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Abstract

The first gravitational-wave event from the merger of a binary neutron star system (GW170817) was detected
recently. The associated short gamma-ray burst (GRB 170817A) has a low isotropic luminosity (∼1047 erg s−1

)

and a peak energy Ep∼145 keV during the initial main emission between −0.3 and 0.4 s. The origin of this short
GRB is still under debate, but a plausible interpretation is that it is due to the off-axis emission from a structured
jet. We consider two possibilities. First, since the best-fit spectral model for the main pulse of GRB 170817A is a
cutoff power law with a hard low-energy photon index (a = - -

+0.62 0.54
0.49), we consider an off-axis photosphere

model. We develop a theory of photosphere emission in a structured jet and find that such a model can reproduce a
low-energy photon index that is softer than a blackbody through enhancing high-latitude emission. The model can
naturally account for the observed spectrum. The best-fit Lorentz factor along the line of sight is ∼20, which
demands that there is a significant delay between the merger and jet launching. Alternatively, we consider that the
emission is produced via synchrotron radiation in an optically thin region in an expanding jet with decreasing
magnetic fields. This model does not require a delay of jet launching but demands a larger bulk Lorentz factor
along the line of sight. We perform Markov Chain Monte Carlo fitting to the data within the framework of both
models and obtain good fitting results in both cases.

Key words: gamma-ray burst: general – gravitational waves – radiation mechanisms: thermal

1. Introduction

Recently, the first joint detection of a gravitational-wave
(GW) event (GW170817; Abbott et al. 2017a) and short
gamma-ray burst (GRB 170817A; Abbott et al. 2017b;
Connaughton et al. 2017; Goldstein et al. 2017b; Savchenko
et al. 2017) confirmed the hypothesis that mergers of double
neutron stars (NS–NS) are the progenitor systems of short
gamma-ray bursts (SGRBs; Eichler et al. 1989; Narayan
et al. 1992; Mochkovitch et al. 1993; Nakar 2007; Berger
2014). Follow-up electromagnetic observations revealed a host
galaxy of GRB 170817A at a distance of ∼40Mpc (Coulter
et al. 2017), as well as broadband emission (Abbott
et al. 2017c). The isotropic-equivalent energy of GRB
170817A is ~ ´5 1046 erg (Goldstein et al. 2017a; Zhang
et al. 2018b), which is much smaller than that of a typical
SGRB (1050 erg).

Previous observations of short GRB jet breaks suggested that
the half-opening angle of a SGRB jet is �20° (e.g., Fong
et al. 2015). On the other hand, the GW signals are essentially
isotropic, so the detection rate of a GW event associated with
an on-axis burst should be quite low for binary NS mergers.
However, the simultaneous detection of GRB 170817A and
GW170817 indicates that the rate for such similar events is
actually high (Zhang et al. 2018b). Such a high rate implies that
the jet may be structured, with an angle-dependent luminosity
and bulk Lorentz factor outside an uniform core, rather than a
simple “top-hat” form with a sharp edge (Granot et al. 2017b).
Emission from such a structured jet could thus be seen by an

off-axis observer with a large viewing angle (e.g., Jin

et al. 2017; Lamb & Kobayashi 2017; Lazzati et al. 2017a;

Xiao et al. 2017; Kathirgamaraju et al. 2018). The low isotropic

luminosity (∼1047 erg s−1
) of the prompt emission for GRB

170817A (Goldstein et al. 2017a; Zhang et al. 2018b) supports

this suggestion. A structured jet has also been favored by other

recent theoretical (e.g., Sapountzis & Vlahakis 2014) and

numerical (e.g., Aloy et al. 2005; Tchekhovskoy et al. 2008;

Komissarov et al. 2010; Murguia-Berthier et al. 2017) studies
within the NS–NS merger context. As the jet breaks out of the

neutron-rich “dynamical ejecta” ejected during the merger

(e.g., Hotokezaka et al. 2013; Rosswog 2013), some “lateral

structure” could be developed that has a lower luminosity than
the on-axis relativistic jet.
The prompt emission for GRB 170817A is shown to have

two temporal components: a main pulse and a weak tail. The

main pulse (−0.26 to 0.57 s) spectrum is well fitted by the

cutoff power-law model with a low-energy photon index

a = - -
+0.61 0.60
0.34, while the weak tail (0.95–1.79 s), with ∼1/3

of the fluence of the main pulse, is well fitted by a blackbody
model (Zhang et al. 2018b, see also Goldstein et al. 2017b).
The physical origin of the prompt emission of GRB 170817A

is unknown. The exponential cutoff on the high-energy end, and

the relatively hard low-energy photon index (i.e., α=−0.61 for

the time interval between −0.26 and 0.57 s) for the main pulse

and the dominated blackbody in the weak tail, may support a

possible photospheric origin of the emission (e.g., Goodman
1986; Paczynski 1986; Abramowicz et al. 1991; Thompson 1994;
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Mészáros & Rees 2000; Mészáros 2002; Ryde 2004, 2005; Rees
& Mészáros 2005; Abdo et al. 2009; Pe’er & Ryde 2011;
Lundman et al. 2013; Deng & Zhang 2014; Bégué & Pe’er 2015;
Gao & Zhang 2015; Pe’er et al. 2015) . On the other hand, the α
index is also consistent with the typical α=−2/3 segment of
synchrotron radiation (Rybicki & Lightman 1979). It is therefore
interesting to perform detailed modeling of the prompt emission
using both photospheric and synchrotron models, especially
within the framework of an off-axis structured jet.

