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Recent research has shown that letter identity and letter position are not integral perceptual dimensions

(e.g., jugde primes judge in word-recognition experiments). Most comprehensive computational models

of visual word recognition (e.g., the interactive activation model, J. L. McClelland & D. E. Rumelhart,

1981, and its successors) assume that the position of each letter within a word is perfectly encoded. Thus,

these models are unable to explain the presence of effects of letter transposition (trial–trail), letter

migration (beard–bread), repeated letters (moose–mouse), or subset/superset effects (faulty–faculty). The

authors extend R. Ratcliff’s (1981) theory of order relations for encoding of letter positions and show that

the model can successfully deal with these effects. The basic assumption is that letters in the visual

stimulus have distributions over positions so that the representation of one letter will extend into adjacent

letter positions. To test the model, the authors conducted a series of forced-choice perceptual identifi-

cation experiments. The overlap model produced very good fits to the empirical data, and even a

simplified 2-parameter model was capable of producing fits for 104 observed data points with a

correlation coefficient of .91.
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A fundamental issue for any computational model of visual

word recognition is how to represent the position in which letters

are encoded. If letter position is not encoded, then anagrams like

causal and casual or even desserts and stressed would not be able

to be discriminated from each other. Some of the current compu-

tational models of visual word recognition make overly simplistic

assumptions about how letter positions are coded, for example,

that positions are perfectly encoded.

The way in which letter positions are encoded needs to be a

critical aspect of the front end of any computational model of

visual word recognition. Letter position determines which words

are considered orthographically similar and, therefore, which word

representations are most likely to be selected for a particular string

of letters. It also determines which words are likely to be confused

with each other, especially when the stimulus is impoverished.

Although the encoding of letter position has not been a primary

concern of visual word-recognition models, there have been mod-

els across a range of domains that focus on the relationship

between the location (in terms of space or position in a list) and the

identities of letters, words, or objects (e.g., Estes, 1975; Lee &

Estes, 1977; Logan, 1996; and in particular, Ratcliff, 1981). In this

article, we apply Ratcliff’s (1981) model of order relationships for

letter strings to describe how letter positions are encoded and

provide support for the model from data from a variety of exper-

iments.

In the literature on visual word recognition, the most prominent

computational model has been the interactive activation (IA)

model (McClelland & Rumelhart, 1981; Rumelhart & McClelland,

1982) and its successors (e.g., dual-route cascaded [DRC] model,

Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; multiple read-

out model [MROM], Grainger & Jacobs, 1996; MROM-p, Jacobs,

Rey, Ziegler, & Grainger, 1998; CDP� model, Perry, Ziegler, &

Zorzi, 2007; and other connectionist models, Seidenberg & Mc-

Clelland, 1989; Plaut, McClelland, Seidenberg, & Patterson,

1996.). The IA model, DRC model, and MROM share the same

assumptions about location-specific letter processing (the more

recent connectionist models are discussed later). According to the

IA model, words are represented as collections of the orthographic

features contained within their letters. When a string of letters is

presented, the representations of all the word units that are ortho-

graphically similar to the input are activated. Lateral inhibition

among word units that share features causes them to inhibit each

other, so that the strongest beats down its competitors. The most

relevant aspect of the IA model to this article is its letter position

coding scheme. Namely, letters are assumed to be tagged to their

position in the perceived word, and each letter is processed inde-

pendently within its own channel. According to the IA model, the

word judge is as similar to the transposed-letter nonword jugde as

to the nonword junpe because it matches in three out of five letters
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in both cases; however, intuition indicates that judge is more

similar to the nonword jugde than to the nonword junpe.

Position Coding Effects

On the basis of the above example, it seems that the IA model’s

similarity estimates are incorrect. The evidence against the posi-

tion coding scheme of the IA model goes beyond just intuition.

Several decades ago, Bruner and O’Dowd (1958) noted that non-

words in which the internal adjacent letters are transposed (e.g.,

jugde, mohter) are often perceived as words. Indeed, there is

empirical evidence that shows that the processing of adjacent

transposed-letter words (e.g., trail–trial) requires more time than

the processing of control words and that adjacent transposed-letter

nonwords (e.g., jugde) are more difficult to classify as nonwords

than one-letter-different pseudowords (e.g., judpe) or control

pseudowords (e.g., slint; Andrews, 1996; Chambers, 1979;

O’Connor & Forster, 1981; Perea, Rosa, & Gómez, 2005). Fur-

thermore, using the masked priming technique (Forster & Davis,

1984), adjacent transposed-letter nonword primes produce both

form and associative priming effects relative to an orthographic

control. For example, jugde primes judge more than jupte primes

judge (Andrews, 1996; Forster, Davis, Schoknecht, & Carter,

1987; Perea & Lupker, 2003b; Schoonbaert & Grainger, 2004) and

jugde primes court (Perea & Lupker, 2003a). The effects of string

similarity due to letter transposition have also been found in

normal reading when the participant’s eye movements are moni-

tored (Acha & Perea, 2008a; Johnson, Perea, & Rayner, 2007;

Rayner, White, Johnson, & Liversedge, 2006). Transposed-letter

effects are not limited to adjacent letters. Perea and Lupker (2004)

found sizeable masked priming effects from transposed-letter non-

words to the words from which they were created when two

noncontiguous interior letters were transposed (e.g., caniso–casino

vs. caviro–casino). Clearly, the position-specific coding scheme

used by the IA model has great difficulty explaining such

transposed-letter effects.

