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Chronic psychiatric patients with schizophrenia and related disorders are frequently

treatment-resistant and may require higher doses of psychotropic drugs to remain

stable. Prolonged exposure to these agents increases the risk of weight gain and

cardiometabolic disorders, leading to poorer outcomes and higher medical cost. It is

well-established that obesity has reached epidemic proportions throughout the world,

however it is less known that its rates are two to three times higher in mentally ill

patients compared to the general population. Psychotropic drugs have emerged as

a major cause of weight gain, pointing to an urgent need for novel interventions to

attenuate this unintended consequence. Recently, the gut microbial community has been

linked to psychotropic drugs-induced obesity as these agents were found to possess

antimicrobial properties and trigger intestinal dysbiosis, depleting Bacteroidetes phylum.

Since germ-free animals exposed to psychotropics have not demonstrated weight gain,

altered commensal flora composition is believed to be necessary and sufficient to induce

dysmetabolism. Conversely, not only do psychotropics disrupt the composition of gut

microbiota but the later alter the metabolism of the former. Here we review the role of

gut bacterial community in psychotropic drugs metabolism and dysbiosis. We discuss

potential biomarkers reflecting the status of Bacteroidetes phylum and take a closer look

at nutritional interventions, fecal microbiota transplantation, and transcranial magnetic

stimulation, strategies that may lower obesity rates in chronic psychiatric patients.
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INTRODUCTION

Chronic psychiatric patients diagnosed with schizophrenia and schizophrenia-spectrum disorders
(SSDs), are often treatment-resistant, requiring stabilization with above average doses of
psychotropic drugs, especially olanzapine (OLZ), clozapine (CZP), risperidone (RSP), and
quetiapine (QTP). Long-term exposure to these atypical antipsychotics (AAPs) increases the risk of
metabolic adverse effects and weight gain (1, 2).

Novel studies have identified a bidirectional relationship between the gut bacterial community
and psychotropic drugs in which these agents alter the composition of commensal flora while
the later influences the pharmacokinetics of the former (3–5). For example, psychotropic
drugs-induced depletion of Bacteroidetes phylum may under-activate xenobiotic sensors aryl
hydrocarbon receptor (AhR) and pregnane X receptor (PXR), altering the expression of P450
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GRAPHICAL ABSTRACT | Psychotropic drugs deplete intestinal

Bacteroidetes phylum. The absence of metabolites generated by these

microbes may under-activate xenobiotic sensors aryl hydrocarbon receptor

(AhR) and pregnane X receptor (PXR), disrupting the transcription of genes

related to psychotropic drug metabolism, lipid, and redox homeostasis,

leading to altered bioavailability of antipsychotic agents, weight gain, and

lowered body iron stores.

isozymes CYP1A2 and CYP3A4 that are involved in the
metabolism of these agents (6). Aside from the CYP system, gut
microbes express numerous phase I and II enzymes that were
shown to transform various drugs prior to absorption (7). On
the other hand, agents conjugated in the liver and secreted in
the bile can be deconjugated by gut microbes, increasing their
toxicity (8). These novel findings led to the development of
pharmacomicrobiomics, a new field investigating the complex
interactions between the drugs and gut microbes (9).

Historically, psychotropic drugs have been known to possess
antimicrobial properties but their role in causing dysbiosis was
only appreciated after the microbiome discovery. For example,
most studies in humans show that AAP-treated patients develop
an obesogenic microbial pattern, marked by increased Firmicutes

Abbreviations: SSD, schizophrenia-spectrum disorders; OLZ, olanzapine; CZP,
clozapine; RSP, risperidone; QTP, quetiapine; AhR, aryl hydrocarbon receptor;
PXR, pregnane X receptor; FMT, fecal microbiota transplant; tMS, transcranial
magnetic stimulation; IECs, intestinal epithelial cells; Trp, tryptophan; TLR9, toll
like receptor 9; NTS, nucleus tractus solitaries; POMC, pro-opiomelanocortin;
CART, cocaine-and amphetamine-regulated transcript; B. theta, Bacteroidetes
thetaiotaomicron; VPA, valproic acid; DEPs, drug efflux pumps; cfDNA, cell free
DNA; HIA, hydroxylamine-based indole assay; vBloc, vagal blocking device.

and Actinobacteria phyla and decreased Bacteroidetes (10, 11).
Interestingly, AAP-upregulated phyla have the capability to
synthesize heme, likely enabling them not only to survive but also
thrive in iron-scarce conditions due to nutrients left behind by
the non-surviving competitors.

Preclinical research offers more insight into the
psychotropics-obesity link via germ-free animals that proved
crucial for the study of AAP-related dysbiosis. Given that these
studies are based on rodents, it is unclear at this time if the
findings can be translated to humans, however body weight
alteration have been minimal in germ-free rodents exposed to
AAPs (12). Others have reported that prebiotic treatment can
attenuate OLZ-induced weight gain in mice, further underlining
the role of commensal flora in lipid homeostasis (13, 14). Another
study has reported that antibiotic pretreatment prevented weight
gain in OLZ-treated female rats, emphasizing once more the
role of enteric microbiota in obesity (15). Several recent studies
have found that, aside from antipsychotics and antidepressants,
several other drugs possess antimicrobial functions and induce
dysbiosis (16–19).