This paper is organized as follows. In Section 2, we develop
a model of off-axis photosphere emission from a structured jet.
Then, we apply this model to perform a Markov Chain Monte
Carlo (MCMC) fitting to the spectrum of the main pulse of
GRB 170817A in Section 3. In Section 4, we apply the MCMC
technique to fit the same spectrum using the synchrotron
model. Section 5 presents some discussions and the conclu-
sions are drawn in Section 6.

2. Off-axis Photosphere Model in a Structured Jet

In this section, we present the calculation of the time-
integrated photospheric emission spectrum from a structured jet
observed by an off-axis observer.

2.1. Jet Structure

The jet adopted here is a structured jet with an angle-
dependent luminosity (the injected power at the base of the
flow) and baryon loading parameter8 outside a uniform core
(e.g., Dai & Gou 2001; Rossi et al. 2002; Zhang & Mészáros
2002a; Kumar & Granot 2003), i.e.,
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where θ is the angle measured from the jet axis, θc,L and θc,Γ are

the half-opening angles for the luminosity core and the bulk

Lorentz factor core (θc,L=θc,Γ is considered in our calcul-

ation), L0 and η0 are corresponding constant values in the core,

respectively, and q and p describe how the luminosity and the

bulk Lorentz factor decreases outside the core. Figure 1

presents the shape of the luminosity and Lorentz factor

structures and the best-fit parameters presented in Section 3.

2.2. Photosphere Emission Spectrum

In the traditional photosphere model, the photospheric radius
Rph is the radius where the scattering optical depth for a photon
moving toward the observer is equal to unity (τ=1).
However, one should realize that wherever there is an electron,
a photon has a probability of being scattered there. For an
expanding shell, photons can be last-scattered at any position in
the shell with a probability depending on the position. This
changes the traditional spherical shell photosphere to a
probability photosphere discussed by several authors(Pe’er
2008; Beloborodov 2011; Pe’er & Ryde 2011; Lundman et al.
2013; Deng & Zhang 2014). Following the literature, we define
a probability function W( )P r,1 as the probability for a photon
being last-scattered at radius r and angular coordinate Ω. This

probability function may be calculated by (see Lundman et al.
2013)

bW = + ´ -
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where β is the jet velocity and D b q= G - -[ ( · )]1 cos 1 is the

Doppler factor.
In order to obtain the observed spectrum we need to know

the probability of the observer-frame photon energy E when the
photon undergoes the last scattering at (r, Ω). This photon
energy distribution in the observer frame is determined by that
in the comoving frame and = W ¢( ) ·E D E , where E′ is the
comoving frame photon energy. The photon energy distribution
in the local comoving frame is assumed to be a Planck function
with the same temperature as the electron due to the coupling
of photons and electrons. Then, the photon temperature in the
observer frame Tob at (r, Ω) can be deduced from the plasma
temperature T′(r, Ω) through Tob=D(Ω)·T′(r, Ω). Thus, we
can get the distribution function W( )P r E, ,2 of a photon of
energy E and temperature Tob at W( )r, , which is described as

W =
W W -

( )
( ( )) ( ( ))

( )

P r E
kT r

E

E kT r
, ,

1

2.40 , exp , 1
.

3

2 ob 3

2

ob

When calculating the observed time-integrated spectrum in the
following, we adopt the spherical coordinates q fW( ( ))r, ,

LOS LOS

corresponding to the line of sight (LOS). The observed time-
integrated spectrum is a collection of the photons last-scattered at
any position q f( )r, ,

LOS LOS
and toward the observer, thus we must

know the probability that the last-scattering occurred at
 q f( )r, ,

LOS LOS
, as well as the temperature at that location. This

probability and temperature are determined by the luminosity and
Lorentz factor in the direction q f( ),

LOS LOS
, which depend

completely on the angle θ of this direction to the jet axis. If the

Figure 1. Jet structure and viewing angle for our photosphere model fitting of
the main pulse spectrum (−0.3 to 0.4 s) of GRB 170817A. For our photosphere

model fitting in Section 3, the best-fit values are ~L 100
49.16 erg s−1,

θc,L∼0.11 rad, and q∼2.99 for the angular profile of luminosity; and

η0∼388.82, θc,Γ∼0.11 rad, and ~ -
+p 0.42 0.07
0.52 for the angular profile of the

bulk Lorentz factor, with a viewing angle θv=0.53 rad. Thus, we get

~L 1047 erg s−1 and Γ∼20 at the line of sight. For the model calculation in
Section 2.3, we take L0=1050 erg s−1, θc,L=0.1 rad and q=3 for the
angular profile of luminosity, and η0=200, θc,Γ=0.1 rad and p=q/
4=0.75 for the angular profile of the bulk Lorentz factor. The viewing angle

θv is taken to be 0.8 rad to get ~L 1047 erg s−1 and Γ∼26 (η∼40) at the
line of sight.

