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ABSTRACT
We investigate the dependence of stellar properties on the mean thermal Jeans mass in molec-
ular clouds. We compare the results from the two largest hydrodynamical simulations of star
formation to resolve the fragmentation process down to the opacity limit, the first of which
was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are
identical except for the radii of the clouds, which are chosen so that the mean densities and
mean thermal Jeans masses of the clouds differ by factors of 9 and 3, respectively.

We find that the denser cloud, with the lower mean thermal Jeans mass, produces a higher
proportion of brown dwarfs and has a lower characteristic (median) mass of the stars and brown
dwarfs. This dependence of the initial mass function (IMF) on the density of the cloud may
explain the observation that the Taurus star-forming region appears to be deficient in brown
dwarfs when compared with the Orion Trapezium cluster. The new calculation also produces
wide binaries (separations >20 au), one of which is a wide binary brown dwarf system.

Based on the hydrodynamical calculations, we develop a simple accretion/ejection model
for the origin of the IMF. In the model, all stars and brown dwarfs begin with the same mass
(set by the opacity limit for fragmentation) and grow in mass until their accretion is terminated
stochastically by their ejection from the cloud through dynamically interactions. The model
predicts that the main variation of the IMF in different star-forming environments should be
in the location of the peak (due to variations in the mean thermal Jeans mass of the cloud) and
in the substellar regime. However, the slope of the IMF at high masses may depend on the
dispersion in the accretion rates of protostars.

Key words: accretion, accretion discs – hydrodynamics – binaries: general – stars: formation
– stars: low-mass, brown dwarfs – stars: luminosity function, mass function.

1 I N T RO D U C T I O N

Understanding the origin of the stellar initial mass function (IMF) is
one of the fundamental goals of a complete theory of star formation.
In the 50 years since Salpeter (1955) published his seminal paper
on the form of the IMF, observational studies have continually re-
fined our knowledge of the IMF, largely overcoming the problems
associated with the short lifetimes of high-mass stars, statistical
significance, and stellar evolutionary models. Lately, observations
have begun to determine the form of the IMF in the brown dwarf
regime. However, despite this progress in observationally determin-
ing the form of the IMF, there is still no standard model for its
origin, to say nothing of agreement on how it should depend on
environment.

�E-mail: mbate@astro.ex.ac.uk

Many theories have been proposed for the origin of the IMF. These
fall into four main classes. The IMF may originate from fragmenta-
tion, whether it be turbulent fragmentation (Henriksen 1986, 1991;
Larson 1992; Elmegreen 1997, 1999, 2000b; Padoan, Nordlund &
Jones 1997; Padoan & Nordlund 2002), gravitational fragmenta-
tion (Larson 1973; Elmegreen & Mathieu 1983; Zinnecker 1984;
Yoshii & Saio 1985), or domain packing (Richtler 1994), with the
fragmentation subject to an opacity limit which sets a minimum
stellar mass (Hoyle 1953; Gaustad 1963; Yoneyama 1972; Low &
Lynden-Bell 1976; Rees 1976; Suchkov & Shchekinov 1976; Silk
1977a,b; Masunaga & Inutsuka 1999). It may depend on feedback
processes (Shu et al. 1988; Silk 1995; Adams & Fattuzzo 1996); it
may originate from competitive accretion of fragments (Hoyle 1953;
Larson 1978; Zinnecker 1982; Bonnell et al. 1997, 2001a,b; Klessen,
Burkert & Bate 1998; Myers 2000; Bonnell, Bate & Vine 2003);
or it may be due to coalescence or collisional build-up (Silk &
Takahashi 1979; Pumphrey & Scalo 1983; Bonnell, Bate &
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Zinnecker 1998; Bonnell & Bate 2002). In reality, all of these pro-
cesses are likely to play some role. The main questions to answer
are which process, if any, dominates the origin the the IMF, and how
does the IMF vary with environment?

One of the primary characteristics of the IMF is the characteristic
mass. One possibility is that the characteristic mass originates from
the typical Jeans mass in the progenitor molecular cloud. This may
be the thermal Jeans mass (Larson 1992), a magnetic critical mass,
or a turbulent Jeans mass (Silk 1995). A Jeans mass origin for the
characteristic stellar mass has been backed up by some hydrody-
namical calculations of the fragmentation of clumpy and turbulent
molecular clouds in which it was found that the mean mass of the
protostars was similar to the mean initial Jeans mass in the cloud
(Klessen et al. 1998; Klessen & Burkert 2000, 2001; Klessen 2001).
Another possibility is that the characteristic mass is due to the opac-
ity limit for fragmentation, which sets a lower limit to the mass of a
‘star’ and all other objects have masses greater than this minimum
mass (Hoyle 1953).

In this paper, we report on the results from two large-scale hydro-
dynamical calculations of the collapse and fragmentation of turbu-
lent molecular clouds. The calculations resolve down to the opacity
limit for fragmentation and, thus, capture the formation of all stars
and brown dwarfs. Many results from the first of these calculations
have already been published (Bate, Bonnell & Bromm 2002a,b,
2003). This calculation followed the fragmentation of a turbulent
50-M� cloud with a mean initial thermal Jeans mass of 1 M�. It
produced 50 stars and brown dwarfs with a mass function that was
in good agreement with the observed IMF. Here, we report the re-
sults of a second calculation, identical to the first, except that the
radius of the cloud was reduced such that the mean thermal Jeans
mass was reduced by a factor of 3. From these two calculations,
we investigate the origin of the stellar initial mass function and its
dependence on the Jeans mass in the clouds.

The paper is structured as follows. Section 2 briefly describes
the numerical method and the initial conditions for the calculations.
The results are discussed in Section 3. In Section 4, we discuss the
implications of the results for the origin of the IMF. Our conclusions
are given in Section 5.

2 C O M P U TAT I O NA L M E T H O D

The calculations presented here were performed using a three-
dimensional, smoothed particle hydrodynamics (SPH) code. The
SPH code is based on a version originally developed by Benz (Benz
1990; Benz et al. 1990). The smoothing lengths of particles are vari-
able in time and space, subject to the constraint that the number of
neighbours for each particle must remain approximately constant
at N neigh = 50. The SPH equations are integrated using a second-
order Runge–Kutta–Fehlberg integrator with individual time-steps
for each particle (Bate, Bonnell & Price 1995). Gravitational forces
between particles and the nearest neighbours of a particle are calcu-
lated using a binary tree. We use the standard form of artificial vis-
cosity (Monaghan & Gingold 1983; Monaghan 1992) with strength
parameters αv = 1 and β v = 2. Further details can be found in
Bate et al. (1995). The code has been parallelized by M. Bate using
OPENMP.

2.1 Equation of state

To model the thermal behaviour of the gas without performing ra-
diative transfer, we use a barotropic equation of state for the thermal
pressure of the gas p = Kρη, where K is a measure of the entropy

of the gas. The value of the effective polytropic exponent, η, varies
with density as

η =
{

1, ρ � 10−13 g cm−3,

7/5, ρ > 10−13 g cm−3.
(1)

We take the mean molecular weight of the gas to be µ = 2.46. The
value of K is defined such that when the gas is isothermal K = c2

s,
with the sound speed cs = 1.84 × 104 cm s−1 at 10 K, and the
pressure is continuous when the value of η changes. This equation
of state has been chosen to match closely the relationship between
temperature and density during the spherically symmetric collapse
of molecular cloud cores as calculated with frequency-dependent
radiative transfer (see Bate et al. 2003, for further details).

2.2 Sink particles

The heating of the molecular gas that begins at a density of 10−13

g cm−3 inhibits fragmentation at higher densities. This is how we
model the opacity limit for fragmentation. The opacity limit for
fragmentation results in the formation of distinct pressure-supported
fragments in the calculation. As these fragments accrete, their cen-
tral density increases, and it becomes computationally impractical to
follow their internal evolution because of the short dynamical time-
scales involved. Therefore, when the central density of a pressure-
supported fragment exceeds ρ s = 10−11 g cm−3, we insert a sink
particle into the calculation (Bate et al. 1995).

In the calculations presented here, a sink particle is formed by
replacing the SPH gas particles contained within r acc = 5 au of the
densest gas particle in a pressure-supported fragment by a point
mass with the same mass and momentum. Any gas that later falls
within this radius is accreted by the point mass if it is bound and
its specific angular momentum is less than that required to form
a circular orbit at radius racc from the sink particle. Thus, gaseous
discs around sink particles can only be resolved if they have radii
�10 au. Sink particles interact with the gas only via gravity and
accretion.

Because all sink particles are created from pressure-supported
fragments, their initial masses are a few Jupiter masses (MJ), as
given by the opacity limit for fragmentation (Low & Lynden-Bell
1976; Rees 1976; Silk 1977a,b). Subsequently, they may accrete
large amounts of material to become higher-mass brown dwarfs
(� 75 MJ) or stars (� 75 MJ), but all the stars and brown dwarfs
begin as these low-mass pressure-supported fragments.

The gravitational acceleration between two sink particles is New-
tonian for r � 4 au, but is softened within this radius using spline
softening (Benz 1990). The maximum acceleration occurs at a dis-
tance of ≈1 au; therefore, this is the minimum separation that a
binary can have even if, in reality, the orbit of the binary would
have been hardened. Sink particles are not permitted to merge in
this calculation.

The benefits and potential problems associated with introducing
sink particles are discussed in more detail by Bate et al. (2003).

2.3 Initial conditions

We report on the results from two calculations. The initial conditions
for the calculations are identical except for radii of the initial clouds.
They are summarized in Table 1. For each calculation, the initial
conditions consist of a large-scale, turbulent molecular cloud. Each
cloud is spherical and uniform in density with a mass of 50 M�.
For Calculation 1, the diameter of the cloud is 0.375 pc (77 400 au),
while for Calculation 2, the diameter is 0.180 pc (37 200 au). At
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The dependence of the IMF on the Jeans mass 1203

Table 1. The initial conditions for the two calculations and the statistical properties of the stars and brown dwarfs formed. The initial conditions were identical
except that Calculation 2 had a cloud with a smaller radius giving a mean thermal Jeans mass a factor of 3 lower. Their initial turbulent velocity fields were
identical except for their magnitudes which were scaled so that for both clouds the kinetic energy equalled the magnitude of the gravitational potential energy.
Both calculations were run for 1.40 initial cloud free-fall times. Brown dwarfs are defined as having final masses less than 0.075 M�. The numbers of stars
(brown dwarfs) are lower (upper) limits because some of the brown dwarfs were still accreting when the calculations were stopped. The mean mass of the
objects formed in Calculation 2 was 17 per cent lower than in Calculation 1 and the median mass was a factor of 3.04 lower (consistent with the change in the
initial mean thermal Jeans mass).

Calculation Initial gas Initial Jeans Mach No. stars No. brown Mass of stars and Mean Median
mass radius mass number formed dwarfs formed brown dwarfs mass mass
(M�) (pc) (M�) (M�) (M�) (M�)

1 50.0 0.188 1 6.4 �23 �27 5.89 0.1178 0.070
2 50.0 0.090 1/3 9.2 �19 �60 7.92 0.1003 0.023

temperatures of 10 K, the mean thermal Jeans masses are 1 M� in
Calculation 1 (i.e. the cloud contains 50 thermal Jeans masses) and
1/3 M� in Calculation 2 (i.e. the cloud contains 150 thermal Jeans
masses). The free-fall times of the clouds are t ff = 6.0 × 1012 s or
1.90 × 105 yr and t ff = 2.0 × 1012 s or 6.34 × 104 yr, respectively.

