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Published February 27, 2019; doi:10.1152/physrev.00019.2018.—Nuclear recep-
tors are intracellular proteins that act as transcription factors. Proteins with classic

nuclear receptor domain structure lacking identified signaling ligands are designated orphan
nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver
receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with
different and nonoverlapping effects on targets. Endogenous regulation of both is achieved pre-
dominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in
tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis,
steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for
development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and
Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1
depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1
compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue,
where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overex-
pressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and
chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear recep-
tors are nonredundant factors that are crucial regulators of a panoply of biological processes,
across multiple reproductive tissues.
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I. CLINICAL RELEVANCE

The literature relevant to two orphan nuclear receptors,
liver receptor homolog-1 (LRH-1) and steroidogenic fac-
tor-1 (SF-1), has been reviewed with focus on the effects of
these two factors on reproductive processes in mammals. The
absence of LRH-1 results in early embryo death, while the
absence of SF-1 causes adrenal agenesis. SF-1 mutations in

male humans result in adrenal dysgenesis and phenotypic fe-
male genitalia due to regression of the Wolffian ducts and
persistence of the Müllerian anlage. SF-1 expression is found
in endometriotic tissue, where it plays a role in ectopic estro-
gen synthesis. Misregulation of both SF-1 and LRH-1 occurs
in ovarian cancers, and LRH-1 is implicated in human pancre-
atic cancers. LRH-1 also promotes proliferation, metastasis,
and invasion of breast cancer cells. LRH-1 antagonists may
therefore serve as therapeutic modalities for cancer treatment.

II. INTRODUCTION

A fascinating narrative of the last century describes discov-
ery of the many mechanisms of cell signaling. From these
investigations, we have learned much about how extra- and
intracellular messages are received, transduced, and trans-
lated within their target cells. A commonality of cell signal-
ing is the presence of protein receptors that can be found
integrated into the plasma membrane, in the cytoplasm, or
within the nucleus. The signals that provoke cellular re-
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sponses have been shown to display a wide diversity in
structure, but most transduction systems fall into a few
broadly defined categories. Protein signals usually interact
with membrane receptors to induce cascades of intracellu-
lar modifications that drive cell functions. In contrast, lipid
signaling differs from protein messaging, in that the mes-
senger is believed to diffuse freely through membranes.
Among lipid signals are the steroids, a class of derived lip-
ids, that have evolved with signaling pathways that employ
a category of proteins displaying structural similarity,
known as the nuclear receptor superfamily (FIGURE 1). In
mammals, this extensive superfamily is composed of ~50
functional members, with 48 genes identified in the human
genome, 49 in mice, and 47 in rats (322). In addition to
steroids, members of the superfamily transduce signals as
diverse as the thyroid hormones, retinoic acid, vitamin D,
and bile acids. The unique characteristic of nuclear recep-
tors, relative to other signaling modalities, is their capacity
to bind directly to DNA, and thereby regulate transcrip-

tional events, evoking a wide diversity of physiological ac-
tions. For this reason, nuclear receptors have been defined
as a group of gene-specific transcription factors. The super-
family is subdivided into seven subfamilies (N0–N6), with
three classes (I–III) based on the multiple similarities and
differences that exist in their structure and DNA-binding
characteristics (76).

Historically, the discovery of new hormones was achieved
by analysis of their effects on physiological or developmen-
tal processes, and the purified hormone was subsequently
used to identify its cognate receptor (140). By this means,
the steroid receptor family (class I) was discovered, includ-
ing the progesterone, estrogen, glucocorticoid, androgen,
and mineralocorticoid receptors; as was thyroid/retinoid
family (class II), including the thyroid receptor and vitamin
D receptor. Proteins that recapitulated the nuclear receptor
domain structure, but for which no ligand was known, were
designated as orphan nuclear receptors, and they compose

FIGURE 1. Classification of the 48 human nuclear receptors based on their discovery due to a known ligand,

orphan receptors for which a ligand has been identified (adopted receptors), and true orphan receptors for

which the ligand, if present, remains unknown. Steroidogenic factor-1 (SF-1) and liver receptor homolog-1

(LRH-1), the subject of this review, are highlighted in red. (Compiled from Refs. 12, 14, 64, 74, 84, 104, 105,

140, 193, 237, 288.)
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the third family of nuclear receptors (class III). Recognition
of their existence introduced a new era in endocrinology, in
which the process of ligand-receptor discovery was inverted
(71), where the orphan receptors were cloned and were then
used to search for previously unknown ligands (140). By
this means the ligand for the orphan RXR receptor, 9-cis-
retinoic acid, was discovered, thereby allowing its new clas-
sification as an adopted nuclear receptor (71) (FIGURE 1).

Many of the members of the nuclear receptor superfamily,
when liganded, exert regulatory effects on mammalian repro-
ductive processes. Some are clearly direct, best exemplified by
the estrogen and progesterone receptors, while the effects of
others, such as the thyroid (63) and retinoic acid receptors (92)
on reproduction are both direct (91) and indirect (8).

The two orphan receptors treated herein are found in the
NR5A family: NR5A1 (common name: steroidogenic fac-
tor-1 or SF-1) and NR5A2 (common name: liver receptor
homolog-1 or LRH-1). They have been shown to be essen-
tial and significant regulators of reproductive processes. In
spite of their closely related structures, these two nuclear
receptors display differing and often nonoverlapping ef-
fects, in particular, on reproductive target tissues. This is
remarkable, in that they bind to the same or highly similar
response element in the genes they regulate (FIGURE 2) (52),
and both are often expressed in the same cells and tissues
(FIGURE 3).

This review is an attempt to shed light on the multiple
similarities and differences between these two receptors, in
structure, in signaling, and in their roles in the mammalian
reproductive system. We refer to these two receptors as SF-1
and LRH-1 throughout this treatise.

III. DISCOVERY

During the last decade of the 20th century, the initial evi-
dence of a gene responsible for the transcriptional activa-
tion necessary for the proper expression of the fushi tarazu

(ftz) gene was described in Drosophila (278). Ftz is a mem-
ber of the pair-rule class of genes governing Drosophila
embryo segmentation, and the purified sequence-specific
DNA-binding factor was then called Ftz-f1 (269a). The em-
bryonic long terminal repeat-binding protein in the mouse,
now known as SF-1, proved to be a mammalian homolog of
Ftz-f1 (151).

Some 20 years ago, the late Keith Parker reviewed the liter-
ature relative to SF-1, therein identifying it as a key deter-
minant of the endocrine function at various levels within the
hypothalamic-pituitary-gonadal axis (211). He noted that
this transcription factor was detected in tissues known to
express the cytochrome P-450 steroid hydroxylases, genes
regulating steroid hormone biosynthesis, hence its name.
New in vivo data for SF-1 were becoming available at that
time, showing that it is highly expressed in steroidogenic
tissues and that it plays an essential role in activating the
expression of various steroidogenic enzymes, thereby regu-
lating adrenal and gonadal formation, as well as sex deter-
mination and differentiation (176, 211, 234). Early studies
also showed that SF-1 functioned as a factor in the devel-
opment of hypothalamic control of pituitary function
(116). Due to its constitutive activity, and the in silico pre-
dictions of secondary structure suggesting ligand-indepen-
dent active conformation, SF-1 was initially identified as an
orphan nuclear factor (62).

The homology of Ftz-f1 with LRH-1 was recognized when
the sequence of the latter was determined (234, 252).
LRH-1 plays a major role in multiple processes, and was
identified early as a regulator of intracellular cholesterol
homeostasis (reviewed in Ref. 76). Its roles in steroidogen-
esis, embryogenesis, and reproductive function are ampli-
fied in subsequent sections of this review.

The evolution of the NR5A family was explored by Kuo et
al. (147), who concluded that the mammalian versions of
NR5A genes are orthologs of vertebrate forms that arose
from a common ancestor, by means of a gene duplication
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FIGURE 2. Consensus DNA sequence to

which both steroidogenic factor-1 (SF-1) and

liver receptor homolog-1 (LRH-1) have been

shown to bind on target genes. The image is

derived from the JASPAR open access da-

tabase of nonredundant transcription fac-

tors, release 7 (jaspar.genereg.net).
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event (FIGURE 4). The ancestral form gave rise to a third
NR5A gene, NR5A5, present in teleost fish, but that has
been lost in higher forms (55, 147).

IV. STRUCTURE

LRH-1 is located on human and mouse chromosome 1 (83),
whereas SF-1 is located on human chromosome 9 and
mouse chromosome 2 (168). As noted above, both are clas-
sified as nuclear receptors because both display the typical
structure of this family, albeit with some peculiarities. As
nuclear receptors, they are imported from the cytoplasm via
the nuclear pore complex, and therefore have two func-
tional nuclear localization signals responsible for shepherd-
ing the receptors into the nucleus (162, 305). The domain
structure of these two closely related nuclear receptors (FIG-

URE 5) comprises:
• a modulatory NH2-terminal A/B domain; that is, in

contrast to other nuclear receptors, devoid of the ligand-
independent activation function-1 domain (AF-1) at their
NH2 terminals (76, 162);

• the highly conserved DNA-binding domain (DBD or C
domain), responsible for targeting the receptor to specific
DNA sequences, termed hormone response elements
(213);

• the ligand-binding domain (LBD or E domain), which
contains a conserved ligand-dependent activation func-
tion-2 (AF-2) motif that mediates co-activator interaction
(213);

• the D domain serving as hinge between DBD and LBD
(76, 211, 305), recently shown to be more than a flexible

connector, as it is required to regulate the transcriptional
activity of LRH-1 in humans (298) and has proven to be
important for effective in vitro phosphorylation of
LRH-1 (158).

Members of the NR5A subfamily further contain a hall-
mark feature, an additional 30-amino acid COOH-termi-
nal extension, designated FTZ-F1 box or A box, located
adjacent to the second zinc finger motif at the COOH ter-
minus of the DBD (211, 270). The cooperativity between
the P box in the first zinc finger motif of the DBD and the
FTZ-F1 box allows for stable, high-affinity binding of
NR5A factors to their target genes, thereby permitting their
function as monomers (250, 269, 291). This was first
shown in Drosophila Ftz-f1 by Ueda et al. (270), and sub-
sequently confirmed in the mammalian homologs (reviewed
in Ref. 174). As mentioned above, the NR5A receptors are
constitutive, in that they have the capacity to adopt an
active conformation without requiring a ligand or other
modifications. The unliganded activity of the NR5A recep-
tors evokes the two views of the evolution of nuclear recep-
tors. First, parent forms were unliganded, and binding to
specific ligands was a trait acquired independently by nu-
clear receptor lineages (70). Alternatively, the liganded
forms were ancestral, a trait lost in the NR5A family (25).
The presence of a ligand-binding domain and pocket in the
NR5A genes argues for the latter scenario. In support of this
view is the evidence that the active conformation is stabi-
lized in SF-1 and LRH-1 when amino acid residues connect
between helices, replacing connections usually found be-
tween the ligand and the receptor (25).
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FIGURE 3. Tissue distribution of the NR5A receptors in mammals, showing liver receptor homolog-1 (LRH-1)

expression exclusively in the digestive tract and glands, steroidogenic factor-1 (SF-1) expression specific to the

spleen and skin, and overlap of the expression of the two receptors that occurs principally in endocrine and

neural tissue.
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V. TISSUE DISTRIBUTION

SF-1 expression is most pronounced in steroidogenic organs
such as the adrenal cortex and the gonads. It is present in the
urogenital ridge of the mouse at embryonic day (E) 9.5, in
fetal and adult adrenocortical cells, in the Leydig and Sertoli

cells of the developing and mature testes, as well as in gran-
ulosa and theca cells of the ovary (117, 118, 120). While
early studies reported that there is no expression in luteal
cells (76), more recent studies suggest that it is, in fact,
present in corpora lutea of the cow (190) as well as in the rat
(72) and mouse (106). Studies have also located SF-1 ex-
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FIGURE 4. Evolution of the NR5A genes.