8
Note that the baryon loading parameter η at the base of the flow is also the

bulk Lorentz factor Γ in the saturated acceleration regime.
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angle between the jet axis and the LOS (i.e., the viewing angle) is
θv, the corresponding angle θ follows

q q q f
q q q q f
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= +
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arccos cos cos sin sin cos . 4v v
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The time-integrated spectrum can thus be calculated as9 (see

Equation(10) in Lundman et al. 2013)

q
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where Wg˙dN d is the photon emission rate per unit solid angle

from the base of the outflow (r=r0).
In Equation (5), pW = W Wg˙ ( ( ) ) ( )dN d L kT4 2.7 0 , where L

(Ω ) is the isotropic luminosity per unit solid angle dΩ and
pW = W( ) ( ( ) )T L r ac40 0

2 1 4 is the temperature at the base of the

outflow per unit solid angle dΩ . As a result, Wg˙dN d is angle-
dependent.

Since the typical luminosity may be low for a SGRB with a
rapid decrease of luminosity in the lateral direction, the
photosphere radius Rph where the photons are being last-
scattered may be smaller than the saturation radius for jet
acceleration, Rs=h q( ) · r0. We therefore must judge whether
the acceleration is saturated ( >R Rsph ) in each unit solid angle
dΩ by calculating Rph based on the assumption of saturation,
and then deal with them for the calculations of P1 and P2

separately. Note that we have assumed a pure fireball here for
simplicity. In principle, the outflow can be “hybrid,” with an
important contribution from a Poynting flux. The dynamics of
such a scenario is more complicated, but the predicted
photosphere spectrum would not be much different from the
pure fireball case, even though the required parameters would
be somewhat different. For a detailed treatment of a hybrid
outflow, see Gao & Zhang (2015).

For the saturated case, Rph is given by
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where σT is the Thompson cross-section, the Doppler factor is
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For the unsaturated case, Rph is calculated by
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In this case, the Lorentz factor at the photosphere and the

corresponding Doppler factor are given by Γ(θ )=Rph(θ)/r0
and q b q q= G - -[ ( ) · ( ( ) · )]D 1 cos 1

LOS
, respectively, and

the comoving temperature is

¢ W = W G W( ) ( ) [ ( )] ( )T r T, 2 . 90

To calculate the time-resolved spectra, we add a δ-function
d b-( )t ru c to Equation (5), where b q q= -( ( ) · )u 1 cos

LOS
.

One then has
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With the above analysis, we can derive the time-resolved
spectra for impulsive injection of energy and the time-
integrated spectrum for continuous long-duration energy
injection. For a realistic SGRB the duration for energy
injection from the central engine is long (∼1 s), as manifested
by its observed duration(T90).

2.3. Calculated Spectrum

The parameters of the jet structure and the viewing angle qv
adopted in our calculation are close to the best-fit values shown
in Figure 1. We set the luminosity at the line of sight to be
∼1047 erg s−1 to match the observation of GRB 170817A.
According to SGRBs data, typically one has L0∼1050 erg s−1

and qc L, ;6°–16° (Fong et al. 2015; Ghirlanda et al. 2016). For
a power-law structured jet, the parameter q may be obtained
through the luminosity dependence of the local event rate
density ρ0(>L) of SGRBs (e.g., Zhang & Mészáros
2002a). Since r l> µ ~l-( ) (L L 0.70 ) (Sun et al. 2015)
andρ0(>L)∝Ω(>E);πθ2, the isotropic-equivalent lumin-
osity L∝θ−2/λ∝θ− q, then q;2.86. Thus, we take
L0=1050 erg s−1, θc,L=0.1 rad, and q=3 here. Meanwhile,
we take the viewing angle θv as 0.8 rad to match the luminosity
mentioned above. With this viewing angle and other para-
meters we can obtain the approximate model spectrum and thus
check whether we can perform a more detailed MCMC fit for
the spectrum of GRB 170817A. Also, by comparing with the
best-fit parameters (see Section 3) and the model spectrum for
those best-fit parameters (shown in the bottom left panel of
Figure 3), we can acquire the degree of change for the
parameters corresponding to different model spectra. As for the
bulk Lorentz factor, we let the value along the line of sight be
in the range of (20–40) in order to match the peak energy
(∼100 keV) of the observed spectrum. In addition, we take
η∝L1/4 according to the statistical results of a large sample of
GRBs (Liang et al. 2010; Lü et al. 2012). Finally, we adopt
η0=200, θc,Γ=0.1 rad, and p=q/4=0.75.
The left panel of Figure 2 shows the calculated time-resolved

spectra and the right panel is the time-integrated spectrum.10

9
Note that Deng & Zhang (2014) provided a two-dimensional last-scattering

probability function P(r, Ω). We adopt the separated probability function P1 in
this paper, since it is more easily generalized to structured jets and MCMC
fitting.

