
Mon. Not. R. Astron. Soc. 381, L40–L44 (2007) doi:10.1111/j.1745-3933.2007.00362.x

The origin of the Arches stellar cluster mass function

Sami Dib,1� Jongsoo Kim1 and Mohsen Shadmehri2,3

1Korea Astronomy and Space Science Institute, 61-1, Hwaam-dong, Yuseong-gu, Daejeon 305-348, Korea
2School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
3Department of Physics, School of Science, Ferdowsi University, Mashad, Iran

Accepted 2007 July 9. Received 2007 June 30; in original form 2007 May 29

ABSTRACT
We investigate the time-evolution of the mass distribution of pre-stellar cores (PSCs) and their

transition to the initial stellar mass function (IMF) in the central parts of a molecular cloud

(MC) under the assumption that the coalescence of cores is important. Our aim is to explain

the observed shallow IMF in dense stellar clusters such as the Arches cluster. The initial

distributions of PSCs at various distances from the MC centre are those of gravitationally

unstable cores resulting from the gravo-turbulent fragmentation of the MC. As time evolves,

there is a competition between the rates of coalescence and collapse of the PSCs. Whenever

the local rate of collapse is larger than the rate of coalescence in a given mass bin, cores are

collapsed into stars. With appropriate parameters, we find that the coalescence–collapse model

reproduces very well all the observed characteristics of the Arches stellar cluster IMF: namely,

the slopes at high- and low-mass ends and the peculiar bump observed at ∼ 5–6 M�. Our

results suggest that today’s IMF of the Arches cluster is very similar to the primordial one and

is little affected by the mass segregation due to dynamical effects.

Key words: turbulence – ISM: clouds – Galaxy: centre – open clusters and associations:

individual: Arches – galaxies: star clusters.

1 M OT I VAT I O N

Understanding the origin of the initial stellar mass function (IMF)

remains one of the most challenging issues in modern astrophysics.

When averaged over the total volume of galaxies or whole stellar

clusters, the IMF is observed to follow a nearly uniform behaviour

which consists in an increased number of stars counted when go-

ing from the most massive stars up to ∼ 0.5 M�, followed by a

shallower increase between ∼0.5 and ∼ 0.1 M� and a decline in

the number of stars at masses � 0.1 M�. This standard IMF has

been described, with continuous refinements, by several analytical

functions (e.g. Salpeter 1955; Miller & Scalo 1979; Kroupa 2002;

Chabrier 2003). Yet, deviations from the standard IMF at low- and

high-mass ends have been reported in many observations (see re-

view in Elmegreen 2004). At high mass, the IMF is observed to

be generally top-heavy in dense cluster cores such as in the Arches

cluster (e.g. Stolte et al. 2005; Kim et al. 2006) and stars appear

to be preferentially located in the central parts of the clusters (e.g.

Subramanian, Sagar & Bhatt 1993; Hillenbrand & Hartmann 1998;

Figer, McLean & Morris 1999; Stolte et al. 2002; Gouliermis et al.

2004; Lyo et al. 2004). Starburst regions are also observed to possess

a top-heavy IMF, either in the form of a shallow slope at high mass

(e.g. Eisenhauer et al. 1998; Sternberg 1998) or by having a value

�E-mail: dib@kasi.re.kr

of high-mass–low-mass turnover of a few to several M� which is

substantially larger than that of the standard IMF (e.g. Rieke et al.

1993). The IMF of dense clusters seems also to be truncated at the

very high mass end (e.g. Stolte et al. 2005).

The mass truncation can be attributed to the short lifetimes of the

most massive stars. Ideas that have been proposed to explain the

shallowness of the slope at the high mass end include (i) a model

based on the coalescence of pre-stellar cores (PSCs) and their sub-

sequent gravitational collapse to produce stars (e.g. Nakano 1966;

Silk & Takahashi 1979; Elmegreen & Shadmehri 2003; Elmegreen

2004; Shadmehri 2004), (ii) the mass segregation of stars in the clus-

ter (e.g. Vesperini & Heggie 1997; Kroupa 2002; Mouri & Taniguchi

2002), and (iii) a renewed episode of gas accretion by the cluster

under favourable conditions, which leads to the formation of a new

generation of massive stars (e.g. Lin & Murray 2007). This latter

idea is somehow inconsistent with the fact that a cluster such as

the Arches cluster is overall very young (i.e. age ∼ 2 ± 1 Myr),

and may apply only to older clusters. Concerning mass segregation,

whereas there is little doubt that the enhancement in the numbers of

massive stars in the inner parts of the cluster by dynamical processes

will lead to a shallower IMF, this does not constitute a direct proof

that the primordial IMF of stars in those regions was not shallower

than a Salpeter IMF initially. The latter is commonly used as an ini-

tial input for the stellar distribution functions at all cluster radii in

N-body models (e.g. Portegies Zwart et al. 2007). Furthermore, the

IMF of the Arches cluster is characterized by a peculiar bump at
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∼ 6 M� which is not, to date, well reproduced by the effect of mass

segregation in N-body simulations (e.g. Kim et al. 2006; Portegies

Zwart et al. 2007).