Taken together, there is a rapidly growing body of evidence
showing that some psychiatric treatments can alter the
composition of gut microbiota, triggering dysbiosis and
dysmetabolism. On the other hand, intestinal microbes can alter
the absorption and pharmacokinetics of psychotropic agents,
impairing their bioavailability. Conversely, restoring microbial
number and diversity by diet, pre or probiotics may attenuate or
prevent psychotropic drugs-associated weight gain.

In this paper, we discuss the role of microbiota in the
metabolism of psychotropic drugs as well as the dysbiosis
associated with the antimicrobial properties of these agents. We
suggest potential biomarkers, of Bacteroidetes phylum and take
a closer look at various interventions, including dietary fiber,
fecal microbiota transplant (FMT) and transcranial magnetic
stimulation (tMS) in preventing weight gain associated with
psychotropic agents.

PSYCHOTROPIC DRUGS AND OBESITY

There is little doubt that obesity has increased worldwide
and reached epidemic proportions, engendering one of the
most complex public health problems faced by the society
today (20, 21). However, it has been less emphasized that
another obesity epidemic of even greater proportions has been
taking place silently in mentally ill patients, placing them at
higher morbidity and mortality risk compared to the general
population (22). Indeed, obesity rates and cardiovascular disease
are 2–3 times higher in psychiatric patients, especially in
women, children, and adolescents (23–26). Historically, reports
of weight fluctuations and abnormal eating behavior in mentally
ill individuals have been observed prior to the psychotropic
drugs era, suggesting that either psychiatric disorders cause
dysmetabolism or impaired metabolism leads to abnormal brain
functioning (27).

There are several excellent reviews on weight gain and
obesity in psychiatric patients, discussing receptor interactions,
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orexigenic peptides, insulin resistance, and reward mechanisms
(28, 29). These topics are beyond the scope of this article
that focuses primarily on the impact AAP drugs on gut
microbial community.

Over the past few years, several studies have emphasized the
role of gut microbial community in obesity and dysmetabolism
as it was noted that germ-free animals exposed to psychotropics
do not display weight fluctuations (12). This led to a heightened
interest in microbial metabolites and their role in engendering
an immunologically tolerant enteric environment optimal for
nutrient harvesting. On the other hand, dysbiosis or selective
elimination of microbiota by xenobiotics was linked to local
pathology, and systemic disorders, including obesity and
psychiatric conditions (30, 31). Interestingly, both psychotropic
drugs-induced dysmetabolism and high fat diet-related weight
gain present with a common enteric microbial pattern, depletion
of Bacteroidetes phylum, suggesting an overlapping pathology.
Others have opined that the loss of Bacteroidetes-generated
metabolites is the common denominator of weight gain induced
either by an unhealthy diet or psychotropics drugs (6, 32).
Therefore, restoring the levels of these molecules may lead to
novel weight loss strategies in chronic psychiatric patients.

The Holobiont, a Story of Two Kingdoms
The concept of the holobiont refers to a holistic model of two
biological kingdoms living together: the eukaryote host and
prokaryote microbes. This coexistence is made possible by the
inter-kingdom cross talk via dietary molecules and microbial
metabolites, enabling immunological tolerance of the microbial
organ and food, while maintaining vigilance for pathogens,
toxins, and pollutants (33–35). To accomplish all these tasks,
nutrient harvesting is highly intertwined with immunity and
xenobiotic metabolism through a system of promiscuous sensors
expressed by intestinal epithelial cells (IECs) and enteric
macrophages, such as AhR and PXR (36). These xenobiotic
receptors activate innate immunity proportionally with the
affinity of their binding ligands, rather than as binary “on-
off” switches. For example, a strong agonist may trigger
immune activation, while partial or weak agonists may induce
immunosuppression (37). Indeed, high affinity AhR ligands
have been canonically linked to the immune rejection of
toxins and pollutants (38). However, the recent discovery of
endogenous AhR and PXR ligands with weak or partial agonism
synthesized by the gut microbes from dietary tryptophan
(Trp) and undigestible fiber has shed some light on the role
of xenobiotic sensors in both immune tolerance and energy
metabolism (39). Indeed, loss of endogenous AhR ligands was
associated with weight gain and decreased IL-10 that impaired
commensals immune tolerance (40–43). By the same token, loss
of microorganismal variety with depletion of microbial phyla
was linked to both immune rejection of commensals and weight
gain (44).

Of Kingdom Food Tasters and Cupbearers
Gut microbiota ensure their own acceptance into the GI
habitat by generating weak AhR and PXR ligands, including
indole-3-acetate and indole-3-propionate (IPA) that promote

immunological tolerance by upregulating IL-10 (45–47). At the
same time, microbiota assist the host by filtering xenobiotics,
toxins, pollutants, and heavy metals as well as by denying
nutrients to pathogenic bacteria (48). Therefore, gut microbes
mediate not only their own immunological tolerance but also
that of dietary molecules by converting them into AhR and PXR
ligands (49).