Although the clouds are uniform in density, we impose an initial
supersonic ‘turbulent’ velocity field on them in the same manner as
Ostriker, Stone & Gammie (2001). We generate a divergence-free
random Gaussian velocity field with a power spectrum P(k) ∝ k−4,
where k is the wavenumber. In three dimensions, this results in a
velocity dispersion that varies with distance, λ, as σ (λ) ∝ λ1/2 in
agreement with the observed Larson scaling relations for molecular
clouds (Larson 1981). This power spectrum is slightly steeper than
the Kolmogorov spectrum, P(k) ∝ k−11/3. Rather, it matches the
amplitude scaling of Burgers supersonic turbulence associated with
an ensemble of shocks (but differs from Burgers turbulence in that
the initial phases are uncorrelated). The velocity field is generated on
a 643 uniform grid and the velocities of the particles are interpolated
from the grid. The same velocity field is used for both calculations,
but the velocity field is normalized so that the kinetic energy of
the turbulence equals the magnitude of the gravitational potential
energy of each cloud. Thus, the initial root-mean-square (rms) Mach
number of the turbulence isM = 6.4 in Calculation 1 andM = 9.2
in Calculation 2. In some ways it is undesirable that the turbulent
Mach number is different in the two calculations; it might have been
preferable to vary only the thermal Jeans mass. Maintaining the same
Mach number while reducing the thermal Jeans mass could have
been accomplished by reducing the radius and mass of the cloud used
for Calculation 1 by the same fraction. However, this would have
reduced the total number of objects formed in Calculation 2. Because
neither calculation forms a very large number of objects and looking
for statistically significant differences between the two calculations
is difficult enough, it is likely that using a lower-mass cloud for
Calculation 2 would have resulted in any differences between the
two calculations being statistically insignificant. There is also an
advantage to varying both the turbulent Mach number and the mean
thermal Jeans mass. That is, if a difference between the characteristic
stellar masses of the two calculations is found, we can look to see
whether the characteristic mass scales more closely with the mean
thermal Jeans mass or the turbulent Jeans mass (see Section 3.5).

Note that the initial conditions for Calculation 2 are extreme both
in terms of mean density and initial Mach number. Such initial
conditions are not found in nearby star-forming regions. In order to
study the dependence of star formation on the mean thermal Jeans
mass in molecular clouds, it might have been more desirable to
vary the cloud parameters in the opposite direction (i.e. increase
the mean thermal Jeans mass by beginning with lower-density, less
turbulent clouds). However, currently we are limited by the available

computational time to studying clouds containing only 50 M� of gas
(while resolving the opacity limit) and increasing the mean thermal
Jeans mass would mean that we would no longer be in the regime of
studying clouds containing many Jeans masses (i.e. likely to form
large numbers of objects so that we can examine their statistical
properties). Thus, the primary purpose of Calculation 2 is to test
the dependence of star formation on the mean thermal Jeans mass;
the vast majority of star formation probably does not occur in such
extreme environments.

2.4 Resolution

The local Jeans mass must be resolved throughout the calcula-
tions to model fragmentation correctly (Bate & Burkert 1997; Tru-
elove et al. 1997; Whitworth 1998; Boss et al. 2000). This requires
� 1.5 N neigh SPH particles per Jeans mass; N neigh is insufficient
(Bate et al. 2003). The minimum Jeans mass in the calculation pre-
sented here occurs at the maximum density during the isothermal
phase of the collapse, ρ = 10−13 g cm−3, and is ≈0.0011 M� (1.1
MJ). Thus, we use 3.5 × 106 particles to model the 50-M� clouds.
The calculations required approximately 95 000 and 50 000 CPU
hours, respectively, on the SGI Origin 3800 of the United Kingdom
Astrophysical Fluids Facility (UKAFF).

3 C O M PA R I S O N O F R E S U LT S

The results of Calculation 1 were published in detail by Bate et al.
(2002a,b, 2003), who considered the global evolution of the cloud,
the star formation efficiency and time-scale, the form of the stellar
initial mass function, the formation mechanisms of brown dwarfs
and close binaries, the multiplicity and velocity dispersion of the
objects, and the properties of their circumstellar discs. In this pa-
per, we compare the results of the two calculations, under the same
headings, to determine how the star formation process and the prop-
erties of stars and brown dwarfs depend on the mean Jeans mass of
the progenitor molecular cloud. In the text we concentrate on how
the results differ between the two calculations, although the figures
and tables in this paper provide the detailed results of Calculation 2
in an identical manner to those presented for Calculation 1 in Bate
et al. (2003), henceforth referred to as BBB2003.

3.1 Evolution of the clouds

The global evolution of Calculation 2 is very similar to that reported
for Calculation 1. Although the cloud is initially uniform in density
and the turbulent velocity field is initially divergence-free, hydro-
dynamic evolution quickly results in the formation of shocks, first
on small scales, and later on larger scales. Kinetic energy is lost
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from the cloud in these shocks, reducing the turbulent support, and
gravity soon begins to dominate in regions of overdensity formed
by converging gas flows. As found in other calculations of turbulent
molecular clouds, both with and without magnetic fields and self-
gravity, the turbulence decays on the dynamical time-scale of the
cloud (e.g. Mac Low et al. 1998; Stone, Ostriker & Gammie 1998).
Thus, star formation begins after approximately one global free-fall
time, tff.

The cloud in Calculation 2 is more Jeans unstable than that of
Calculation 1 (i.e. gravity dominates more over thermal pressure)
and also has a higher initial turbulent Mach number. These factors
lead to several differences between Calculations 1 and 2. Whereas
star formation began at t = 1.037t ff = 1.97 × 105 yr in Calcu-
lation 1, star formation begins slightly earlier in Calculation 2 at
t = 0.824t ff = 5.22 × 104 yr. The time-scales in years differ by
a large factor because the second cloud is nine times denser and,
hence, its free-fall time is shorter by a fact of three in real terms.
The rms Mach number of the turbulence has fallen from its initial
value of M = 9.2 to M = 5.6 when the star formation begins in
Calculation 2. Note that this is still very high; such a dense cloud
with a high-velocity dispersion is not typical of nearby star-forming
regions, but in order to investigate the dependence of star formation
on the mean thermal Jeans mass we are forced numerically to study
very dense clouds as discussed in Section 2.3. A second difference
is that finer structures are visible in the gas in Calculation 2 (com-
pare the last panel of Fig. 1 with the equivalent panel of fig. 2 in
BBB2003). This is due to the ability of thermal pressure to smooth
out more massive structures in Calculation 1.

In Calculation 2, the regions of overdensity eventually evolve into
four dense star-forming cores. The properties of these cores and the
numbers of stars and brown dwarfs they produce during the cal-
culation are summarized in Table 2. Calculation 1 produced three
star-forming cores. Because the structure of the initial turbulence
was identical in the two calculations, the locations and masses of
the cores in the calculations are similar. The main dense core, core 1,
has a similar location and mass in both calculations. Core 2 in Cal-
culation 2 has roughly the same location and mass as cores 2 and 3
in Calculation 1. Two regions that did not form stars in Calculation
1 form stars in Calculation 2 because gravity is more dominant over
thermal pressure in the second calculation.

In both calculations, the most massive dense core begins forming
stars first (Fig. 2). The four dense cores in Calculation 2 begin
forming stars at t = 0.824t ff, t = 1.111t ff, t = 1.163t ff, and t =
1.388 t ff, respectively. Their gas masses just before they form their
first objects and also when the calculation is stopped (at t = 1.40 t ff)
are given in Table 2 for comparison with table 1 in BBB2003. The
mass of a core is calculated as the amount of gas with density greater
than some threshold value. The masses of the cores depend on the
density threshold that is used; because the mean density of the cloud
has been increased by a factor of 9 over Calculation 1, the two density
thresholds used have been increased by an order of magnitude over
those in BBB2003.

Both calculations were stopped at t = 1.40t ff to allow a direct
comparison of the results. Star formation would continue in both
clouds if the calculations were followed further. However, at this
point there is a sufficient number of objects in both calculations
that have reached their final masses to allow a meaningful com-
parison (Table 1). Calculation 2 produces 19 stars and 46 brown
dwarfs. An additional 14 objects have substellar masses but are
still accreting. Two of these have very low masses and accretion
rates and therefore would probably end up with substellar masses
if the calculation were continued. Seven already have masses near

the stellar/substellar boundary and are therefore likely to become
stars. The remaining five formed shortly before the simulation was
stopped and it is impossible to tell whether they would become stars
or not.

3.2 The star formation process in the dense cores

Snapshots of the process of star formation in cores 1 and 2 of
Calculation 2 are shown in Figs 2 and 3, respectively. Cores 3
and 4 only produce one star each and are not shown. As with
Calculation 1, a true appreciation of how dynamic and chaotic
the star formation process is can only be obtained by study-
ing an animation of the simulation. The reader is encouraged
to download an animation comparing Calculations 1 and 2 from
http://www.astro.ex.ac.uk/people/mbate/Research/Cluster.

As in Calculation 1, the star formation in the two most massive
cores of Calculation 2 proceeds via gravitational collapse to produce
filamentary structures that fragment (e.g. Bastien 1983; Bastien et al.
1991; Inutsuka & Miyama 1992) to form a combination of single
objects and multiple systems (Figs 2 and 3). Many of the multiple
systems result from the fragmentation of massive circumstellar discs
(e.g. Bonnell 1994; Bonnell & Bate 1994; Whitworth et al. 1995;
Burkert, Bate & Bodenheimer 1997; Hennebelle et al. 2004). In
the most massive core, most of the objects fall together into the
gravitational potential well of the core to form a small stellar cluster
(Fig. 2, t = 1.16 –1.20 t ff). At this point, the cluster contains ≈39
objects and is very compact so that dynamical interactions result in
around half of the objects being ejected from the cluster in a short
space of time. More objects form as these objects are being ejected,
but there is a brief pause in the star formation in core 1 from t = 1.23
to 1.32t ff (see also Fig. 4) because so much of the gas is used up in
the star formation that more gas needs to fall into the potential well
before another burst of star formation can occur. The second burst
lasts until the calculation is stopped. Objects are again ejected from
the cluster during this burst, but when the calculation is stopped the
main dense core still contains ≈23 objects. In Calculation 1, it was
also found that the star formation in the most massive dense core
proceeded in bursts. The main difference between the star formation
occurring in the most massive cores of Calculations 1 and 2 is that
in Calculation 2, the stellar group that formed is denser and more
numerous, leading to more violent dynamical interactions and fewer
large discs (compare Fig. 2 with figs 3 and 4 of BBB2003). The
dense cores formed in the calculations are formed by converging
flows of gas. As the same turbulent flow structure was used for the
initial conditions of both calculations, scaled to a smaller cloud for
Calculation 2, it follows that the main dense core is more compact in
Calculation 2 and, thus, also more Jeans unstable. The implications
of this more compact star-forming core will be discussed further in
later sections.

Core 2 produces 12 objects during Calculation 2. Six are formed
directly through the fragmentation of filaments while the other six
are formed through disc fragmentation events. As in Calculation 1,
dynamical interactions within these smaller groups work to arrange
dynamically unstable systems into more stable configurations. Three
of the 12 objects are dynamically ejected during the calculation, but
more ejections would be expected in the long term.

