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Abstract—This paper describes the world’s largest gait

database—the “OU-ISIR Gait Database, Large Population

Dataset”—and its application to a statistically reliable perfor-

mance evaluation of vision-based gait recognition. Whereas

existing gait databases include at most 185 subjects, we construct

a larger gait database that includes 4007 subjects (2135 males and

1872 females) with ages ranging from 1 to 94 years. The dataset

allows us to determine statistically significant performance dif-

ferences between currently proposed gait features. In addition,

the dependences of gait-recognition performance on gender and

age group are investigated and the results provide several novel

insights, such as the gradual change in recognition performance

with human growth.

Index Terms—Gait database, gait recognition, large population,
performance evaluation.

I. INTRODUCTION

B IOMETRIC-BASED person-recognition techniques have

become increasingly important in crime prevention and

investigation. Gait, as a biometric cue, has relatively recently at-

tracted much attention and it is expected to be applied to wide-

area surveillance and crime investigation owing to the possi-

bility of identifying subjects from a distance without the coop-

eration of the subjects. Thus, vision-based gait-recognition ap-

proaches have been widely developed in recent years [1]–[9].

For the development and statistically reliable evaluation of

gait-recognition approaches, the construction of a common

gait database is essential. There are two considerations in

constructing a gait database: (1) the variation in walking con-

ditions (e.g., view, speed, clothing, and carrying conditions),

and (2) the number and diversity of the subjects. The first
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consideration is important in evaluating the robustness of

the gait recognition, because walking conditions depend on

the time and circumstances and often differ between gallery

and probe. For instance, the clothing and carrying conditions

when walking along a street in a suit with a bag while on

business can differ from those when strolling empty-handed in

casual clothes during leisure time. The second consideration

is important to ensure statistical reliability of the performance

evaluation. Moreover, if the database is used for soft biometric

applications such as gait-based gender and age classification

[10], [11], the diversity of subjects in terms of gender and age

plays a significant role in the performance evaluation.

Although several gait databases have been constructed

[12]–[25], with most of these taking good account of the first

consideration, the second consideration is still insufficiently

addressed since these databases include at most 185 subjects

[24] and the subjects’ genders and ages are biased in many

of the databases. The exceptions are the large-scale datasets

introduced in [26] and [27], which do address the second con-

sideration and include respectively, 1,035 and 1,728 subjects

with ages ranging from 2 to 94 years. In these datasets, how-

ever, the gait images are captured using cameras with varying

poses (e.g., a camera’s pose on one day differs slightly from

that on another day, or some subjects are captured using first

one camera and then another with a slightly different pose) and

this could introduce bias into the evaluation results.

In this paper, we focus on the second consideration and in-

troduce a large population dataset that is a major upgrade to

previously reported large-scale datasets in [26] and [27]. The

extensions of this dataset are as follows.

1) The number of subjects is considerably greater in the

dataset; i.e., there are more than thrice the number of

subjects in the dataset in [26] and more than twice the

number in the dataset in [27].

2) All silhouette images are normalized with respect to the

image plane to remove the bias of camera rotation for more

equitable performance evaluation.

3) The observation angle of subjects in each frame is specif-

ically defined for the sake of fair analysis in terms of the

observation angle, whereas previous works merely defined

the angle as a side view.

Our dataset is the largest gait dataset in the world, comprising

over 4,000 subjects of both genders and including a wide range

of ages. Although the dataset does not include any variations in

walking conditions, it allows us to investigate the upper limit of

gait-recognition performance in a more statistically reliable way

1556-6013/$31.00 © 2012 IEEE
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TABLE I
EXISTING MAJOR GAIT DATABASES

and to reveal how gait-recognition performance differs between

genders and age groups. Thus, our dataset can contribute much

to the development of gait-based applications, and we demon-

strate its validity through experiments with state-of-the-art gait

representations.

The outline of the paper is as follows. Section II introduces

existing gait databases, while Section III addresses the construc-

tion of the dataset. The gait-recognition approach for perfor-

mance evaluation is described in Section IV, and various perfor-

mance evaluations using our dataset are presented in Section V.

Section VI presents our conclusions and discusses future work.

II. RELATED WORK

Existing major gait databases are summarized in Table I.

Here, we briefly describe these databases.