10
When calculating results in Figure 2 we do not make use of the best-fit

parameters in Section 3 but rather use the example parameters, since the
spectrum for the best-fit parameters is presented in the bottom left panel of
Figure 3.
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Comparing the time-resolved spectra of a structured jet (solid
lines in the left panel) and those of a uniform jet (dashed lines
in the left panel), we can see that the low-energy power-law
segment below the peak energy Ep is softer than the uniform jet
case, and the total fluxes are also higher. This is because the
low-energy emission has a significant contribution from the
high latitudes with respect to the line of sight in the directions
with smaller angles from the jet axis, where intrinsic luminosity
is high but Doppler factor is low.

The low-energy photon index is α∼−0.5 for the time-
integrated spectrum in the right panel. This is much softer than
the case of the uniform jet (α∼0.5, Deng & Zhang 2014). The
origin of such a difference is again due to the enhanced near-
axis high-latitude emission, likely caused by structures or
changes in the Lorentz factor and luminosity. There are two
effects here. First, the luminosity structure enhances the near-
axis high-latitude emission. Second, the Lorentz factor
structure also allows emission from some directions to become
unsaturated, which would also contribute to the enhancement.
The predicted low-energy photon index (α∼−0.5) of this
model, as well as the exponential cutoff on the high-energy
end, are consistent with the time-integrated spectrum of
GRB 170817A, which can be empirically fitted by a cutoff
power-law model with a low-energy photon index α∼−0.6
(Goldstein et al. 2017a; Zhang et al. 2018b). This encourages
us to perform a more detailed MCMC fit of the data using our
off-axis photospheric emission model from a structured jet.

3. Spectral Fitting of GRB 170817A with the Off-axis
Photosphere Model

GRB 170817A was detected by Fermi-GBM and INT-
EGRAL SPI-ACS with a luminosity distance of ;40Mpc
(Abbott et al. 2017b). The analysis of the Fermi-GBM data
showed two components: a main pulse from T0−0.26 s to T0
+0.57 s and a weak tail extending from T0+0.95 s to T0
+1.79 s (Goldstein et al. 2017a; Zhang et al. 2018b). In this
work we choose the interval (i.e., between T0−0.3 s to T0
+0.4 s) with the most significant emission to perform the
model fitting. We analyze the GBM Time Tagged Event (TTE)

data from detectors NaI 1, NaI 2, and BGO 0. We fit the spectra
using our photosphere model described in Section 2, using the
McSpecFit package, which accepts a flexible user-defined
spectral model (Zhang et al. 2016). A fit with the empirical

cutoff power-law function was first performed. The spectrum
of this interval is best fitted by the cutoff power-law model

with a low-energy photon index of - -
+0.62 0.54
0.49, peak energy

Ep= -
+145 26
140 keV, and time-averaged flux of ( -

+2.5 1.0
1.8)×

10−7 erg cm−2 s−1. The weak tail between T0+0.95 s and
T0+1.79 s, with 34% the fluence of the main pulse, is best

fitted by a blackbody spectrum with = -
+kT 11.3 2.4
3.8 keV

(Goldstein et al. 2017a; Zhang et al. 2018b).
A comparison between our photosphere model fitting and the

cutoff power-law model fitting is shown in Figure 3. The best-
fitting parameters are presented in Table 1 and also shown in
Figure 1. It is apparent that our photosphere model can fit the
data as well as the cutoff power-law model, with a PGSTAT/
dof=260.9/357=0.73 (260.1/363=0.72 for the cutoff
power-law model). In addition, the residuals do not show any
marked trends.
The parameter constraints of our photosphere model are

illustrated in Figure 4. The best-fit values for the luminosity
profile, L0∼1049.16 erg s−1, θc,L∼0.11 rad, and q∼2.99, are
consistent with the reasonable values of L0=1050 erg s−1,
θc,L=0.1 rad, and q=3 (Fong et al. 2015; Sun et al. 2015;
Ghirlanda et al. 2016). Also, the best-fit values for thebulk
Lorentz factor profile, h ~ -

+388.820 62.9
82.2 and ~ -

+p 0.42 0.07
0.52 are

close to the reasonable values of h = 2000 and p=0.75. The

best-fit viewing angle q ~ -
+0.53v 0.17
0.08 rad falls into the reason-

able range (0.65–0.72 rad in Granot et al. 2017a and 0.7 rad in
Gottlieb et al. 2017). The observed luminosity11 at the line of
sight is L;1.3×1047 erg s−1, which is consistent with the
data (Goldstein et al. 2017a; Zhang et al. 2018b). The best-fit
initial radius r0 for acceleration is ∼107.46 cm. We find
that the acceleration is unsaturated (Rph∼4.9×108 cm and
Rs∼5×109 cm) at the line of sight and the actual Lorentz
factor12 at the line of sight is Γ∼17.
The best-fit initial acceleration radius r0 is ∼107.46 cm.