3.3 Star formation time-scale and efficiency

The time-scale on which star formation occurs is the dynamical one
in both calculations, consistent both with observational and other
theoretical arguments (Pringle 1989; Elmegreen 2000a; Hartmann,
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The dependence of the IMF on the Jeans mass 1205

Figure 1. The global evolution of the cloud during Calculation 2 for comparison with fig. 2 of BBB2003 for Calculation 1. Shocks lead to the dissipation of
the turbulent energy that initially supports the cloud, allowing parts of the cloud to collapse. Star formation begins at t = 0.82t ff in a collapsing dense core. By
the end of the calculation, three more dense cores have begun forming stars (left-hand side of the last panel) and many of the stars and brown dwarfs have been
ejected from the cloud through dynamical interactions. Each panel is 0.194 pc (40 000 au) across. Time is given in units of the initial free-fall time of 6.34 ×
104 yr. The panels show the logarithm of column density, N, through the cloud, with the scale covering −0.9 < log N < 0.6 for t < 1.0 and −1.1 < log N <

2.1 for t � 1.0 with N measured in g cm−2. This column density scale is chosen to allow direct comparison with Calculation 1.

Ballesteros-Paredes & Bergin 2001), whether or not magnetic fields
are present (Ostriker et al. 2001; Li et al. 2004). However, comparing
the two calculations, it is interesting to note that reducing the mean
thermal Jeans mass (i.e. the degree of pressure support in the cloud)
and increasing the turbulent Mach number leads to more rapid star
formation. Naturally, the star formation time-scale in years is much
shorter in Calculation 2 because it is a denser cloud and the free-
fall time-scale is shorter. However, even in terms of the number

of initial cloud free-fall times, the star formation is more rapid.
Calculation 1 converts 5.89 M� (12 per cent) of its gas into stars in
1.40t ff, while in the same number of free-fall times, Calculation 2
converts 7.92 M� (16 per cent) of its gas into stars – an increase of
34 per cent.

In both calculations, the local star formation efficiency is high
within each of the dense cores (Table 2; for Calculation 1 see table 1
of BBB2003). This high star formation efficiency is responsible for
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Table 2. The properties of the four dense cores that form during Calculation 2 and those of the cloud as a whole. The gas masses and sizes of the cores
are calculated from gas with n(H2) > 1 × 107 cm−3 and n(H2) > 1 × 108 cm−3 (the latter values are given in parentheses). These densities are an order of
magnitude higher than those used for Calculation 1 in BBB2003 because the cloud is nearly an order of magnitude denser. The initial gas mass is calculated just
before star formation begins in that core (i.e. different times for each core). Brown dwarfs have final masses less than 0.075 M�. The star formation efficiency
is taken to be the total mass of the stars and brown dwarfs that formed in a core divided by the sum of this mass and the mass in gas in that core at the end of
the calculation. As with Calculation 1, the star formation efficiency is high locally, but low globally. The numbers of stars (brown dwarfs) are lower (upper)
limits because 14 of the brown dwarfs were still accreting when the calculation was stopped.

Core Initial gas Initial size Final No. stars No. brown Mass of stars and Star formation
mass (pc) gas mass formed dwarfs formed brown dwarfs efficiency
(M�) (M�) (M�) (per cent)

1 1.50 (0.15) 0.04 × 0.04 × 0.03 2.03 (1.04) �13 �52 6.33 76 (86)
2 0.92 (0.16) (0.03 × 0.01 × 0.01) 1.18 (0.50) �4 �8 1.33 53 (73)
3 0.17 (0.06) (0.02 × 0.01 × 0.01) 0.32 (0.08) 1 0 0.18 36 (69)
4 0.31 (0.07) (0.03 × 0.01 × 0.01) 0.32 (0.06) 1 0 0.09 22 (60)

Cloud 50.0 0.38 × 0.38 × 0.38 42.1 �19 �60 7.92 16

the bursts of star formation seen in both calculations. Gas is rapidly
converted into stars in the most massive dense cores and depleted to
such an extent that star formation pauses. Fresh gas must fall into the
gravitational potential wells of the small clusters before new bursts
of star formation can ensue. Although the local star formation effi-
ciency is high in the dense cores, most of the gas in both calculations
is in low-density regions where no star formation occurs. Thus, the
overall star formation efficiencies are low (∼10 per cent) for both
calculations. Although neither calculation has been followed until
star formation ceases, in both calculations a large fraction of the gas
has drifted off to large distances by the end of the calculation due
to the initial velocity dispersion and pressure gradients and is not
gravitationally unstable. Thus, the global star formation efficiency
is unlikely to exceed a few tens of per cent. We note that it is reason-
able to assume that if the calculations were run until star formation
ceased, Calculation 2 would have a higher overall star formation ef-
ficiency because thermal pressure gradients would be less important
in driving low-density gas away from the cloud. Another aspect that
impacts on the overall star formation efficiency is the initial magni-
tude of the turbulence. Our initial conditions set the total turbulent
kinetic energy to equal the magnitude of the gravitational energy.
Accounting for the small amounts of gas thermal energy, the clouds
start off slightly unbound. Clark & Bonnell (2004) recently stud-
ied star formation in clouds that were turbulently unbound initially.
They found that such initial conditions can result in very low star
formation efficiencies. Conversely, initial conditions with less tur-
bulent support initially would be expected to give greater overall
star formation efficiencies. Finally, although these calculations only
form low-mass stars, feedback from jets, outflows and heating of
the gas (none of which are included) would be expected to reduce
the star formation efficiency further.

As discussed in BBB2003, observations show that star formation
efficiencies vary widely across star-forming regions. Some parts of
star-forming clouds contain no newly formed objects while in other
parts, notably clusters and groups, the local efficiency can reach 50
per cent or more. Overall, such a pattern results in low global star
formation efficiencies, typically 10–30 per cent (Wilking & Lada
1983; Lada 1992).

3.4 Stellar velocity dispersion and distribution

As mentioned above, the small clusters formed in both calculations
rapidly dissolve due to dynamical interactions between cluster mem-
bers ejecting both stars and brown dwarfs. Somewhat surprisingly,

BBB2003 found that the final velocity dispersion of the stars and
brown dwarfs is independent both of stellar mass and binarity. While
the lack of dependence on mass was reported from past N-body sim-
ulations of the breakup of small-N clusters with N > 3 (Sterzik &
Durisen 1998) and SPH calculations of N = 5 clusters embedded
in gas (Delgado-Donate, Clarke & Bate 2003), these calculations
found that binaries should have a smaller velocity dispersion than
single objects due to the recoil velocities of binaries being lower,
keeping them within the stellar groups.

Calculation 2 gives similar results to Calculation 1 in that there
is no statistically significant difference in the velocity dispersion of
brown dwarfs versus stars, or of singles versus binaries (Fig. 5).
The lack of dependence of the velocity dispersion on binarity is due
to three reasons. First, the presence of gaseous discs surrounding
objects formed in the calculations discussed here allows disc frag-
mentation and dissipative interactions between stars, both of which
create tight binaries (see Bate et al. 2002b). These tight binaries can
easily be ejected in dynamical interactions. In the N-body/SPH sim-
ulations of Delgado-Donate et al. (2003), discs were absent and the
probability of forming and ejecting a tight binary, especially given
the small numbers of objects in the groups, was negligible. Typi-
cally, only single objects were ejected leaving a binary behind. More
recent small-N SPH cluster simulations by Delgado-Donate, Clarke
& Bate (2004a) that begin from turbulent initial conditions which
allow circumstellar disc formation and fragmentation also show that
the velocity dispersions of singles and binaries are similar, support-
ing this hypothesis. The second reason for the difference between
the above simulations and the calculations reported here is that the
stellar velocities are contributed to by the motions of individual
dense cores (BBB2003; Goodwin, Whitworth & Ward-Thompson
2004). This source of velocity dispersion was not considered in the
above studies because each calculation modelled only a single core.
The third reason is due to something that did not occur in Calcula-
tion 1. In Calculation 2, some wide binaries are formed when two
ejected objects happen to be ejected at similar times and with simi-
lar velocities and, thus, are gravitationally bound. These are ejected
binaries, so have speeds of a few km s−1, but are not ejected as
binaries. These systems are discussed further in Section 3.7.

The velocities of the stars and brown dwarfs relative to the centre
of mass of all the objects are given in Fig. 5. The rms velocity
dispersion is 4.3 km s−1 in three dimensions or 2.5 km s−1 in one di-
mension (using the centre-of-mass velocity for binaries closer than
10 au). This is roughly a factor of 4 greater than the three-
dimensional (3D) velocity dispersion of the gas when the stars
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The dependence of the IMF on the Jeans mass 1207

Figure 2. The star formation in the first (main) dense core. The first objects form a binary at t = 0.824t ff. Large gaseous filaments collapse to form single
objects and multiple systems. These objects fall together to form a small group. The group quickly dissolves due to dynamical interactions, leaving behind a
bound remnant. Compared with figs 3 and 4 of BBB2003 for Calculation 1, the stellar group formed here is denser and more numerous leading to more violent
dynamical interactions and fewer large discs. Each panel is 0.025 pc (5150 au) across. Time is given in units of the initial free-fall time of 6.34 × 104 yr. The
panels show the logarithm of column density, N, through the cloud, with the scale covering −0.2 < log N < 2.5 with N measured in g cm−2.
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1208 M. R. Bate and I. A. Bonnell

Figure 3. The star formation in the second dense core. The first object forms at t = 1.111t ff, followed quickly by a second to form a binary which is then
surrounded by a circumbinary disc. The massive disc eventually undergoes fragmentation to form six more objects. During this time, four more objects are
also formed in filaments. By the end of the calculation, three of the objects have been ejected from the core via dynamical interactions, leaving a hierarchical
quadruple system surrounded by five brown dwarfs in wide unstable orbits. Each panel is 0.025 pc (5150 au) across. Time is given in units of the initial free-fall
time of 6.34 × 104 yr. The panels show the logarithm of column density, N, through the cloud, with the scale covering −0.2 < log N < 2.5 with N measured
in g cm−2.

begin to form (M = 5.6 giving a 3D velocity dispersion of 1.0 km
s−1). Thus, dynamical interactions are the primary source of the
overall velocity dispersion. Comparing the magnitude of the velocity
dispersions from the two calculations, the value from Calculation 2
is a factor of 2 higher than that for Calculation 1 (which was 2.1 km
s−1). A higher velocity dispersion is to be expected in Calculation 2
simply on the grounds that the cloud is a factor of 2.08 smaller in
radius and thus virial arguments would imply an increase in the
velocity dispersion by a factor of ≈√

2. However, the increase is
somewhat greater than this factor. This is probably due to the fact
that, as noted in Section 3.2, the cluster formed in the main dense
core of Calculation 2 collapses to a very compact state just before
many of the objects are ejected.

Observationally, in agreement with the calculations presented
here, there is no evidence for brown dwarfs having a significantly
higher velocity dispersion than stars (something that was suggested
as a possible signature that brown dwarfs form as ejected stellar
embryos by Reipurth & Clarke 2001). In fact, Joergens & Guenther
(2001) studied the radial velocities of stars and brown dwarfs in the
Chamaeleon I dark cloud and found the brown dwarfs had a velocity
dispersion of ≈2 km s−1 while the overall velocity dispersion was
≈3.6 km s−1. It is thought that the overall value is high due to the
radial velocity ‘noise’ exhibited by T Tauri stars (Guenther et al.

2001). An increase in velocity dispersion with the density of a star-
forming region is suggested observationally. The one-dimensional
velocity dispersion in Taurus–Auriga has been measured at �2 km
s−1 using proper motions (Jones & Herbig 1979; Hartmann et al.
1991; Frink et al. 1997), while in the dense Orion Trapezium clus-
ter, the 1D velocity dispersion is 2.3 km s−1 (Jones & Walker 1988;
Tian et al. 1996).