The Soton database is composed of a small population dataset

[15] and a large population dataset [14]. The small dataset con-

tains subjects walking around an indoor track, with each sub-

ject filmed wearing a variety of footwear and clothing, carrying

various bags, and walking at different speeds. Hence, the data-

base is used for exploratory factor analysis of gait recognition

[29]. The large dataset was the first gait database to contain over

100 subjects and has contributed to the study of gait recognition

mainly in terms of intersubject variation. The recently published

Soton Temporal database [21] contains the largest time varia-

tions; up to 12 months to date [28]. It enables the investigation

of the effect of time on the performance of gait biometrics, al-

lowing the use of 3-D volumetric data.

The USF dataset [18] is one of the most widely used gait

datasets and is composed of a gallery and 12 probe sequences

captured outdoors under different walking conditions including

factors such as view, shoes, surface, baggage, and time. As the

number of factors is the largest of all existing databases, despite

there being only two variations for each factor, the USF database

is suitable for the evaluation of the interfactor effect, as opposed

to the intrafactor effect, on gait-recognition performance.

The CASIA database, Dataset A [16] contains image se-

quences from three views and can be used for the analysis

of the effect of the view angle on recognition performance.

The CASIA database, Dataset B [19] consists of multiview

(11 views) walking sequences and includes variations in the

view angle, clothing, and carrying conditions. Since it contains

the finest azimuth view variations, it is useful for the analysis

and modeling of the effect of view on gait recognition [30].

The CASIA database, Dataset C [20] was the first database to

include infrared gait images captured at night, thus enabling

the study of night gait recognition.

The OU-ISIR Gait Database, Treadmill Dataset [22]–[25]

contains gait images of subjects on a treadmill with the largest

range of view variations (25 views: 12 azimuth views times 2

tilt angles, plus 1 top view), speed variations (9 speeds: 1 km/h

intervals between 2 and 10 km/h), and clothing variations (up

to 32 combinations), and as such, it can be used to evaluate

view-invariant [4], speed-invariant [22] and clothing-invariant

[23] gait recognition. In addition, it is used to analyze gait

features in gender and/or age-group classification [25], since

the diversities of gender and age of the subjects are greater than

those in currently available gait databases.

Next, we review the number and diversity of subjects. Table I

shows that existing major databases include more than 100

subjects. Although these databases are statistically reliable to

some extent, the number of subjects is insufficient when com-

pared with databases of other biometrics such as fingerprints

and faces. In addition, the populations of genders and ages are

biased in many of these databases; e.g., there are no children

in the USF dataset with most of the subjects in their twenties

and thirties, while the ratio of males to females is 3 to 1 in

the CASIA dataset (Dataset B). Such biases are undesirable in

performance evaluation of gait-based gender and age-group

estimation and in performance comparison of gait recognition

between genders and age groups.

III. THE OU-ISIR GAIT DATABASE, LARGE POPULATION

DATASET

A. Capture System

An overview of our capture system is illustrated in Fig. 1.

Each subject was asked to walk at his or her own preferred speed

through a straight course (red arrows) at most twice under the

same conditions. The length of the course was approximately

10 m, with approximately 3 m (at least 2 m) sections at the

beginning and end regarded as acceleration and deceleration
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Fig. 1. Overview of capture system and captured images.

zones, respectively. Two cameras were set approximately 4 m

from the walking course to observe (1) the transition from a

front-oblique view to a side view (camera 1), and (2) the transi-

tion from a side view to a rear-oblique view (camera 2).We used

Flea2 cameras manufactured by Point Gray Research Inc. with

HF3.5M-2 lenses manufactured by SPACE Inc. The image size

and frame rate were, respectively, 640 480 pixels and 30 fps.

The recorded image format was uncompressed bitmap. More-

over, green background panels and carpet (if available) were

arranged along the walking course for the purpose of clear sil-

houette extraction.

B. Data Collection

The dataset was collected during entertainment-oriented

demonstrations of an online gait personality measurement

[31] at outreach activity events in Japan, including the Dive

Into the Movie project (DIM2009) [32], the 5th Regional

Disaster and Crime Prevention Expo (RDCPE2010), Open

Campus at Osaka University (OU-OC2010/2011), and the

Core Research for Evolutional Science and Technology

project (http://www.jst.go.jp/kisoken/crest/en/index.html,

CREST2011). All the events were held at indoor halls and the

numbers of visitors at each event are summarized in Table II.