The exact molecular underpinnings of immunological
tolerance to microbes and dietary molecules are unclear at
this time, however a recent study identified toll like receptor 9
(TLR9)-AhR signaling as the immunosuppressive switch that
turns off innate immunity in the presence of apoptotic cells,
suggesting that a similar mechanism may engender the tolerance
of enteric microbes and food (50). Indeed, TLR9 is an established
tolerogen that upregulates IL-10 during pregnancy, promoting
fetal acceptance (51).

Taken together, these studies suggest an immunosuppressive
TLR9-AhR-IL-10 axis of tolerance likely involved in the
acceptance of gut microbes and food. Furthermore, TLR-9 was
demonstrated to sense eukaryotic and prokaryotic DNA and
contribute to lipid homeostasis, connecting genomic damage to
obesity (52, 53). Indeed, it has been established that iron and
related reactive oxygen species (ROS) induce DNA disruption
with resultant dysmetabolism (54).

The Kingdom Messengers
Microbiota-derived molecules, including propionate, indole,
neurotransmitters, and iron-related molecules, including
bacterial siderophores and ROS were demonstrated to signal
with the receptors expressed on the intestinal epithelial cells
(IECs) and enteric macrophages, modulating both feeding and
immunity. The following is a snapshot of inter-kingdom signals
relevant for psychotropic drugs-induced weight gain.

Propionate
SCFAs, acetate, propionate, and butyrate, are generated
by gut microbes via fermentation of dietary fiber. These
molecules activate host intestinal G protein-coupled receptors
(GPCRs), including GPR41 and GPR43, modulating numerous
physiological functions, including feeding and immunity
(55, 56). Bacteroides phylum is the major generator of enteric
propionate, a SCFA that interacts with the Trp metabolite
indole, engendering indole-3-propionic acid (IPA) a biomolecule
involved in lipid homeostasis and acceptance of commensal
microbes (57). In addition, propionate is a potent agonist at
GPR41 and GPR43 expressed by enteric L-cells, enabling the
release of anorexigenic hormones, glucagon-like peptide-1
(GLP-1), and peptide YY (PYY) (Figure 1). These bioactive
molecules were demonstrated to lower appetite and feeding by
activating the nutrient sensing neurons in brainstem nucleus
tractus solitarius (NTS) (58) (Figure 1). Indeed, clinical trials
with human subjects have demonstrated that propionate
lowers food intake and increases energy expenditures via NTS
(59, 60). As Bacteroidetes phylum generates most of the GI tract
propionate, psychotropic drugs-associated depletion of these
microbes may lower propionate, triggering dysmetabolism and
weight gain. For example, a recent study in non-psychiatric,
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FIGURE 1 | Trp, dietary fiber and food are converted by gut microbes into ligands at AhR and PXR. Bacteroidetes phylum generates most enteric propionate,

inducing L-cells activation and release of anorexigenic peptides GLP-1 and PYY that lower appetite via NTS. Propionate may also cross the BBB and act on

hypothalamic POMC/CART neurons, inhibiting feeding behavior. Trp metabolite, indole is an AhR agonist, while IPA is a PXR agonist. Activation of these xenobiotic

sensors induces the transcription of psychotropic drugs metabolizing enzymes, including CYP1A2 and CYP3A4. A small fraction of gut Trp crosses into the brain,

generating the central 5-HT.
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obese individuals associated propionate with weight loss (59).
This study suggests that Bacteroidetes depletion, including that
induced by psychotropic drugs, may trigger dysmetabolism and
weight gain (59). It is, therefore realistic to expect that propionate
fecal levels may accurately reflect the status Bacteroidetes phylum
(Figure 3).

Aside from its local physiological functions, propionate
may cross the blood-brain barrier (BBB) to act on pro-
opiomelanocortin (POMC) and cocaine-and amphetamine-
regulated transcript (CART) hypothalamic neurons, suppressing
food intake (61). Moreover, the serotonin (5-HT) precursor Trp
was demonstrated to cross the BBB and, upon conversion to
5-HT, activate POMC/CART, 5-HT2A, and 5-HT2C receptors,
modulating appetite (62) (Figure 1).

Tryptophan Metabolites
Trp is an essential amino acid that cannot be synthesized in the
human body therefore it must be obtained entirely from the diet.
In the gut, Trp is converted by microbes, including Bacteroidetes
into AhR and PXR ligands that promote weight loss and immune
tolerance to commensals (57, 63).

Under normal circumstances, Trp is converted in the
GI tract to indole by tryptophanase-producing bacteria,
including Bacteroidetes thetaiotaomicron (B. theta) a member
of Bacteroidetes phylum. Since indole is a metabolite associated
with weight loss, depletion of Bacteroidetes may lead to obesity
(64, 65). Moreover, others have found that, like propionate,
indole can also activate enteric L-cells, releasing the anorexigenic
peptide hormones GLP-1 and PYY, further lowering body weight
(66) (Figure 1).

The GI tract 5-HT does not cross the BBB but plays a major
local role as it promotes intestinal motility (67). Interestingly,
IECs express serotonin transporters (SERT), proteins inhibited
by serotonin reuptake inhibitors (SSRI), explaining the beneficial
role of these agents in Crohn’s disease and ulcerative colitis
(68–70). As shown above, Trp and propionate participate in
the production of IPA, a PXR ligand associated with immune
tolerance and weight loss (71–73).

