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Abstract — Radar range rate measurements are not
always used in target tracking filters because they are
highly nonlinear in Cartesian space. A linear approxi-
mation of range rate composed of its partial derivatives
with respect to the track state vector is sometimes used
in the measurement equation of an Extended Kalman
filter. Unfortunately, this naive linearization can de-
grade the filter’s position estimates. The origins of
this phenomenon are investigated and found to lie in
the functional relationship induced by the linearization
between the position elements of the track state vec-
tor and the range rate innovation. An alternative lin-
earization of range rate that is not a function of the
position elements is derived. It is shown that the new
linearization improves position estimate for some tra-
jectories. An ordinary Kalman filter’s gains are com-
pared to those of the usual and alternative extended
Kalman filters analytically and via simulation. The
results show that the alternative linearization leads to
a filter having the same position gains as an ordinary
Kalman filter, and an additional gain on the track’s
radial velocity. This new extended Kalman filter can
improve a tracking system’s velocity estimates without
risk to its position estimates.

Keywords: Tracking, filtering, extended Kalman fil-
ter, range rate.

1 Introduction
Range rate, also known as the radial or Doppler ve-

locity, is highly nonlinear for a radar tracking prob-
lem set in a Cartesian frame of reference. Thus, the
range rate measurement is unsuited for a Kalman fil-
ter (KF) and many tracking systems do not use it to
filter the state estimate. Nevertheless, it is reasonable
to suppose that proper use of the range rate measure-
ment can improve the filter, particularly its velocity
estimates. The usual technique for adding nonlinear
functions and measurements to the system is to lin-
earize them by taking their partial derivatives with re-
spect to the state vector. Kalman filters that do this

are called extended Kalman filters (EKF).
The range rate measurement has other uses. Asso-

ciation algorithms that consider range rate have lower
probability of incorrect report to track associations [4].
When the target is observed by a network of sensors,
range rate measurements improve velocity estimates
because the target’s velocity is measured along multi-
ple axes. With a sensor network, it is possible to es-
timate position, speed and acceleration using only the
range rate measurement and not the position measure-
ments [1]. When the range and range rate measure-
ment errors are negatively correlated, a filter designed
to exploit the correlation estimates range better than
one that does not [3]. If the tracking frame of refer-
ence is rotated so that the target lies on an axis then
the range rate measurement is a direct, linear measure-
ment of target velocity along that axis and can be used
in an ordinary Kalman filter [5].
Sometimes, EKFs with a linearized range rate mea-

surement are reported to work well [4]. Sometimes,
they are reported to diverge. Schutz, etal., [6] state
that an experimental EKF tracker designed for the E-
2C airborne early warning aircraft diverges for most
target trajectories in the sense that its standard posi-
tion errors grow with time. Reports of divergence are
not surprising; Bar-Shalom and Li [2] warn that naive
linearizations may introduce biases or errors in the co-
variance calculations. However, it is surprising that
the cause of divergence is not more widely examined
given these conflicting reports.
In this paper an alternative linearization of the range

rate is proposed. An EKF using the alternative lin-
earization is compared analytically and via simula-
tion to the usual EKF and an ordinary KF that uses
only the position measurements. The analytical results
show that the naive linearization introduces unreason-
able biases in the posterior estimates for certain trajec-
tories. Simulation results show that the usual EKF’s
position biases can be large even for moderate range
rate innovations and prior state estimate errors. It is so
overly sensitive to changes in covariance and prior esti-
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mated target heading that we call it the over-extended
Kalman filter (OEKF) in this paper.

2 Alternative Linearization
Consider a two dimensional radar at the origin mea-

suring range ρ, bearing η, and range rate
.
r. Two di-

mensions suffice from demonstrating the differences be-
tween the ordinary and alternative linearization, and
it is easy to extend the problem to three dimensions.
A tracking system converts the position measurements
to Cartesian coordinates in the usual way [2]
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where superscript (m) denotes a measured value. Tar-
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. In this system range rate

is a nonlinear function of the state vector (2).
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Track state estimates are updated with a Kalman filter
having process and measurement equations (3) and (4),
respectively.

θk = Fθk−1 + wk (3)

zk = Hkθk + vk (4)

F is linear motion, wk is a white noise acceleration
with covariance Wk, vk is white measurement noise
with covariance Vk, and

Hk =
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with the last row evaluated at the current state esti-
mate. This is the usual extended Kalman filter [4]. The
ordinary Kalman filter has the same process equation,
but lacks the third row of the measurement equation;
it uses only the position measurements.

Writing the partial derivatives explicitly, multiply-
ing them by the state vector, and combining terms
makes it clear that the expected range rate measure-

ment equals the true range rate.
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Notice that the first two elements of (6) sum to exactly
zero; x ∂

.
r

∂x+y
∂
.
r

∂y = 0. Thus, an alternative linearization
with measurement matrix (8) exists
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We call this filter the alternative extended Kalman fil-
ter (AEKF).