3.5 Initial mass function

A summary of the mass distributions of the stars and brown dwarfs
formed in the two calculations is given in Table 1. Calculation 1
formed roughly equal numbers of stars and brown dwarfs. The mean
object mass was 0.118 M� and the median mass was 0.070 M�.
Calculation 2 formed more objects (79 versus 50) in the same num-
ber of initial cloud free-fall times. Two-thirds to three-quarters of
these objects are brown dwarfs (depending on whether you include
all substellar objects, or only those that have stopped accreting). The
mean object mass was 0.100 M� and the median mass was only
0.023 M�.

In Fig. 6 we plot the initial mass functions obtained from the two
calculations, covering both the stellar and substellar regimes. The
minimum resolvable mass in the calculations is 1.1 MJ, but there
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The dependence of the IMF on the Jeans mass 1209

Figure 4. Time of formation and mass of each star and brown dwarf at the
end of Calculation 2. The colour of each line identifies the dense core in which
the object formed: first (blue), second (green), third (red), or fourth (magenta)
core. Objects that are still accreting significantly at the end of the calculation
a represented with arrows. The horizontal dashed line marks the star/brown
dwarf boundary. Time is measured from the beginning of the calculation
in terms of the free-fall time of the initial cloud (top) or years (bottom).
This figure may be compared with the equivalent figure for Calculation 1
contained in BBB2003.

Figure 5. The velocities of each star and brown dwarf relative to the centre-
of-mass velocity of the stellar system. For close binaries (semimajor axes
<10 au), the centre-of-mass velocity of the binary is given, and the two
stars are connected by dotted lines and plotted as squares rather than circles.
The root mean square velocity dispersion for the association (counting each
binary once) is 4.3 km s−1 (3D) or 2.5 km s−1 (1D), which is roughly a factor
of 2 higher than in Calculation 1 due to the increased densities involved. As in
Calculation 1, there is no significant dependence of the velocity dispersion
on either mass or binarity. The vertical dashed line marks the star/brown
dwarf boundary.

are no objects formed with masses this low due to the opacity limit
for fragmentation. The lowest object mass was 5 MJ in the first
calculation and 3 MJ in the second. The precise value of the cut-off
in the IMF is not well constrained by these calculations because the

opacity limit for fragmentation is modelled using the equation of
state in equation (1) rather than by performing radiative transfer.
However, the above masses are consistent with the predicted cut-off
at ∼1–10 MJ (Low & Lynden-Bell 1976; Rees 1976; Silk 1977a,b;
Boss 1988; Masunaga & Inutsuka 1999; Boss 2001).

The initial mass function (IMF) obtained from the first calculation
is consistent with

dN

d log M
∝ M� (2)

where

� =
{−1.35 for M � 0.5M�

0.0 for 0.005 < M � 0.5 M�
(3)

and there are no objects below the opacity limit for fragmentation
(≈ 0.005 M�). The Salpeter slope is � = −1.35 (Salpeter 1955). In
turn, this is broadly consistent with the observed IMF (e.g. Luhman
et al. 2000; Kroupa 2001; Chabrier 2003).

The stellar IMF produced by the second calculation is again
broadly consistent with the observed IMF; however, as already
seen in Table 1, the second calculation produces many more brown
dwarfs. Overall, this IMF is consistent with

� =
{−1.35 for M � 0.5 M�

−0.3 for 0.005 < M � 0.5 M�.
(4)

The cut-off at the opacity limit for fragmentation is again very steep,
but there are three objects with final masses slightly lower than
0.005 M� (2.9, 3.8 and 4.4 Jupiter-masses). Note that in neither
calculation is the slope above 0.5 M� well constrained.

Despite the use of large-scale hydrodynamical calculations, the
accuracy with which we can determine the resulting IMFs is limited
by small number statistics. Thus, we must ask whether or not the
two distributions are in fact significantly different. In Fig. 7, we give
the cumulative IMFs from the two calculations. A Kolmogorov–
Smirnov test performed on the distributions tells us that there is
only a 1.9 per cent probability that they are drawn from the same
underlying IMF (i.e. they differ at the 98.1 per cent confidence
level; roughly a 2.4σ result). The difference between the two IMFs
is again clear from Fig. 7; there are more brown dwarfs formed in
the calculation with the lower initial thermal Jeans mass.

This result is, perhaps, not too surprising. Larson (1992), for
example, proposed that the characteristic stellar mass should be
linked to the Jeans mass in molecular clouds. However, Table 1
shows that it is not quite that simple. While reducing the thermal
Jeans mass by a factor of 3 gives a corresponding drop in the median
object mass by a factor of 3.04 from 0.070 M� to 0.023 M�,
the mean object mass decreases by only 17 per cent. Why does the
median object mass depend on the thermal Jeans mass, while the
mean mass does not? This will be addressed in Section 4.2.3. Note
that it has also been argued that the characteristic stellar mass may
be related to the turbulent Jeans mass, rather than the thermal Jeans
mass. The initial Mach number is 40 per cent greater in Calculation 2
than Calculation 1 (50 per cent greater when the first star forms in
each calculation). Thus, the initial turbulent Jeans mass differs by
a factor of 3 × 1.4 = 4.2 between the two calculations. Neither the
mean nor the median stellar mass change by a factor this great.

3.6 The abundance of brown dwarfs

In this section, we investigate in detail why the second calculation
forms more brown dwarfs than the first. From Calculation 1, Bate
et al. (2002a) found that the mechanism for brown dwarf formation

C© 2004 RAS, MNRAS 356, 1201–1221

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/356/4/1201/1010291 by U
.S. D

epartm
ent of Justice user on 16 August 2022



1210 M. R. Bate and I. A. Bonnell

Figure 6. The initial mass functions produced by the two calculations. Calculation 2 (right-hand panel) had the lower initial mean thermal Jeans mass and
produced a much higher fraction of brown dwarfs. The single shaded regions show all of the objects; the double shaded regions show only those objects that
have finished accreting. The mass resolution of the simulations is 0.0011 M� (i.e. 1.1 MJ), but no objects have masses lower than 2.9 MJ due to the opacity
limit for fragmentation. We also plot fits to the observed IMF from Miller & Scalo (1979) (dashed line) and Kroupa (2001) (solid broken line). The Salpeter
(1955) slope (solid straight line) is equal to that of Kroupa (2001) for M > 0.5 M�. The vertical dashed line marks the star/brown dwarf boundary.

Figure 7. The cummulative initial mass functions produced by Calcula-
tions 1 (solid line) and 2 (dot-dashed line). Again, the excess of brown dwarfs
in the second calculation over the first is clear. A Kolmogorov–Smirnov test
on the two distributions shows that there is only a 1.9 per cent probability
that they are drawn from the same underlying IMF. The vertical dashed line
marks the star/brown dwarf boundary.

was that a fragment was ejected from the region of dense molecu-
lar gas in which it formed before it was able to accrete to a stellar
mass. The ejections occurred due to dynamical interactions in un-
stable multiple systems. This brown dwarf formation mechanism
was proposed by Reipurth & Clarke (2001). Thus, the formation of
more brown dwarfs in the second calculation implies either that the
accretion rates on to the fragments were lower, or that the objects
were ejected more quickly after they formed.

In Fig. 8, we plot the time-averaged accretion rates of all the ob-
jects for both Calculations 1 and 2. A time-averaged accretion rate is
defined as the mass of an object at the end of the calculation divided
by the time over which it accreted that mass. The accretion time
is measured from the formation of an object (i.e. the insertion of a
sink particle) to the last time at which its accretion rate drops below

10−7 M� yr−1, or the end of the calculation (whichever occurs
first). We also define an ejection time, which is the time between
the formation of an object and the last time the magnitude of its
acceleration drops below 1000 km s−1 Myr−1 for Calculation 1 and
5000 km s−1 Myr−1 for Calculation 2 (or the end of the calculation).
The acceleration criterion is based on the fact that once an object
is ejected from a stellar cluster through a dynamical encounter, its
acceleration will drop to a low value. The specific values of the ac-
celeration mentioned above were chosen by comparing animations
and graphs of acceleration versus time for individual objects.

It can be seen that the time-averaged accretion rates of the objects
have a significant dispersion. However, with the possible exception
of the highest mass objects in Calculation 2, there is no system-
atic trend for the lower-mass objects to have lower time-averaged
accretion rates. Similarly, the accretion rates do not appear to be
systematically lower in the second calculation. The means of the
time-averaged accretion rates are 8.6 × 10−6 and 11.1 × 10−6 M�
yr−1 for Calculations 1 and 2, respectively. Therefore, we conclude
that the increased proportion of brown dwarfs in Calculation 2 is not
due to lower accretion rates. As a rough estimate, the mean accretion
rates might be expected to depend on the sound speed (the same for
both calculations) as ∼ c3

s/G = 1.5 × 10−6 M� yr−1 (Shu 1977;
Hunter 1977). The means of the time-averaged accretion rates are
factors of a few higher than this estimate, but this is consistent with
the fact that collapsing non-singular isothermal spheres usually ac-
crete at a rate somewhat larger than c3

s /G (e.g. Foster & Chevalier
1993).

In Fig. 9, we plot the time between the formation of an object
and the termination of its accretion (or the end of the calculation)
versus the final mass of the object. Those points with arrows denote
those objects that are still accreting significantly at the end of the
calculation. Accreting objects would move towards the upper right
of the diagrams if the calculations were extended. From both cal-
culations it is clear that the lower the final mass of the object, the
earlier its accretion was terminated. We also see that in the second
calculation a much greater fraction of the objects have their accre-
tion terminated soon after their formation (less than 104 yr). This is
the origin of the larger fraction of brown dwarfs in Calculation 2.

What causes the termination of the accretion? In Fig. 10, we plot
the time between the formation of an object and its ejection from a
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The dependence of the IMF on the Jeans mass 1211

Figure 8. The time-averaged accretion rates of the objects formed in the two calculations versus their final masses. The accretion rates are calculated as the
final mass of an object divided by the time between their formation and the termination of their accretion or the end of the calculations. The horizontal solid
lines give the means of the accretion rates: 8.6 × 10−6 M� yr−1 and 11.1 × 10−6 M� yr−1 for Calculations 1 and 2, respectively. The accretion rates are
given in M�/t ff on the left-hand axes and M� yr−1 on the right-hand axes. The vertical dashed line marks the star/brown dwarf boundary.

Figure 9. The time between the formation of each object and the termination of its accretion or the end of the calculation versus its final mass. In both
calculations, there is a clear linear correlation between the time an object spends accreting and its final mass. The solid line gives the curve that the objects
would lie on if each object accreted at the mean of the time-averaged accretion rates. The accretion times are given in units of the tff on the left-hand axes and
years on the right-hand axes. The vertical dashed line marks the star/brown dwarf boundary.

Figure 10. For each object that has stopped accreting, we plot the time between the formation of the object and its ejection from a multiple system versus the
time between its formation and the termination of its accretion. In both calculations, these times are correlated, showing that the termination of accretion on to
an object is usually associated with dynamical ejection of the object.

stellar group versus the time between the formation of an object and
the termination of its accretion. In this figure, we only plot those
objects that have stopped accreting and reached their final masses
by the end of the calculations. In both calculations, these times are

correlated, showing that the termination of accretion on to an object
is usually associated with dynamical ejection of the object. These
results confirm the assertion of Bate et al. (2002a) that brown dwarfs
are ‘failed stars’. They fall short of reaching stellar masses because

C© 2004 RAS, MNRAS 356, 1201–1221

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/356/4/1201/1010291 by U
.S. D

epartm
ent of Justice user on 16 August 2022



1212 M. R. Bate and I. A. Bonnell

they are cut off from their source of accretion prematurely due to
ejection in dynamical interactions.