Neurotransmitters
Aside from 5-HT, intestinal commensal flora is known for
synthesizing many neurotransmitters, including dopamine (DA),
norepinephrine (NE), and acetylcholine (ACh) that can act
locally, but are also believed to reach the CNS and influence
brain physiology (74–76). These biomolecules play a key role
in energy metabolism and immune tolerance of gut microbes
by upregulating IL-10 (77, 78). Interestingly, microbial DA
and NE were demonstrated to influence iron absorption
and metabolism by functioning as siderophores or bacterial
iron scavengers (79, 80). Interestingly, a recent study found
that enterobactin, an Escherichia coli siderophore, can be
transferred to the host, revealing a novel form of inter-
kingdom communication (81). On the other hand, Bacteroides
phylum does not generate siderophores, but seems to “borrow”
them from other microbes, including E. coli (82). Aside from
enterobactin, E. coli was demonstrated to provide Bacteroidetes
with porphyrins, emphasizing this phylum’s dependence on iron

and heme (83). This also demonstrates a special symbiosis
and interdependence between Bacteroidetes and E. coli (83).
Since psychotropic drugs were demonstrated to eliminate both
microbial groups, the porphyrin exchange may be impaired,
resulting in lower iron stores (83). Indeed, recent studies have
indicated that enterobactin possesses antioxidant properties and
may contribute to host redox homeostasis (84). Moreover, IPA
was demonstrated to exert antioxidant properties against iron-
generated ROS, reversing metabolic disturbances associated with
genomic damage (54, 85). Taken together, it would be interesting
to study if psychotropic drugs-induced oxidative stress may lead
to weight gain associated with these agents.

Iron and ROS
The connection between psychotropic drugs and iron has
been previously documented as iron deficiency anemia, restless
leg syndrome, tardive dyskinesia, akathisia, and neuroleptic
malignant syndrome were associated with iron dysmetabolism
(86–89). Moreover, low iron levels were linked to the negative
symptoms of schizophrenia, while the offspring of hypoferremic
mothers were found to be at risk of developing this disorder (90).
Nutritional immunity, the shifting of iron from the extracellular
to the intracellular compartment to withhold it from pathogens
during infection, may be the mechanism, linking the motor
adverse effects of psychotropic drugs to low extracellular iron
(86, 88, 91). Indeed, since nutritional immunity leads to excess
intracellular iron, placing this biometal in close proximity to
lipids, the risk of lipid peroxidation and ROS generation is
increased (92). Moreover, psychotropic drugs modulate lipid
metabolism, regulating iron absorption and ROS generation (93).
For example, Iron depletion was demonstrated in RSP-treated
children and adolescents, possibly indicating iron shifting from
the extracellular to the intracellular compartment via nutritional
immunity (94).

In humans, heme and non-heme iron are absorbed at different
GI tract locations as the uptake of the later occurs in the proximal
small bowel where it is regulated by hepcidin, while the former
is very efficiently absorbed in the colon (95). Bacteroidetes-
generated propionate facilitates the absorption of iron, linking
depletion of this phylum with iron dysmetabolism (15, 96–98).
Indeed, as mentioned above, decreased host iron stores were
previously reported in connection with psychotropic drugs (86).

In summary, several psychiatric medications may act as
indirect iron chelators as they lower the absorption of this
micronutrient via Bacteroidetes phylum depletion.

GUT MICROBES AND PSYCHOTROPIC
DRUGS METABOLISM

Cytochrome P450 enzymes play a key role in the metabolism
of xenobiotics. These iron-containing cytochromes are expressed
in both intestinal tissue and the liver, however the enteric
systems require more research as their specifics are not clear
at this time. Compounding this problem is the fact that gut
microbes express as many as 3000 cytochrome P450 (CYP450)
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enzymes that transform most drugs and dietary molecules the
host consumes (99).

The major host intestinal cytochrome, CYP3A4 metabolizes
over 50% of common pharmaceuticals, while about 20% of
clinically used drugs are metabolized by CYP1A2 (100, 101).
For example, CLZ and OLZ, are processed by CYP1A2, RSP is
partially metabolized in CYP3A4, while QTP is converted to N-
desalkylquetiapine in CYP3A4 (102–105). As xenobiotic sensors
AhR and PXR control the expression of CYP1A2 and CYP3A4,
respectively, the activation status of these receptors can alter the
bioavailability of the drugs metabolized by these cytochromes.

AhR is a ligand-activated receptor, complexed in the IECs
cytosol with HSP90 protein. Upon AhR ligand-binding, the
entire complex migrates to the nucleus where it activates AhR
nuclear translocator (ARNT), enabling the transcription of many
genes, including CYP1A1, CYP1A2, and CYP1B1, several lipid
homeostasis genes and the Nrf-2 gene (37, 106–109). Nrf-2,
itself a transcription factor, controls the expression of numerous
other genes, including those encoding for iron storage proteins
and phase I and II drug-metabolizing enzymes, associating this
redox protein with drug metabolism and iron dyshomeostasis
(110, 111).