A: schema to demonstrate the putative
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[From Kuo et al. (147), with permission
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B: phylogenetic tree demonstrating the

proposed origin and evolutionary relation-

ship between liver receptor homolog-1

(LRH-1) and steroidogenic factor-1 (SF-1)

in vertebrate species and in Drosophila.

The evolutionary sequence and history were
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pression in nonsteroidogenic tissues, more specifically the
ventromedial hypothalamus (VMH), where it plays an im-
portant role in hypothalamic regulation of pituitary go-
nadotroph organization and function (245), not to mention
in endothelial cells of the sinus and pulp vein of the spleen
and in the skin (195, 212).

In contrast (FIGURE 3), LRH-1 distribution is more wide-
spread, as it is found in multiple tissues of endodermal
origin, including the liver, pancreas, and intestine (76). El-
evated expression of LRH-1 was also found in the ovary,
where it is restricted to the granulosa cell compartment
(76). It is present at more modest levels in the hypothalamus
and anterior pituitary gonadotrophs (80, 325), endome-
trium (318) and placenta, along with the adrenal gland and
the testis (248).

VI. REGULATION

A. Potential Ligands

As noted above, a stable and active monomeric NR5A LBD
exists in the absence of ligand, co-activator peptide or ho-
mo- or heterodimeric receptor partner, indicating that li-
gands are dispensable for SF-1 and LRH-1 basal activity
(174, 291). Nevertheless, crystallography and mass spec-
trophotometry analyses revealed large and hydrophobic
pockets in both SF-1 and LRH-1 LBD occupied by phos-
pholipids, such as phosphatidylethanolamine and phos-
phatidylglycerol (79). Experimental addition of bulky side
chains into LRH-1 empty hydrophobic ligand-binding
pocket results in equal or greater activity of the nuclear
receptor, suggesting that it can accommodate potential li-
gands (232). Other phospholipids, such as phosphatidyl-
choline or second messenger phosphatidylinositol phos-
phates, can modulate the two NR5A receptor interaction
with co-activators (79, 144, 163, 205, 231). Variations in

lipid environment and metabolism can modulate SF-1 func-
tion. For example, it has been shown that sphingosine can
inhibit SF-1 and that cAMP can enhance SF-1 activity by
inducing sphingosine catabolism (271). Introducing point
mutations blocking phospholipid binding to these nuclear
receptors generates mutant proteins, some of which are un-
able to be phosphorylated and then fail to recruit co-acti-
vators and induce transcription (161, 285).

While it is not clear whether there are active endogenous
ligands for either of the NR5A receptors, a number of phar-
macological ligands have been developed for SF-1 and
LRH-1. Given that both receptors interact with the same
gene sequences, the activity of these ligands is expected to
be both gene target and cell context specific. Low-molecu-
lar-weight compounds with cis-bicyclo[3.3.p]oct-2-ene
core structure selectively increase SF-1 activity, while
4-alkuloxy-phenol derivatives have an inverse agonist effect
and suppress the constitutive activity of the receptor (60,
289, reviewed in Ref. 237). LRH-1 can be activated by
dilauryol-phosphatidyl-choline (DLPC), a ligand agonist
that, through its regulation of bile acids and glucose homeo-
stasis, has been shown to decrease the quantity of glucose in
diabetic mice (157).

Inverse agonists of LRH-1 that inhibit its constitutive
activity, such as ML179 and ML180, have been synthe-
sized (32). They function by inducing the translocation of
LRH-1 from the nucleus (52) to the cytoplasm, thereby
inactivating it. Another synthetic agonist molecule able
to accommodate SF-1 and LRH-1 ligand binding pocket
is GSK8470, developed by the GlaxoSmithKline com-
pany (289). This compound is described as capable of
stimulating the transcription of downstream targets of
LRH-1 in hepatic cells, as well as some downstream tar-
gets of the NR5A co-repressor short heterodimeric pro-
tein (SHP or NR0B2), an atypical orphan nuclear recep-
tor that does not possess a DNA-binding domain (289).
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The retinol-related molecule adamantyl hydroxyphenol
chlorocinnamic acid (3Cl-AHPC) is another example of
an anti-agonist molecule that represses LRH-1 by in-
creasing its interaction with SHP (185). In addition to
phosphatidylcholines, the signaling phospholipid phos-
phatidylinositol 3,4,5-trisphosphate (PIP3) binds to
LRH-1 (182), although downstream effects of this inter-
action have yet to be determined. It also binds to SF-1,
inducing slight modifications in the LBD structure, indi-
cating that a dynamic exchange of potential ligands may
regulate the activity of this receptor (20).

While molecular dynamic simulations showed no overall
conformational changes in SF-1 and LRH-1 when bound to
phospholipids, the ligands affect the recruitment and affin-
ity with cofactor peptides, with consequences on transcrip-
tional capacity (30, 98, 231). It has been suggested that the
phospholipid molecule is not an endogenous ligand for
LRH-1, and even that there might be no endogenous ligand
for this receptor (320). Furthermore, it has been postulated
that the phospholipids that occupy the ligand pocket in
LRH-1 and SF-1 serve not to stimulate, but rather to stabi-
lize, the molecule and to reduce inhibitory cofactor binding
(161). Although it is clear that ligands exist, information is
yet fragmentary, and their role, mechanism of action, and
function in cellular processes all require further investiga-
tion.

B. Co-regulators

Ligand-activated nuclear receptors are first used as adap-
tors between gene regulatory regions and the chromatin
modifying enzyme complexes, and second as activators
of ribonucleic acid (RNA) polymerase II, to suppress or
enhance target gene expression (38). In turn, the nuclear

receptors are modulated not only by ligand binding and
posttranslational modifications, but also by recruitment
of co-regulators. Co-activators and co-repressors are
positive and negative co-regulatory proteins (201), and
their actions may well be the most important mode
of functional regulation of orphan nuclear receptors
(153).

Several tissue-specific co-activators and co-repressors are
known to regulate the transcriptional activity of SF-1 and
LRH-1 in a context-specific manner (TABLE 1). Importantly,
these co-regulators bind to domains whose structure has
been altered by binding of ligands and/or posttranslational
modifications (100). Whether the posttranslational modifi-
cations are crucial to initiate, maintain, or simply facilitate
the interaction is uncertain. It is, nonetheless, known that
once the nuclear receptors are constitutively activated, they
can interact with co-repressors that then further modulate
their activity (76). This modification takes the form of al-
teration to the structure of the chromatin, leading either to
a condensation that represses transcription or to a decon-
densation that facilitates the recruitment of the basal tran-
scription machinery (24). In general, the structure that me-
diates the ligand-driven interaction with co-repressors and
co-activators is the helix 12 (H12) of the receptor, which
assumes an extended position in the absence of ligand, per-
mitting the binding of co-repressors. Binding of agonist re-
orients H12 to a sequestered position that blocks the co-
repressor binding site, while simultaneously forming a new
docking surface for co-activators (222). The long H2 twists
LRH-1 into an agonist-like conformation by affecting H12,
even when LRH-1 ligand binding pocket is empty (232),
while H1 and H12 of SF-1 are packed against the �-helical
bundle, demonstrating its LBD ligand-independent active
conformation (62).

Table 1. The principal mechanism for regulation of the transcriptional activity of the NR5A receptors is interaction with cofactors

Co-regulator Regulation Interaction Site/Mode Nuclear Receptor Reference Nos.

SHP (NR0B2) Negative Attaches COOH-terminal domain and interacts
with AF-2 domain

SF-1, LRH-1 88, 159

DAX1 (NR0B1) Negative AF-2 domain SF-1, LRH-1 6, 123, 262

NCOR1, NCOR2 Negative Recruited by DAX1 SF-1, LRH-1 123, 252, 254

ALIEN Negative Recruited by DAX1 SF-1, LRH-1 123

FXR Negative Co-enriched nuclear receptor half site LRH-1 48, 178, 286, 320

PROX1 Negative Interact with LBD and DBD LRH-1 224, 252

SMRT Negative No direct interaction LRH-1 297

MBF1 Positive Bridging factor LRH-1 24

SRC1, SRC2, SRC3 Positive Binding to the LBD LRH-1, SF-1 159, 298

PGC1 Positive AF-2 domain LRH-1 311

�-Catenin Positive Distinct from the known interaction surfaces of LRH-1 SF-1, LRH-1 23, 127, 317

This regulation can be either positive (co-activators) to enhance constitutive activity or negative (co-repressors) to inhibit induction of transcrip-

tion of target genes. The mechanisms vary, and some are unknown. LBD, ligand binding domain; DBD, DNA binding domain; SF-1, steroidogenic

factor-1; LRH-1, liver receptor homolog-1.
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The two best known SF-1 and LRH-1 cofactors are SHP,
mentioned above, and dosage-sensitive sex reversal-adrenal
hypoplasia congenital region gene on the X chromosome,
gene-1 (DAX1; NR0B1), both of which act as repressors of
these NR5A orphan receptors. SHP attaches to the nuclear
receptor COOH-terminal domain and represses SF-1 and
LRH-1 activity by interacting with its AF-2 transactivation
domain (159, 163). There appears to be a negative feedback
loop by which SF-1 and LRH-1 bind to the SHP promoter
region to induce its transcription, which in turn reduces
their activation and consequent transcriptional activity (88,
160). Structural and biochemical probe analysis has shown
that SHP interaction with LRH-1 is significantly stronger
than with SF-1, due to differential binding events occurring
between the core LXXLL motif of SHP and the SF-1 coacti-
vator binding site (164).

DAX1 functions as a ligand-independent nuclear receptor,
and its repressive mechanism indicates that it is a competi-
tive transcriptional co-repressor (233). Like SHP, DAX1
lacks a DNA-binding domain and additionally has neither a
modulatory domain nor a hinge region (123, 204). SF-1 and
LRH-1 also interact with DAX1 through its LBD with the
NH2-terminal LXXLL related motifs (262), binding with
high affinity to the AF-2 domain, and repressing their tran-
scriptional activity (6, 123, 262). There is also evidence that
DAX1 recruits co-repressors, such as the nuclear receptor
co-repressor (NCOR) and ALIEN, providing a further in-
hibitory mechanism of NR5A activity (53, 123). NCOR1
acts in the SUMOylation process of LRH-1, and one of the
consequences of this association is the trans-repression of
acute phase response proteins (252, 254). On the other
hand, NCOR recruitment persists regardless of SF-1
SUMOylation state, as observed in un-SUMOylatable SF-1
knock-in mice (156). The homolog of NCOR1, NCOR2
(also called silencing mediator for retinoic acid and thyroid
hormone receptor; SMRT), also represses the transcrip-
tional activity of SF-1 and LRH-1 (99, 254). The mecha-
nism of interaction between SF-1, LRH-1, and the NCOR2
is not yet well understood, as no direct regulation has yet
been demonstrated. It could be, as is the case for NCOR1,
that a supplementary protein is needed to link NCOR2 and
the two nuclear receptors, indicating that it could be an
indirect cofactor (297).