In this Letter, we propose a coalescence model in which the pop-

ulations of the local initial PSCs are those resulting from the local

gravo-turbulent fragmentation of the protocluster cloud. We follow

the time-evolution of the mass function of PSCs and the transition

to the IMF under the assumption that the coalescence of PSCs is

important. This is very likely to be the case for the PSCs located in

the central parts of the protocluster cloud.

2 T H E C OA L E S C E N C E M O D E L

We consider PSCs (e.g. André, Ward-Thompson & Barsony 2000)

embedded in an isothermal MC (at a temperature of T = 10 K), at

different locations r from the cloud’s centre. We assume that both

the PSCs and the MC are axisymmetric (PSCs are initially spherical

but are likely to quickly flatten as time evolves). The radial density

profile of the MC is given by

ρc(r ) = ρc0

1 + (r/Rc0)2
, (1)

where ρc0 and Rc0 are the cloud’s central density and core radius,

respectively. The central density, ρc0, is given by

ρc0 = Mc

4πR3
c0[(Rc/Rc0) − arctan(Rc/Rc0)]

, (2)

where Mc is the mass of the cloud and Rc its radius. The density pro-

files of PSCs are assumed to follow the formula given by Whitworth

& Ward-Thompson (2001):

ρp(rp) = ρp0[
1 + (rp/Rp0)2

]2
, (3)

where ρp0 and Rp0 are the central density and core radius of the PSC,

respectively. The radius Rp of the PSC depends both on its mass and

on its position within the MC. The dependence of Rp on r requires

that the density at the edges of the PSC equals the ambient cloud

density, i.e. ρp(Rp) = ρc(r). This would result in smaller radii for

PSCs of a given mass when they are located in their inner parts of

the cloud. The density contrast between the edge of the PSC and its

centre is given by

C(r ) = ρp0

ρc(r )
= ρp0

ρc0

(
1 + r 2

R2
c0

)
. (4)

Depending on its position r in the cloud, the radius of the PSC

of mass Mp, Rp, can be calculated as being Rp(r, Mp) = a(r) Rp0(r,

Mp), where

Rp0(r , Mp) =
(

Mp

2πρp0

)1/3{
arctan[a(r )] − a(r )

1 + a(r )2

}−1/3

, (5)

and with a(r ) = [C(r )1/2 − 1]1/2. With our set of parameters, the

quantity C1/2 −1 is always guaranteed to be positive. The value Rp(r,

M) can be considered as being the radius of the PSC at the moment

of its formation. However, the radius of the PSC will decrease as

time advances due to gravitational contraction. The PSC contracts

on a time-scale, tcont,p, which is equal to a few times its free-fall

time-scale, and can be parametrized as

tcont,p(r , M) = ν tff(r , M) = ν

[
3π

32 Gρ̄p(r , M)

]1/2

, (6)

where ν � 1 and ρ̄p is the radially averaged density of the PSC of

mass Mp, located at position r in the cloud, and which is calculated

as being:

ρ̄p(r , Mp) = 1

Rp(r , Mp)

∫ Rp(r ,Mp)

0

ρp0[
1 + (rp/Rp0)2

]2
drp, (7)

Thus, the time-evolution of the radius of the PSC can be described

by the following equation:

Rp(r , M, t) = Rp(r , M) e−(t/tcont,p). (8)

Once the instantaneous radius of a PSC of mass Mp, located at

position r form the cloud’s centre, is defined it becomes possible

to calculate its cross-section for collision with PSCs of different

masses. The cross-section for the collision of a PSC of mass Mi and

radius Ri with another of mass Mj and radius Rj and which accounts

for the effect of gravitational focusing is given by:

σ (Mi , M j , r , t) = π[Rp,i (r , Mi , t) + Rp, j (r , M j , t)]2

×
{

1 + 2G(Mi + M j )

2v2[Rp,i (r , Mi , t) + Rp, j (r , M j , t)]

}
.