Why are objects ejected more quickly in the second calculation
than in the first? The two calculations are identical except for the
initial radii of the clouds. This results in the second calculation being
nine times denser and its initial mean thermal Jeans mass being three
times lower. Thus, the dynamical time-scale of the second cloud is
three times shorter and dynamical interactions tend to occur in a
shorter real time in the second calculation. On the other hand, as we
have seen, the accretion rates of the objects are roughly the same
for the two calculations (as is expected if the accretion rates scale
with the sound speed of the gas). Therefore, the reason for the larger
proportion of low-mass objects in Calculation 2 is that the typical
object accretes at the same rate as in Calculation 1, but does so for
≈1/3 of the time (see also Section 4.2.3).

3.7 Multiple systems

As in Calculation 1, the dominant formation mechanism for binary
and multiple systems in Calculation 2 is fragmentation, either of
gaseous filaments (e.g. Bastien 1983; Bastien et al. 1991; Inutsuka
& Miyama 1992) or of massive circumstellar discs (e.g. Bate &
Bonnell 1994; Bonnell 1994; Whitworth et al. 1995; Burkert et al.
1997; Hennebelle et al. 2004). Star–disc encounters play a role in
truncating discs (Section 3.8), but they do not play a significant
role in forming binary and multiple systems from unbound objects
(cf. Clarke & Pringle 1991). Two star–disc encounters resulted in
the formation of multiple systems in Calculation 1. In Calculation 2,
there is no obvious example of a multiple system being formed via a
star–disc encounter. However, in both calculations, it is important to
note that, although star–disc encounters do not usually form simple
bound systems directly, they do result in dissipation which aids in
the formation of the small-N bound groups that later dissolve and
produce binary and multiple systems. Thus, dissipative encounters
play an important role in star formation (cf. Larson 2002), though
not through the simple picture of star–disc capture.

3.7.1 Multiplicity

When Calculation 2 was stopped, there were seven distinct mul-
tiple systems with semimajor axes �1000 au. Their properties are
displayed in Table 3 and in Fig. 11. All but one of these systems orig-
inated in the main dense core. There are 10 binaries, three of which
(15,33; 20,32; and 14,2) were ejected from the core. Binary 69,58 is
still very weakly bound to the main dense core, but is very isolated
at the end of the calculation and so is unlikely to evolve further. The
system (((7,10),26),41) consisting of four objects (a close stellar bi-
nary and two wider brown dwarf companions) is also weakly bound
to the main dense core but at a very large distance. The main dense
core contains a large bound system of 23 objects, including three
binaries with separations of 15 au or less. Dense core 2 contains a
system of eight objects, including a hierarchical quadruple system.
Cores 3 and 4 each contain a single star. The remaining 34 objects
are either completely unbound or are very weakly bound to the main
dense core but have been ejected to very large distances.

The multiple systems present at the end of Calculation 1 were
discussed in detail in BBB2003 and Bate et al. (2002b). Our goal
here is to compare and contrast the multiple systems obtained from
the two calculations. BBB2003 had three main conclusions from
Calculation 1 regarding multiplicity. First, when the calculation was
stopped, the companion star frequency was high, in broad agreement
with observations of star-forming regions. Second, a large frequency

of close binary systems (separations �10 au) was formed through
a combination of dynamical encounters between objects, accretion
on to existing multiple systems, and the interaction of multiple sys-
tems with circumbinary or circumtriple discs. This conclusion and
the properties of close binary systems that resulted from these forma-
tion mechanisms were the topic of Bate et al. (2002b). Due to these
formation mechanisms, the close binaries had a preference for equal
masses and the frequency of close binaries increased with primary
mass. Third, Calculation 1 produced no wide or low mass-ratio bi-
nary systems (separations greater than 10 au, mass ratios M 2/M 1 <

0.25). The only wide or low-mass companions were members of
higher-order systems (triples, quadruples and higher). This lack
of wide and low mass-ratio binaries also occurs in simulations of
N = 5 clusters embedded in molecular cloud cores (Delgado-Donate
et al. 2003) and smaller-scale turbulent star formation calculations
(Delgado-Donate et al. 2004b). It seems to be a general result from
N-body dynamics in small-N clusters and is potentially a serious dif-
ficulty because observations suggest there are many unequal-mass
wide binaries (e.g. Duquennoy & Mayor 1991). One possible ex-
planation (Delgado-Donate et al. 2004b) is that the frequency of
triple and higher-order systems is underestimated observationally
and what appear to be wide binaries are in fact multiple systems.

As in the first calculation, Calculation 2 produces a high compan-
ion star fraction

CSF = B + 2T + 3Q + · · ·
S + B + T + Q + · · · (5)

where S is the number of single stars, B is the number of binaries,
T is the number of triples, etc. The 36 singles, four binaries, one
quadruple, one octet, and one system of 23 objects give a companion
star frequency of 36/43 = 84 per cent. Alternatively, the number
of companions divided by the total number of objects is 36/79 =
46 per cent. These percentages are higher than in Calculation 1.
Although the systems with more than two components will continue
to evolve and will almost certainly eject members, especially the
large system of 23 objects, it is plausible that the final companion
star frequency will be high, as required by observations of star-
forming regions (Ghez, Neugebauer & Matthews 1993; Leinert et al.
1993; Richichi et al. 1994; Simon et al. 1995; Ghez et al. 1997;
Duchêne 1999). Disregarding the system of 23 objects entirely still
gives a companion star frequency of 14/42 = 33 per cent and the
number of companions divided by the total number of objects to be
14/56 = 25 per cent.

As with Calculation 1, Calculation 2 produces a realistic fre-
quency of close binaries (separations <10 au). Even if all wider
systems break up, the resulting frequency of close binaries would
be 5/74 ≈ 7 per cent. This is about a factor of 2 lower than Calcu-
lation 1 and about a factor of 3 lower than the observational value
of ≈20 per cent (Duquennoy & Mayor 1991). However, Duquen-
noy & Mayor were not sensitive to brown dwarfs. If only stars are
considered, the frequency of close binaries becomes 4/15 ≈ 27 per
cent (for Calculation 1, the frequency is almost identical at 5/18 ≈
28 per cent). As in Calculation 1, there is a preference for close bina-
ries to have equal masses (two have mass ratios of M 2/M 1 = 0.98
and only one has a mass ratio lower than 0.25), and the frequency
of close binaries is higher for more massive primaries – six of the
eight most massive stars are members of close binaries, while there
is only one binary brown dwarf with separation <10 au out of 46
definite brown dwarfs. These preferences result from the formation
mechanisms of close systems as discussed by Bate et al. (2002b).

One of the most interesting results from Calculation 2 is that it
produces five binaries with separations greater than 10 au (Fig. 11
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The dependence of the IMF on the Jeans mass 1213

Table 3. The properties of the seven multiple systems with semimajor axes less than 1000 au formed in Calculation 2 (see also Fig. 11). Four of these systems
are pure binaries while the other three have four, eight, and 23 members. The structure of each system is described using a binary hierarchy. For each ‘binary’
we give the masses of the primary M1 and secondary M2, the mass ratio q = M 2/M 1, the semimajor axis a, and the eccentricity e. The combined masses of
multiple systems are given in parentheses. Orbital quantities marked with asterisks are unreliable because these close binaries have periastron distances less
than the gravitational softening length. When the calculation is stopped, the three high-order systems are unstable and/or are still accreting, so their final states
are unknown. Binary system (69,58) is also accreting. In the comments, BBD refers to a binary brown dwarf system, VLM refers to a very low-mass star (mass
<0.09 M�), EMR refers to an extreme mass ratio (M 2/M 1 < 0.2), and ‘ejected’ refers to binaries that have been ejected from the cloud.

Object numbers M1 M2 q a e Comments
(M�) (M�)

27,49 0.27 0.078 0.29 1.5∗ 0.86∗ Star+VLM
60,59 0.009 0.009 0.98 2.3∗ 0.93∗ BBD
4,3 0.76 0.75 0.98 3.2∗ 0.77∗
7,10 0.55 0.27 0.49 4.7∗ 0.30∗
19.45 0.76 0.081 0.11 6.2∗ 0.42∗ Star+VLM, EMR
6,54 0.088 0.026 0.30 15 0.34 VLM+BD (accreting)
69,58 0.057 0.035 0.62 21 0.59 BBD (accreting)
15,33 0.059 0.005 0.081 66 0.82 Ejected BBD, EMR
20,32 0.085 0.010 0.12 126 0.52 Ejected VLM+BD, EMR
14,2 0.18 0.17 0.92 1136 0.98 Ejected

(4,3),8 (1.52) 1.24 0.82 41 0.04
(7,10),26 (0.82) 0.070 0.085 45 0.67 BD companion

(19,45),(27,49) (0.84) (0.35) 0.41 31 0.37
((4,3),8),64 (2.76) 0.072 0.026 47 0.49 BD companion
((7,10),26),41 (0.89) 0.017 0.019 407 0.90 BD companion

(((4,3),8),64),71 (2.83) 0.023 0.008 58 0.34 BD companion
((19,45),(27,49)),53 (1.19) 0.047 0.040 118 0.33 BD companion

((((4,3),8),64),71),72 (2.85) 0.011 0.004 72 0.97 BD companion
(((19,45),(27,49)),53),79 (1.24) 0.013 0.010 75 0.50 BD companion

(((((4,3),8),64),71),72),57 (2.87) 0.031 0.011 168 0.48 BD companion
((((19,45),(27,49)),53),79),75 (1.25) 0.020 0.016 387 0.80 BD companion

((((((4,3),8),64),71),72),57),78 (2.90) 0.022 0.008 203 0.23 BD companion
(((((19,45),(27,49)),53),79),75),50 (1.27) 0.008 0.006 489 0.95 BD companion

(4,3),8),64),71),72),57),78),47 (2.92) 0.013 0.004 290 0.26 BD companion
(4,3),8),64),71),72),57),78),47),63 (2.93) 0.009 0.003 309 0.85 BD companion
(4,3),8),64),71),72),57),78),47),63),13 (2.94) 0.13 0.045 328 0.70
(4,3),8),64),71),72),57),78),47),63),13),28 (3.07) 0.009 0.003 488 0.45 BD companion
(4,3),8),64),71),72),57),78),47),63),13),28),(60,59) (3.08) (0.018) 0.006 491 0.89 BBD companion
(4,3),8),64),71),72),57),78),47),63),13),28),(60,59)),66 (3.10) 0.054 0.017 561 0.80 BD companion
(4,3),8),64),71),72),57),78),47),63),13),28),(60,59)),66),(6,54) (3.15) (0.11) 0.036 570 0.69 BBD companion
(4,3),8),64),71),72),57),78),47),63),13),28),(60,59)),66),(6,54)),77 (3.27) 0.016 0.005 490 0.75 BD companion
(Above system),38 (3.28) 0.011 0.003 667 0.24 BD companion
(Above system),38),65 (3.30) 0.067 0.020 699 0.60 BD companion
(Above system),38),65),40 (3.36) 0.034 0.010 801 0.29 BD companion
(Above system),38),65),40),35 (3.40) 0.011 0.003 818 0.37 BD companion
(Above system),38),65),40),35),34 (3.41) 0.008 0.002 1012 0.68 BD companion

and Table 3). Moreover, three of them have been ejected and should
not evolve further and two of these three have low mass ratios
(M 2/M 1 � 0.1). As mentioned above, wide binaries and low mass-
ratio binaries are absent in Calculation 1 and rare in other numerical
simulations of small-N clusters. The three with the largest separa-
tions (66, 126 and 1136 au) were formed from objects that happened
to be ejected from the main dense core at roughly the same time,
in approximately the same direction, and at similar speeds. Thus,
as they left the main dense core, they were bound to each other. As
might be expected, they all have large eccentricities (ranging from