Bacteroidetes phylum activates AhR by generating propionate
which forms AhR ligands with indole. Depletion of these
microbes by psychotropic drugs may alter the bioavailability
and metabolism of these agents (10). For example, OLZ-induced
Bacteroidetes phylum depletion and lower propionate, may
under-activate AhR, suppressing the expression of CYP1A2 gene.
Since OLZ metabolism is dependent on the CYP1A2 gene, its
inhibition can alter the metabolism and bioavailability of this
drug (Figure 2) (105).

In the same manner, PXR receptor ligands enable the
migration of this xenobiotic sensor to the nucleus from where
it facilitates the expression of CYP3A4 and several lipid
homeostasis genes (112–114) (Figure 3). Since QTP, metabolized
by CYP3A4, is a potent PXR agonist, it may alter both its own and
lipid metabolism, probably explaining the weight gain associated
with this drug (115). Moreover, QTP, like other psychotropics,
can induce gut dysbiosis and lower IPA biosynthesis, thus
suppressing CYP3A4 gene and altering its own metabolism
(Figure 2). A similar mechanism may be at work during the
biotransformation of CLZ which is partially metabolized by
CYP1A2. Bacteroidetes depletion and AhR under-activation
may impair CLZ bioavailability and blood levels (105, 116).
Moreover, recent studies in rodents found that psychotropic
drugs can inhibit AhR directly by antagonizing D2 receptors,
impairing the expression of CYP1A1, CYP1A2, and CYP1B1
(117) (Figure 2). Indeed, as most antipsychotic drugs are D2
blockers, they may lower their own metabolism both directly
and via dysbiosis. Interestingly, valproic acid (VPA), a natural,
branched short-chain fatty acid, was associated with intestinal
dysbiosis as it also depletes Bacteroidetes, probably explaining
the weight gain associated with this drug (118, 119). In addition,
VPA was shown to augment the expression of intestinal and
hepatic CYP3A4, indicating that this drug may alter its own
metabolism via dysbiosis (120). These novel findings are relevant
as they underline not only the importance of gut flora in drug

metabolism but also the need for obtaining psychotropic blood
levels in clinical practice.

Taken together, the new science of pharmacomicrobiomics
explains the role of the microbial organ in psychotropic
drugs metabolism, underlining the interconnectedness between
xenobiotic metabolism and nutrient harvesting.

PSYCHOTROPIC DRUGS AS
ANTIMICROBIALS

The awareness that psychotropic drugs have antimicrobial
properties goes back to the nineteenth century when Paul
Ehrlich observed the bactericidal action of methylene blue, a
molecule that led the synthesis of chlorpromazine, ushering
the development of antipsychotic agents (121). Moreover,
antidepressant drugs can be traced back to the antimicrobial
isoniazid which was found to induce euphoria in tuberculosis
patients (122). For this reason, it should not be surprising that
many psychotropic agents retain antimicrobial properties to
this day. However, with the advent of the microbiome, these
historical data have recaptured the attention of researchers and
clinicians, prompting some to link chronic psychosis to infection,
immunity, and antimicrobial treatments (123).

Most studies in humans have found that Bacteroidetes phylum
(that together with Firmicutes comprise 90% of gutmicrobiota) is
more vulnerable to psychotropic drugs than other phyla (6, 124).
For example, chronic RSP treatment in children was associated
with lower fecal Bacteroidetes compared to antipsychotic-naïve
controls (97). This is surprising since Bacteroidetes are well-
known for antibiotic-resistance by virtue of expressing numerous
drug efflux pumps (DEPs) that facilitate the expulsion of
drugs from the intracellular compartment (125). Interestingly,
several psychotropic drugs, including the antipsychotic loxapine,
phenothiazines, and selective serotonin reuptake inhibitors
(SSRIs) were found to effectively block microbial DEPs, probably
explaining their selective bactericidal action against Bacteroidetes
phylum (126–128). Moreover, iron chelators were recently
found to be effective DEP-inhibitors, a property that may
explain their bactericidal action against the iron-dependent
Bacteroides phylum (129). Indeed, another reason, Bacteroidetes
phylum may be more susceptible to psychotropic drugs is
that, unlike Firmicutes and Actinobacteria that can synthesize
heme, Bacteroidetes, which lack the enzymatic machinery to
synthesize this iron protein, depend on scavenging it from the
colonic environment (82, 130, 131). Conversely, as Bacteroidetes
phylum generates propionate that facilitates iron absorption,
their depletion may impact host iron stores (12, 15, 97, 132).
In addition, impaired iron absorption may activate nutritional
immunity in IECs and macrophages to sequestrate this biometal
and deny it to pathogens, exacerbating hypoferremia and
metabolic syndrome (133, 134). On this point, a novel study
in children and adolescents chronically treated with RSP found
that iron status was inversely corelated with weight gain,
contributing to dysmetabolic iron overload syndrome (DIOS)
(135). This is significant as intracellular iron increases the risk
of ROS generation that cannot be counteracted as Bacteroidetes
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FIGURE 2 | Psychotropic drugs deplete Bacteroidetes phylum as do most D2 blockers. This lowers the AhR and PXR ligands, propionate and indole, under-activating

these xenobiotic sensors. This in turn, inhibits the expression of CYP1A1/A2, CYP1B1, and CYP3A4, impairing psychotropic drugs metabolism. In addition, loss of

AhR and PXR ligands disrupts the expression of several lipid homeostasis genes and Nrf2 (not shown), leading to weight gain and impaired iron metabolism.

depletion lowered IPA, a key gut antioxidant (98, 136, 137).
Restoration of the adequate levels of AhR and PXR ligands via
diet, pre, probiotics, or microbial transplant may upregulate
Bacteroidetes phylum, attenuating psychotropic drugs-induced
weight gain (138).