(9)

Elmegreen & Shadmehri (2003) and Shadmehri (2004) assumed

that the collision velocity between PSCs is equal to the virialized

velocity dispersion inside the MC. This might be a plausible hy-

pothesis if MCs were indeed the dissipative structures of turbulence

in the interstellar medium. This is, however, unlikely to be the case.

Numerical simulations (e.g. Dib et al. 2007) show that clumps and

cores in MCs are not in virial equilibrium. In this work, we as-

sume that the relative collision velocity between the PSCs follows

the local gas dynamics at their position in the cloud (this remains

a simplification, as in reality PSC motion can be decoupled from

that of the local ambient gas) according to a Larson-type relation

v(r) = v0rα (Larson 1981; v0 = 1.1 km s−1), with a lower limit

being the local thermal sound speed, which is uniform across the

isothermal MC.

3 I N I T I A L C O N D I T I O N S

As initial conditions for the mass distribution of the PSCs at dif-

ferent cloud radii, we adopt distributions that are the result of the

gravo-turbulent fragmentation of the cloud, following the formu-

lation given in Padoan, Nordlund & Jones (1997) and Padoan &

Nordlund (2002). In these models, the probability function of the

density field is well represented by a lognormal function:

P(ln x) d ln x = 1√
2πσd

exp

[
−1

2

(
ln x − ¯ln x

σd

)2
]

d ln x, (10)

where x is the number density normalized by the average number

density, x = n/n̄. The standard deviation of the density distribution

σ d and the mean value ¯ln x are functions of the thermal rms Mach

number, M: ¯ln x = −σ 2
d /2 and σ 2

d = ln(1 + M2γ 2). Padoan &

Nordlund (2002) suggest a value of γ ∼ 0.5. A second step in

this approach is to determine the mass distribution of dense cores.

Padoan & Nordlund (2002) showed that by making the assumptions

that: (i) the power spectrum of turbulence is a power law, and (ii) the

typical size of a dense core scales as the thickness of the post-shock

gas layer, the cores mass spectrum is given by

N (M) d log M ∝ M−3/(4−β) d log M, (11)

where β is the exponent of the turbulent velocity field power spec-

trum, Ek ∝ k−β , and is related to the exponent α of the size–

velocity dispersion relation in the cloud with β = 2α + 1. However,
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equation (11) cannot be directly used to estimate the number of

cores that are prone to star formation. It must be multiplied by the

local distribution of Jeans masses. At constant temperature, this dis-

tribution can be written as

P(MJ) dMJ = 2 M2
J0√

2πσ 2
d

M−3
J exp

[
−1

2

(
ln MJ − A

σd

)2
]

dMJ,

(12)

where MJ0 is the Jeans mass at the mean density n̄. Thus, equa-

tion (11) becomes, locally,

N (r , M) d log M = f0(r ) M−3/(4−β)

×
[∫ m

0

P(MJ) dMJ

]
d log M . (13)

The local normalization coefficient f0(r) is obtained by requiring

that
∫ Mmax

Mmin
N (r , M) dM = 1 in the shell of width dr located at

distance r from the cloud’s centre. Then, the local distribution of

cores at time t = 0, N(r, M, 0), is obtained by multiplying the local

normalized function N(r, M) by the local rate of fragmentation such

that

N (r , M, 0) = εc(r )ρc(r )

〈M〉(r ) tcont,p(r , M)
N (r , M), (14)

where 〈M〉 is the average core mass in the local distribution and is

calculated by 〈M〉 = ∫ Mmax

Mmin
M N (r , M) dM , and εc is a parameter

smaller than unity which describes the local mass fraction of gas

that is present in the dense PSCs. In principle, εc will have a radial

and probably outwardly decreasing dependence. For simplicity we

shall assume εc to be a constant independent of radius. As our com-

parisons with the observations will be focused on the inner parts

of the protocluster cloud which will be transformed into a stellar

cluster (i.e. the Arches cluster), it is likely that these regions will be

characterized by a uniform mass fraction of the dense gas.

Fig. 1 displays the local mass spectrum of Jeans-unstable PSCs

in rings of width 0.025 pc, obtained with equation (14), located

Figure 1. Top: mass spectrum of Jeans unstable pre-stellar cores in shells

of width 0.025 pc located at different distances from the cloud centre (at

0, 1, 2, 5 and 10 Rc0), where β is the exponent of the turbulent velocity

field power spectrum. Bottom: cumulative number of cores in the regions

between [0, Rc0], [0, 2 Rc0] and [Rc0, 2 Rc0].

at different distances from the cloud’s centre (top), as well as the

cumulative number of PSCs in each mass bin in regions of the pro-

tocluster cloud located between [0, Rc0], [0, 2 Rc0] and [Rc0, 2 Rc0].