Each subject was requested to give their informed consent

permitting the use of the collected data for research purposes.

Also, the age and gender of each subject were collected as meta-

data. All the subjects walked empty-handed, wearing their own

clothing (some subjects wore a hat) and footwear. Examples of

images captured at each event are shown in Fig. 1.

C. Statistics

From the data collected by camera 1 (images were taken

with two cameras at the events), the world’s largest gait dataset

of 4,007 subjects (2,135 males and 1,872 females) with ages

ranging from 1 to 94 years was constructed. We call this dataset

the “OU-ISIR Gait Database, Large Population Dataset C1

Version1”1, which we abbreviate to OULP-C1V12. Detailed

distributions of the subjects’ gender and age are shown in

Fig. 2, while example images of the subjects are shown in

Fig. 3. Almost all the subjects are of Asian descent.

The dataset comprises two subsets, which we call

OULP-C1V1-A and OULP-C1V1-B. OULP-C1V1-A is

a set of two sequences (gallery and probe sequences) per

subject and is intended for use in evaluating gait-recogni-

tion performance under almost constant walking conditions.

OULP-C1V1-B is a set of one sequence per subject and is

intended for use in investigating gait-based gender classifica-

tion and age estimation. OULP-C1V1-A and OULP-C1V1-B

are major upgrades to the datasets introduced in [26] and [27],

respectively. For brevity, we omit the description of the dataset

header “OULP-C1V1-”.

Each of the main subsets is further divided into five subsets

based on the observation angle (55 [deg], 65 [deg], 75 [deg],

85 [deg], and including all four angles) of each subject. We call

these subsets A/B-55, A/B-65, A/B-75, A/B-85, and A/B-ALL,

respectively, with each subject belonging to at least one of these

subsets. The observation angle of each subject in each frame

is defined by the y-axis of the world coordinate system (which

is parallel to the walking direction) and the line of sight of the

camera as illustrated in Fig. 4.

A subject is included in a bin of a subset if one gait period oc-

curs in the range of angles (as illustrated in Fig. 4) corresponding

to that subset. For example, if a subject is recorded twice (both

gallery and probe sequences) with a complete gait period in the

range of 55 [deg], the subject is included in a bin of A-55 and

one of B-55. Moreover, if a subject is recorded twice with a

complete gait period covering all the angle ranges, the subject

is included in a bin of all the subsets. A gait period is calculated

from the whole sequence (see Section IV-B for details on the

calculation of the gait period).

An example image for each observation angle is shown in

Fig. 4, while a breakdown of the number of subjects is given in

Table III. In this table, the values in the “Total” column represent

the number of subjects included in at least one of the subsets of

55 [deg], 65 [deg], 75 [deg], and 85 [deg]. As mentioned above,

the numbers of subjects for dataset A represent those that have

been recorded twice. Also, the differences between datasets A

andB for each subset represent the numbers of subjects recorded

1To be prepared for publication. The data will be published in the form of
normalized silhouette image sequences in PNG format, with a total data size of
about 1.5 GB.

2The naming format is OULP-[camera ID][version ID]-[header1]-
[header2]-….
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TABLE II
VISITORS AT EVENTS

Fig. 2. Distributions of the subjects’ gender and age in OULP-C1V1.

Fig. 3. Examples of subjects in OULP-C1V1.

only once. Take for example, the subset of 55 [deg] in Table III

(A-55 and B-55) where 3,706 subjects are recorded twice and

292 subjects are recorded only once. Note that there are also

differences in the numbers of subjects between subsets, because

the sequence length and observation angles for each subject are

not exactly the same.

D. Advantages

Compared with existing gait databases, our dataset has the

following strengths.

1) Large population: The number of subjects is more than 20

times that in publicly available large-scale gait databases.

This improves the statistical reliability of various perfor-

mance evaluations such as the comparison of gait recogni-

tion.

2) Gender balance: The ratio of males to females is close

to 1. This is a desirable property for more reliable perfor-

mance evaluation of gait-based gender classification and

for comparison of gait-recognition performance between

genders.