Taken together, recent studies seem to suggest that the
anti-DEP properties of psychotropic drugs may selectively
deplete Bacteroidetes phylum as these microorganisms express
abundant DEPs and rely on these proteins for antibiotic defense.
Conversely, depletion of Bacteroidetes phylum may impair iron
and heme absorption, leading to DIOS.

Psychotropics, the New Antibiotics?
Animal studies have contributed further to the understanding of
dysbiosis induced by the antimicrobial properties of psychotropic
drugs. For example, a recent study reported that RSP-treated
female mice exhibited significant weight gain and altered gut
microbial diversity; however, when these rodents received a
fecal transplant from RSP-naïve mice, the weight gain was
reversed, underlining the role of commensals in obesity (97).
Another preclinical study demonstrated that OLZ completely
inhibited the growth of E. coli in vitro, emphasizing that
the spectrum of this agent’s antimicrobial properties extends
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FIGURE 3 | Bacteroidetes stress test: Bacteroidetes phylum and E. coli participate in a “special” symbiosis in which the later provides the former with iron-molecules

enerobactin and porphyrins. Bacteroidetes in return generate indole and propionate (suggested as fecal biomarkers). In various combinations, indole and propionate

are AhR and PXR ligands, contributing to lipid and redox homeostasis. Propionate also facilitates iron absorption, preventing the activation of nutritional immunity in

intestinal macrophages and IECs. Lowered propionate (due to Bacteroidetes depletion) triggers nutritional immunity with iron sequestration, increasing the risk of ROS

and genomic damage, measured by the cfDNA marker.

beyond Bacteroidetes (12). On the other hand, antibiotics
co-administered with OLZ, improved metabolic parameters,
resulting in weight loss (15). It appears that a significantly
reduced gut bacterial content, resembling germ-free status,
is necessary to prevent psychotropics-induced weight gain,
while a less drastic reduction in microbial number, has
the opposite effect (19). A different study showed reduced
gut commensal flora diversity in mice chronically treated

with antidepressants. Interestingly, this study also found that
excessive Ruminococcus flavefaciens can attenuate the efficacy
of duloxetine, a serotonin-norepinephrine reuptake inhibitor
(SNRI), suggesting microbiota involvement in the metabolism of
this agent (139).

Other studies have reported that AADs are not the only
psychotropics with antimicrobial activity as fluoxetine, sertraline,
and escitalopram were reported to induce gut dysbiosis (6).
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For example, fluoxetine has demonstrated antimicrobial activity
against Gram-positive microbes, including Staphylococcus,
Enterococcus, and anaerobes such as Clostridium difficile and
perfringens (140). Interestingly, as opposed to AAP drugs that
affect primarily Gram negative Bacteroidetes, SSRIs appear
to deplete Gram positive bacteria. Moreover, a novel study
associated fluoxetine treatment with multi-antibiotic resistance
via iron and ROS-induced DNA damage (141). Indeed,
epidemiologic studies have associated long-term antidepressant
treatment with ROS-induced obesity, connecting once more iron
dysmetabolism with weight gain (142, 143).

The antimicrobial action of antipsychotic drugs against DEP-
expressing bacterial strains has rendered these agents excellent
candidates for antibiotic resistant bacteria (144). Indeed, a recent
study found that phenothiazines, as a group are DEP-inhibitors,
effective against several drug resistant bacterial strains, while
another study found trifluoperazine beneficial to the treatment
of sepsis (145, 146). In addition, QTP and OLZ were found
effective against fungal DEPs and are currently being tested as
anti-Cryptococcal drugs (147). Conversely, long-term treatment
with antidepressant or antipsychotic drugs was associated with
increased risk of methicillin-resistant Staphylococcus aureus
(MRSA), further linking these agents to both the therapeutic and
adverse effects of antibiotics (148). This is significant because
chronic psychiatric patients with schizophrenia and SSD are
frequently treatment-resistant and often require long-term use
of high doses of psychotropic drugs to remain asymptomatic.
Prolonged exposure to these agents increases the risk not only of
weight gain and cardiometabolic disorders but also of antibiotic
resistance, resulting in poorer outcomes and higher medical
cost. Moreover, aside from psychotropics, several drug categories,
including proton pump inhibitors (PPIs), histamine-2 (H2)
blockers, antimitotic agents and non-steroidal anti-inflammatory
drugs (NSAIDs) were reported to induce both dysbiosis and iron
dysmetabolism, indicating the need for medical and psychiatric
care integration (17, 86, 149, 150).