Another co-activator of LRH-1 related to SHP activity is the
farnesoid X receptor (FXR; NR1H4), principally expressed
in the liver, kidney, adrenals, and small intestine (178, 286).
Studies with mice fed with FXR show that it is involved in
cholesterol and bile acid metabolism, as well as in the reg-
ulation of glucose metabolism (178, 321). The interaction
of FXR with LRH-1 allows for FXR-mediated activation of
SHP, retinol dehydrogenase 9, pyruvate carboxylase, and
phosphatidylethanolamine N-methyltransferase (48). The
prospero-related homeobox transcription factor, PROX1,
is another recognized co-repressor that acts similarly to

DAX1 and SHP by directly interacting with both LBD and
DBD of LRH-1 (224, 252). The interaction between the
nuclear receptors and PROX1 leads to the repression of
several target genes of LRH-1, including the steroidogenic
gene CYP17a1 (224).

Other cofactors act as bridging factors to regulate SF-1 and
LRH-1, such as the multiprotein bridging factor (MBF1),
which does not possess histone-modifying activities, but
rather enables interactions of the nuclear receptors with the
transcription machinery (24, 129). The three homologs of
the p160 family, steroid receptor co-activators (SRC1,
SRC2, and SRC3), act as strong regulators of the two
NR5A nuclear receptor transcriptional activity by binding
to their ligand binding domains (159, 298). SRC-1 interacts
directly with the LRH-1 LBD in helix 1 and AF-2 (298), while
SRC3 potentiates the interaction between CREB and LRH-1
(96). The phosphorylating kinase A (PKA) downstream of
cAMP has been shown to stimulate SRC1 and SRC3 activa-
tion of SF-1-dependent transcription, but this signaling path-
way also represses SRC2 co-activation of SF-1 by increasing
ubiquitin-mediated degradation of SRC2 (22, 109, 111).

The co-activator peroxisome proliferator-activated recep-
tor-� (PPAR-�)-coactivator-1 (PGC1) binds to the AF-2 do-
main of LRH-1 to promote differentiation of granulosa
cells into progesterone-producing luteal cells (312). Inter-
estingly, a novel isoform of LRH-1 in human granulosa cells
was shown to be coordinately regulated by SF-1 and PGC1
(134). Blocking PGC1 is one of the strategies by which SHP
and DAX1 repress LRH-1 activity (153), and LRH-1 is also
inhibited following the recruitment of PGC1 by the sterol
regulatory element-binding proteins (SREBP2) (130).

In addition to this wide and growing list of co-regulators for
NR5A receptors, it has been shown that �-catenin is impor-
tant for stable interactions with SF-1 and LRH-1, acting
synergistically with both orphan receptors. In terms of
downstream effects, LRH-1 interacts with �-catenin to pro-
mote cell cycle gene expression and cell proliferation in the
intestinal crypt and granulosa cells (23, 183). Likewise,
SF-1 and �-catenin interact in the signaling pathway that
produces testosterone, a collaboration that can be inter-
rupted by WNT4 overexpression (127).

As with other members of the nuclear receptor family, the
regulation of the activity of NR5A receptors is a complex,
context-specific process that depends heavily on cofactors.
These interactions are the major, if not the principal, mech-
anisms of modulation of the multiple actions of SF-1 and
LRH-1.

C. Transcriptional Regulation

The SF-1 gene contains seven exons and is closely situated
downstream of the germ cell nuclear factor (GCNF;

MEINSOHN ET AL.

1256 Physiol Rev • VOL 99 • APRIL 2019 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 9, 2022.



NR6A1) gene, separated by ~13 kb (122, 292). An inter-

vening insulator element is present, composed of sites that

are target regions for the CCCTC-binding factor, histone

tail acetylation regulation, and other nuclear matrix inter-

action to induce insulator activities, such as the adrenal

specific DNase hypersensitive sites (adHS1–3) (122). Tran-

sient transfection experiments and protein/DNA binding

assays suggest that the basal promoter of the SF-1 gene

interacts with the ubiquitous transcription factors, such as

nuclear transcription factor Y (NFY), stimulatory protein 1

and 3 (SP1/3), and upstream stimulatory helix loop helix

(HLH) factors 1 and 2 (USF1/2), the latter of which en-

hances transcription through interactions with an E-box

located on the basal promoter (293). Another HLH factor,

Pod-1/capsulin, has been shown to repress SF-1 expression

via regulation of the E-box, and while studies have failed to

demonstrate direct interaction between this HLH factor

and the basal promoter, targeted deletion of Pod-1/capsulin

leads to an increased SF-1 expression in the developing

testis and in adrenocortical tumor cells (56, 57, 264).

Chromobox homolog 2 (CBX2) is another factor shown to

bind the SF-1 promoter (133), and mice carrying CBX2 null

mutation display reduced SF-1 and sex determining region

Y (Sry) expression, leading to a sexually dimorphic pheno-

type, small adrenal glands, and spleen malformation (132).

Human CBX2 has been shown to bind directly to the SF-1

promoter, and mutations in this gene also show XY sex

reversal (18). Other factors involved in gonadal develop-

ment have been shown to interact with the SF-1 basal pro-

moter, such as Wilm’s tumor suppressor (WT1), Lim ho-

meobox protein (LHX9), SOX9, and GATA4 (268, 290).

Additionally, multiple intronic enhancers are specific to go-

nads, the adrenal gland, VMH, or pituitary gland, indicat-

ing, not unexpectedly, that regulation of SF-1 transcription

is tissue specific (111).

DNA methylation also plays a role in the epigenetic regula-

tion of the SF-1 gene. Studies in mouse tissues have shown

that the SF-1 basal promoter is hypermethylated when SF-1

is not expressed, showing binding of DNA methyltrans-

ferase 3a (DNMT3A) and MECP2 factor to the SF-1 basal

promoter (110, 302). In the hypo- or unmethylated state,

SF-1 is expressed, with recruitment of transcription factors

such as USF2 and RNA polymerase II (110, 302). Interest-

ingly, analysis of the SF-1 promoter region in endometriotic

stromal cells, which show aberrant increases in expression

of SF-1, due to a high level of acetylation of associated

histones, regulated by acetyltransferases (192).

From the above, it can be seen that SF-1 expression is mod-

ulated by a wide range of transcriptional regulatory pro-

cesses, comprising transcription factors, intron enhancers,

and epigenetic elements. This multiple array of factors is

expected to be responsible for the highly variable, develop-

mental stage, tissue and even species-dependent expression
of SF-1.

Much less is known about the factors regulating the tran-
scription of LRH-1. Studies of the 5= upstream region of the
gene have been summarized by Fayard et al. (76), indicating
multiple transcriptional activators in regulation of LRH-1. In
the mouse, these include GATA, HNF, and NKX motifs (76).
Mouse Pdx1 is co-expressed with LRH-1, and it has been
shown that there are functional binding sites for this homeo-
box gene on the LRH-1 promoter (2). These findings have
been interpreted to indicate that PDX1 exercises control over
LRH-1 transcription during development.

D. Posttranslational Regulation

The expression of SF-1 and LRH-1 is also regulated by
multiple modifications that occur following their transla-
tion. The intracellular second messenger cAMP, acting via
protein kinase A (PKA), can induce p300 to acetylate SF-1
(47). This posttranslational change increases SF-1 DNA
binding, induces its recruitment to nuclear clusters, and
increases its dynamic interaction with regulatory cofactors
(47). PKA has also been shown to promote dissociation of
DAX1 from SF-1, thereby activating or amplifying tran-
scriptional activity of the latter (73). LRH-1 possesses a
large hinge domain on which the serine residues S238 and
S243 can be phosphorylated, an action brought on by acti-
vation of the protein kinase C and the MAPK/ERK path-
ways (144, 158). The overall effect is an increase in the
transcriptional activity of LRH-1. SF-1, on the other hand,
has only one phosphorylation site in the AF-1 domain of the
hinge region, S203, and it can be phosphorylated by the
MAPK/ERK signaling cascade, as well as by cyclin-depen-
dent kinase 7 (CDK7). The latter will form the CDK-acti-
vating kinase (CAK) complex with cyclin H (CYCH) and
ménage à trois 1 (MAT1), which then anchors SF-1 to the
basal transcriptional machinery of many of its target genes
(161).

Another posttranslational modification of the NR5A recep-
tors is the reversible covalent interaction engendered by
conjugation to the small ubiquitin-like modifier (SUMO), at
lysine residues (SUMOylation) (45, 306). Both NR5A re-
ceptors are direct substrates for the SUMO conjugation
machinery, such that their activity is repressed by SUMOy-
lation (40, 45, 308). The modification of SF-1 transcrip-
tional activity by SUMOylation takes the form of reduced
receptor binding to its cognate DNA sequences (35), or
translocation of the transcription factor from the chromatin
to inactive nuclear bodies (40, 45, 308). For example, the
SUMO-E3 ligase RING finger protein 31 (RNF31) is in-
volved in the ubiquitination (and stabilization) of DAX1,
and present in the complex formed of DAX1, SMRT, and
HDAC to induce SF-1 inactivation on target gene promoter
regions (69). SUMOylation has been identified as a factor in
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the interaction of corepressor PROX1 with LRH-1 to in-
hibit its role in cholesterol transport (253). Moreover,
SUMO conjugation is implicated in the subnuclear localiza-
tion of LRH-1, and the accumulation of LRH-1 in rat pri-
mary granulosa cell nuclear bodies can be suppressed by
forskolin and cholera toxin treatment, suggesting the cAMP
pathway is also involved in regulating LRH-1 activity
(306). While in vitro studies showed that overexpression of
un-SUMOylatable SF-1 and LRH-1 increased cell-based re-
porter activity (40, 161), the permanent elimination in vivo
of SF-1 SUMOylation in mice did not lead to increased SF-1
activity; rather, it resulted in endocrine abnormality that
reflected the inappropriate activation of specific SF-1 target
genes (156). Indeed, loss of SF-1 SUMOylation elevates or
induces ectopic activation of sonic hedgehog (Shh) in mouse
testis and adrenal glands to amplify hedgehog signaling,
promoting steroidogenesis and resulting in abnormal endo-
crine tissue development (156). In vivo studies using un-
SUMOylatable LRH-1 mice lead to increased expression of
genes involved in cholesterol transport and animals with
diminished atherosclerosis development (253).

A further posttranslational regulation process that affects
NR5A family members is ubiquitination, essential for many
cell processes including signaling cascades, regulation of the
cell cycle, DNA repair, and maintenance of protein integrity
(44). It is generally inhibitory, and with respect to nuclear
receptors, including SF-1, ubiquitination plays an impor-
tant role in the reproductive and endocrine pathology.
HDAC inhibitors such as trichostatin A and valproic acid
are known to promote SF-1 ubiquitination, which then re-
duces steroidogenesis in adrenal tumor cells (46).