Bégué et al. (2017) gave an estimate of the r0 based on the
fitted peak energy and flux of a single blackbody in the
observed spectrum (with the existence of a non-thermal

Figure 2. Calculated time-resolved spectra and the time-integrated spectrum. Left panel: the solid lines show the time-resolved spectra calculated with the parameters
of the structured jet described in the text. The dashed lines show the time-resolved spectra calculated in Deng & Zhang (2014) for a uniform jet. For the case of a
structured jet, the low-energy flux at later times is greatly boosted. Right panel: the time-integrated spectrum for the structured jet. The spectrum has a much softer
low-energy photon index α∼−0.5 than blackbody and an exponential high-energy cutoff, which are close to the empirical fitting results of the main pulse spectrum
of GRB 170817A.

11
Since the injected photons are almost emitted at the photosphere, the ratio of

the observed temperature there to the temperature at the base T0 represents the
efficiency. In the saturated case, the efficiency is (Rs/Rph)

2/3, while in the
unsaturated case the efficiency is ∼1, which turns out to be the actual case.
12

Note that Zou et al. (2018) got a Lorentz factor Γ∼13.4 for the case of an
off-beaming relativistic jet.
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component) using the method of Pe’er et al. (2007), and found

that r0 is too small (3×106 cm, close to the innermost stable

circular orbit of a black hole with 3Me) to justify the

photosphere model. This seems to be in contradiction with our

result. We would like to point out two significant differences

between our photosphere model and theirs. First, the method to

estimate the r0 given in Pe’er et al. (2007) is only valid for the

case of saturated acceleration (Rph>Rs). Thus, the unreason-

able low r0 only means that the photosphere model for

saturated acceleration is unable to explain the data well. There

is no conflict for our result (large r0) because we are in the

unsaturated regime. Second, their method relies on the

assumption of a single blackbody contributed within a small

cone along the line of sight, and an additional non-thermal

component is needed to account for the observed spectrum. Our

model, on the other hand, invokes a structured jet, so emission

from high latitudes (relative to the LOS) is included in the

calculation. The resulting spectrum is naturally a multi-color

blackbody, which can account for the observed spectrum well

Figure 3. Comparisons among our photosphere model fitting, the cutoff power-law model fitting and the synchrotron model fitting for the time-integrated spectrum
between −0.3 and 0.4 s. Top panels: observed count spectrum and model count spectrum for our photosphere model fitting (top left), the cutoff power-law model
fitting (top middle) and the synchrotron model fitting (top right). Bottom panels: theoretical photon spectrum (red line)andobserved photon flux (data points, which
are obtained using the instrument responses to de-convolve the observed count spectrum) for our photosphere model fitting (bottom left), the cutoff power-law model
fitting (bottom middle) and the synchrotron model fitting (bottom right). The legends of “n1, n2, b0” in the top panels indicate the two thallium-activated sodium
iodide crystaldetectors, referred to as NaI n1 and NaI n2, and one bismuth germanate crystaldetector, referred to as BGO b0.

Table 1

Spectral Fitting Parameters Using the Off-axis Photosphere Model

Parameters GRB 170817A

log L0 (erg s−1
) -

+49.16 0.18
1.25

θc,L (rad) -
+0.11 0.02
0.01

q -
+2.99 0.06
0.46

θv (rad) -
+0.53 0.17
0.08

η0 -
+388.82 62.90
82.21

p -
+0.42 0.07
0.52

log r0 (cm) -
+7.46 0.30
0.37

log Norm -
+0.28 0.84
0.58
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without the need of introducing a non-thermal component. As a
result, our best-fit value r0 is justified.

Furthermore, since the acceleration is in the unsaturated
regime ( <R Rsph ) along the line of sight, adiabatic cooling is
not involved (unlike the saturated case, see Equation (7) and
Equation (9)). As a result, the observed peak energy should be
much higher than that in the saturated case for the same
isotropic energy. This seems to be true for this burst (see
Figure3 in Zhang et al. 2018b).