3 Gain Differences
The differences in the third row of (5) and (8) sig-

nificantly impact filter gain. This is demonstrated by
solving the recursive, Kalman filter equations for each
filter. To simplify the presentation, let a, b, c, d denote
the partial derivatives ∂

.
rk

∂xk
, ∂

.
rk

∂yk
, ∂

.
rk

∂
.
xk
, ∂

.
rk

∂
.
yk
, let P denote

the 4x4 prior state covariance matrix. Denoting the
measurement matrices of the KF, OEKF, and AEKF
H0, Hoekf , and Halt, respectively,

H0 =

·
1 0 0 0
0 1 0 0

¸
(9)

Hoekf =

·
H0

a b c d

¸
(10)

Halt =

·
H0

0 0 c d

¸
(11)

In the OEKF range rate is functionally related to the
position and velocity estimates. In the AEKF it is only
related to the velocity estimates.
First, compute the measurement covariances, S =

HPHT + V , just prior to taking the measurement.
The 2x2 matrix S0 for the KF is

S0 = H0PH
T
0 +

·
v11 v12
v12 v22

¸
(12)
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The upper left elements of the 3x3 matrices Soekf and
Salt equal S0. Their third columns, and the corre-
sponding elements of their third rows, are

Sekf (:, 3) =

 [abcd]P·1
[abcd]P·2

[abcd]P [abcd]
T
+ v33

 (13)

Salt (:, 3) =

 [00cd]P·1
[00cd]P·2

[00cd]P [00bcd]T + v33

 (14)

where P·j is the jth column of P .
Expressions for the gain matrices, K = PHTS−1, as

functions of the matrix elements are easy to obtain but
algebraically cumbersome. Letting {k}ij denote the
elements of K0, {α}ij and {�}ij denote the elements of
Kalt and Koekf , respectively,

K0 =


k11 k12
k21 k22
k31 k32
k41 k42

 (15)

Kalt =


α11 α12 α13
α21 α22 α23
α31 α32 α33
α41 α42 α43

 (16)

Koekf =


�11 �12 �13
�21 �22 �23
�31 �32 �33
�41 �42 �43

 (17)

The posterior state estimate equals the prior esti-
mate plus the measurement innovations premultiplied
by the gain Innovations are the difference between
the actual and expected measurements. The first two
columns of K are gains on the position innovations,
and the third column are the gains on the range rate
innovation. Of course, the gain matrix for the ordinary
KF tracker has no third column because it only uses
the position measurements. Given the prior state es-
timate θprior, the measurement z, and the matrix H,
the posterior state estimate θpost is

θpost = θprior +K (z −Hθprior) (18)

In the general case all three filters have different
gains. The �’s and α’s are nonzero, cumbersome, and
difficult to interpret directly. In the following sections
simplifying assumptions that ease interpretation of the
gains and highlight the nature of their differences are
made.

3.1 Uncorrelated Systems
Kalman filters are linear, so they are invariant under

scale and rotation and the coordinate system can be

chosen arbitrarily. A coordinate system that simplifies
the analysis and interpretation of results places the
prior track state estimate exactly on the y-axis at a
range of 1. In this system

.
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Assume that the prior state and measurement vec-
tors are uncorrelated; P and V are diagonal matri-
ces. This assumption is unrealistic in practice because
the acceleration noises in 3 always introduce a posi-
tive correlation between the positions and velocities.
Nevertheless, it is instructive for highlighting the dif-
ferences between the KF, OEKF and AEKF gains. A
more realistic example is given later.
Given the coordinate system and covariance matri-

ces, the gains are

K0 =


p11

(p11+v11)
0

0 p22
(p22+v22)

0 0
0 0

 (20)

Kalt =

 K0

0
0
0
p44

(p44+v33)

 (21)

Koekf =


�11 0 �13
0 p22

(p22+v22)
0

0 0 0
�41 0 �43

 (22)

The AEKF’s position gains identically equal the KF’s.
The gain on

.
y equals the ratio of the prior state and

measurement uncertainties. This is an intuitively sat-
isfying situation for the uncorrelated system. The po-
sition measurements update the position estimates and
the velocity measurement updates the velocity esti-
mates, whereas in the OEKF the velocity measurement
also updates the position, and the position measure-
ments also update the velocity. These oddities arise
from the functional relation between range rate and
position estimates in (5)
The OEKF’s posterior solution has a different cross

radial position than the KF, and a different range rate
than the AEKF. Unfortunately, the {�}ij do not have
a simple, easily interpretable form. They are functions

of, for example,
³
∂
.
r

∂x

´2
and p11 · p44.

