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—NOTES—

THE OSCILLATIONS OF A VISCOUS LIQUID DROP*

By W. H. REID (Brown University)

1. Introduction. In his discussion of the effect of viscosity on the small oscillations
of a liquid globe, Lamb [1, pp. 639-641] observed that the results obtained in the limiting
case of 'small viscosity' are independent of the nature of the forces which produce the
tendency to the spherical form. When these forces are due to self-gravitation, the problem
has been solved completely by Lamb [2] and Chandrasekhar [3] for arbitrary values of
the viscosity, and the latter author has given detailed numerical results for the aperiodic
modes of decay for I — 1, 2, 3 and 4, where I is the order of the spherical harmonic
deformation considered.

The question then arises whether or not these more general results for arbitrary
values of the viscosity are also independent of the nature of the forces which produce the
tendency to the spherical form. While no attempt will be made to answer this question
in complete generality, it will be shown that when these forces are due to surface tension
the results obtained are identical with those obtained by Lamb and Chandrasekhar for
a self-gravitating globe.

2. Statement of the problem. We consider a liquid drop which, in the undisturbed
state, will be spherical under the action of surface tension forces. If the external pressure
is taken to be zero, then the internal pressure will have the constant value

V = 2 Tr/R, (1)

where Tx is the surface tension per unit length and R is the radius of the sphere. To
study the oscillations of this configuration we consider a deformation of the liquid
surface of the form

r = B[l+tn(»,p)], (2)

where F™(0, <p) = is a surface harmonic of the first kind and « « 1. In the
absence of viscosity, assuming a time dependence e = e0e'", the frequencies of oscillation
are [1, p. 475]

al.o = 1(1 - m + 2) ̂ 3 , (3)

and are the same for all values of m.
When viscosity is included, the departures from the equilibrium state are then

governed by the linearized equations of motion

^7 = —grad — — v curl2 u and div u = 0. (4)
at p

*Received January 29, 1959. This work was sponsored by the Office of Naval Research under Con-
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On taking the divergence of this equation we have V2(Sp/p) = 0; accordingly, the first
order change in the pressure in the sphere is

bp/p = eP0x' YT, (5)

where x = r/R and P0 is a constant of integration that must be determined later from
the boundary conditions. Equation (4) must now be solved for u as an inhomogeneous
equation with Sp/p given by Eq. (5). In treating the viscous case, it is convenient to
take the time dependence in the form t = e0e~" so that the real part of u will be always
positive.

Since grad (dp/p) is a poloidal divergence-free vector, it can be represented in terms
of a single defining scalar function II (x); in this representation its r-component is given by

grad = w2R^r- Yte~", (6)

where

n(x) = n0x,+1 and n0 = (l/a2R2)P0 . (7)

Since grad(5p/p) is a purely poloidal vector, it follows that u must also be purely poloidal
and, accordingly, it too can be represented in terms of a single defining scalar function
U(x); its r-component can then be written in the form

ur = wR ^ Ymte~". (8)
X

When defined in this manner, both II (x) and U{x) are dimensionless. The dynamical
equation for U(x) which then follows from Eq. (4) is

\l_ 1(1+1)
L dx2 ~2 + q U{x) = g2n(z), (9)x

where

q'2 = <rR2/v. (10)

3. Boundary conditions. At the deformed surface of the drop the radial component
of the velocity must be equal to the velocity of the surface itself and this requirement
leads to the kinematical boundary condition

U = —1 at x = 1. (11)

The other boundary conditions are obtained by considering the behavior of the viscous
stresses at the surface. Thus, the requirement that the tangential stresses vanish at the
surface leads to the single boundary condition

2 d . 1(1 1)
]'dx2 xTx + ^r-lc/ = 0 at x = 1- (12)

These two boundary conditions are clearly independent of the nature of the forces
which tend to maintain the spherical form, but the third boundary condition, which
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follows from considering the normal component of the viscous stress, is not. This stress
component is given by

-prr = p + Sp - 2/i (13)

and the condition to be imposed at the surface is

~P" = Ti{r1 + w) ' (14)
where Rt and R2 are the principal radii of curvature, reckoned positive when directed
inwards. For a surface deformed in the manner (2), we have [1, p. 475]

*r + ?r = ^[2 + ^- w + 2)eF"]- (15>111 -*^2 ^

The third boundary condition can therefore be written in the form

-*»£($) at *-'■ <i6>

The solution of Eq. (9) subject to the boundary conditions (11), (12) and (16) then leads
to a characteristic equation for c in terms of the physical parameters of the problem.