E. MicroRNAs

A wide range of microRNAs (miRNAs) is expressed in
mammals, and they have been found to participate in phys-
iological and developmental processes. They aid in modu-
lation of gene expression by mediating RNA transcript deg-
radation or regulating translation rate. In mouse embryonic
stem cells, miR134 has been shown to promote differentia-
tion due to its translational attenuation of LRH-1 and
NANOG, both known as positive direct regulators of
OCT4/POU5F1 and stem cell proliferation (265). miRNAs
also play a role in several types of human malignancies such
as cancer (250a). For example, the overexpression of miR-
30d induces cell cycle arrest at G0/G1, decreases cell prolif-
eration, migration, invasion, and tumor growth while in-
creasing cell apoptosis in vitro (304). Bioinformatic analysis
and dual-luciferase reporter assay revealed that LRH-1 is a
direct target of miR-30d in colorectal cancer cells. The same
study showed that LRH-1 overexpression could restore the
inhibitory effect of miR-30d on these cells (304).

MicroRNAs are also involved in steroidogenic gene regula-
tion and normal reproductive function. A recent report in-

dicates that in the porcine ovary, miR-1275 is an endoge-
nous regulator of LRH-1, reducing LRH-1 induction of
CYP19A1 by means of effects on the 3=UTR of the LRH-1
gene (170). Studies have shown that various microRNAs
interact with SF-1 to regulate its transcriptional activity.
For example, miR-320 decelerates granulosa cell prolifera-
tion by decreasing SF-1 mRNA stability and impeding its
transcriptional activity, while miR-764-3p has been shown
to bind directly to SF-1 mRNA in mouse granulosa cells to
inhibit aromatase transcription, resulting in reduced estro-
gen production (281, 314, 315). SF-1 has itself been shown
to bind to the promoter region of miR-383 host gene, in-
ducing its expression and allowing the miR-383-mediated
estradiol release from granulosa cells (315).

F. Epigenetic Regulation

As noted above, SF-1 and LRH-1 both function as direct
regulators of transcription and as transcriptional enhanc-
ers. They may also function as pioneer or licensing tran-
scription factors, the elements that can program the epig-
enome during cell differentiation, by modifying chromatin
accessibility to other transcriptional constituents (66). Nu-
clear receptors, including the glucocorticoid receptor (97)
and the ecdysone receptor (246), have been demonstrated
to act as pioneer factors in differentiating tissues. The evi-
dence for LRH-1 as a possible pioneer factor has been de-
rived from breast cancer cell lines where it regulates prolif-
eration (16). In that study, it was shown by chromatin im-
munoprecipitation analysis that LRH-1 cooperates with the
well-known pioneer factor, forkhead box protein A1
(FOXA1), to bring about expression of cell cycle genes (16).
Furthermore, knockdown of LRH-1 altered FOXA1 bind-
ing and induced a second epigenetic effect, the depletion of
histone deacetylase 2 from the regulatory region of cell cycle
proteins. The concept of NR5A receptors as epigenetic
modulators is novel and requires further investigation in the
multiple tissues where these proteins are expressed.

VII. CELLULAR PROCESSES RELATED TO
REPRODUCTION

A. Cholesterol Homeostasis

Cholesterol plays a central role in diverse biological pro-
cesses, including in the formation of cellular membranes,
and serves as the parent molecule for steroid hormone syn-
thesis. Improper transformation, transport, or storage of
cholesterol is the basis for a number of diseases, thus ho-
meostatic regulation is essential, not only for normal repro-
ductive function, but also, in some cases, for survival. Over-
all, appropriate intracellular concentrations of cholesterol
are maintained by four complementary mechanisms: de
novo synthesis; importation as elements of high-density li-
poprotein (HDL) or low-density lipoproteins (LDL); re-
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verse cholesterol transport, primarily as HDL; and choles-
terol esterification and liberation (197). NR5A receptors
play a significant part in cholesterol homeostasis by direct
effects on some key regulators involved in these mecha-
nisms.

The de novo synthesis of cholesterol, which relies on the
rate-limiting enzyme HMG-CoA reductase (reviewed in
Ref. 227), does not appear to be directly influenced by SF-1.
One reporter assay study showed that LRH-1 does not drive
transactivation of this gene (130), while Datta et al. (58)
report binding of LRH-1 to the HMG-CoA promoter to
induce specific activation of its transcription. Both of these
studies are based solely on transient transfection assays;
thus further investigation is required to determine the bio-
logical significance of these contradicting findings.

In many species, the main source of supply of cholesterol for
steroid synthesis is via its importation from circulation by
the HDL receptor, scavenger receptor class B type 1
(SCARB1) (197). It has been shown that SF-1 transactivates
the SCARB1 gene (37) and mediates the uptake of choles-
terol via this receptor (171). Similarly, chromatin immuno-
precipitation (ChIP) analysis revealed that LRH-1 binds to
its response element in the SCARB1 promoter to induce its
expression in both mouse and human tissue (150, 238).

Reverse cholesterol transport, another homeostatic process
completed principally by HDL via SCARB1, is regulated by
LRH-1 activity (76). Intermediates that shuttle cholesterol
to HDL for efflux include members of the ATP binding
cassette (ABC) family (reviewed in Ref. 219), and transient
transfection assays have shown that LRH-1 activates tran-
scription of isoforms ABCG5 and ABCG8 by binding to
their promoter regions (82). In addition, hypomorphic ex-
pression of LRH-1 in the liver of heterozygote LRH-1 germ-
line knockout mice leads to diminished expression of both
Abcg7 and Abcg8 (300). One isoform of the ABC family,
ABCG2, transports xenobiotics rather than cholesterol in
reproductive tissues and has been shown to be upregulated
by SF-1 in mouse Sertoli cells (295). The role of SF-1 in the
expression of factors involved in reverse cholesterol trans-
port has yet to be elucidated.

Cholesterol storage and its liberation are also important
factors in sterol homeostasis, particularly in steroidogenic
cells. Free cholesterol is esterified by the enzymes of the
sterol O-acyltransferase (SOAT) family (228). At least one
of the members of the family, SOAT1, was identified as a
target of SF-1 in adrenocortical cells, and overexpression of
SF-1 in an adrenal cell line upregulates its expression (77).
In contrast, promoter assays have suggested that SF-1 also
liberates cholesterol from the esterified state by activating
hormone-sensitive lipase (LIPE), the principal lipase in ste-
roidogenic tissues (112, 145). The latter concept is more in
keeping of the role of SF-1 as a factor in steroid synthesis

induction. No information appears available at this time on
the role of LRH-1 in regulation of either SOAT1 or LIPE.

The sterol regulatory binding proteins (SREBPs) are tran-
scription factors that have been shown to be the dominant
regulators of components in cholesterol metabolism pro-
cesses (241). Lopez and McLean (171) reported a synergis-
tic interaction between SF-1 and SREBP1a in induction of
transcription of SCARB1. Synergistic transactivation has
also been demonstrated in the context of another lipogenic
gene, the Niemann-Pick C1(NPC1)-like 1 (155). Given that
LRH-1 also induces SCARB1 expression in both mouse and
human tissue (76), it is somewhat surprising that at least
two studies suggest reciprocal antagonism between LRH-1
and SREBPs. Lee et al. (157) reported that treatment with
the LRH-1 agonist dilauroyl phosphotidylcholine (DLPC)
reduced the expression of SREBP1c. Others presented evi-
dence that LRH-1 directly inactivates SREBP1 transactiva-
tion in promoter assays, and they further showed that
SREBP2 directly inhibits LRH-1 activity (130). It is pro-
posed that this is achieved by binding of LRH-1 to SREBPs,
which inhibits the recruitment of their co-activators CBP
and PGC1�, potentiating SREBP transcriptional activity
(167, 202). It is speculated that the inhibitory effects of
SREBPs on LRH-1 activity have greater impact than the
effects of LRH-1 on the SREBP functions because abun-
dance of active SREBPs in the nucleus varies more strongly
in response to metabolic alterations. The dissonance be-
tween multiple studies showing that LRH-1 stimulates
SREBP-driven genes in vivo (13, 68) and in vitro (155)
suggests that the antagonism between LRH-1 and SREBP
may be gene specific.

Cholesterol transport within the cell is necessary for multi-
ple biological processes, and since the aqueous intracellular
milieu is hydrophobic, transport mechanisms are required.
Among these are the cytosolic lipid transfer proteins includ-
ing NPC1, sterol carrier protein-2 (SCP2), and the steroid-
ogenic acute regulatory protein (STAR) (294). All of these
factors are essential for reproductive function (reviewed in
Ref. 256). Studies have shown that SF-1 regulates the tran-
scription of the NPC1 gene in concert with cAMP (86). The
promoter region of SCP2 contains an SF-1 (and presumably
a LRH-1) response element, suggesting regulation by the
NR5A receptors (172).

The STAR protein, first discovered by Clark and Stocco
(50), transfers cholesterol from the outer mitochondrial
membrane into the cristae, where it can initiate the enzy-
matic cascade that comprises steroid synthesis. There is a
great deal of information implicating the NR5A receptors
in modulating STAR expression, from early studies show-
ing promoter transactivation by SF-1 in granulosa cells
(229, 259) to more recent ChIP analysis of bovine thecal
cells, demonstrating increased SF-1 binding to the bovine
theca cell STAR promoter in response to luteinizing hor-
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mone (LH) stimulation (196). SF-1 induces STAR synthesis,
not only through classic promoter binding, but also by act-
ing as an enhancer at sites �3 kb upstream of the STAR
transcription start site (189). A nonexhaustive list of tissues
where SF-1 regulates STAR includes adrenal cell lines (296),
Leydig (273), theca (196), granulosa (210), and endome-
trial cells (67). LRH-1 also is an essential factor for expres-
sion of STAR in steroidogenic tissues. An early investiga-
tion showed that LRH-1 induces STAR transcription in
human adrenal, testis, and ovarian tissues (217). Cre-loxP
depletion of LRH-1 in the mouse ovary from primordial
follicles forward (13, 14, 68) results in dramatic reduction
in Star expression. Moreover, ChIP analysis by Duggavathi
et al. (68) demonstrates that LRH-1 binds directly to the
STAR promoter.

In summary, it is clear that there is remarkable scope in the
regulation of cholesterol homeostatic and transfer mecha-
nisms by the NR5A receptors. Virtually all of these pro-
cesses are significant to mammalian reproductive function,
as cholesterol is the parent molecule of the steroids that
orchestrate folliculogenesis, spermatogenesis, and gesta-
tion.

B. Steroidogenesis

As noted above, cholesterol is transported from the cytosol
into the inner membrane of the mitochondrion of steroido-
genic cells to allow steroid hormone biosynthesis (50). Cho-
lesterol side chain cleavage enzyme (P450scc, CYP11A1),
resident in the mitochondrion, converts cholesterol to preg-
nenolone, and the diverse steroid products can subse-

quently be synthesized following transformations of preg-
nenolone by a variety of cytochrome P-450 oxidases (CYPs)
and steroid dehydrogenases (HSD) enzymes (86, 211; re-
viewed in Ref. 187). The promoter regions of several of
these enzymes have been shown to contain the SF-1/LRH-1
consensus site (194, 226) (TABLE 2). These discoveries led to
identification of the presence of SF-1 in most mouse steroid-
ogenic tissues, including the corpus luteum (CL) (106), and
LRH-1 was later shown to be present in the ovary and testis
(248, 311) (TABLE 2). Under the control of gonadotropins, the
NR5A receptors enhance the activity of steroidogenic genes,
such as STAR, CYP11A1, CYP17A1, 3�HSD, and the steroid
11�-hydroxylase (CYP11B1) (150). Moreover, LRH-1 serves
as a critical factor in the transcriptional regulation of the aro-
matase (CYP19A1) gene, the rate-limiting enzyme in ovarian
estrogen biosynthesis (184). In addition to regulating enzymes
directly involved in cholesterol transport and steroid biosyn-
thesis, SF-1 and LRH-1 control the expression of ferrodoxin 1
(FDX1), an iron-sulfur protein which functions as the electron
donor for the catalytic activity of P450scc in ovarian granulosa
cells (119). Activation of the FDX1 promoter has been shown
to occur following stimulation by cAMP (119).