3.2 OEKF Biases
The sensitivity of the OEKF’s posterior estimate to

P , V , θprior and range rate innovation is evaluated
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Parameter Parameter
change

Posterior
Position
Difference

p11 ↑ ↑
p44 ↓ ↑
v11 ↑ ↑
v33 ↓ ↑
range rate
innovation

↑ ↑

heading cross radial ↑

Table 1: Relation between covariances, measurements,
and OEKF posterior position biases

numerically. Table 1 shows how these parameters effect
the OEKF’s posterior position biases.
When the prior velocity variances are large and the

range rate innovation is small, then the biases are
moderate. However, the range rate innovation can be
substantially larger than its measurement’s standard
deviation, especially when the target is maneuvering.
Range rate is hard to estimate well because the es-
timates of all four state elements must be accurate.
During maneuvers, even if the position estimates are
good, the velocity estimates are not. In the cases of
misassociation due to clutter or multiple targets the
range rate innovation may be quite large.
OEKF biases are sensitive to target heading. They

are larger for off-radial headings than for radial head-
ings. When the prior estimated heading is exactly ra-
dial the OEKF’s posterior position estimates exactly
equal the AEKF’s. This is obvious from (19) because
.
x = 0.
An interesting characteristic of the OEKF is that

its biases increase as its prior state velocity variance
decreases. This leads to a paradox in which stronger
prior beliefs increase the dispersion of the posterior es-
timate. This is a direct result of the functional rela-
tion between range rate and the position estimates in
Hoekf .. Low prior velocity variance reduces the sensi-
tivity of the posterior velocity estimates to the range
rate innovation, so the filter compensates by increasing
the sensitivity of the position estimates.

4 Simulation Results
It is easy to show via simulation that the gains can

be so large that the OEKF posterior position estimates
may be several standard deviations away from both the
prior and the measurement. It is reasonable to expect
filter gains to lie in (0, 1), so the posterior estimate
should move from the prior toward the measurement
and lie somewhere in between. In the OEKF the pos-
terior can actually move away from the measurement.

The net effect can be interpreted as a gain less than 0
or greater than 1.
Figures 1 through 4 compare KF, AEKF and OEKF

posterior position estimates for the uncorrelated sys-
tem. The prior track state estimate always lies ex-
actly on the y-axis at a range of 50 miles. The speed
is always 500 knots but the heading changes. The
covariance matrices are P = diag ([2, 2, 50, 50]) and
V = ([1, 1, 5]). In these figures, the large, filled dot
in the center is the prior position and the line extend-
ing from the dot is in the direction of the heading.
The measurements are denoted ’+’. KF and AEKF
posterior positions are denoted by large, empty circles.
OEKF posterior positions are denoted by small, filled
dots. Measurements are shown every 45 degrees, rela-
tive the prior. They are not to be interpreted as sev-
eral measurements updating the estimate sequentially.
Each posterior estimate is the prior updated with only
one measurement.
Figures 1 and 2 show posterior estimates for prior

headings of 0 and 90 degrees and a range rate inno-
vation of 20 knots. When the heading is radial all
posterior estimates are identical. When the heading is
cross radial the posterior OEKF estimates are pushed
in the direction of the heading. Some of the net gains
are greater than one, and some are negative. For ex-
ample, measurements to the left of the prior estimate
induce posteriors to the right.
Figure 3 shows the effect of decreasing prior velocity

variance. All parameters are the same as in figures 1
and 2, except that P = diag ([2, 2, 10, 10]) and heading
equals 30 degrees. The posterior position estimates
are about three miles from the measurements and two
miles from the prior. Again, the net effective position
gains are outside (0, 1).
Figure 4 shows the effect of increasing range rate

innovation. All parameters are the same as in figures
1 and 2, except that range rate innovation equals 50
knots and heading equals 75 degrees. The posterior
position estimates are more than three standard devi-
ations from the measurements.
The difference between the OEKF’s posterior veloc-

ity estimates and those of the other filters are minor.
Posterior

.
x estimates are identical, as expected given

the gains (20) to (22). Posterior
.
y estimates differ by

no more than one half the range rate innovation for the
examples in figures 1 to 4. In all cases, the net effective
range rate gain is in (0, 1).
The examples in this section show that the OEKF’s

biases are not trivial. They are most severe when tar-
get heading is off-radial, cross radial position variance
is large, the radial velocity variance is small, and the
range rate innovation is large. In practice, these con-
ditions arise when the radar’s bearing error is much
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Figure 1: Baseline for comparing OEKF and AEKF
trackers, with radial prior heading.
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Figure 2: Comparison of OEKF and AEKF trackers,
with cross radial prior heading.
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Figure 3: Comparison of OEKF and AEKF trackers,
with off radial prior heading.and small prior velocity
variance.
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Figure 4: Comparison of OEKF and AEKF trackers,
with off radial prior heading and large range rate in-
novation.

greater than its range error, and a target that has
been moving at a constant velocity for a long time
suddenly maneuvers when its trajectory is off radial
with respect to radar position. Divergence is possible
with the OEKF, but only likely under these conditions.
However, even though divergence is infrequent, it can
be avoided altogether with the alternate linearization.