4 F RO M T H E P R E - S T E L L A R C O R E S M A S S
F U N C T I O N TO T H E P R I M O R D I A L I M F

With the initial conditions described in Section 3, we follow the

time-evolution of the PSCs mass spectrum by solving the following

integro-differential equation of N(r, M, t):

dN (r , M, t)

dt
= 0.5η(r )

×
∫ �M

Mmin

N (r , m, t)N (r , M − m, t)σ (m, M − m, r , t)v(r ) dm

− η(r )N (r , M, t)

∫ Mmax

Mmin

N (r , m, t)σ (m, M, r , t)v(r ) dm, (15)

where the first and second terms in the right-hand side correspond to

the rate of creation and destruction of a PSC of mass M, at location

r, respectively (Nakano 1966; Shadmehri 2004). In equation (15),

�M = M − Mmin, and η(r) is a coefficient which represents the

coalescence efficiency, with η � 1. This efficiency can be the result

of various physical processes which can affect the coalescence of

PSCs, such as if the merger of cores occurs preferentially parallel

or perpendicular to the local magnetic field lines, and is likely to

have a radial dependence. For simplicity, we shall assume that η

is independent of position. In order to evaluate the transition from

PSCs to stars, we compare, at each time-step, the local coalescence

time-scale to the local contraction time-scale for PSCs of a given

mass. The local coalescence time-scale is tcoal(r, M) = 1/w coal(r,

M), where w coal is the coalescence rate (Elmegreen & Shadmehri

2003):

wcoal(r , M) = 21/2v(r )

Vshell(r )

mbin∑
j=1

(Ri + R j )
2

[
1 + 2G(Mi + M j )

2v2(Ri + R j )

]
,

(16)

where mbin is the number of mass bins, and Vshell is the volume of

the shell of width d r located at distance r from the MC’s centre.

The contraction time-scale is given by equation (8). Whenever the

local contraction time-scale is shorter than the local coalescence

time-scale, PSCs are collapsed into stars. When a PSC collapses to

form a star, we assume that a fraction of its mass is re-injected into

the protocluster cloud in the form of an outflow. We account for this

mass loss in a purely phenomenological way by assuming that the

mass of a star which is formed out of a PSC of mass Mp is given by

M� = ψMp, where ψ � 1. Matzner & McKee (2000) showed that

ψ can vary between 0.25–0.7 for stars in the mass range 0.5–2 M�.

There is no evidence so far, for or against, whether this result holds

at higher masses. However, the similarity between the IMF and the

dense cores mass function observed by Alves, Lombardi & Lada

(2007) in the Pipe Nebula might be an indication of a constant ψ

across the mass spectrum (i.e. in their case it is ψ ∼ 1/3). Here also,

we shall assume that a similar fraction of the mass of a PSC is lost

in the outflow independent of its mass.

The algorithm was tested by performing runs with η = 0 (i.e. no-

coalescence) and η = 0.001 (i.e. inefficient coalescence) and with

the other parameters fixed at Mc = 5 × 105 M�, Rc = 5 pc, Rc0 =
0.2 pc, ρp0 = 107 cm−3, ε = 0.5, α = 0.37, ν = 10 and ψ = 0.58.

As expected, for η = 0, the resulting stellar mass spectrum after the

PSCs collapse into stars is similar to the initial cumulative spectrum

of the PSCs, and is only slightly different if η = 0.001. Models were
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Figure 2. Time-evolution of the pre-stellar core mass function (left) and stellar mass function (right) in the region of the cloud between [Rc0, 2 Rc0]. The stellar

mass function is compared to that of the Arches stellar cluster mass function (Kim et al. 2006). Fits to the simulated IMF (bottom right-hand figure) yield

slopes of −2.04 ± 0.02 and −1.72 ± 0.01 in the mass ranges of [1–3] M� and � 15 M�, respectively, in very good agreement with the observations. Fits are

overplotted to the data shifted up by 1 dex for the sake of clarity.

performed with permutations in the parameters η and ν, fixing the

other parameters to the above-stated values. It should be stressed

at this stage that our semi-analytical modelling is not aimed at

recovering the initial characteristics of the Arches protocluster

cloud, but rather at showing whether or not the Archer cluster IMF

can be generated by the coalescence of PSCs and their subsequent

collapse into stars.