C. Cell Proliferation

We have recently shown that LRH-1 plays a key role in
granulosa cell proliferation, as depletion of LRH-1 causes a
significant decrease in the number of granulosa cells enter-
ing S phase of the cell cycle, and in the abundance of tran-
scripts of key genes such as the cyclins D and E and their
downstream targets E2F1 and E2F2 (183). This effect on
proliferation has been shown to be mediated by LRH-1

Table 2. Both LRH-1 and SF-1 regulate the process of steroid synthesis in reproductive target tissues, sometimes in the same cells

Steroidogenic Gene Principal Reproductive Tissue Localization Reference Nos.

SF-1

STAR Theca, granulosa, luteal, Leydig cells 39, 49, 102, 125, 210

CYP11A1 Theca, granulosa, luteal, Leydig cells 27, 51, 102, 125, 210, 243, 244, 279

CYP17A1 Theca, granulosa, luteal, Leydig cells 27, 209, 210

CYP19 Granulosa, Leydig, Sertoli cells 177, 188, 280

HSD17B1 Endometriotic tissue 4

HSD3B1 Leydig, theca cells 27, 188

HSD3B2 Luteal, Leydig cells 180, 272

LRH-1

STAR Granulosa, luteal, Leydig cells 137, 181

CYP11A1 Granulosa, luteal, Leydig cells 136, 244

CYP17A1 Granulosa, luteal, Leydig cells 72, 181, 311

CYP19 Granulosa, Leydig 106, 218

HSD3B1 Granulosa cells 188

HSD3B2 Luteal cells, Leydig cells 180, 215

LRH-1, liver receptor homolog-1; SF-1, steroidogenic factor-1; STAR, steroidogenic acute regulatory protein; CYP11A1, P450 side-chain

cleavage; CYP17A1, P450 family 17; CYP 19, P450 aromatase; HSD3B1, 3�-hydroxy-steroid dehydrogenase-1; HSD3B2, 3�-hydroxy-steroid

dehydrogenase-2.
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interaction with �-catenin and CDKN1A, a cell cycle inhib-
itor, all of which are direct targets of LRH-1, as revealed by
ChIP (183).

While there seems to be little information about the role of
SF-1 in gonadal cell proliferation, several studies of SF-1 in
mouse adrenal function have demonstrated direct correla-
tion between adrenal size and SF-1 gene expression, and
SF-1 gene copy number has an impact on proliferative po-
tential adrenocortical cells (15, 19, 133). SF-1 overexpres-
sion in human adrenocortical cells increases the prolifera-
tion rate in vitro, and transcript and microarray analysis
showed increased expression of regulators of cell cycle pro-
gression and reduced expression of pro-apoptotic factors
(65). An interesting study of the role of SF-1 on glycolytic
gene transcription demonstrated that knocking down SF-1
in vitro led to reduced proliferation of adrenocortical Y-1
cells (5). In terms of the mechanism by which this effect
occurs, it was postulated that the reduced expression of key
glycolytic genes due to SF-1 absence leads to significantly
lower levels of cellular ATP production, essential for the
generation of daughter cells (274).

D. Stem Cell Differentiation

After discovery of SF-1 in the early 1990s, Milbrandt et al.
(54) demonstrated that it directed mouse embryonic stem
(ES) cells towards a steroidogenic lineage, by inducing en-
dogenous Cyp11a1 expression via cAMP and retinoic acid
activation. These differentiated cells were nonetheless un-
able to biosynthesize steroids, due to the lack of cholesterol
transport proteins. This initial discovery led other groups to
explore the role of both SF-1 and LRH-1 in stem cell differ-
entiation, showing binding to the promoter region of the
OCT4 gene and the consequent activation of the transcrip-
tion of this pluripotency factor, in both murine and human
ES lines (94, 307). These authors showed that, as ES cells
began to differentiate, both SF-1 and OCT4 expression de-
creased, indicating SF-1 plays a role in maintaining pluri-
potency (307). More recently, it has been demonstrated that
both LRH-1 and SF-1 regulate and can replace OCT4 in
stem cells (282). In fact, LRH-1 can take the place of OCT4
in the derivation of induced pluripotent stem cells from
mouse somatic cells, with enhanced reprogramming effi-
ciency, relative to the classic four factors required for induc-
tion of pluripotency (OCT4, SOX2, FOXD3, and NANOG)
(7).

Following exit from the pluripotent state, cells respond dif-
ferently to the NR5A receptors. LRH-1 is capable of induc-
ing mesenchymal stem cell differentiation without SF-1 ex-
pression (311). SF-1 is also capable of inducing the adipose
tissue mesenchymal stem cells (MSC) to differentiate into
steroidogenic cells, as confirmed by the secretion of corti-
costerone (87). In contrast, the steroidogenic cells derived
from bone marrow MSC secreted gonadal rather than ad-

renal steroids (87). Recently, it was reported that mouse ES
cells could be differentiated into Leydig-like cells via SF-1
overexpression in vitro and that these cells are able to rescue
testosterone secretion when transplanted in the testes of rats
where Leydig cells had previously been ablated (309). In
terms of potential mechanisms, SF-1 directs stem cell differ-
entiation by inducing chromatin alterations, and by modi-
fying the chromosomal conformation of genomic regions,
via histone eviction and chromatin loop formation (189,
207).

In overview, there is substantial evidence to implicate the
orphan nuclear receptors of the NR5A family in two prom-
inent events in reproductive function, the regulation of stem
cell pluripotency and differentiation.

VIII. PHYSIOLOGICAL PROCESSES
RELATED TO REPRODUCTION

A. Embryogenesis

1. Early embryonic development

Both SF-1 and LRH-1 are expressed at multiple stages in
embryonic and fetal life, and both are essential for normal
embryonic development, demonstrated by their deletion via
targeted mutagenesis in the mouse. LRH-1 is abundantly
expressed in the morula and inner cell mass of the early
embryo (94). At embryonic day E7.5 in the mouse, LRH-1
is detected in foregut endoderm and is progressively ex-
pressed during the differentiation of the foregut into liver,
intestine, and pancreas (76). At day E17.5, LRH-1 exhibits
its adult expression profile in the liver, exocrine pancreas,
intestinal crypts, and stomach epithelium (76). By day
E11.5, bipotential gonads express LRH-1 and at E15.5,
when testis and ovaries are anatomically distinct, and the
signal for LRH-1 declines in gonads of both sexes (76). At
day E17.5, LRH-1 exhibits its adult expression profile in
the liver, exocrine pancreas, intestinal crypts, and gastric
epithelium (76).

Mice homozygous for a germline mutation in the gene en-
coding LRH-1 die between E6 and E7.5 (TABLE 3), a time
that corresponds to gastrulation, indicating that LRH-1
plays a crucial role in the formation of the early embryo
(208). Interestingly, development of the embryo to a multi-
cellular stage occurs (148), indicating that proliferation can
occur in the absence of LRH-1. Embryos heterozygous for
the mutation display growth retardation, epiblast disorga-
nization, and impaired primitive streak morphogenesis
(148). Failure of gastrulation is believed to be secondary to
defective visceral endoderm development (148). The mech-
anism is postulated to be related to the maintenance of
pluripotency of the embryonic cells. As noted above,
LRH-1 colocalizes with the pluripotency factors, OCT4 in
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the inner cell mass and in the embryonic epiblast of the
mouse, and LRH-1 is required to maintain OCT4 expres-
sion at the epiblast stage of embryonic development (94).

The ontology of SF-1 expression during development is less
clear (TABLE 3). Its first appearance is in the adrenal/go-
nadal primordium region of the mesoderm that condenses
to become the urogenital ridge on E9 in the mouse, and by
E11 it is found in the separated gonadal and adrenal anla-
gen (117). SF-1 expression then continues in the developing
steroidogenic portion of the adrenal gland and then in the
outer cortical region (E11–12) (117). It is not indispensable,
as mice with a germline mutation of SF-1 survive in utero,
but succumb by the eighth postnatal day due to adrenal
agenesis and consequent adrenocortical insufficiency (176).

2. Neural development

Tissue-specific depletion strategies indicate that SF-1 ex-
pression is required at multiple sites in the hypothalamic-
pituitary-gonadal axis (125, 138). In the adult mouse brain,
SF-1 is expressed exclusively in the VMH (40). In the hypo-
thalamus, SF-1 is found in mouse VMH precursor cells
from E11.5 onward (61, 251). Its expression is essential for
correct formation of this structure (116). In SF-1 knockout
mice, the VMH is present at E17, but with decreased cellu-
larity and abnormal organization that persists, at least until
birth (116). Germline knockout studies are buttressed by
results from a central nervous system (CNS)-specific SF-1
knockout mice model, where the animals show similar dis-
ruption of the VMH organization (139). Together these
findings indicate that SF-1 is not involved in the early stages
of VMH development, but that absence of this transcription
factor results in incorrect architecture and premature re-
gression of the structure.

SF-1 germline knockout animals can survive if supple-
mented with corticosteroids, and transplantation with
wild-type adrenal glands restores hypothalamic-pituitary-
adrenal function (179). These animals showed significant
decreased locomotor activity and late-onset obesity (179).
This suggests a role of SF-1 in energy homeostatic regula-
tion, a concept supported by the occurrence of severe obe-
sity in CNS specific SF-1 knockout mice (139).

3. Pituitary development

SF-1 is found in gonadotrophs of the developing pituitary at
E13.5, following �-glycoprotein subunit appearance
(�GSU), but before the expression of the �-subunits of LH
and follicle-stimulating hormone (FSH) (120). DNA meth-
ylation analysis has shown that SF-1 is silenced in progeni-
tor �T1 gonadotrophic cell lines, but active in both imma-
ture (�T3–1) and mature (L�T2) gonadotrophic cell lines
(152). This indicates that SF-1 does not direct precursor
cells to the gonadotrophic cell fate, rather, it regulates the
final differentiation steps.

4. Gonadal development

SF-1 is strongly expressed in the genital ridge of both male
and female mice, in the undifferentiated gonads from E9-
E13, before the sex determining region Y (SRY) protein
expression begins to induce sexual differentiation (117).
Germline inactivation of SF-1 in mice does not interfere
with normal early gonad development or with germ cell
colonization, but differentiation is arrested around E11–
11.5 and the cells degenerate via apoptosis (176). This sug-
gests that SF-1 is not involved in the early stages of gonad
identity specification, but required for differentiation, sur-
vival, and growth of the somatic cells already present in the
early indifferent gonad. SF-1 has been shown to participate
in the transcription of Sox9 by binding to its gonad specific
enhancer region together with SRY (240), and SOX9 in
turn activates anti-Müllerian hormone (Amh) transcription
together with SF-1 to induce male sexual development by
inhibiting the formation of female gonads (59).

