormous metabolic develop- 

ment, a constant-temperature extrapolation is hardly jus- 

tified. These considerations apply if the alternative 

hypothesis is correct that mesophiles are the most an- 

cient, as suggested by some phylogenetic trees. In this 

case, constant-temperature extrapolation points to a low- 

temperature origin of life, but a high-temperature regime 

or a colder one are equally justified (Fig. 1). 

The antiquity of hyperthermophiles fits in with the 

plausible hypothesis of impact frustration of the origin of 

life (Maher and Stevenson 1988; Sleep et al. 1989), for 

which, however, there is no geological evidence. If the 

last large asteroid to hit the Earth was 400 km in diameter 

or larger it would have converted the entire ocean to 

steam. This would have killed off most organisms but the 

hyperthermophiles would have been selected for, there- 

fore explaining their basal position in some phylogenetic 

trees. Such extreme thermophiles are sometimes said to 

be submarine vent organisms (Gogarten-Boekels et al. 

1995), but any hyperthermophile would have survived. 

It should be kept in mind that even if the whole ocean 

boils, there may be areas where the temperature is not 

raised, or where the organisms are protected, e.g., several 

kilometers deep in marine and continental sediments. 

Since a boiling ocean would cool in -1,000 years, the 

high temperatures would not reach the organisms this 

deep. Prokaryotic biotas are found today at depths of 0.5 

km or more in the oceanic sediments (Parkes et al. 1994), 

and if such communities were present at the last impact, 

it is reasonable to think that they would have survived. 

Hyperthermophiles May Be Ancient, But They Are 

Hardly Primitive 

It is important to distinguish between ancient and 

primitive. Hyperthermophiles may be cladistically an- 

cient, but they are hardly primitive relative to the first 

living organisms. In fact, they seem to be no more prim- 

itive in their metabolic apparatus than mesophiles (Ad- 

ams 1993). For example, biosynthesis of arginine in 

Thermotoga maritima appears to be essentially the same 

as in all known organisms (Van de Casteele et al. 1990), 

and tryptophan biosynthetic genes in the thermoacido- 

phile Sulfolobus solfataricus are homologous to their 

mesophilic eubacterial and eukaryotic counterparts (Tu- 

tino et al. 1993). 

Primitive living systems, according to some current 

opinion, would initially refer to the pre-RNA world, in 

which life was first based on polymers using backbones 

other than ribose-phosphate and possibly bases different 

from AUGC. This was followed by a stage in which life 

was based on RNA as both the genetic material and as 

What Was the Physical Setting of the Origin 

of Life? 

Many strong statements have been made about the prim- 

itive Earth, but there is no direct geological evidence for 

any of these hypotheses, since there are no rocks older 

than 3.8 x 10 9 years. Calculations of atmospheric and 

planetary formation models, however meritorious, do not 

constitute evidence. 

The temperature of the primitive Earth during the pe- 

riod of the origin of life is unknown. The entire planet is 

generally thought, without direct evidence, to have re- 

mained molten for several hundred million years after its 

formation 4.6 x 10 9 years ago (Wetherill 1990). The 

oldest sedimentary rocks in the Greenland Isua formation 

have been heated to 500°C, so the evidence on the con- 

ditions at that time has been largely destroyed. The sed- 

iments in the Australian Warrawoona formation 3.5 x 

10 9 years old contain very convincing cyanobacteria-like 

microfossils (Schopf 1993). 

Thus, life is thought to have originated some time 



between 4.0 and 3.5 billion years ago, but there is no 

direct evidence for the temperature or atmospheric con- 

ditions. Some atmospheric models incorporate high par- 

tial pressures of CO2 to raise the temperature of the Earth 

by a greenhouse effect and thus prevent the complete 

freezing of the oceans (Kasting 1993). However, a frozen 

Earth has some advantages for prebiotic chemistry (Bada 

et al. 1994). But again, there is no direct evidence either 

way. In addition, processes relevant to the origin of life 

may have taken place in environments different from the 

terrestrial average, e.g., hot springs, eutectic sea water, or 

drying lagoons. 

The composition of the atmosphere poses a similar 

problem: there is no geological evidence as to whether 

the Earth's atmosphere was reducing or nonreducing, 

although it is generally accepted that 02 was absent. It is 

beyond the scope of this review to explore this question, 

except to comment that atmospheric chemists mostly fa- 

vor high CO 2 + N 2, whereas prebiotic chemists mostly 

favor more reducing conditions (CH 4 -I- N 2 or CO 2 + H 2 

+ N2). Reducing conditions are required for the synthesis 

of amino acids, purines, pyrimidines, and sugars, and 

such syntheses are very efficient (Stribling and Miller 

1987). The robustness of this type of chemistry is sup- 

ported by the occurrence of most of these biochemical 

compounds in the Murchison meteorite, which comes 

from an asteroid. The meteorite analysis results make it 

plausible, but do not prove, that such syntheses also oc- 

curred on the primitive Earth. Based on what is known 

about prebiotic chemistry, if the Earth was not reducing, 

then the organic compounds would have to be brought to 

it by dust particles, comets, and meteorites (Anders 

1989; Chyba et al. 1990). The amounts that can be 

brought in this way and survive passage through the 

atmosphere are quite small, and may not have been suf- 

ficient for the origin of life. 