0.52 to 0.98). The reason Calculation 2 produces these wide sys-
tems, while Calculation 1 does not, appears to be due to the larger
number of objects formed in the main dense core of Calculation 2
and the fact that as this small cluster collapses to its minimum size,
many objects are ejected almost simultaneously. In Calculation 1,
the smaller number of objects meant that the intervals between ejec-
tion events were longer. Whether or not such bursts of ejected objects
can explain the observed number of wide binary systems is unclear.
However, it may be plausible if a significant fraction of stars form
in groups of �40 objects.
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1214 M. R. Bate and I. A. Bonnell

Figure 11. Mass ratios versus semimajor axes of the binary, triple and
quadruple systems that exist at the end of Calculation 2 (see also Table 3).
Binaries are plotted with circles, triples with triangles and quadruple systems
with squares. This figure should be compared with fig. 12 of BBB2003 for
the equivalent results from Calculation 1. Whereas in Calculation 1 there
were no wide binaries (separations >10 au) and no binaries with mass ratios
M 2/M 1 � 0.3, Calculation 2 produces five wide binaries and three binaries
with mass ratios M 2/M 1 < 0.2.

3.7.2 Brown dwarf companions to stars and brown dwarfs

Calculation 1 produced one binary brown dwarf system out of ≈20
brown dwarfs, implying a frequency of binary brown dwarfs of ∼5
per cent (with a large uncertainty). Furthermore, although it was a
close binary, it was still part of an unstable multiple system and was
still accreting. Thus, its long-term survival was not certain. This low
frequency of binary brown dwarfs is due to accretion and dynami-
cal interactions. The binary brown dwarf must avoid accreting too
much gas or it will become a stellar binary. It may stop accreting
if it is ejected from the dense molecular gas in which it formed by
dynamical encounters (Section 3.6). However, to produce a binary
brown dwarf, the binary must be ejected as a whole. To reach escape
velocity from the molecular cloud requires a close dynamical inter-
action. Thus, rather than be ejected, a binary brown dwarf is likely
to be broken up or to have one of its components replaced by a star
in an exchange interaction. The result of this formation mechanism
is that wide binary brown dwarfs are very unlikely, and even close
systems are likely to be rare because they must be ejected but not
undergo an exchange interaction (see also Reipurth & Clarke 2001;
Bate et al. 2002a).

However, Calculation 2 shows that there is another mechanism
for forming binary brown dwarfs, and these systems tend to be wide.
Three binary brown dwarf (BBD) systems and two additional bi-
naries in which a brown dwarf orbits a very low-mass (VLM) star
(M < 0.09 M�) are formed in Calculation 2. The properties of these
binaries are given in Table 3. One of the BBDs has been ejected
(15,33) and will not evolve further. One of the VLM star/brown
dwarf systems (20,32) has also been ejected. Interestingly, these
systems are the wide 66-au and 126-au systems mentioned in the
previous section. Each formed when two objects were ejected simul-
taneously in similar directions and, thus, were bound to each other.
The two other BBDs (60,59 and 69,58) are still formally bound to

the cluster in the main dense core; however, when the calculation
is stopped both are at very large distances. BBD (60,59) consists of
two 9-MJ objects and is a very close system (2 au) so is likely to
survive in the long term. The survival of BBD (69,58) as a binary
brown dwarf is less certain as it is wider (21 au) and both compo-
nents are still accreting. The final VLM star/brown dwarf binary
(6,54) is close (15 au), very weakly bound to the main dense core,
and both objects are accreting.

In summary, Calculation 2 gives the overall fraction of VLM
star/brown dwarf and BBD systems to be five out of 60 systems
with component masses less than 0.09 M�, i.e. ≈8 per cent. This
is somewhat higher than Calculation 1 and has the advantage that
at least two of the systems will not evolve further. The observed
frequency of very low-mass and brown dwarf binaries is ≈15 per
cent (Reid et al. 2001; Close et al. 2002, 2003; Bouy et al. 2003;
Burgasser et al. 2003; Gizis et al. 2003; Martı́n et al. 2003). Thus, the
calculations underproduce binary brown dwarfs by roughly a factor
of 2. However, we are still limited by poor statistics and further
calculations are required.

On the observational side, it is very important to determine more
completely the period distribution of BBDs. Until recently, all of the
known binary brown dwarf systems were close (separations<15 au),
consistent with the ejection hypothesis for brown dwarf formation.
However, only one spectroscopic BBD system is currently known
(Basri & Martin 1999). Furthermore, Luhman (2004a) has recently
reported the discovery of a BBD candidate with a separation of ≈200
au. Although this system may be explained by the mechanism for
wide BBD formation described above, an accurate determination
of the frequency of very close and wide systems is essential for
constraining future models.

Along with a BBD, Calculation 1 produced one binary system
consisting of a star (0.13 M�) and a brown dwarf (0.04 M�). The
system had a separation of 7 au and was part of an unstable septuple
system. Both objects were still accreting. Calculation 2 does not
produce any such systems, but there are two stars with VLM stellar
companions (binaries 27,49 and 19,45 in Table 3). Both of these
binaries have separations less than 10 au. In fact, these two binaries
form a hierarchical quadruple system that is at the centre of the group
of stars in the second dense core when the calculation is stopped.
All four objects are still accreting, so whether or not the two VLM
stars will remain as low-mass companions is in doubt. In any case,
brown dwarf companions in close orbits around stars with masses
�0.1 M� seem to be rare. There are two main reasons for this. First,
in order for the primary to become a star it must have accreted a
lot of gas. Any companion would likely become a star also because
the long-term effect of accretion on to a binary is generally to drive
the system to equal-mass components (Whitworth et al. 1995; Bate
2000). Second, while the primary is accreting to its stellar mass it is
embedded in the molecular cloud in which it formed and is likely to
undergo dynamical interactions with other objects (see Section 3.8).
If these interactions involve exchanges, any low-mass companion
will likely be replaced by an object with a higher mass.

The low frequency of brown dwarfs in close orbits around stars is
in agreement with observations. Doppler searches for planets orbit-
ing solar-type stars find a very low frequency of brown dwarf com-
panions in tight orbits, the so-called brown dwarf desert (Marcy &
Butler 2000). Wide star/brown dwarf systems are seen observation-
ally (Gizis et al. 2001). Although many of the stars in Calculations
1 and 2 have wide brown dwarf companions, because these systems
are still dynamically evolving when the calculations are stopped
we cannot compare our calculations with these observations.
However, the small-scale turbulent star formation simulations of
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The dependence of the IMF on the Jeans mass 1215

Delgado-Donate et al. (2004b), which were evolved until the sys-
tems reached dynamical stability, do predict that many close stellar
binary systems should have wide brown dwarf companions.

3.8 Protoplanetary discs

The calculations resolve gaseous discs with radii �10 au around the
young stars and brown dwarfs. Discs with typical radii of ∼50 au
form around many of the objects due to the infall of gas with high
specific angular momentum. However, one of the surprises from
Calculation 1 was that most of these discs were severely truncated
in subsequent dynamical interactions. By the end of the calculation,
most of the discs were too small to have formed our solar system
(BBB2003). Only two objects, one star and one brown dwarf, were
ejected from the cloud with resolved discs (radii of 50 au and 60 au,
respectively). Nine other discs ranging in radius from 20 to 200 au
existed around objects when the calculation was stopped, but these
objects were still members of unstable multiple systems.

In Calculation 2, because of the higher stellar densities reached
in the dense molecular cloud cores, the situation is even worse for
the survival of large discs. With 79 objects, there are only nine
resolved discs (compared to 11 resolved discs among 50 objects for
Calculation 1). In Fig. 12, we plot the closest encounter distance
for each object during the calculation as a function of its final mass.
Table 4 lists the properties of the nine resolved discs at the end of

Figure 12. The closest encounter distance of each star or brown dwarf
during Calculation 2 versus the final mass of the object. This figure should
be compared with fig. 14 of BBB2003 for the equivalent results from Cal-
culation 1. Objects that are still accreting significantly at the end of the
calculation are denoted with arrows indicating that they are still evolving
and that their masses are lower limits. Objects that have resolved discs at
the end of the simulation are circled. Discs smaller than ≈10 au (horizon-
tal dotted line) cannot be resolved by the simulation. Objects that have had
close encounters may still have resolved discs due to subsequent accretion
from the cloud. Note that there are only nine resolved discs at the end of
the simulation, but many surround binary and higher-order multiple systems
(hence the 16 circles in the figure). Close binaries (semimajor axes <10 au)
are plotted with the two components connected by dotted lines and squares
are used as opposed to circles. Components of triple systems whose orbits
have semimajor axes 10 < a < 100 au are denoted by triangles. All but one
of the close binaries is surrounded by a resolved disc. Encounter distances
less than 4 au are upper limits, as the point mass potential is softened within
this radius. The vertical dashed line marks the star/brown dwarf boundary.
The four brown dwarfs in the top left corner of the figure that are still accret-
ing formed shortly before the calculation was stopped are thus still evolving
rapidly. They may not end up as brown dwarfs or with resolved discs. There
are no brown dwarfs that have resolved discs and have finished accreting.

the calculation. All but three stars have had encounters closer than
10 au. The two stars with greatest encounter distances (≈104 au)
are those two stars that formed on their own in dense cores 3 and
4. These two stars (objects 30 and 67) have disc radii of ≈200 and
≈100 au, respectively. The other stars with resolved discs are all
members of multiple systems surrounded by large discs. Although
they have had very close encounters, subsequent infalling gas has
built up circumtriple and circumquadruple discs around them. Most
of the substellar objects have also had encounters closer than 10 au.
Four of them are surrounded by resolved discs at the end of the
calculation (Table 4) with radii ranging from approximately 20 to
80 au. However, none of the stars or brown dwarfs ejected during
Calculation 2 were surrounded by resolved discs.

Calculation 1 modelled a dense star-forming region, so Calcula-
tion 2 is even more extreme. The primary motivation for Calculation
2 is to investigate the dependence of the IMF on the mean thermal
Jeans mass in molecular clouds. Such high-density initial conditions
are not meant to be representative of local star formation. Calcula-
tion 2 does, however, confirm that the prolific disc truncation seen
in Calculation 1 is a general feature of such simulations and that, as
expected, the resulting size distribution of discs moves to smaller
radii discs with increasing stellar density.

4 D I S C U S S I O N

4.1 The observed abundance of brown dwarfs

The above results clearly show that, all other things being equal,
there should be a greater proportion of brown dwarfs in star-forming
clouds with lower mean thermal Jeans masses. We find that reducing
the mean thermal Jeans mass by a factor of 3 increases the fraction
of brown dwarfs by about a factor of 1.5 (from ≈50 to ≈75 per cent).
Thus we would expect about a factor of 2 difference in the frequency
of brown dwarfs for a change of one order of magnitude in the Jeans
mass. Are there any observations to support this hypothesis?