3) Whole generation: The age range is from 1 to 94 years

with each 10-year interval up to 49 years of age con-

taining more than 400 subjects (even in the smallest

Fig. 4. Definitions of the world coordinate system and the observation angle
of a subject, and an example image at each observation angle. The plane
corresponds to the background wall behind the walking subjects, while the
plane corresponds to the ground plane.

subset A-ALL). In addition, it is noteworthy that our

dataset includes a sufficient number of children at all

stages of growth, whereas other large-scale gait databases

are mainly composed of adult subjects. This provides

more statistically reliable results for gait-based age-group

classification and comparisons of the difficulties in gait

recognition among age groups.

4) Silhouette quality: The quality of each silhouette image

is relatively high because we visually checked each sil-

houette more than twice and made manual modifications

if necessary. This enables the elimination of silhouette

quality problems from gait analysis. On the contrary, the

silhouette images in most of the existing public databases

are automatically extracted and often include significant

over/under-segmentation. Although manually modified

silhouettes were created in the investigation of the effect

of silhouette quality on gait recognition in [33] and [34],

these have not been published.

E. Preprocessing

This section briefly describes the method used for size-nor-

malized silhouette extraction.

1) Silhouette Extraction: The first step involved extraction

of gait silhouette images via graph-cut-based segmentation [35]

in conjunction with background subtraction. Of course, over/

under-segmentation errors appeared in some extracted silhou-

ette images. Hence, as described above, we visually checked

all silhouette images at least twice and then manually modi-

fied under/over-segmentation if necessary. In more detail, a sil-

houette was shown to the observer in the form of a composite

image in which the silhouette contour was overlaid on the cor-

responding original image. The observer checked whether the

silhouette contour fitted the visually perceived human contour

and if not, modified it using a GUI tool specially developed for

this purpose.

2) Correction of Camera Rotation: In the second step,

image normalization, including the correction of distortion and

camera rotation, was carried out. Because the camera pose in

the world coordinate system for each day/event was not strictly

the same, we normalized the camera rotations in all silhouette

images such that the image plane in each is parallel with the

plane in the world coordinate system as shown in Fig. 5.
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TABLE III
BREAKDOWN OF THE NUMBER OF SUBJECTS IN OULP-C1V1 (MALE/FEMALE)

Fig. 5. Examples of the original and normalized camera pose, image plane, and
images. In the rotation-corrected image in (b), the set of cyan lines and set of
magenta lines represent the sets of parallel lines in the scene used to determine
the vanishing points, while the white dashed line represents the vertical center
line of the image. The observation angle is 90 [deg] at this line. (a) Original
image plane. (b) Normalized image plane.

First, the intrinsic parameters of the camera and coefficients of

lens distortion were estimated [36]3 and distortion corrected.

An example of an undistorted image is shown in Fig. 5(a). The

transformation matrix of camera rotation from the original pose

(shown in Fig. 5(a)) to the target pose (shown in Fig. 5(b)) was

then estimated for each day/event from the undistorted image

using a pair of vanishing points [37] (i.e., horizontal and ver-

tical vanishing points), estimated from the sets of parallel lines

in the scene [38]. Finally, all the image pixels in the original

image plane were reprojected onto the normalized image plane.

An example of a camera rotation corrected image is shown

in Fig. 5(b). Also, examples of a subject in each dataset after

rotation correction are shown in Fig. 6.

3) Registration and Size Normalization: The third step in-

volved registration and size normalization of the silhouette im-

ages [4]. First, the top, bottom, and horizontal center of the sil-

houette regions were obtained for each frame. The horizontal

3Calibration procedures were implemented using OpenCV version 1.1 func-
tions.

center was chosen as the median of the horizontal positions be-

longing to the region. Second, a moving-average filter was ap-

plied to these positions. Third, we normalized the size of the

silhouette images such that the height was just 128 pixels ac-

cording to the average positions, and the aspect ratio of each

region was maintained. Finally, we produced an 88 128 pixel

image in which the average horizontal median corresponds to

the horizontal center of the image. Examples of size-normal-

ized silhouettes are shown in Fig. 7.

IV. GAIT RECOGNITION

This section describes a framework for performance evalua-

tion of gait recognition.