Fig. 2 displays the time-evolution of the cumulative populations

of the PSCs in the region [Rc0 − 2 Rc0] = [0.2–0.4] pc, which cor-

responds to the annulus between ∼1–2 core radii of the Arches

cluster for a model with η = 0.5 and ν = 10. In the initial

stages, the most massive PSCs, which have larger cross-sections,

coalesce faster than the less massive ones, essentially by captur-

ing the numerous intermediate-mass PSCs and causing a rapid

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, L40–L44

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article/381/1/L40/1068853 by U
.S. D

epartm
ent of Justice user on 16 August 2022



L44 S. Dib, J. Kim and M. Shadmehri

flattening of the spectrum at the high-mass end. By t ∼ 0.07 tff,c

[tff,c = (3π/32Gρ̄c)
1/2 ∼ 3×104 yr is the MC free-fall time-scale],

a first generation of the smallest PSCs collapses to form stars. As

time advances, more massive stars are formed in the shell (mas-

sive cores collapse later because of their lower average density) and

in parallel the population of PSCs decreases. By t ∼ 0.1 tff,c the

intermediate-mass PSCs, which constitute the largest mass reser-

voir for coalescence, collapse into stars. At this time, the turnover

in the mass spectrum of the PSCs is located at ∼ 8–10 M�. As the

reservoir of intermediate-mass objects is depleted, the remaining

massive PSCs coalesce at a slower pace before they collapse. By t
∼ 0.25 tff,c, all PSCs of different masses in the shell have collapsed

and formed stars. Because of mass loss, the stellar IMF is shifted

to lower masses (bump shifted to ∼ 5–6 M�). In summary, the re-

sulting IMF is not very different from the mass spectrum of the

PSCs after the initial and rapid stage of strong coalescence until t
∼ 0.01 tff,c. This is due to the fact that low- and intermediate-mass

PSCs collapse at early stages, thus depleting the reservoir of objects

with which the massive PSCs can continue to coalesce, in addition

to their own contraction. Both effects reduce the ulterior merger rate

of the massive PSCs. Overall, the stellar mass spectrum is formed

very quickly, on a time-scale which is of the order of the contraction

time-scale of the most massive cores, i.e. ∼ 0.25 tff,c.

In Fig. 2, overplotted on our result is the cumulative mass spec-

trum of the Arches cluster in the annulus of [0.2–0.4] pc (Kim et al.

2006). The coalescence–collapse model agrees better with the ob-

servations than models based on mass segregation by dynamical

friction. In particular, the bump at ∼ 5–6 M� is reproduced. A fit

to the stellar spectrum yields slopes of −2.04 ± 0.02 and −1.72 ±
0.01 in the mass ranges of [1–3] M� and �15 M�, respectively, in

very good agreement with observational values.

We also performed additional runs where the maximum mass

in the PSC spectrum was set to 250 M� (instead of 100 M�). In

this case, the resulting slope of the IMF in the low- and high-mass

regimes are shallower than the Salpeter IMF, yet shallower than

those of the Arches IMF. The reason is that PSCs with masses larger

than 100 M� will form quickly from the coalescence of lower mass

ones, and the number of PSCs of mass � 100 M� will grow at

an even faster pace as their cross-sections are very large. The mis-

match in this case with the Arches IMF might be an indication that

PSCs with masses � 100 M�, if they form, might undergo a certain

amount of subfragmentation.

5 S U M M A RY

In this work, we use semi-analytical modelling to study the evolu-

tion of the mass spectrum of pre-stellar cores (PSCs) and its tran-

sition to the stellar initial mass function (IMF) at different loca-

tions in a molecular cloud (MC), under the assumption that the

coalescence of PSCs is important. The aim is to reproduce the ob-

served IMF in the inner regions of dense stellar clusters such as the

Arches cluster (Kim et al. 2006). The initial conditions for the lo-

cal populations of PSCs are those of Jeans unstable cores resulting

from the gravo-turbulent fragmentation of the MC. PSCs of a given

mass are transformed into stars whenever their local rate of con-

traction is higher than their rate of coalescence. With appropriate,

yet very realistic, parameters, we are able to reproduce all of the

observed characteristics of the IMF of the Arches cluster, namely,

the slopes at the high- and low-mass ends, and the peculiar bump

observed at ∼ 5–6 M�. Our results suggest that today’s IMF of the

Arches cluster is primordial. This might be a common property of

young and dense stellar clusters (e.g. Chen, de Grijs & Zhao 2007).

Another consequence of the coalescence–collapse model is that

it might help explain the formation of intermediate-mass black

holes (MBH � 100 M�) in the central regions of dense stellar clus-

ters, either by the direct gravitational collapse of massive PSCs or

by the runaway collisions of massive stars (e.g. Bonnell, Bate &

Zinnecker 1998; Freitag, Atakan Gürkan & Rasio 2006) which

would be fostered if the primordial IMF is top-heavy.
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