4.1 Realistic Example 1
The covariance assumptions in the previous section

are useful for highlighting the OEKF’s posterior biases,
but unrealistic. In this section more realistic covari-
ances are determined via simulation, and an example
showing the worst case biases is presented. AEKF po-
sition gains do not necessarily identically equal to those
of the KF because of non-zero prior state covariance.
However, in the examples in this section, the differ-
ences are so small that no visual distinction can be
made.
The covariance matrix below for a target at (x, y) =

(0, 50) was determined via simulation. Admittedly, the
results in this section are extreme; we ran the simula-
tion until it produce a covariance matrix that would
cause large position biases. The intent was to provide
a worst case example. In the next section, we show
position error averages and interval estimates with the
intent of showing expected performance.
The simulated target travels 500 miles per hour for

a long time in the positive x direction along the line
defined by y = 50 miles. The radar scans once every 10
seconds and has range, bearing, and range rate stan-
dard errors of 100 feet, 0.6 degrees and 2.5 knots, re-
spectively. Simulation results show that (23) is a rea-
sonable prior state covariance matrix.

P =


0.04 0.0008 2.09 0.278
0.0008 0.001 .057 .0.148
2.09 .057 290.0 −8.48
0.278 0.148 −8.48 67.0

 (23)
V =

 6.75 0 0
0 .0004 0
0 0 5.25

 (24)

If the target continues along its path at constant
velocity, then the simulated range rate innovations
are almost always less than 20 knots. If the tar-
get makes a 2g coordinated turn, its radial velocity
can change by as much as 180 knots between scans.
Posterior position estimates given prior state estimate
θprior =

£
0 50 500 0

¤T
, covariance (23), and

range rate innovations of 20 and 180 knots are shown
in figures 5 and 6, respectively. (24) is the covariance
of a measurement having range 50 miles and bearing 0
degrees.
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Figure 5: Comparison of OEKF and AEKF trackers
with realistic covariances and radial prior heading.
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Figure 6: Comparison of OEKF and AEKF trackers
with realistic covariances and cross radial prior head-
ing.

Figure 5 shows that small range rate innovations,
such as might be expected for a nonmaneuvering tar-
get, produce small OEKF position biases. Figure 6
shows that OEKF biases are significant in some realis-
tic situations The bias in the x direction, roughly 2.5
miles, is about 1 standard deviation of the x measure-
ment error but more than 25 standard deviations of
the prior x variance. It is obvious that the net effec-
tive position gains are outside (0, 1).

4.2 Realistice Example 2
In this section, we simulate 500 knot target on a 90

degree heading that makes a 2G turn when its path is
nearly cross radial with respect to a radar fixed at the
origin, as in figure 7. The simulation is run 100 times.
Position error means and 95% interval are shown in
figure 8.
Notice that the AEKF’s errors are higher just before

the turn than the OEKF’s, but lower during the turn.
The AEKF actually has lower position errors during
the turn than before or after. The designer choosing
the linearization must trade off non-maneuvering accu-
racy for maneuvering. The results in figure 8 suggest
that one possible, attractive design choice is to pick a
linearization based on a maneuver detection test. If the
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Figure 7: Simulated trajectory

target is not maneuver, choose the usual linearization.
If it is maneuver, choose the alternative.
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Figure 8: Position errors: averages and 95% intervals

5 Conclusions
The usual extended Kalman filter linearizes the

range rate measurement by taking its partial deriva-
tives with respect to the state vector’s position and
velocity elements. With this linearization, the state
position estimates and the range rate measurement
are functionally related in the Kalman filter measure-
ment equation. This relation induces such unaccept-
ably large biases in the posterior estimate that the net
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effective position gains can be negative or greater than
one. Because this filter is overly sensitive to reasonable
estimation errors during maneuvers that we call it the
over-extended Kalman filter.
An alternative linearization of range rate that is a

function of the partial derivatives of only the state vec-
tor’s velocity elements is derived. A filter using this lin-
earization was compared to the over-extended Kalman
filter. The alternative Kalman filter was shown to have
reasonable gain on the state’s velocity estimate, and
better position gains during a maneuver. The alter-
native filter includes the information contained in the
range rate measurement in a rational way without sub-
jecting the tracking system to the risk that its position
estimate biases during a maneuver. Simulation results
suggest that a tracking system designer should choose
a linearization based on the target’s maneuver state.
If it is not turning the usual linearization is preferred.
If it is turning the alternative is preferred.
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