A. Gait Features

The current trend in gait representation is appearance and pe-

riod-based representation, such as the averaged silhouette [39],

also known as the Gait Energy Image (GEI) [40]. In this paper,

we deal with six such state-of-the-art gait features: GEI, Fre-

quency-Domain Feature [4] (referred to as FDF in this paper),

Gait Entropy Image (GEnI) [5], Masked GEI based on GEnI [7]

(referred to as MGEI in this paper), Chrono-Gait Image (CGI)

[6], and Gait Flow Image (GFI) [8].

The GEI is obtained by averaging silhouettes over a gait

cycle, while the FDF is generated by applying a Discrete

Fourier Transform of the temporal axis to the silhouette images

in a gait cycle. In this paper, 0, 1, and 2 times frequency ele-

ments are used. The GEnI is computed by calculating Shannon

entropy for every pixel over a gait cycle, where the value of

the GEI is regarded as the probability that the pixel takes the

binary value. The MGEI is computed by masking the GEI with

a pair-wise mask generated by each pair of probe and gallery

GEnIs. The GEnI and MGEI aim to select the dynamic area

from the GEI. The CGI is a temporal template in which the

temporal information among gait frames is encoded by a color

mapping function, and is obtained by compositing the color

encoded gait contour images in a gait cycle. The GFI is based

on an optical flow field from silhouettes representing motion

information and is created by averaging the binarized flow

images over a gait cycle. An example of each feature is shown

in Fig. 8.

B. Gait Period Detection

For the quantification of periodic gait motion, we adopted

the Normalized Auto Correlation (NAC) of the size-normalized
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Fig. 6. Composite images showing examples of a subject in each dataset
after rotation correction. Each composite image includes the subject at the
start (“Start”), the middle (“Middle”), and the end (“End”) of the section.
The vertical red line represents the center of the section. (a) A-55. (b) A-65.
(c) A-75. (d) A-85.

Fig. 7. Examples of size-normalized gait silhouettes (every four frames).

Fig. 8. Examples of gait features. (a) GEI. (b) FDF (three frequencies).
(c) GEnI. (d) MGEI. (e) CGI. (f) GFI.

Fig. 9. Example of the relation between NAC and frame shift. In this figure,
the frame shift corresponding to the second peak of the NAC is 32.

silhouette images for the temporal axis:

(1)

(2)

where is the silhouette value at position of the

-th frame, is the autocorrelation for the -frame shift,

and is the total number of frames in the sequence. Be-

cause gait is a symmetrical motion to some extent, peaks of the

NAC were assumed to appear for all half periods on the tem-

poral axis. Thus, we determined the gait period as the

frame shift corresponding to the second peak of the NAC. An

example of the relation between NAC and frame shift is shown

in Fig. 9.

C. Distance Matching

In the evaluation of datasets A-55, A-65, A-75, and A-854, a

gait feature for a subject was created from a section of a dataset

(as illustrated in Fig. 6) that includes one gait period. Note that

there is some area of overlap for some subjects between sections

as shown in Fig. 4. All pairs of features (gallery and probe fea-

tures) were then directly matched5.

The distance between the -th probe

subject and the -th gallery subject in dataset

was mea-

sured as,

(3)

where and are feature vectors of the -th probe and

-th gallery in dataset , respectively, and is the Eu-

clidean distance. In addition, we exploited z-normalization [41]

of the distance among galleries for each probe to improve the

performance in a one-to-one matching scenario.

For dataset A-ALL, we first calculated z-normalized dis-

tances for each section of the four above-mentioned datasets

and then averaged them as a total distance. Note that this

averaging is equivalent to combining the normalized scores via

the sum rule [42].

V. PERFORMANCE EVALUATION OF GAIT RECOGNITION

Despite the recent welcome development in gait recognition

in the research community, the following open issues still re-

main.

1) An evaluation of gait recognition with statistical reliability

has not been carried out owing to the lack of a large popu-

lation dataset.

2) Also, to the best of our knowledge, the effects of gender

and age on recognition performance have not been ex-

plored because of the lack of a dataset with sufficient sub-

ject diversity.

Therefore, we address the above issues using our dataset. In this

section, we first show the statistical reliability of the evalua-

tion using our database. The upper limits of recognition perfor-

mance of state-of-the-art gait representations introduced in the

previous section are then demonstrated. Finally, we reveal the

effects of age and gender on recognition performance.

A. Effect of the Number of Subjects

First, the effect of the number of subjects is demonstrated

by means of a Receiver Operating Characteristic (ROC) curve.