As gonad differentiation occurs, SF-1 continues to be ex-
pressed in a diffuse manner in the interstitial region, the
testicular cords, and seminiferous tubules of the testis
(E12.5–15). In contrast, it disappears from the developing
ovary between E13.5 and 16.5, only to reappear after birth
in this organ (117). Sex-specific regulation is achieved by
repression of SF-1 by the forkhead box L2 (FOXL2) tran-
scription factor during ovarian development (263). As
chronicled above, one of the principal mechanisms by
which SF-1 regulates gonadal function is the induction of
steroidogenic enzymes (117). Furthermore, it has been
shown that SF-1 (and LRH-1) can transform both pluripo-
tent and mesenchymal stem cells into steroidogenic cells in
vitro (310). The combination of SF-1 with WT1, DMRT1,
GATA4, and SOX9 transformed mouse fibroblasts into
Sertoli-like cells (28). Together these observations demon-
strate the pivotal roles for both SF-1 and LRH-1 in gonadal
and reproductive tract development.

B. Gonadotropin Synthesis and Release

Neurons that are positive for SF-1 in the VMH express
estrogen receptor � (ESR1) as well as leptin receptors, both
known to be essential for appropriate gonadotropin secre-
tion (299). This regulation has been attributed to impinge-
ment of VMH projections onto gonadotropin releasing hor-
mone (GnRH) neurons (89); thus it is to be expected that
GnRH secretion would be impaired as the consequence of
developmental disruption of the VMH in the absence of
SF-1 (116). Support for this concept comes from CNS-spe-
cific SF-1 knockout mice that display diminished LH re-
sponses to exogenous GnRH relative to control animals
(138). It was concluded that the absence of SF-1 in cells of
the CNS and consequent abnormality has downstream ef-
fects in the form of reduced GnRH priming or synthetic
capacity of pituitary gonadotrophs.
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LRH-1 also plays a prominent role in the hypothalamus,
particularly in the regulation of the female reproductive
axis. LRH-1 expression in the CNS is localized to a limited
area of the brain, the arcuate nucleus that includes kisspep-
tin (Kiss) neurons, a region well known for the regulation of
GnRH secretion (3, 146). In mice, LRH-1 controls FSH
levels, follicle maturation, and estrous cycle by binding di-
rectly to the Kiss1 promoter and stimulating its transcrip-
tion (3). The consequence of the depletion of LRH-1 is the
reduction in the secretion of GnRH, which in turn reduces
gonadotropin secretion (3).

The promoter regions of the common �-subunit and the
subunits specific to the gonadotropic hormones, FSH� and
LH�, display the SF-1/LRH-1 response element, indicating
direct regulation by the NR5A receptors (81). Mutation of
this site eliminated LH� promoter activity (135). As noted
elsewhere, germline deletion of SF-1 has severe conse-
quences on prenatal reproductive development and postna-
tal reproductive function. The synthesis and secretion of
both LH and FSH are impaired, as is the expression of the
GnRH receptor on gonadotroph membranes (reviewed in
Ref. 323). Pituitary-specific knockout, targeting floxed SF-1
by means of Cre recombinase driving the �GSU common
subunit, depleted FSH and LH content in the pituitary to
the point of near absence, while all other pituitary hor-
mones were unaffected (323). The expected abrogation of
fertility followed.

LRH-1 has recently been detected in the anterior pituitary
gland, but its functional significance in vivo is only partially
understood. Indeed, LRH-1 mRNA and protein expression
were also found in both primary pituitary cells and gonado-
troph-derived cell lines (325). LRH-1 has been shown to
regulate gonadotropin gene expression, activating the FSH
and LH secretion from the rat anterior pituitary gland and
in gonadotropic cell lines, in vitro (325). This notwithstand-
ing, a recent study using a mouse model with a gonado-
troph-specific deletion of LRH-1 demonstrated that these
mice had normal pituitary FSH and LH expression and
intact fertility, indicating its expression in the pituitary is
dispensable in vivo (80).

C. Gonadal Function

1. Testis

As noted above, it has been shown that SF-1 and LRH-1 are
involved in the differentiation of mesenchymal stem cells into
steroid hormone-producing cells, and in induction of the ex-
pression of the androgen-specific enzyme CYP17A1 (313).
They therefore play a pivotal role in steroid hormone produc-
tion in human Leydig cells (311).

Given the demonstrated importance of both SF-1 and
LRH-1 in regulation of steroidogenic enzymes and factors

(76), various groups have explored their roles in testicular
function. Interestingly, LRH-1 was undetectable in the Ser-
toli cells that regulate the development of germ cells and
where SF-1 expression is high (218, 248). On the other
hand, LRH-1 is expressed at appreciable levels, quantita-
tively greater than SF-1, in Leydig cells as well as in
pachytene spermatocytes and round spermatids (218, 248).
Furthermore, LRH-1 is expressed in several rat and mouse
testicular cell types where it regulates aromatase expression
(218).

Additionally, as discussed above, SF-1 plays a role in the
development of testis. It stimulates the expression of AMH,
inducing the regression of the Müllerian ducts in the devel-
oping fetus and inhibiting female genitalia formation (242),
and in the absence of SF-1 in male germline, a sex reversal
phenotype is observed demonstrating the essential role SF-1
in testis formation and function (120, 235, 245). In mature
testes, SF-1 is expressed in the Leydig cells, where it regu-
lates progenitor cell formation and survival, and in the Ser-
toli cells of the seminiferous tubules, where, as it is the case
in the developing testes, it plays a role in AMH transcrip-
tion (113, 131). Leydig-specific SF-1 knockout mice have
been produced via the inactivation of SF-1 in cells express-
ing the AMH type 2 receptor (Amhr2) (TABLE 3) (125).
Male mice in this model were infertile and also showed
undescended, hypoplastic testes with abnormal structure.
The lumina of the seminiferous tubules were closed, and
spermatogonia failed to develop into sperm. This effect was
attributed to androgen deficiency, and indeed, CYP11A1
and STAR expression, essential upstream proteins in testos-
terone production, were significantly reduced.

Precocious expression of LRH-1 in mice leads to preco-
cious induction of androgen synthesis and early puberty
(68) most likely due to effects on the hypothalamic-pitu-
itary mechanisms regulating the onset of reproductive
function. In contrast, mice heterozygous for LRH-1 mu-
tation, i.e., where only a single functional allele is pres-
ent, have circulating testosterone levels that are less than
half of what is observed in their wild-type littermates
(277). Recent investigation showed by immunogold lo-
calization that LRH-1 is present in the head of human
spermatozoa, with markedly reduced expression in the
neck and across the tail, but also in different stages of
testicular germ cell development (191). This study dem-
onstrates that LRH-1 plays a role in sperm motility, sur-
vival, and cholesterol efflux and appears to serve as a
downstream target of estrogenic signaling.

2. Ovary

In granulosa-specific SF-1 knockout mice, obtained via the
depletion of SF-1 in the granulosa cells by means of Amhr2
Cre, females were infertile and showed hypoplastic ovaries
with reduced numbers of oocytes and complete absence of
luteal formation (214). This was an important indicator
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that SF-1, like LRH-1, is crucial for normal ovarian func-
tion. Indeed, as noted in the section on steroidogenesis, SF-1
has been shown to directly regulate theca cell transcription
of CYP19A1, and also to bind CYP17 and STAR promoter
regions in the ovary (196, 280). While studies have mainly
reported low SF-1 expression in the mouse corpus luteum
(106), bovine studies have shown that SF-1 inhibition leads
to a significant decrease in progesterone production in lu-
teal cells (190). Analysis of NR5A receptor expression in
the rat ovary indicated that SF-1 was expressed in ovarian
cell types, i.e., granulosa, thecal, and luteal cells at a higher
level than LRH-1, which is restricted to the granulosa cells
(72). In the macaque corpus luteum, SF-1 regulates the lu-
teal secretion of inhibin-� (INHA), known to play a crucial
role in suppression of FSH secretion (261). One of the im-
portant roles of SF-1 in granulosa cells, beyond biosynthesis
of steroids, is its capacity to modulate the expression of
AMH, a hormone involved in the ovarian reserve. In this
context, SF-1 requires interaction with FOXL2 to bind the
AMH promoter and induce its transcription (126). These
interactions have not yet been well studied, but it has also
been shown that FOXL2 is a suppressor of SF-1, leading to
the inhibition of CYP17A1 transcription and interrupted
follicle development (209).

SF-1 has other target genes in ovarian tissue. One of these in
human steroidogenic cells is 5-aminolevulinic acid synthase
1 (ALAS1), a rate-limiting enzyme for heme biosynthesis in
mammals (128). This enzyme plays a role in progesterone
production via the supply of heme as a prosthetic group of
P450 steroid hormone-synthesizing enzymes (128). In an-
other example, SF-1 combines with SMAD3 to activate
transforming growth factor (TGF)-�3-induced CYP19A1
expression and subsequent estradiol synthesis and secretion
in mouse granulosa cells (166). The expression of another
SF-1 target gene, CYP17A1, is negatively regulated by the
AP-1 family member FOS, a protooncogene that can reduce
SF-1 activity by blocking both its transcription and binding
to its LBD hinge region (247).

LRH-1 is highly expressed in the mouse ovary and is specific
to the steroidogenic granulosa and luteal cells, and dis-
tinctly absent in theca cells and ovarian stroma (106). It has
also been identified in equine (21), rat (72), rabbit (1), bo-
vine (75), and human (248) ovaries. During folliculogen-
esis, LRH-1 is expressed in the pre-granulosa cells of pri-
mordial follicles, in the granulosa cells of primary follicles,
and at all later stages of follicular development (76, 183).
LRH-1 plays a major, but not indispensable, role in granu-
losa cell proliferation (68, 183) and is also induced signifi-
cantly in the CL during pregnancy (107). In rodents, the
expression of LRH-1 is increased by FSH in granulosa cells,
and by prolactin in luteal cells (72).

The essential role of LRH-1 in reproductive function and
steroidogenesis in vivo is evidenced in mice heterozygous

for a null mutation of LRH-1, where females are infertile
due to a dysregulated luteal function (149). Additionally,
granulosa-specific LRH-1 knockout females are also infer-
tile, due to the failure in both cumulus expansion and ovu-
lation, effects that cannot be redressed by gonadotropin
stimulation (68, 125). The normal expression of a number
of genes is disrupted in this mouse model, including the
steroidogenic genes Cyp11a1, Cyp19a1, and Star, as well as
the rate-limiting gene in prostaglandin synthesis, the pros-
taglandin-endoperoxide synthase 2 (Ptgs2), and genes asso-
ciated with cholesterol transfer such as Scarb1 (68).