High Temperatures Give Higher Reaction Rates, 

But There Is a Price to Pay 

The one advantage of high temperatures is that the chem- 

ical reactions could go faster and the primitive enzymes 

could have been less efficient (Harvey 1924), but the 

price paid is loss of organic compounds by decomposi- 

tion and diminished stability of the genetic material. The 

problem with monomers is bad enough, but it is worse 

with polymers, e.g., RNA and DNA (Lindahl 1993), 

whose stability in the absence of efficient repair enzymes 

is too low to maintain genetic integrity in hyperthermo- 

philes. RNA and DNA are clearly too unstable to exist in 

a hot prebiotic environment. The existence of an RNA 

world with ribose appears to be incompatible with the 

idea of a hot origin of life. The stability of ribose and 

other sugars is the worst problem, but pyrimidines and 

purines and some amino acids are nearly as bad. The 

half-life of ribose at 100°C, and pH 7 is only 73 min, and 
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other sugars have comparable half-lives (Larralde et al. 

1995). The half-life for deamination of cytosine at 100°C 

is 21 days (Garrett and Tsau 1972; Shapiro and Klein 

1966), and 204 days at 100°C for adenine (Frick et al. 

1987; Shapiro 1995). Some amino acids are stable, e.g., 

alanine with a half-life for decarboxylation of approxi- 

mately 19,000 years at 100°C, but serine decarboxylates 

to ethanolamine with a half-life of 320 days (Vallentyne 

1964), with dealdolization and dehydration as additional 

decomposition routes (Bada et al. 1995). Similar consid- 

erations show that the growth of organisms at 250°C or 

350°C and the origin of life at such temperatures (Corliss 

et al. 1981) are very unlikely (White 1984; Miller and 

Bada 1988). It is clear that if the origin of life took place 

at 100°C or higher temperatures, then the organic com- 

pounds involved must have been used immediately after 

their prebiotic synthesis. An alternative is to assume an 

autotrophic origin of life, i.e., the first organisms made 

all their cell material from CO2, N2, and H20. Proposals 

of an autotrophic origin of life are periodically resur- 

rected, but they are made without supporting experi- 

ments. 

Hyperthermophily May Be a 

Secondary Adaptation? 

An analysis of the rooted tree provided by Stetter (1994) 

suggests to us a polyphyletic origin of mesophiles from 

hyperthermophiles, i.e., an independent, parallel aban- 

donment of hyperthermophilic traits has taken place in 

widely separated branches of the universal tree. This 

could suggest that relatively few genetic changes may be 

required to abandon a thermophilic lifestyle. However, 

other rootings of universal trees permit the evolution of 

mesophilic branches into hyperthermophilic ones (Riv- 

era and Lake 1992; Klenk et al. 1994; Forterre et al. 

1993). 

A possibility that has not been given enough attention 

is that hyperthermophiles are now at the base of some 

trees simply because they outcompeted older mesophiles 

when they adapted to lower temperatures, rather than 

being the sole survivors of an impact event. Some of the 

molecular features that are adaptations to hot environ- 

ments could have enhanced the survival chances of hy- 

perthermophiles and their immediate descendants under 

less-extreme temperature conditions. An example could 

be the heat-shock response, whose universal distribution 

can be interpreted as a remnant of the hyperthermophilic 

ancestors of extant life. Heat-shock proteins are not only 

involved in thermotolerance, but also in protection 

against other stress-inducing agents and environmental 

insults, including starvation conditions, UV-irradiation, 

DNA-damaging agents, alcohol, amino acid analogues, 

etc. (Watson 1990). Accordingly, it is possible to envi- 

sion that heat-shock genes evolved in ancient hyper- 

thermophiles, preadapting them to other stress-inducing 
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cond i t ions  at  low tempera tu res ,  a l l owing  t h e m  to suc- 

c e s s fu l l y  o u t c o m p e t e  m e s o p h i l e s .  W h i l e  th is  s c h e m e  

m a y  no t  necessa r i ly  be  correct ,  it sugges t s  tha t  add i t iona l  

exp l ana t i ons  can  be  a d v a n c e d  to exp la in  the  phy loge -  

ne t ic  d i s t r ibu t ion  o f  h y p e r t h e r m o p h i l e s .  

W e  h a v e  add re s sed  the  poss ib i l i ty  tha t  h y p e r t h e r m o -  

ph i les  are no t  the  o ldes t  o rgan i sms .  E v e n  if  they  are, a 

s t ra igh t - l ine  t e m p e r a t u r e  ex t r apo la t ion  b a c k  in t ime  to 

the  o r ig in  o f  l i fe  is no t  war ran ted .  P reb io t i c  c h e m i s t r y  

po in t s  t o w a r d  a l o w - t e m p e r a t u r e  r e g i m e  for  the  emer -  

gence  o f  l iv ing  sys tems .  I f  th is  c o n c l u s i o n  is val id ,  i t  

mer i t s  a sea rch  for  m e s o p h i l e s  o lder  than  h y p e r t h e r m o -  

phi les .  
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