The ROC curve is a common tool for performance evaluation

in biometrics and denotes the trade-off between the False Re-

jection Rate (FRR) and False Acceptance Rate (FAR) when the

acceptance threshold is changed by a receiver in a one-to-one

matching scenario.

4Because two sequences (gallery and probe sequences) are required for recog-
nition, dataset A is used hereafter.

5Since only a single gait feature was obtained for each dataset, statistical dis-
criminant analysis considering within-class variance such as linear discriminant
analysis could not be applied.
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Fig. 10. ROC curves of GEI-based gait recognition with a varying number of
subjects. Black and red indicate, respectively, smaller subsets and the whole set
of A-65. The bold line and two bounding dashed lines indicate, respectively,
the average and standard deviation range derived from (4). Gray bars
denote the standard deviation ranges obtained in the experiments.

From statistical analysis of ROC curves [43], the standard

deviation of the FRR with a single probe for each subject is

estimated as

(4)

where is the observed FRR and is the number of subjects.

This indicates that the obtained FRR becomes more reliable as

the number of subjects increases.

To validate the estimation, we repeated the experiments with

randomly chosen subsets with fewer subjects and compared the

actual standard deviation of the performance and that estimated

from (4) using the GEI as the gait feature. First, we prepared 100

subsets comprising 100 subjects randomly chosen from dataset

A-65 (which comprises 3,770 subjects) and obtained 100 ROC

curves from the experimental results. We then calculated the av-

erage and standard deviation of the FRR for each FAR, depicted

as an averaged ROC curve (bold black line) and standard devia-

tion range bar (gray bar) in Fig. 10. Additionally, the estimated

standard deviation range is depicted as two dashed black lines.

From the graph, we see that the standard deviation ranges de-

rived from the experimental results correspond well with those

estimated from (4).

In addition, the results for the whole set are superimposed as

the bold red line, while the standard deviation range estimated

from (4) is depicted as two dashed red lines in Fig. 10. We see

that the standard deviation range is significantly narrower than

that of subsets with fewer subjects.

B. Comparison of the Gait Feature

1) Performance Comparison: This section compares the

recognition performance of the six gait features described in

Section IV-A. The recognition performance was evaluated

using two metrics: (1) the ROC curve, and (2) the rank-1 and

rank-5 identification rates. The rank-1 and rank-5 identification

rates, which are common evaluation measures in a one-to-N

matching scenario, denote the percentages of correct subjects

out of all the subjects appearing within the first and fifth ranks,

respectively. Note that the rank-1 and rank-5 identification

rates depend on the gallery size, whereas the ROC curve is

essentially independent of the gallery size.

First, the performance is compared for each observation angle

using datasets A-55, A-65, A-75, and A-85, since the gait fea-

Fig. 11. Performance comparison of six gait features in terms of the ROC
curve and EER. Each bar represents a standard deviation range derived from
(4). (a) ROC for dataset A-55. (b) ROC for dataset A-65. (c) ROC for dataset
A-75. (d) ROC for dataset A-85. (e) ROC for dataset A-ALL. (f) EERs for all
the datasets.

ture property is dependent on the observation angle6. The ROC

curves with standard deviation range bars for each dataset are

shown in Fig. 11(a)–(d), while the Equal Error Rate (EER) is

summarized in Fig. 11(f). In addition, rank-1 and rank-5 identi-

fication rates are given in Table IV. From the results, although

the performances of the GEI and FDF are nearly equal and the

performances of the GEnI and CGI are nearly equal, we see

that there is a statistically significant performance difference be-

tween the GEI (or FDF), GEnI (or CGI), GFI, and MGEI, and

the performance order of these techniques is almost independent

of the observation angle.

Next, we compare the total performance using dataset

A-ALL, with the results shown in Fig. 11(e) and Table IV

(bottom row). As for the results for A-ALL, the following

reasons are suggested for the improvement in recognition

performance: a) the effect of gait fluctuations, which notably

appears on the arm swing and head pose, was decreased by

combining the scores of each observation angle, and b) the

variations in the gait feature property caused by the observation

angle improved the recognition performance, as reported in

[44]. From these results, it can be seen that the GEI and FDF

achieve the best performance overall.