Briceño et al. (2002) compared the IMFs in Taurus and the Orion
Trapezium cluster. They found a factor of 2 fewer brown dwarfs in
Taurus. New results on the Trapezium cluster (Slesnick, Hillenbrand
& Carpenter 2004) have decreased this discrepancy to a factor of
1.5, but Taurus still appears to be deficient in brown dwarfs (Luhman
2004b). Briceño et al. (2002) proposed that this difference may be
due to the different mean densities (and hence mean Jeans masses) of
the regions. Taurus is a low-mass low-density star-forming region. It
is difficult to define a mean thermal Jeans mass in the region because
the cloud is so patchy. However, the gas mass of the Taurus dark
cloud is measured to be ≈104 M� in a radius of ≈10 pc (Baud &
Wouterloot 1980; Cernicharo, Bachiller & Duvert 1985). This gives
a mean thermal Jeans mass of ≈30 M�, though the local Jeans
mass in some of the dense cores is more than an order of magnitude
lower than this. The Trapezium cluster is a high-mass high-density
star-forming region. It contains approximately 5 × 103 M� of stars
and gas (Hillenbrand & Hartmann 1998) within a radius ≈2 pc,
giving a mean thermal Jeans mass of ≈3 M� if it is assumed that
the temperature before star formation began was ≈10 K. Thus, the
difference in the mean thermal Jeans mass between the two regions
is probably about an order of magnitude. A factor of ≈1.5–2 fewer
brown dwarfs in Taurus is therefore in agreement with both the
direction and magnitude of the above prediction.

Calculation 1 had a mean thermal Jeans mass of 1 M�, similar
to the progenitor cloud of the Trapezium (perhaps slightly lower).
Both calculations have mean Jeans masses significantly lower than
Taurus. As discussed in Section 2.3, this is purely for computational
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Table 4. The discs that exist around objects when Calculation 2 is stopped. Discs with radii �10 au are not resolved. Unlike Calculation 1, in Calculation 2
no objects are ejected with resolved discs. This table should be compared with table 4 of BBB2003 for the equivalent results from Calculation 1.

Disc radius Encircled objects Comments
(au)

260 (4,3),8 Circummultiple disc (Fig. 2, t = 1.40 t ff, right)
220 (19,45),(27,49) Circumquadruple disc (Fig. 3, t = 1.40 t ff)
200 30 Disc around single star
110 (7,10),26 Circumtriple disc (Fig. 2, t = 1.40 t ff, left)
100 67 Disc around single star
80 76 Substellar object formed in isolation near end of calculation, would probably become a star
30 65 Substellar object formed near end of calculation, still accreting
30 66 Substellar object formed near end of calculation, still accreting
20 73 Substellar object formed near end of calculation, still accreting

reasons, because with current computational resources we are only
able to resolve fully the fragmentation of ≈50 M� of gas but we
wish to model clouds containing many thermal Jeans masses. Thus,
the frequencies of brown dwarfs in these calculations should be
significantly higher than observed in Taurus (as, in fact, they are;
Briceño et al. 2002; Luhman 2004b) but Calculation 1 should give
a frequency similar to that of the Trapezium cluster. Calculation 1
produces roughly equal numbers of stars and brown dwarfs, but we
emphasize that the calculation resolves objects with masses down
to the opacity limit for fragmentation of a few Jupiter masses. Cur-
rent IMF determinations in the Trapezium cluster are only complete
down to ≈0.02 M�. These surveys find that about 20 per cent of the
objects are brown dwarfs (Hillenbrand & Carpenter 2000; Slesnick
et al. 2004). Taking objects with masses greater than 0.02 M� in
Calculation 1, we find 13/39 ≈ 33 per cent are brown dwarfs. Given
our small number statistics and the fact that the mean Jeans mass in
the calculation (1 M�) may be slightly lower than in the progenitor
cloud of the Trapezium cluster (≈ 3 M�), these numbers are in
reasonable agreement. The implication is that extending observa-
tional surveys in the Trapezium cluster down to the opacity limit for
fragmentation may increase the number of brown dwarfs by up to
50 per cent.

4.2 A simple model for the IMF

We have argued that the IMFs produced by the two hydrodynamical
calculations discussed in this paper may be understood as originating
from a combination of accretion and dynamical ejections which
terminate the accretion. Based on this finding, we develop a very
simple model for the origin of the IMF. We find it reproduces the
IMFs obtained in the two calculations very well and, using the values
of the parameters obtained from the simulations, produces a near-
Salpeter slope at high masses.

Consider a star-forming molecular cloud. The simple accre-
tion/ejection model for the IMF is as follows.

(i) We assume all objects begin with masses set by the opacity
limit for fragmentation (≈ 3 MJ for the calculations presented here)
and then accrete at a fixed rate Ṁ until they are ejected.

(ii) We assume the accretion rates of individual objects are drawn
from a log-normal distribution with a mean accretion rate (in log-

space) given by log(Ṁ) = log(Ṁ) and a dispersion of σ dex [i.e.

log(Ṁ) = log(Ṁ) + σ G, where G is a random Gaussian deviate
with zero mean and unit variance].

(iii) The ejection of protostars from an N-body system is a
stochastic process. It cannot be solved analytically and must be
described in terms of the half-life of the process. We assume that

there is a single parameter, τ eject, that is the characteristic time-
scale between the formation of an object and its ejection from the
cloud. The probability of an individual object being ejected is then
exp(−t/τ eject) where t is the time elapsed since its formation. Note
that a similar assumption was used by Reipurth & Clarke (2001)
when they considered the ejection of brown dwarfs from unstable
triple systems.

Clearly, these assumptions involve gross simplifications. The ac-
cretion rates of individual objects do vary with time and it is not clear
that the dispersion in the time-averaged accretion rates of objects is
log-normal. In particular, we note that objects that end up with a low
mass have a larger dispersion in their time-averaged accretion rates
than those that accrete over a long period and end up as high-mass
objects (Fig. 8). This indicates that the accretion rates are variable
on short time-scales, but the long-term averages may be less vari-
able. Also, the time-scale for the ejection of an object from the cloud
must depend on its local situation. Despite these objections, over a
large number of objects, one might hope that these assumptions are
a reasonable description of the behaviour of a typical object (e.g. in
Fig. 9, the mass of an object seems to depend linearly on the time it
spends accreting with only a small dispersion).

Assuming that the cloud forms a large number of objects, N, and
that the time it evolves for is much greater than the characteristic
ejection time, T � τ eject, then there are essentially only three free
parameters in this model. These are the mean accretion rate times

the ejection time-scale, M = Ṁτeject, the dispersion in the time-
averaged accretion rates, σ , and the minimum mass provided by the
opacity limit for fragmentation, Mmin. If M � Mmin, M is the char-
acteristic mass of an object. For the hydrodynamical calculations
in this paper, the minimum mass is the same, roughly 3 MJ. Thus,
there are only two free parameters.

4.2.1 Reproduction of the hydrodynamical IMFs

The hydrodynamical calculations are not followed until all the stars
and brown dwarfs have finished accreting (i.e. the IMF is not fully
formed). It is not the case that T � τ eject. This must be taken into
account when calculating simple accretion/ejection models for com-
parison with the results of the hydrodynamical calculations. To do
this, we must evolve the simple models over the same periods of
time that the hydrodynamical simulations took to form their stars
and brown dwarfs (i.e. from T = 1.04 to 1.40 t ff and T = 0.82
to 1.40 t ff for Calculations 1 and 2, respectively). The times of
formation of each of the objects are taken directly from the hydro-
dynamical simulations (i.e. from Fig. 4 for Calculation 2 and fig. 7
of BBB2003 for Calculation 1).
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The dependence of the IMF on the Jeans mass 1217

Figure 13. The initial mass functions produced by the two hydrodynamical calculations (histograms) and their fits using the simple accretion/ejection IMF
model (thick solid line). Statistically, the hydrodynamical and the model IMFs are indistinguishable. The panel on the right gives the result for the denser cloud
that has the lower initial mean thermal Jeans mass. Also shown are the Salpeter slope (solid straight line), and the Kroupa (2001) (solid broken line) and Miller
& Scalo (1979) (dashed line) mass functions. The vertical dashed line is the stellar–substellar boundary.

Table 5. The parameters of the simple accretion/ejection IMF models that
fit the IMFs from the hydrodynamical calculations (Fig. 13). There are es-
sentially two parameters in the models, the mean accretion rate times the

characteristic time-scale for ejection (Ṁτeject) and the dispersion in the ac-
cretion rates σ . The time period over which the simulations are run, T , has
a small effect on the form of the IMF. For example, in the left-hand panel,
the peak in the model IMF at very low masses is because two objects were
formed shortly before the calculations were stopped and therefore these two
objects do not usually manage to accrete much mass in the model.

Model Ṁ σ τ eject T
M� yr−1 Dex. yr yr

1 6.17 × 10−6 0.33 3.2 × 104 6.91 × 104

2 7.18 × 10−6 0.50 9.3 × 103 3.67 × 104

We then generate model IMFs for comparison with the results
of the two hydrodynamical calculations (Fig. 13). Each model IMF
is the average of 30 000 random realizations of the simple accre-
tion/ejection model, keeping the values of the input parameters fixed.
The parameter values are given in Table 5. It is important to note
that these parameters were not varied in order to obtain good fits
to the hydrodynamical IMFs. Rather, the values of the parameters
were taken directly from the hydrodynamical simulations. There is
no freedom to vary the parameters in order to obtain a better fit.

The mean accretion rate of the objects, Ṁ , and the dispersion in the
accretion rates, σ , were set equal to the mean (in log-space) of the
time-averaged accretion rates and their dispersion from Fig. 8. The
characteristic ejection times, τ eject, were set so that the mean num-
bers of objects ejected from the two sets of 30 000 random real-
izations matched the number of objects ejected during each of the
hydrodynamical calculations (26 and 50 for Calculations 1 and 2,
respectively).

Fig. 13 shows that the simple accretion/ejection models match the
hydrodynamical IMFs very well. Kolmogorov–Smirnov tests show
that the hydrodynamical IMFs from Calculations 1 and 2 have 92
and 27 per cent probabilities of being drawn from the model IMFs,
respectively (i.e. they are consistent with each other). Thus, we
demonstrate that a simple model of the interplay between accretion
and ejection can reproduce the low-mass IMFs produced by the
hydrodynamical calculations and give a near-Salpeter slope for high
masses (M � 0.5 M�).

4.2.2 An analytical form for the accretion/ejection IMF model

In the limit that a cloud forms a large number of objects, N, and
that the time it evolves for is much greater than the characteristic
ejection time, T � τ eject (i.e. all objects have finished accreting
and the star formation is complete, neither of which is true for the
IMFs obtained from the hydrodynamical calculations), the simple
accretion/ejection IMF model can be formulated semi-analytically
rather than requiring Monte Carlo simulation.