MARKERS AND INTERVENTIONS

Although life-changing for patients, psychotropic medications
have been accompanied by an unintended consequence, an
obesity epidemic that has increased the mortality, morbidity,
and medical expenditures in this population (151). Fortunately,
weight gain is a modifiable risk factor and a better understanding
of its pathogenesis vis-à-vis psychotropic drugs may lead to
the development of novel preventive strategies. Moreover, since
preclinical studies have connected gut dysbiosis with the weight
gain associated with psychotropic drugs, biological markers
reflecting the health of gut microbes are of primary importance.
For example, fecal propionate levels may mirror the status of
Bacteroidetes phylum in general as these microbes are the major
propionate producers. On the other hand, indole levels may be
more species specific, reflecting Bacteroides thetaiotaomicron,
that specializes in indole production. Since psychotropic drugs
deplete the entire Bacteroidetes phylum, propionate, and indole
levels may provide an index of microbial integrity. In addition,

we propose a non-invasive peripheral blood marker, consisting
of cell free DNA (cfDNA) with the specific Bacteroidetes motif,
GTCGTT as an assessment tool for the psychotropic drugs-
induced Bacteroidetes depletion. Aside from the markers of
microbial loss, various nutrients and procedures, including
fiber, probiotics, fecal microbial transplant, and vagus nerve
manipulation were found helpful for preventing weight gain and
restore physiological levels of Bacteroidetes phylum.

Beware of Stressed Bacteroidetes
Extracellular or cfDNA, a marker of eukaryotic and prokaryotic
genomic damage, was demonstrated to strongly activate TLR9,
an action that promptly turns off immunological tolerance to
gut microbes and activates vigilance to potential pathogens (152).
Recent studies have shown that cfDNA is released into the blood
following eukaryotic or prokaryotic cell death, comprising a
marker of microbial or host cells demise (153). Moreover, others
have shown that bacterial DNA derived from Gram negative
microbes, including Bacteroidetes, activates TLR9 more robustly
than Gram positive DNA, suggesting that this receptor links
immune activation to the body weight via AhR signaling (154).
Furthermore, it has been established that Bacteroidetes DNA is
marked by an overabundance of the genomic motifs GTCGTT,
strong TLR9 activators, indicating that cfDNA carrying this
sequence is a not only a hallmark of this phylum but also
an influencer of body weight via TLR9-AhR-IL-10 signaling
(155). For this reason, we construe that elevated GTCGTT
cfDNA in peripheral blood may accurately reflect the risk
of both psychotropic drugs-associated Bacteroidetes depletion
and weight gain (156). Therefore, we propose a combined
non-invasive peripheral blood test: real-time polymerase chain
reaction (PCR) to detect cfDNA and CpG oligodeoxynucleotide
(ODN) to identify GTCGTT motifs (157, 158).

We also believe that cfDNA alone, without the Bacteroidetes
marker, may accurately mirror the activation of host nutritional
immunity, iron sequestration and ROS-induced genomic damage
in IECs and enteric macrophages. This probably takes place
as a result of Bacteroidetes depletion as this phylum facilitates
iron absorption by generating propionate (Figure 3). Insufficient
iron may activate host nutritional immunity to preserve this
biometal intracellularly, however chronic iron retention increases
the risk of ROS and DNA damage, resulting in l cfDNA release.
For this reason, we believe that cfDNA may accurately measure
nutritional immunity, iron sequestration and genomic damage.
Indeed, cfDNA is currently a marker of iron-induced DNA
disruption in hemodialysis patients (159–161). Furthermore,
since inter-kingdom signaling via ROS-Nrf2 mediate antioxidant
and lipid homeostasis, deficient body iron stores may reflect the
risk of weight gain (162, 163). Indeed, DIOS is encountered
in many overweight individuals, indicating that excessive ROS
generation may promote obesity (132). In addition, RSP-treated
patients have demonstrated not only depleted iron stores but also
weight gain proportional to hypoferremia (86).

In conclusion, to assess the integrity of host-microbiota
interface, we propose a battery of four tests: peripheral blood
cfDNA to reflect the status of host nutritional immunity,
GTCGTT cfDNA to assess Bacteroides depletion along with fecal
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indole and propionate to further estimating the depletion of
this phylum (Figure 3). We believe that the following laboratory
assays can be optimal for detecting indole and propionate:
hydroxylamine-based indole assay (HIA) as it was recently
reported to accurately detect indole in complex clinical samples,
including feces and liquid chromatography tandem mass
spectrometry (LC-MS/MS) based on 3-nitrophenylhydrazone
(3NPH) derivatization, an assay shown to accurately measure
fecal propionate (164, 165).

Dietary Fiber as a Prebiotic
The hallmarks of Western diet, low fiber content, high refined
sugars and fats, suggest that these nutrients, along with
physical inactivity may, at least in part, account for the
modern obesity epidemic (166). Novel studies have found
that the general population of Western countries consumes
an average of 10–20 g of dietary fiber per day (35–50 g being
optimal), while much lower fiber intake characterizes the diet
of chronic psychiatric patients (167–170). Both dietary fiber
and fermenting microbes are necessary for the generation of
indole and propionate. However, fiber was found to possess
probiotic properties by promoting the growth of fermenting
microbes, including Bacteroidetes (60, 171, 172). Aside from
fiber, direct supplementation with sodium propionate was shown
to increase energy expenditure and protect against high fat diet-
induced obesity in rodents, suggesting that fiber or its derivative,
propionate may reverse dyslipidemia in chronic psychiatric
patients. However, prior to clinical use, more studies on sodium
propionate are needed to assess its safety in humans. Fiber
supplementation or high fiber diets, on the other hand, should
be used routinely in chronic psychiatric patients (173).