4. Synchrotron Model Fitting

Synchrotron radiation from accelerated electrons in an
optically thin region is another promising radiation mechanism
for GRB prompt emissions. In this section, we apply a
synchrotron radiation model to fit the spectra of GRB
170817A. To explain the hard low-energy spectrum, Uhm &
Zhang (2014) proposed that fast-cooling electrons in a
decaying magnetic field can form a hard electron distribution,

Figure 4. Parameter constraints of our photosphere model fitting for the time-integrated spectrum between −0.3 and 0.4 s. The histograms and contours illustrate the
likelihood map. The red crosses show the best-fit values and 1σ error bars.
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which results in a hard radiation spectrum (also see
Derishev 2007). Since the observed spectral index is much
harder than the standard fast-cooling spectrum (α=−1.5)
(Sari et al. 1998), we adopt the scenario of synchrotron
radiation in a decaying magnetic field (Uhm & Zhang 2014) in
our modeling.

Synchrotron radiation can in principle originate from internal
shocks (Rees & Mészáros 1994) or a magnetic reconnection
region (e.g., triggered by internal-collision-induced magnetic
reconnection and turbulence, ICMART; Zhang & Yan 2011).
The former is relevant for a matter-dominated fireball, which
should be accompanied by a bright photosphere component. If
one interprets the first pulse of GRB 170817A as being due to
the synchrotron radiation, the lack of an earlier photosphere
component suggests that the outflow is likely Poynting-flux-
dominated, so the ICMART model may be more relevant.

Relativistic magnetic reconnection and the shock process are
believed to be able to accelerate non-thermal particles and
develop a power-law spectrum of the particle acceleration (see,
e.g., Guo et al. 2014, 2016; Sironi & Spitkovsky 2014;
Ardaneh et al. 2015 ). We assume that a group of electrons,
which obey a power-law distribution, i.e., g¢(Q

e
, ¢ =)t

g g¢ ¢ ¢ -( )( )Q t p
0 e m

for g g¢ > ¢
e m

, are injected in the relativistically
moving shell of Lorentz factor Γ. Here, Q0 is related to the

injection rate ¢Ninj by ò g¢ = ¢
g

g

¢

¢
(N Qinj e

m

max , g¢ ¢)t d
e
, where g¢

max
is

the maximum Lorentz factor of electrons. For an electron of g¢
e
,

it would lose energy by synchrotron radiation, for which the
cooling rate is

g
s g
p

¢ = -
¢ ¢

˙ ( )
B

m c6
, 11

T
e

2
e
2

e

where B′ is the magnetic field in the comoving frame. Recent

studies reveal that synchrotron self-Compton (SSC) cooling

may also play an important role in shaping the electron energy

distribution (Bošnjak et al. 2009; Daigne et al. 2011; Geng

et al. 2018). However, the effect of SSC cooling on the

resulting spectra is similar to that of decaying magnetic fields.

Here, for simplicity, we do not include it in our calculations

and this does not markedly impact our main conclusions.

Denoting the instantaneous spectrum of electrons as
g¢
dN

d

e

e

, one

can obtain it by solving the continuity equation in energy

space(Longair 2011)
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Considering a conical jet, the comoving magnetic field in the
jet would decay with radius as

¢ = ¢
-⎛

⎝
⎜

⎞

⎠
⎟ ( )B B

R

R
, 130

0

1

where ¢B0 is the magnetic strength at R0, and R0 is the radius

where the jet begins to emit the first photon we observed. In our

modeling, we take R0=2Γ2c×1 s, and denote observer-

frame time since the first electron injection as t̂ (in units of s)

for an emission episode. We further introduce a parameter toff
to describe when the injection of electrons is turned off in the

observer frame. Therefore, seven parameters in total are left

free, i.e., Γ, g¢
m
, ¢B0, p, ¢Ninj, toff, and t̂ . Unlike the calculation

method for spectra adopted in Section 2, we only consider the

emission from the region just near the LOS and treat this small

region as a uniform jet. So relevant parameters in our

calculation describe properties of the region near the LOS,

rather than those of the jet axis. This treatment enables us to

simplify the calculation and focus on properties of the region

near the LOS. Unlike photosphere emission, for which one has

considered the shape of the last-scattering surface that could be

noticeably different for a structured jet, the synchrotron model

is not affected by the jet structure if the Lorentz factor along the

LOS is large enough (e.g., Zhang & Mészáros 2002a). This is

valid for our case (our best-fit Γ∼96 along the LOS, so our

simplification does not impact final results significantly).
We fit the spectra by interpolating our synchrotron model into

the McSpecFit package (also see Zhang et al. 2018a, 2018b for
details), and the fitting results are shown in Table 2 and Figure 5,
with a PGSTAT/dof=269.4/359. Compared with the PGSTAT/
dof=260.9/357 for the photosphere model, the PGSTAT/dof for
the synchrotron model is slightly larger. However, this small
difference could not help to prefer one model over the other.
One can perform a self-consistency check of the synchrotron

model parameters. The GRB emission is delayed byD ~t 1.7 s
with respect to the GW merger time (Abbott et al. 2017b;
Zhang et al. 2018b). If one assumes that the jet is launched
right after the merger, the distance the jet traveled at the time of
magnetic dissipation is ~ G D ~ ´R c t 4.7 10GRB