4. Solution and results. The derivation of the characteristic equation for a is not
difficult but can be entirely avoided in the following manner. Observe that the dependence
of the boundary condition (16) on is more apparent than real; for, if we let

2 <?l;oR _ _ ,i .J. O'l-.f Q fia -   so that   = -j , (17)
v o-j.Q a

then this third boundary condition can be written in the form

a4 = (f {g2n0 - 2l[U'(V) - 217(1)]} (18)

and this relation no longer contains any physical parameters of the problem. It is, in
fact, identical with the corresponding boundary condition for a self-gravitating sphere;
the solution, in terms of a and g, must therefore be identical with the one given by Lamb
and Chandrasekhar:

— -4- 1 =
54

agy-a [»+<i+d * Z ] • (19)
where

Qi+i/zio) — J i +3/2(0)/J i+1/2(3) (20)

and the J's are spherical Bessel functions. For q —» <», the hmiting case of
'small viscosity', we recover Lamb's result

= {I — 1)(2Z + l)v/R2 ± i<r 1 ;0 . (21)

Thus, the physical forces which maintain the spherical form enter only in the definition
of the inviscid modes crt ;0 and these, as we have seen, can be completely eliminated by a
suitable choice of dimensionless parameters.

The characteristic equation (19) admits solutions of two types. For values of a
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which exceed a certain critical value, damped oscillations will occur, but for values of a
less than this critical value, two aperiodic modes of decay appear. The solution of Eq.
(19) at this critical point for the principal mode I = 2 is [3]

ct2.qR2/v = 3.69 and <r2-,,/<r2-o = 0.968. (22)

For a drop of water surrounded by air (T, = 74 dynes/cm) this gives a radius R = 0.23
mm. Drops larger than this critical radius will therefore tend to oscillate while smaller
drops will be aperiodically damped.
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ON THE DIFFRACTION OF AN ARBITRARY PULSE
BY A WEDGE OR A CONE*

by LU TING (Polytechnic Institute of Brooklyn)

Abstract. By virtue of Green's Theorem, it is shown that for the diffraction of an
arbitrary two-dimensional incident pulse by a wedge of angle n, the ratio of the resultant
velocity potential to the corresponding value of the incident pulse at the corner of
the wedge at any instant is equal to 2x/ (2x — n); and that for the diffraction of a three-
dimensional pulse by a cone of solid angle u>, the ratio at the vertex of the cone is equal
tO 4ir/ (47T — co).

Two-dimensional space. The statement concerning diffraction of a pulse by a
wedge is evidently true in the special case of an incident plane Heaviside pulse which
was solved by Keller and Blank [1]. It therefore also follows for all incident pulses which
are superpositions of plane Heaviside pulses, or limits of such superpositions. Since
this includes all incident pulses it yields the preceding statement. However, these con-
siderations depend upon knowing the exact solution in a special case which the follow-
ing proof does not require.**

Let t — 0 be the instant at which the incident pulse <pM hits the corner of the wedge,
which is located at the origin (xL = 0, x2 = 0). Let h(xi , x2) and k(xx , x2) denote, re-
spectively, <pU) and <p\l) at an instant t = — t0 < 0 if the corner is absent. If G represents
the domain in the xx — x2 plane outside which both h and k vanish, then the origin must
lie outside G. When the wedge is present, the region G lies outside the wedge if the
incident disturbance (pM has not hit either side of the wedge at t = — t0 < 0. Then the
resultant disturbance <p at any instant tx > — t„ fulfills the wave equation and the same
initial conditions as that of <pM, i.e., in the region exterior to the wedge

•j
<p(—to , Xx , x2) = h(x! , x2) and ~ (—10 , x, , x2) = kfa , x2). (1)
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