Another transgenic mouse model with the effect of deple-
tion of LRH-1 in granulosa cells of antral follicles produced
infertile females due to incomplete cumulus expansion, as
well as a lack of ovulation (14). Key genes involved in the
process of cumulus expansion and ovulation such as epi-
regulin (Ereg), amphiregulin (Areg), betacellulin (Btc), and
tumor necrosis factor stimulated gene-6 (Tnfaip6) are sig-
nificantly downregulated while connexin 43 (Gja1) is dras-
tically upregulated in this knockout mouse model. Interest-
ingly, the nonovulated oocytes can be fertilized by intracy-
toplasmic sperm injection (ICSI), indicating that their
viability is not affected, thus confirming that the absence of
LRH-1 in granulosa cells and failure of ovulation is the
genesis of their infertile condition (14). To further study the
role of LRH-1 in ovulation, a CL-specific LRH-1 knockout
mouse model was created and produced females capable of
breeding, where ovulation and fertilization occurred, but
the animals were infertile. In this mouse model, luteal size is
reduced, and luteal function compromised, as evidenced by
reduced circulating levels of progesterone. Ovarian expression
of steroidogenic factors, including STAR and CYP11A1, is
dramatically reduced, demonstrating that LRH-1 is required
for luteal function (318).

These ovarian results are largely recapitulated in another
transgenic mouse model generated by means of an inducible
shRNA under the influence of a TET promoter, where
LRH-1 depletion is actuated at will in vivo (85). The TET-
treated females present a consistent reproductive phenotype
that mimics the LRH-1 granulosa-specific knockout. Inter-
estingly, the infertility is fully reversible after the cessation
of LRH-1 knockdown, with no signs of permanent changes
due to the transient reduction of LRH-1 expression.

These various examples demonstrated that SF-1 and LRH-1
are essential modulators of ovarian function in mammals,
and that they are promising targets for novel fertility and
contraceptive treatments.

D. Gestation

Years of fundamental and applied research have shown that
progesterone, produced principally by the corpus luteum
during early gestation, is crucial for the initiation of preg-
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nancy, for embryo implantation, for maintenance of preg-
nancy, and for suppression of the LH secretion that induces
ovulation in mammals. Progesterone further drives decidu-
alization, a process by which stromal cells differentiate into
decidual cells. Decidualization of the maternal stroma is key
to a successful implantation and appropriate placental for-
mation, and it confers maternal immunotolerance to the
fetus (reviewed in Ref. 221). Studies have reported that SF-1
expression is absent from the fetal components of the pla-
centa, including trophoblast cells in humans and in rodents
(258, 303). SF-1 expression does not appear to be a regula-
tory factor in the healthy uterine tissues, although its con-
tinued expression in the CL of pregnant bovine and porcine
ovaries indicates that it plays an essential role in maintain-
ing gestation (190, 223). The cofactors DAX1 and WT1
have been shown to inhibit the cAMP-dependent transcrip-
tional activity of SF-1 on CYP19A1 expression in cultured
human endometrial cells (95). In mouse models where SF-1
expression is depleted specifically in granulosa cells, uterine
development is significantly reduced in the epithelial, myo-
metrial, and stromal layers, resulting in absent or fewer
complex endometrial glands (214). The effect was not in-
terpreted to be direct; rather, absence of SF-1 in ovarian
granulosa cells leading to impaired steroidogenic gene ex-
pression, and the consequent reduction in ovarian estradiol
production, is insufficient to stimulate normal uterine dif-
ferentiation. In a novel mouse model, induction of overex-
pression of SF-1 in cells expressing progesterone receptor
(PGR) was characterized by abnormal uterine morphology,
with enhanced endometrial gland and cyst development,
and consequent infertility in females (275). Endometrial
cells of the SF-1 overexpressing mice did not express PGR
and were unable to decidualize in response to hormone
stimulation, suggesting that SF-1 silencing is essential for
normal uterine function.

Zhang et al. (318) demonstrated that LRH-1, expressed in
the mouse and human endometrium, is necessary for endo-
metrial decidualization, placenta formation, and ultimately
successful pregnancy. This was shown in a CL-specific
LRH-1 knockout mouse that displayed luteal insufficiency,
and where gestational failure cannot be mitigated by pro-
gesterone supplementation (318). Progesterone treatment
induces successful implantation, but embryo development
fails due to defects in placentation. These effects transpire at
different times among animals, some soon following im-
plantation, some as late as day 16 of pregnancy, and some
at varying intervals. Uterine genes essential for gestation
that are deregulated when LRH-1 is depleted from mouse
CL and endometrium are Hoxa10, Wnt4, Wnt5, Bmp2,
Ppard, and Hbegr. In humans, siRNA reduction of LRH-1
impaired decidualization of the endometrium (318) and
therefore the development of the placenta by affecting the
invasion of extravillous trophoblastic cells into the uterine
decidua (319). Thus LRH-1 is essential for appropriate es-
tablishment of the maternal-fetal connection, and insuffi-

cient expression may be a factor in human gestational pa-
thology, including pre-eclampsia (319).

E. Reproductive Behavior

As mentioned above, SF-1 is strongly expressed in the VMH
nucleus and is essential for the normal function of neurons
of this region, with impact on mammalian behavior includ-
ing physical activity, anxiety, and aggressiveness (90, 179,
324). The VMH also regulates reproductive behavior, and
the female sex hormones estrogen and progesterone se-
creted at different stages of the ovarian cycle lead to modi-
fications in VMH neuron morphology (90). CNS-specific
SF-1 knockout mice show impaired female reproductive
function, with abnormal sexual behavior, irregular estrous
cycles, and subfertility (138). The marked reduction in lor-
dosis and receptivity observed in females of this mouse
model may be caused directly by altered VMH organiza-
tion, preventing neuron projection to the medial central
gray and peri-aqueductal gray regions where lordosis is
controlled (36), or indirectly where ventromedial neurons
of the VMH are unable to transmit excitatory signals to
GnRH neurons and with effects on steroid synthesis and
subsequent reproductive behavior (316). Although studies
have shown that some components of male sexual behavior
and copulatory performance are induced by androgen acti-
vation in the VMH, in addition to the essential androgen
receptor activity in the medial preoptic area (MPOA), CNS-
specific SF-1 knockout male mice do not show impaired
reproductive behavior (101, 138). To our knowledge, no
studies have been published on the effect of LRH-1 on re-
productive behavior.

IX. PATHOLOGICAL PROCESSES RELATED
TO REPRODUCTION

A. Genetic Abnormalities

Although no complete deletions of the SF-1 gene appear to
have been observed in humans to date, non-silent single
nucleotide polymorphisms, frameshifts, and partial dele-
tions have been described as causal to disorders in the
heterozygous state (reviewed in Ref. 260). Due to its essen-
tial role in steroidogenesis, the SF-1 mutations in humans
were initially linked to adrenal insufficiency and gonadal
dysgenesis, where 46XY patients presented external female
genitalia, uterine and upper vagina structures, and primary
adrenal failure (46,XY DSD) (77). Heterozygous mutations
in SF-1 are the cause of up to 20% of 46,XY DSD cases,
without affecting adrenal function, and reported to account
for ~4% of infertile men with severe spermatogenic failure
that do not have chromosomal anomalies (9, 141). Single
nucleotide variations and missense mutations in the human
SF-1 gene have been associated with low testosterone levels,
elevated gonadotropin secretion, azoospermia, oligozoo-
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spermia, and hypospadias (9, 142). Women that carry SF-1
heterozygous mutations show a wide range of clinical phe-
notypes, some with no impact whatsoever, while others
show 46,XX gonadal dysgenesis or agenesis, accompanied
by conditions such as primary or secondary amenorrhea,
precocious depletion of the ovarian reserve, and consequent
premature ovarian failure (34, 173). Recent clinical evalu-
ations have demonstrated the presence of SF-1 mutations in
women with primary ovarian insufficiency (POI) to be rare,
excluding it as a prevalent genetic factor for this condition
(124, 276). Most clinical accounts of SF-1 anomalies have
been associated with loss of function, but there have been
reports of SF-1 overexpression and overactivity as well.
This has been attributed, in some instances, to copy number
variation of SF-1 through genomic duplication at its chro-
mosome locus or, alternatively, upregulation of SF-1
through decreased promoter methylation, leading to tumor
development (78, 220). There appears to be no published
information on human genetic abnormalities attributable
to LRH-1.

B. Endometriosis

Endometriosis is characterized by presence of endometrial
glands and stroma in ectopic locations, usually the perito-
neal cavity, causing abnormal growth that can lead to per-
sistent pelvic pain and infertility (31). In addition to some
genetic predisposition, estrogen dependency, progesterone
resistance, and inflammation are clear molecular indicators
of the disease, mediated by growth factors, metalloprotei-
nases, prostaglandins, and cytokines (26, 31, 230). Bulun
et al. (200) showed that, while normal endometrial tissues
do not express steroidogenic genes, uterine tissues from
women with endometriosis showed detectable expression
of CYP19A1 and estrogen production. Further studies
showed that inflammation and estrogen production in endo-
metriosis are connected by positive feedback that promotes
expression of factors including STAR, CYP19A1, and PTGS2,
all of which have been shown to be aberrantly overexpressed
in endometriotic lesions (29, 206). The regulation of these
steroidogenic genes strongly suggests that SF-1 and LRH-1
play a role in endometriosis. Indeed, studies have shown
that while in normal endometrial cells, chicken-ovalbumin
upstream-transcription factor (COUP-TF) and WT1 bind
to the promoter region of CYP19 to inhibit its expression,
in endometriotic stromal cells, the presence of SF-1 expres-
sion competes with these two transcription factors to in-
duce steroidogenic gene transcription (4, 95). Experiments
in which prostaglandin E2 (PGE2) was overexpressed in
vitro demonstrated that de novo steroidogenesis in endo-
metriotic tissues is regulated by the PGE2-cAMP-SF-1 path-
way, with driving estradiol production (4). Moreover, Tian
et al. (267) showed the abundance of SF-1 and its target
gene STAR to be correlated with the severity of endometri-
osis.

In terms of mechanisms, it has been shown that the SF-1
gene is differentially methylated in the endometrium of
women with endometriosis, compared with those not af-
flicted with the disease (114). The hypothesis that SF-1 is a
determinant factor in endometriosis has been supported by
the fact that, in nonpathological conditions, the SF-1 pro-
moter and exon I region of endometrial stromal cells shows
a dense methylation pattern, epigenetically silencing SF-1
expression (301). When aberrant demethylation of the SF-1
promoter occurs, as it is observed in endometriosis, expres-
sion of SF-1 is upregulated (301). In turn, this overexpres-
sion of SF-1 causes an increase in steroidogenesis, favoring
inflammation and growth of ectopic endometrial tissue.
The mouse model described above with conditional uterine
overexpression of SF-1, where mice showed enlarged, aber-
rant endometrial glands and activated immune response,
provides experimental support for a role of this transcrip-
tion factor in endometriosis (275).