2 14 cm.
Given the observed luminosity L∼1047 erg s−1, the comoving
magnetic field in the emission region may be estimated as (e.g.,
Zhang & Mészáros 2002b) ¢ G ~( )B L cR2 58GRB

2 1 2 G.
The best-fit parameter falls within this range, suggesting the
consistency of the model.
Our results suggest that the synchrotron model can also give

a reasonable interpretation for the first pulse of the prompt
emission of GRB 170817A. More complicated effects such as
SSC (Geng et al. 2018) and slow heating/acceleration for
electrons (Xu & Zhang 2017; Xu et al. 2018) have not been
considered in our calculation. However, since these effects also
tend to harden the spectrum, including them would also give a
reasonable interpretation to the data, even though the best-fit
parameters may be somewhat changed.

5. Discussion

5.1. The Blackbody in the Weak Tail

The spectrum of the weak tail emission of GRB 170817A is
consistent with being a blackbody. Within our structured jet
photosphere model, this may be interpreted as the transition from
a structured jet to a roughly uniform jet at late times or the change
of Lorentz factor and luminosity such that the contributions to
observed flux from high latitudes are weakened. The softer peak
energy is a natural result from the decrease of the luminosity and
the Lorentz factor at late times. According to the best-fit results
for the main pulse above, we have L∼1047 erg s−1, η∼50–150
at the line of sight. Thus, for the weak tail with L∼0.3×
1047 erg s−1, if the bulk Lorentz factor η∼20 (saturated
acceleration with Rph∼3.3×109 cm and Rs∼5.8×108 cm),
we may get a blackbody spectrum with = -

+kT 11.3 2.4
3.8 keV. One

should note that these are the average values within the entire
duration of the weak tail.
Within the synchrotron model, the blackbody tail emission

should be attributed to a different mechanism. One may
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suppose that a successful structured jet breaks out to make the
first pulse via synchrotron, and the more isotropic component
breaks out the cocoon later to make the second thermal tail.
Therefore, it is unable to rule out the synchrotron model based
on the existence of the thermal tail.

5.2. The Time Delay between the GW Signal and the SGRB

The γ-ray emission onset of GRB 170817A has a delay of
Δt=1.74±0.05 s relative to the GW chirp signal (Abbott
et al. 2017b). Under the framework of a photosphere model,
some additional mechanism is required to account for such a
delay. For instance, this delay may be attributed to the
existence of a short-lived (tHMNS1 s) hypermassive NS
(HMNS) after the NS–NS merger, and the jet is launched only
after the hypermassive NS collapses into a black hole (e.g.,
Granot et al. 2017b). Such a type of NS–NS merger remnant is
supported by previous numerical studies (e.g., Rosswog &
Davies 2002; Rosswog et al. 2003). The delay onset of a
relativistic jet relative to the merger is also required by the
cocoon model (e.g., Gottlieb et al. 2017). After launching, the
relativistic jet needs to break through the dynamical ejecta (e.g.,
Hotokezaka et al. 2013; Rosswog 2013) and/or neutrino driven
wind, causing another time delay that could be a large fraction
of a second (e.g., Moharana & Piran 2017; Nakar & Piran
2017).

Within the photosphere model, if one assumes Γ≈2–3 along
the line of sight for the structured jet, the observed delay can be
well explained without introducing an extra delay for the onset
of the jet. In this case, however, the photosphere temperature is
too low to explain the observed Ep. One needs to introduce some
sub-photospheric dissipative processes to boost up Ep through
Comptonization (Rees & Mészáros 2005; Giannios 2006; Bégué
& Pe’er 2015; Vurm & Beloborodov 2016).

Within the synchrotron model, one does not need to invoke
such a delayed jet launch with respect to the merger time. The
delay can be accounted for by the timescale when the
relativistic jet reaches the dissipation radius. It is intriguing
that both the duration of the burst and the delay time are of the
same order. Within the synchrotron model, both timescales are
related to RGRB/cΓ

2, and therefore are comparable (Zhang
et al. 2018b).

5.3. Comparison with the Cocoon Emission Model

Using the cocoon shock breakout to explain the γ-ray
emission of GRB 170817A has been proposed lately (e.g.,
Gottlieb et al. 2017; Kasliwal et al. 2017; Bromberg et al.
2018). A delayed launch of the jet after the merger is needed to
explain the data. In order to explain the soft low-energy photon
index of the main pulse spectrum, both the cocoon shock

breakout and our scenario attribute the soft emission below Ep

to the superposition of a series of blackbody with different
temperatures. The significant difference between their model
and ours is the origin of low luminosity. In our model, the low
luminosity is caused by the low luminosity of the structured
jet along the line of sight, since we think that the jet may have a
decreasing luminosity with angle and the viewing angle is
large. The low luminosity of the cocoon shock breakout model
arises from the low mass (thus low internal energy,
mtail∼4×10−7Me) of the fast ejecta tail, which emits
γ-ray photons with a small Lorentz factor Γs≈2–3.
It is worth emphasizing that GRB 170817A appears to be a

natural extension of short GRBs to the low-luminosity regime.
The duration (T90) and the peak energy of GRB 170817A
are similar to a group of short GRBs (Lu et al. 2017;
Zhang et al. 2018b). The average low-energy photon index
(α∼−0.69, Burgess et al. 2017; Lu et al. 2017) for the
complete short GRB sample of Fermi-GBM is close to the low-
energy photon index (α∼−0.62) of this burst. The SGRB
event rate density above a much lower luminosity threshold
(∼1047 erg s−1