Probiotics to Restore the Levels of
Propionate
Probiotics or microbes beneficial to health have recently
reawaken the interest of researchers and clinicians as several
bacterial species, including Bacteroides fragilis and Bacteroides
uniformis may selectively upregulate gut propionate levels (174,
175). For example, in preclinical studies, supplementation with
B. uniformis was found to restore immunological and metabolic
homeostasis caused by intestinal dysbiosis, indicating potential
benefit for chronic psychiatric patients (176). Furthermore,
indole-producing Bacteroides thetaiotaomicron has shown anti-
obesity benefits in preclinical studies but to our knowledge, it
has not been tested in humans (177). For this reason, more
studies are needed as this microbe presents with the unique
property of converting succinate to propionate (175). Since
circulating succinate is increased in hypertension, ischemic heart
disease, and type 2 diabetes, conditions prevalent in chronic
psychiatric patients, a probiotic converting this molecule into the
anorexigenic propionate is very promising (178).

Fecal Microbial Transplant (FMT) for Indole
and Propionate Augmentation
FMT is an ancient procedure that has been practiced throughout
the centuries to alter the balance of colonic microbes and
protect against infections. FMT is commonly used in veterinary

medicine, while in humans, it is currently approved for the
treatment of Clostridium difficile infections (179, 180). The
role of FMT in microbial dysbiosis-linked chronic disorders is
still in the early stages and requires more studies in humans,
specifically for developing adequate criteria for the identification
of optimal donors (181). Based on findings from preclinical and
small clinical studies, FMT may provide benefits in IBD and is
currently being investigated for the treatment of several chronic
conditions, including obesity and metabolic disorders (182, 183).
We believe that when obtained from the adequate donors, FMT
may have the potential to restore the physiological levels of
propionate and indole in chronic psychiatric patients.

Deep Transcranial Magnetic Stimulation
(dTMS) and Intermittent Vagal Blockade
(vBloc)
Studies on dTMS, repetitive transcranial magnetic stimulation
(rTMS) and transcranial direct current stimulation (tDCS) to
decrease food intake and weight are currently ongoing but
further data is needed before recommending these procedures
to chronic psychiatric patients (180, 184, 185). In 2015, the
U.S. Food and Drug Administration approved a vagal blocking
device (vBloc) for the treatment of moderate to severe obesity,
linking vagus nerve to feeding behavior (186). Interestingly,
both intermittent vagal blockade and vagal stimulation were
found effective for lowering body weight, suggesting an indirect
effect on metabolism, probably mediated by gut microbes
(187, 188). Moreover, a peripheral anti-inflammatory vagal
system, operating via alpha 7-cholinergic nicotinic receptors
on peripheral macrophages, has been known to dampen
inflammation, suggesting that nicotinic signaling may also
modulate the enteric microbes via a similar system (189,
190). Indeed, microbiota-derived acetylcholine (ACh) has been
recently reported, suggesting ongoing cholinergic signaling
between themicrobial organ and vagus nerve (191). Interestingly,
preclinical studies found a direct connection between enteric
ACh and propionate, linking this neurotransmitter to lipid
homeostasis (192). Recently, a study found higher levels of
intestinal Bacteroidetes in smokers, suggesting that nicotinic
cholinergic signaling may have trophic effects on this phylum
(162). Since smoking and body weight are known to be inversely
related, and smoking cessation has been associated weight gain,
targeting nicotinic receptors may comprise a new strategy for
Bacteroidetes phylum restoration (193). In addition, as weight
loss is a reported adverse effect of cholinesterase inhibitors,
including donepezil and rivastigmine, these agents may help
restore physiological levels of Bacteroidetes in chronic psychiatric
patients (194).

CONCLUSION

Psychotropic drugs-induced weight gain is marked by intestinal
dysbiosis with Bacteroidetes phylum depletion. Propionate
and indole, molecules that under normal circumstances
are generated by Bacteroidetes, activate AhR and PXR
xenobiotic receptors, modulating lipid and redox homeostasis.
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Bacteroidetes depletion by antibiotics, psychotropics or other
drugs may deprive the host of these indispensable molecules,
altering drug, lipid, and iron metabolism with subsequent
weight gain. From this perspective, psychotropic drugs are
indirect iron chelators as they lower the absorption of this
biometal via gut microbes, decreasing body iron stores. The
subsequent extracellular hypoferremia activates nutritional
immunity with iron sequestration in enteric macrophages
and IECs. Upregulated intracellular iron increases the risk of
excessive ROS generation and the subsequent weight gain.
Fortunately, obesity is a modifiable risk factor of general

morbidity, therefore restoring the physiological levels of
Bacteroidetes phylum by various strategies may attenuate or
reverse the excess weight in chronic psychiatric patients. If
validated, the biological markers described here, may offer the
clinician an additional feed-back to estimate the imminence of
weight-related complications.
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