C. Cancer

Accumulating evidence indicates that LRH-1 participates in
the pathogenesis of tumors of multiple sorts (reviewed in
Ref. 198) including pancreatic (11, 216), breast (266), gas-
tric (284), and colon cancer (239). Suppression of LRH-1 in
colon cancer (10) or osteosarcoma cells (165) inhibits but
does not eliminate proliferation. Recent studies showed
that, in some pancreatic cancer cell lines, higher LRH-1
mRNA levels were present compared with normal pancre-
atic ductal epithelium cells (11). Overexpression of LRH-1
in these pancreatic cancer cell lines is characterized by a
phenotype of increased cell proliferation, via upregulation
of genes, including cyclins D and E that regulate cell cycle
and c-Myc, a protooncogene that controls generation of
self-renewing metastatic cancer cells (121). Also upregu-
lated are the metalloproteinases MMP2 and MMP9, impli-
cated in metastasis and known to facilitate tumor growth,
cell migration, and tumor invasion (93). Moreover, LRH-1
can promote pancreatic cancer metastasis (11, 169) and
promotes intestinal tumor proliferation in gastrointestinal
tumors by activating the Wnt/�-catenin pathway (10, 284).
LRH-1 also contributes to intestinal tumor formation via its
interaction with �-catenin/TCF4, known to induce cyclins
D1/E1, which in turn regulate the cell entry in the G1/S phase
of the cell cycle and their subsequent proliferation (23).
LRH-1 has been shown to drive colon cancer cell growth by
repressing the expression of CDKN1A in a p53-dependent
manner (143), the same mechanism that is involved in
LRH-1 regulation of breast cancer (see below). Overall,
LRH-1 acts in the initiation of intestinal tumor formation
through effects on the cell cycle and through impact on
inflammatory pathways.

Estrogens have been shown to promote proliferation of ma-
lignant ovarian cancer cell lines, while progesterone inhibits
proliferation and promotes apoptosis of these cells (175).
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Ovarian cancer researchers have identified SF-1 as a poten-
tial repressor of cancer cell proliferation, due to its crucial
role in progesterone biosynthesis. Studies have demon-
strated that transient expression of SF-1 in certain human
ovarian cancer cell lines inhibits estrogen-induced prolifer-
ation and promotes apoptosis (225). While SF-1 gene ex-
pression is observed in human epithelial and metastatic tu-
mors of the ovary, these adenoma and carcinoma cells do
not present SF-1 immunoreactivity (236). Conversely, clin-
ical studies have suggested that ovarian tumors with func-
tioning stroma secrete estradiol via the regulation of aro-
matase (CYP19), due to overexpression of SF-1 (103). A
recent extensive meta-analysis of a wide range of ovarian
cancer clinical studies was aimed at determining whether
SF-1 is associated with ovarian tumor progression (115).
The results demonstrated that SF-1 expression level is sig-
nificantly lower in ovarian cancer than in normal ovarian
tissues, perhaps due to epigenetic silencing via increased
methylation of the SF-1 gene (186). A further conclusion
was that SF-1 expression pattern could serve as a marker to
differentiate ovarian sex cord stromal tumors, where SF-1 is
higher, from ovarian cancer, where it is markedly lower. A
similar observation was made in granulosa cell tumors,
where both SF-1 and LRH-1 expression was increased
when compared with normal ovarian tissues as well as, in
the case of SF-1 only, cells from other types of ovarian
cancer (mucinous and serous) (42). This study also demon-
strated that in the granulosa cell tumor-like in vitro cell line
(KGN), SF-1 binds preferentially to the aromatase pro-
moter II region relative to LRH-1, indicating that SF-1 is
driving aromatase expression in this type of ovarian cancer
(42). LRH-1 action in this context remains unknown, pos-
sibly functioning to activate proliferation. Similar results
were observed in both human and rat testicular Leydig cell
tumors, where elevated levels of aromatase mRNA were
linked to increased SF-1 expression (257).

These clinical and cellular cancer studies demonstrate that
both SF-1 and LRH-1 play different roles in ovarian cancer,
depending on the type of tumor, or even the cell type of
origin of the tumor.

Finally, there is considerable evidence implicating LRH-1
involvement in breast cancer (84). In the human breast,
LRH-1 is expressed in the stromal compartment and in
undifferentiated adipose tissue where it regulates aromatase
expression and promotes estrogen biosynthesis (84). Its ex-
pression promotes proliferation, migration, and invasion of
breast cancer cells in vitro (154). LRH-1 expression is reg-
ulated by estrogen, and its mRNA transcript levels have
been proven to be higher in ESR1-positive but more stable
in ER�-negative cells (154). In ER�-positive breast cancer
cells, LRH-1 promotes cell proliferation by increasing es-
trogen biosynthesis by regulating aromatase expression
(266) and by ESR1-mediated transcription of target genes
such as GREB1 (43). Estrogen-dependent breast cancer is

often treated with aromatase inhibitors or estrogen receptor
agonists such as tamoxifen. Altered expression and func-
tions of microRNAs have been reportedly associated with
tamoxifen resistance (326). The microRNA miR-027b-3p
directly targets and inhibits the expression of LRH-1 and
CREB1, and its levels were found to be significantly nega-
tively correlated with LRH-1 and CREB1 levels in breast
cancer tissues (326). As further evidence of a role for LRH-1
in mammary carcinogenesis, LRH-1 levels have been shown
to be particularly elevated in chemoresistant breast cancer
tissues from patients after recurrent chemotherapy (283).
LRH-1 promotes breast cancer cell resistance to chemother-
apy by upregulating the checkpoint protein MDC1 to en-
hance DNA damage repair (283). Furthermore, indepen-
dent of its interactions with estrogen, LRH-1 overexpres-
sion was observed to promote remodeling of the actin
cytoskeleton and E-cadherin cleavage, contributing to in-
crease migration and invasion of the cancerous cells (41).
Analysis of breast cancer samples by Bianco et al. (17) also
revealed that LRH-1 regulates cell proliferation by inhibit-
ing CDKN1A expression, thus removing an endogenous
brake on proliferation. As above, this mechanism occurs
independent of the proliferation involving ESR1 or p53.
High levels of LRH-1 are also associated with poor breast
cancer prognosis (16, 17). Given its important role in the
progression of both estrogen-positive and -negative can-
cers, and its involvement in regulating hormone-indepen-
dent pathways such as CDKN1A, it is clear that inhibition
of LRH-1 could provide a powerful new approach for the
treatment of endocrine-resistant breast cancer (16, 17). To
our knowledge, no studies have shown SF-1 deregulation or
involvement in breast cancer.

X. LRH-1/SF-1 INTERACTIONS

Given the structural similarities of SF-1 and LRH-1, along
with their demonstrated ability to bind to the same DNA
sequences, one would expect that they could reciprocally
compensate for one another. In a number of tissues, partic-
ularly those in the digestive system, compensation does not
occur because of the lack of significant overlapping expres-
sion (199). Other factors may be in play, due to differences
in structure between the two nuclear receptors that have
been shown to exist, including variation in helix length
(144), which could result in differential responses to endog-
enous agonists. There are species differences as well, partic-
ularly in the size and primary structure of the ligand-bind-
ing pocket, such that the mouse appears to have undergone
a radical reduction in the capacity to bind ligands by both
SF-1 and LRH-1 (144). In addition, there is some evidence
that the two nuclear receptors are differentially sensitive to
the inhibitory effects of DAX1, and this cofactor is more
potent in repressing the transactivation of steroid synthetic
enzymes by LRH-1 than by SF-1 (33).

LRH-1 and SF-1 are coexpressed in the ovary at all stages of
the estrous cycle (106). The ovary-specific models of deple-
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tion targeting the follicular granulosa cells by means of the
Amhr2 Cre driver argue that compensation of LRH-1 for
SF-1 depletion, or conversely, SF-1 for LRH-1, does not
occur (68). Indeed, there are only modest increases in
mRNA for LRH-1 in the ovaries of the Amhr2/SF-1 gran-
ulosa specific knockout mouse, in both the gonadotropin
stimulated and untreated conditions (214). As noted above,
the Amhr2/SF-1 female mouse is infertile due to disruption
of the follicle development trajectory (214), while in the
Amhr2/LRH-1 ovary, large antral follicles that appear
structurally normal are present, but these fail to ovulate (13,
68). These differences occur even though the two receptors
regulate many of the same genes, particularly those associ-
ated with steroidogenesis, and in the same cells.

Both SF-1 and LRH-1 are present and active in the murine
corpus luteum (106), but, as above, SF-1 cannot compen-
sate for LRH-1 deficiency in this tissue (318). This may be
due to the differential amounts that are recruited to promot-
ers of the genes of luteal function in response to luteotropic
stimuli, as reported by Weck et al. (287). By means of a
chromatin immunoprecipitation technique, these authors
showed that SF-1 binding to the Inha subunit promoter
decreases and LRH-1 binding increases following activa-
tion of the cAMP signal that induces granulosa cell differ-
entiation to luteal cells. One potential mechanism for this
change is the relative expression (LRH-1 up, SF-1 down) of
the two nuclear receptors following stimulation of the ovar-
ian cells with gonadotropins (287). A further possibility is

that stimulatory ligands may differentially regulate LRH-1
versus SF-1 transactivation by acting through different in-
tracellular signaling mechanisms (287). The mechanisms of
selective action clearly merit further investigation.

XI. SUMMARY, CONCLUSIONS, AND
FUTURE PERSPECTIVES

The NR5A receptors are nuclear receptor proteins that act
as transcription factors. They are evolutionarily conserved,
as orthologs and paralogs are found in metazoans, from
roundworms to mammals. The two mammalian forms,
known as LRH-1 and SF-1, are common to reproductive
tissues, but are also differentially expressed across a wide
range of organs. While they interact with the same or highly
similar DNA sequences, they have multiple, often nonover-
lapping actions, and cannot compensate for each other.
While a good deal is known about SF-1 and LRH-1, the
interaction, synergy, or antagonism of the multiplex array
of regulators, from cofactors to miRNA to epigenetic mech-
anisms, remains far from completely explained. Regulation
by the two receptors appears to be cell and context specific,
and the extent of commonality is unclear.

Much new information has emerged in recent years with
respect to their differential roles in the regulation of fertility,
derived primarily from conditional, cell-specific mutations
in mice (TABLE 3 AND FIGURE 6). Again, this information

FIGURE 6. Summary of the essential cellular and physiological effects of the NR5A receptors liver receptor

homolog-1 (LRH-1) and steroidogenic factor-1 (SF-1) in reproductive tissues using the mouse as a model.
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demonstrates that SF-1 depletion in granulosa cells disrupts
the follicle development process, while folliculogenesis pro-
ceeds to the large antral stage in LRH-1-depleted follicles.
Most models of depletion of either of the nuclear receptors
in granulosa cells are anovulatory, with the exception of the
knockdown at the late peri-ovulatory state in the PgrCre/
LRH-1 mouse. LRH-1 is an essential regulator of endome-
trial decidualization, while SF-1 appears to be present in
endometriotic tissue. Both LRH-1 and SF-1 regulate steroid
synthesis, but often in different tissues: LRH-1 in granulosa
cells, SF-1 in theca and Leydig cells. In some tissues, such as
the corpus luteum, LRH-1 and SF-1 are co-expressed and
the extent of overlap in their targets is yet unknown.

It is enigmatic that two receptors that bind to the same
DNA sequence in the same tissue can have disparate effects.
Are there yet undiscovered endogenous ligands that selec-
tively modulate their activity? Are the differential effects
related to the dose of the receptors present in the cell? Both
receptors are implicated in stem cell pluripotency, but in
other circumstances, such as decidual conversion of endo-
metrial stromal cells, LRH-1 is essential for terminal differ-
entiation. LRH-1 appears to be a potent impetus for cell
proliferation, but is not an absolute requirement, as em-
bryos develop to a multicellular stage in germline deleted
mice, and depletion in the ovary only partially compromises
granulosa cell multiplication. These are among the many
questions that need to be addressed in future research.
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