Note that these comparison results are partly inconsistent

with the results in previous works, for example, [6] (GEI

versus CGI) and [8] (GEI versus GFI). The differences between

the databases used for the evaluations (e.g., subject diversity,

silhouette quality, sequence length, and intrasubject variations)

6For example, static features such as body shape are clearly seen in front-view
gait images, while dynamic features such as the step and arm swing are clearly
seen in side-view gait images.
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TABLE IV
PERFORMANCE COMPARISON OF SIX GAIT FEATURES IN TERMS OF THE RANK-1 AND RANK-5 IDENTIFICATION RATES

Fig. 12. Examples of subjects in A-85. Note that the value of the GFI is in-
verted for visibility. All feature differences between gallery and probe features
are visualized by colors (green and red) in the corresponding difference image.
Green indicates that the probe feature appears more strongly, while red depicts
the opposite. Regarding the subject in (a), the rank score using the GEI is 216,
while that using the GFI is 1 (also, the rank scores are 79, 239, 7, and 19 using
the FDF, CGI, GEnI, and MGEI, respectively). On the other hand, for the sub-
ject in (b), the rank score using the GEI is 1, while that using the GFI is 567
(also, the rank scores are all 1 using the other features). (a) A subject with large
head pose fluctuation. (b) A subject with large arm swing fluctuation.

are considered to be the cause of the inconsistencies. For

example, according to the latest evaluation results of the CGI

reported in [45], GEI performance is superior to that of CGI

only if there is no intrasubject variation and only a single gait

period occurs in a sequence. Both these conditions are true in

our dataset.

2) Correlation Among Features: Although some kind of

upper limit on recognition performance using state-of-the-art

gait features has been shown in the previous section, investi-

gating the correlation among gait features is still meaningful for

the design of a feature fusion scheme [46] to further improve

recognition performance. Each gait feature has a unique prop-

erty and is considered to be independent of other features to

some extent. For example, Fig. 12(a) shows a subject in A-85

whose rank score is 216 using the GEI and 1 using the GFI. On

the other hand, Fig. 12(b) shows a subject in A-85 whose rank

score is 1 using the GEI and 567 using the GFI. These typical

examples indicate that the GEI is relatively sensitive to static

pose fluctuations and robust to motional fluctuation, while the

GFI is the exact opposite.

To reveal which pair of features has a weak correlation, that

is, is suitable for fusion, the rank score relations among gait

features for each subject were analyzed. The results show that

the GFI has relatively weak correlation with all the other fea-

tures except the GEnI, and the CGI has the same with the GEnI,

MGEI, and GFI. In addition, the GEnI has the same with the

GEI, CGI, and MGEI. Some notable relations of rank scores for

dataset A-85 among these features are shown in Fig. 13, while

the relations of distances of the same subjects and different sub-

jects are shown in Fig. 14. In the distance distributions shown in

Fig. 14, though we can see that each distance relation between

each pair of features is correlated as a whole, dispersal exists

at a certain level. Therefore, these figures indicate that there is

room for improvement in the recognition performance by fusing

these gait features. Demonstration of this through fusion is one

of our future works.

C. Effects of Gender and Age

This section investigates the difference in gait-recognition

performance between genders and age groups. Our gait data-

base is suited to this purpose because the age distribution of

each gender is much wider than that in existing gait databases as

mentioned in Section III-C. In this experiment, we adopted the

GEI as the gait feature and carried out the evaluation on subset

A-65, since it has the largest number of subjects in dataset A7.

Ages were grouped in 5-year intervals up to 20 years of age

and in 10-year intervals from 20 to 60 years of age for each

gender8. Ages over 60 years were treated as one age group be-

cause of the shortage of subjects. The numbers of subjects in

each gender/age group are given in Table V.

The EER for each gender/age group is depicted in Fig. 15,

while the distance distributions of the same subjects (true at-

tempts) for each group are shown in Fig. 16. A comparison of

the distance distributions of the same subjects and different sub-

jects (imposters) for four typical age groups—under 10s (5 to

9 years old), early 10s, 20s, and 40s—are depicted in Fig. 17.

Note that the original L2 norm (3) is shown in these distribu-

tions.