), obtained by including GRB 170817A, is
found to be consistent with the extension of the PL distribution
for the normal SGRBs with higher luminosities (Zhang
et al. 2018b). All these suggest that GRB 170817A may not
have a very different origin from other short GRBs. The
radiation mechanism for GRB 170817A is likely to be the same
as that of other short GRBs with high luminosity. We believe
that photosphere emission or synchrotron radiation from a
structured jet with a large viewing angle is a natural
explanation to the prompt emission data of GRB 170817A,
and the cocoon model may not be needed to account for the
data.13 It has been suggested that the recent brightening of
radio and X-ray fluxes is consistent with the prediction of the
cocoon model (Kasliwal et al. 2017). On the other hand, the
structured jet model can also explain the same data available so
far (Lazzati et al. 2017b) as well as the late-time optical
afterglow (Lyman et al. 2018).

6. Conclusions

As the first short GRB detected to be associated with an NS–
NS merger event, GRB 170817A carries important clues for
unveiling the underlying physics of SGRBs, including jet
launching, interaction with the dynamical ejecta, energy
dissipation mechanism, and radiation mechanism. The prompt
emission data can be used to constrain these mechanisms.
In this paper, we focus on the spectral data of the first

emission episode of GRB 170817A, and explore two models to
account for the observed data. We find that both models can
give reasonable fits to the data. In the first model, we developed
a photosphere model in a structured jet. We found that the
emission from the part closer to the jet axis can enhance the
low-energy component of the spectrum, resulting in a softer
low-energy photon index (α∼−0.5), which is consistent with
the observation (α∼−0.6). We performed an MCMC fit of
the spectrum from T0−0.3 s to T0+0.4 s using our model, and
found that our model can give a comparable fit to the best-fit

Table 2

Spectral Fitting Parameters Using the Synchrotron Model

Parameters GRB 170817A

Γ -
+95.57 17.51
4.43

¢B0 (G) -
+5.45 2.76
8.96

log g ¢
m -

+5.82 0.63
0.001

p -
+2.85 0.26
0.05

log Rinj (s−1
) -

+44.98 0.20
0.02

toff (s) -
+0.86 0.54
0.01

t̂ (s) -
+0.70 0.51
0.05

13
We stress that the cocoon may still exist in our models. But for our scenarios

the outflow from the central engine can break out the cocoon quickly and
naturally develop a structured jet, which is ahead of the slowly expanding
cocoon. Further studies and detailed numerical simulations are needed to test
this possibility, especially whether high Lorentz factors can be reached for the
structured jet.
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empirical model (the cutoff power-law model). The best-fit
parameters are consistent with the results from some statistic
works for SGRBs. In the second model, we consider
synchrotron radiation in an optically thin region, with the jet
expanding with a decaying magnetic field strength. This model
also gives a reasonable fit to the data, even though a higher
Lorentz factor along the line of sight is needed.

GRB 170817A is observed to be delayed from GW170817
by ∼1.7 s. Within the photosphere model, one needs to

introduce a delay of the launch of the jet after the merger.
Such a requirement is also needed by the cocoon shock break
model. The synchrotron model does not demand such a
delay time.
Bégué et al. (2017) discussed whether the typical emission

models of synchrotron radiation and photospheric emission for
structured and top-hat jets can explain the prompt emission of
GRB 170817A, and found that these models are particularly
challenging. They then proposed that the standard models for

Figure 5. Parameter constraints of the synchrotron model fitting for the time-integrated spectrum between −0.3 and 0.4 s.
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SGRBs need to be modified. We reached an opposing
conclusion by introducing a structured jet so that the observed
spectrum is intrinsically a multi-color blackbody. Another
difference is that jet acceleration is in the unsaturated regime.
As we have shown, the photosphere model can give a very
good fit to the data. For synchrotron radiation, we reached a set
of best-fit parameters that are not unreasonable, in contrast to
the conclusion of Bégué et al. (2017). We therefore conclude
that both mechanisms are not ruled out by the data, and that the
standard GRB mechanism (with a large viewing angle to a
structured jet) can account for the prompt emission data of
GRB 170817A without the need to invoke a different
mechanism, e.g., cocoon shock breakout.
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