The probability distribution of the individual accretion rates for
the stars and brown dwarfs is assumed to be log-normal

p(Ṁ) = 1√
2πσ Ṁ

exp

{
−(log Ṁ − log Ṁ)2

2σ 2

}
. (6)

The final mass of an object is

M = Mmin + Ṁt, (7)

where t is the time between the formation of the object and its accre-
tion being terminated. We now require the probability distribution
of the masses of the objects f (M), at time t (assuming all objects
accrete indefinitely). This is obtained noting that

p(Ṁ) dṀ = f (M) dM, (8)

so that

f (M) = p(Ṁ)
dṀ

dM
= p(Ṁ)

t
. (9)

Rearranging equation (7) for the accretion rate and substituting this
into equation (6) gives

f (M, t) = 1√
2πσ (M − Mmin)

× exp




−
[

log
(

M−Mmin
t

) − log Ṁ
]2

2σ 2


,

(10)

for M > M min. Finally, we need to take account of the fact that
objects are ejected, terminating their accretion stochastically. The
probability an object is ejected at time t is

e(t) = 1

τeject
exp

(
− t

τeject

)
. (11)
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Figure 14. The initial mass functions produced by the simple accre-
tion/ejection IMF model. The standard case has M = 0.1 M�, σ = 0.7
and M min = 0.003 M� (solid line). In the top panel, we vary M giving
results for 0.03 (dotted line) and 0.3 (long-dashed line) M�. In the middle
panel, we vary σ giving results for 0.4 (dotted line) and 1.0 (long-dashed
line). In the bottom panel, we vary Mmin giving results for 0.001 (dotted
line) and 0.01 (long-dashed line) M�. Also shown are the Salpeter slope,
and the Kroupa (2001) and Miller & Scalo (1979) mass functions. The ver-
tical dashed line is the stellar–substellar boundary.

Thus, the final mass function is

f (M) =
∫ ∞

0

f (M, t)e(t) dt . (12)

This cannot be integrated analytically, but it is trivial to integrate
numerically. Examples of the resulting mass function are shown in
Fig. 14 and discussed below.

We note that this model has some similarities with the IMF models
of Myers (2000) and Basu & Jones (2004). They also propose that
the accretion of individual objects is terminated stochastically. How-
ever, there are several differences between their models and ours.
Myers proposes that the masses of cores grow with time and this ac-
cretion is terminated when the core is triggered to collapse. Basu &
Jones discuss accretion on to protostars, terminated by any stochastic
process (e.g. dynamical ejections). Furthermore, they both propose
that the initial masses of the objects are drawn from a log-normal
distribution and that their accretion rates increase with time in pro-
portion to their masses. We postulate that all objects begin with the
same mass (due to the opacity limit) but have accretion rates drawn
from a log-normal distribution that are held constant until their ac-
cretion is terminated. These differences result in different forms for
the IMF. The model of Basu & Jones gives a log-normal shape at
low masses, switching to a power-law at high masses. Our model
has a cut-off in the IMF at low masses and does not achieve a pure
power-law slope at high masses.

4.2.3 Variations in the IMF with environment

In Fig. 14, we show how the IMF produced by the simple accre-
tion/ejection model varies as a function of the three free parameters.
The parameter M , which is the mean accretion rate times the charac-
teristic time-scale for ejections in the star-forming region, gives the
approximate location of the peak in the IMF (i.e. the characteristic
mass). The dispersion in the accretion rates σ sets the breadth of
the IMF and, thus, alters the slopes at the low-mass and high-mass
ends. Dispersions of σ ≈ 0.7 dex give a Salpeter-type slope at high
masses. Finally, the minimum mass, Mmin, sets the low-mass cut-off
of the IMF, but otherwise has little effect on the form of the IMF.

To allow the simple accretion/ejection model to be tested by ob-
servations, we need to know how these three parameters scale with
the physical properties of star-forming regions. Note that the part of
the IMF that is most sensitive to variations in the input parameters
is the low-mass end of the IMF. The effect of altering any of the pa-
rameters is to change the turn-over mass, the substellar slope, and/or
the low-mass cut-off. Only a change in the value of the dispersion
parameter, σ , alters the slope of the high-mass IMF.

As yet, the minimum mass cut-off has not been detected obser-
vationally. For Population I and II stars, it is expected to scale with
metallicity as Z−1/7 (Low & Lynden-Bell 1976), a very weak de-
pendence that will be difficult to confirm through observations.

It is not immediately clear how the dispersion in the accretion
rates of individual objects should depend on environment. How-
ever, we do find from the two hydrodynamical calculations that the
dispersion is greater for the denser cloud (see Table 5). This im-
plies that the dispersion in accretion rates may be a function of the
cloud density, although it would be desirable to test this with fur-
ther calculations. However, this possible dependence of the IMF on
environment should be able to be tested by observations already
by looking to see if there is any indication that the slope of the
high-mass IMF is shallower for denser star-forming regions.

The remaining parameter is the characteristic mass, M . This de-
pends on the mean accretion rate and the characteristic time-scale
for ejections. On dimensional grounds, the former may be expected
to scale roughly as c3

s /G. Taking the isothermal sound speed from
the calculations, this gives an expected accretion rate of 1.5 × 10−6

M� yr−1 (the sound speed is the same in each of the hydrodynamical
calculations). The mean accretion rates (in log-space) of the objects
are almost identical for the two hydrodynamical calculations (as
expected) with values of ≈6–7 × 10−6 M� yr−1 (Table 5). This
is somewhat higher than c3

s /G, but this is consistent with previous
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calculations that show that the accretion rates of objects formed
from the collapse of non-singular isothermal spheres are typically
somewhat greater than c3

s /G (e.g. Foster & Chevalier 1993). The
ejection time-scale of a small N-body system should scale with the
crossing time-scale of the system which in turn scales roughly as
1/

√
Gρ, where ρ is the mass density of the system. The pattern of

the initial turbulence in Calculations 1 and 2 is identical. The dense
cores form due to converging flows in this initial velocity field and,
thus, are similar in locations and masses for the two calculations
(compare fig. 2 and table 1 of BBB2003 with Fig. 1 and Table 2
of this paper). However, as the overall cloud is smaller and denser
in Calculation 2, the dense cores and resulting stellar groups are
smaller and denser by the same factor (i.e. the density of the stel-
lar groups is proportional to the density of the progenitor cloud).
Thus, the characteristic time-scale for ejections, τ eject, should scale
inversely with the square root of the initial density of the cloud. In-
deed, the value of τ eject for Calculation 2 is almost exactly a factor of
3 smaller than that for Calculation 1 (see Table 5). Thus, we expect
that the characteristic mass M , the product of the mean accretion
rate and the characteristic time-scale for ejections should scale as
c3

s /
√

G3ρ. Neglecting constants of order unity, this is the definition
of the mean thermal Jeans mass of the progenitor clouds.

The median masses of the stars/brown dwarfs from the two hy-
drodynamical calculations follow this scaling almost exactly. The
median mass is a factor of 3.04 lower in Calculation 2 compared
with Calculation 1 whereas the mean thermal Jeans mass is exactly
a factor of 3 lower. In the simple accretion/ejection IMF models, the
characteristic mass essentially gives the location of the peak in the
mass function or the median mass. Although we argue above that
this mass should scale with the mean thermal Jeans mass of the cloud
and the hydrodynamical calculations support this, we still need to
determine the constant of proportionality between the median mass
and the mean thermal Jeans mass. Because the hydrodynamical cal-
culations have mean thermal Jeans masses of 1 and 1/3 M� and
median object masses of 0.070 and 0.023 M�, we conclude that
the peak of the IMF (in dN/d log M) occurs at ≈1/14 of the mean
thermal Jeans mass of the progenitor cloud.

The mean object masses from the hydrodynamical calculations
only differ by 17 per cent rather than a factor of 3. However, the
mean object mass is much more sensitive to small number statistics
than the median. For example, Calculation 1 formed 50 objects with
a total mass of 5.89 M�. If one extra 1-M� star had been formed
in the calculation, the mean mass would have increased by nearly
20 per cent whereas the median mass would have been essentially
unchanged. Thus, it is not clear that the mean object mass is a
sensible measure of the IMF with such small numbers of objects.
That said, in the accretion/ejection IMF model, there is a tendency
for the mean mass to change less than the median mass because
when the turnover of the IMF moves to very low masses, the cut-
off in the IMF results in fewer very low-mass objects than there
would otherwise be. However, this effect is much weaker than that
observed in the hydrodynamical IMFs because the model IMFs fully
populate the high-mass end of the IMF whereas the hydrodynamical
calculations suffer from small number statistics at the high-mass
end.

Finally, we note that although altering the minimum mass Mmin

by changing the metallicity of the molecular gas may not affect the
form of the IMF above the cut-off directly, it may alter the IMF
indirectly by changing M . Lowering the metallicity is expected to
lower the density at which collapsing gas begins to heat up (hence
increasing the minimum mass). However, this is also likely to inhibit
some fragmentation, lowering the number density of objects formed.

This in turn may increase τ eject, moving the peak of the IMF to higher
masses and steepening the slope of the substellar IMF.

Further calculations should be performed to test the above
predictions.

5 C O N C L U S I O N S

We have presented results from the second hydrodynamical calcu-
lation to follow the collapse of a turbulent molecular cloud to form
a stellar cluster while resolving fragmentation down to the opacity
limit. We compare the results with those obtained from the calcula-
tion published by Bate et al. (2002a,b, 2003). The new calculation
is identical to that of Bate et al., except the progenitor cloud is nine
time denser (i.e. the mean thermal Jeans mass is a factor of 3 lower).

We find that the denser cloud produces a higher proportion of
brown dwarfs than the original calculation. The magnitude and sense
of the dependence of the proportion of brown dwarfs on the density
of the star-forming cloud reproduce the observed result that the
Taurus star-forming region has a lower abundance of brown dwarfs
than the Orion Trapezium Cluster (Briceno et al. 2002; Luhman
2004b; Slesnick et al. 2004). The new calculation also produces
denser groups of stars resulting in closer dynamical encounters,
more severe circumstellar disc truncation, and a higher velocity
dispersion than the first calculation.

Whereas the first calculation did not produce any wide binary
systems, wide binaries are produced in the new calculation when
two objects happen to be ejected from a small-N system at roughly
the same time and with similar velocities and are, therefore, bound
to each other. One of the wide binaries is a binary brown dwarf
system and another is a very low-mass star/brown dwarf binary.
These systems show that there may exist a population of wide ejected
binary brown dwarfs. The overall fraction of very low-mass and
brown dwarf binaries produced from the two calculations is ≈8 per
cent. This is higher than that obtained from Calculation 1 alone, but
still roughly a factor of 2 lower than the observed fraction of binary
brown dwarfs.

All objects produced by the hydrodynamical calculations begin
with masses set by the opacity limit for fragmentation (approxi-
mately 0.003 M� in these calculations). Those objects that end up
as brown dwarfs stop accreting before they reach stellar masses be-
cause they are ejected from the dense gas soon after their formation
by dynamical interactions in unstable multiple systems. The stars
are simply those objects that remain in the dense gas accreting for
long enough that they exceed the hydrogen burning limit.

Based on these calculations, we propose a simple accre-
tion/ejection model for the origin of the IMF. The model has three
free parameters, the characteristic (median) mass which is the prod-
uct of the typical protostellar accretion rate and the characteristic
time-scale for dynamical ejections, a dispersion in accretion rates,
and the minimum brown dwarf mass which is set by the opacity limit
for fragmentation. Using values for these three parameters taken di-
rectly from the hydrodynamical calculations, the model reproduces
the IMFs of the hydrodynamical calculations well. The model pre-
dicts that the main variation of the IMF in different star-forming
environments should occur in the location of the peak (in dN/d log
M) and in the substellar regime. The peak in the IMF should occur
at roughly 1/14 of the mean thermal Jeans mass in a star-forming
molecular cloud. Only a variation in the magnitude of the dispersion
in the accretion rates of individual objects should alter the slope of
the high-mass IMF. A Salpeter-type slope is reproduced with an
accretion rate dispersion of ≈0.7 dex. A larger dispersion results in
a shallower high-mass IMF slope.
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