1) Effect of Gender: First, we focus on the difference in

gait-recognition performance between males and females. Ac-

cording to the results in Fig. 15, recognition performance for fe-

males tends to be better than that for males in almost all the age

groups. Additionally, Fig. 17 implies that the intersubject vari-

ation in females’ gait is greater than that in males’ gait, while

intrasubject variations are not that different between males and

females in each age group. The difference in intrasubject vari-

ation is assumed to be due to the fact that the range of appear-

ance variation in females, which mainly comes from variations

in hair style, clothes, and shoes, is greater than that in males.

7We also carried out this experiment using all the other gait features described
in Section IV-A on another subset A-85, but the results showed similar trends.

8Taking the rapid physical growth rate into consideration, we used 5 year
intervals up to 20 years to reveal more detailed changes in recognition perfor-
mance during the growing process.
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Fig. 13. Examples of the rank score correlations between pairs of gait features.
(a) GEI and GFI. (b) CGI and GFI. (c) GFI and MGEI. (d) CGI and GEnI.

Fig. 14. Examples of the distance correlations between pairs of gait features.
(a) GEI and GFI. (b) CGI and GFI. (c) GFI and MGEI. (d) CGI and GEnI.

2) Effect of Age: Next, we focus on the difference in gait-

recognition performance between age groups. From the results

in Fig. 15, we see that gait-recognition performance for the

group of very young children (0 to 4 years old) is worse than

that for the other age groups, and this gradually improves with

the slightly older groups up to the group of late 10s. This result

is intuitively understandable because the intrasubject gait fluc-

tuation for children is greater owing to the immaturity of their

walking, as illustrated in Fig. 16. On the other hand, the fluctua-

tion in gait for adults is small as shown in Fig. 16. This indicates

that adults have established their own walking style; in other

words, they have a fixed gait pattern. In this regard, however,

the intrasubject variation in the over-60 female group is slightly

larger than that in other adult age groups, and this is assumed

Fig. 15. EERs among genders and age groups. The black bars represent the
standard deviation ranges derived from (4).

Fig. 16. Distance distributions of the same subjects in each gender/age group.
(a) Male. (b) Female.

Fig. 17. Comparison of distance distributions of the same subjects and different
subjects in four typical age groups. (a) Group of 5 to 9 year olds. (b) Group of
early 10s. (c) Group of 20s. (d) Group of 40s.

to be due to a decline in physical strength with aging. Further

study of elderly groups (over 60 years old), together with the ad-

ditional data collection required, is considered as future work. In

addition, a more detailed analysis of gait properties among age

groups, such as investigation of the differences in the effects of

body parts among age groups, is one of our future works.

The above observations indicate that the dependence of gait

fluctuation on the age group implies that gait fluctuation can be

a useful cue for age classification according to gait. In addition,

the age group can be regarded as a so-called quality measure

[47] for gait recognition, which is one of the interesting future

directions of this study.

VI. CONCLUSION

This paper described the construction of a gait database com-

prising a large population dataset and presented a statistically

reliable performance evaluation of vision-based gait recogni-

tion. This dataset has the following advantages over existing gait

databases: (1) the number of subjects is 4,007, which is more

than 20 times greater than the number in existing public large-

scale databases, (2) the male-to-female ratio is close to 1, (3) the
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TABLE V
NUMBERS OF SUBJECTS OF EACH GENDER AND AGE GROUP IN A-65

age distribution is wide, ranging from 1 to 94 years, and (4) the

quality of all silhouettes is guaranteed by visual confirmation.

Using our dataset, we carried out a statistically reliable perfor-

mance comparison of gait recognition using state-of-the-art gait

features. Moreover, the dependence of recognition performance

on gender and age groupwas analyzedwith the results providing

several new insights, including the performance difference be-

tween males and females, and the gradual change in recognition

performance with human growth.

Although our dataset has the largest population of all

databases till now, there is still an insufficient number of very

young children and elderly persons when compared with the

numbers of other generations. Therefore, we need to collect the

required gait datasets by taking advantage of various events,

such as outreach activities, in the future. Additionally, the

construction of another dataset using images taken with camera

2 is a future work.

Moreover, further analysis of gait recognition performance

using our dataset is still needed. For example, our dataset

enables the evaluation of cross-view recognition and this will

show the robustness of each gait feature with respect to view

variations. Finally, our database is suitable for the development

of gait-based gender and age classification algorithms, which

are quite meaningful for many vision applications such as

intelligent surveillance, and these remain as future works.
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