Another weakness of the coding scheme in the IA model is that

it does not assign a special role to any letter position. It is well

known, however, that the quality of position information is better

for letters at the beginning of the word (and sometimes at the end)

than for internal letters (e.g., Estes, Allmeyer, & Reder, 1976;

Jordan, 1990; Perea, 1998). For example, pairs of words that differ

in an internal position (e.g., woven–women) produce larger prim-

ing effects than pairs of words that differ in an end position (e.g.,

reach–react; Perea, 1998), and a number of experiments have

reported greater transposed-letters similarity effects for items in

which middle or internal letters are transposed (Chambers, 1979;

Holmes & Ng, 1993; Perea & Lupker, 2003a).

In sum, letter positions do not seem to be assigned precisely and

automatically in word processing. As Davis (1999) pointed out, the

IA model and the models that use the same coding scheme are

falsified by the existence of transposed-letters effects. These issues

were discussed by Rumelhart and McClelland (1982, p. 89); in the

second of their two articles on the IA model, they pointed out that

there might be regions of uncertainty associated with each letter.

This would lead to partial activation of letters from nearby posi-

tions relative to where the stimulus was actually presented. The

implementation of a coding scheme with a noisy visual code would

cause transposed-letter errors (e.g., jugde being recognized as the

word judge). Similarly, Rumelhart and McClelland also indicated

that some letter positions (i.e., external letters) could be more

important than others. In this case, transposed-letter effects in the

IA model would be a consequence of perceptual factors rather than

orthographic coding. This would be consistent with a number of

studies that have shown that perceptual processes involved in letter

identification do not always provide precise information regarding

letter location (e.g., Allport, 1977; Estes, 1975; Lee & Estes, 1977;

Mozer, 1983; Ratcliff, 1981). However, to our knowledge, location

noise has not been implemented in the IA model. As Davis (1999)

pointed out, because of the reliance on bottom-up inhibition in the

IA model, a noisy visual input may harm the model’s ability to

recognize familiar inputs.

One alternative to channel-specific coding schemes is to use

context-sensitive encoding, such as with the Wickelfeature scheme

of the connectionist model of Seidenberg and McClelland (1989;

see also Mozer, 1987, for a similar coding scheme using letter

clusters). In this model, the basic unit is not the single letter but a

group of ordered letters. For instance, the codes for trail would be

_tr, tra, rai, ail, and il_, where the sign _ refers to the end of the

letter string. This coding scheme cannot explain transposed-letter

effects, for example, the transposed-letter words trail and trial

would match in only one out of five Wickelfeatures (_tr). In

contrast, trail and train would match in three Wickelfeatures (_tr,

tra, and rai). Plaut et al. (1996), in a revision of the Seidenberg and

McClelland model, recognized the limitations of the Wickelfeature

approach. Their main concern was not orthographic processing but

reading aloud; hence, they proposed syllabic position coding based

on articulation components (onset, vowel, and coda). As Andrews

(1996) pointed out, Plaut et al.’s model cannot predict the trans-

position effects when transpositions occur across an onset–vowel

or vowel–coda boundary, as is the case for the majority of

transposed-letters word pairs.

In the past few years, new models of word identification with a

letter position coding mechanism have been proposed (e.g., the

SERIOL model, Whitney, 2001; the open-bigram model, Grainger

& van Heuven, 2003; and the SOLAR model, Davis, 1999, 2002).

We examine them in more detail in the general discussion. For

now, we present the rationale and principles of the overlap model.

Position Uncertainty

The overlap model presented in this article is a model of letter

position coding that applies Ratcliff’s (1981, 1985, 1987) theory of

order relationships to data from a number of experiments in which

orthographic similarity between two letter strings was manipu-

lated. The basic assumption of the model is that locations of

objects (in our case, letters) are best understood as distributions

along a dimension (in our case, position in the string), rather than

as precise points. This assumption is shared with other models,

such as, for example, the CODE model (Compton & Logan, 1993;

Logan, 1996; Van Oeffelen & Vos, 1982, 1983) and the model of

Ashby, Prinzmetal, Ivry, and Maddox (1996).

The CODE model of perceptual grouping assumes that there are

two representations of space. The first is an analogue representa-

tion of the location of items in which these locations are distributed
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symmetrically1 along a spatial dimension or dimensions. The

second is a quasi-analogue, quasi-discrete representation of groups

of objects based on the sum of the location of items. Perceptual

groups represent peaks above a threshold; Van Oeffelen and Vos

(1982, 1983) showed that this could explain well-known percep-

tual grouping effects. To summarize, the CODE model tries to

integrate space-based and object-based approaches. Location is

distributed in the sense that information about the features of the

items is distributed over space. The height of a distribution at any

point in space represents probability of sampling features of the

item it represents. Note that, in the overlap model, we focus on the

area under the curve rather than on the height, but the idea of

sampling letter features is similar in spirit to the CODE model.

Maddox, Prinzmetal, Ivry, and Ashby (1994) and Ashby et al.

(1996) used the principle of position uncertainty to account for

perceptual phenomena. In a task in which participants estimated

the distance between two objects, Maddox et al. explained perfor-

mance by assuming that there is uncertainty in the positions of the

objects. Similarly, Ashby et al. used the same principle to account

for feature binding in object perceptions, as well as illusory con-

junctions of the type described by Treisman and Schmidt (1982).

These ideas about position uncertainty can be taken into account

by models of visual word recognition to address the now well-

known problem of the position-specific letter coding. For example,

the original implementation of the Bayesian reader model (Norris,

2006) assumes position-specific letter coding. However, Norris

(2006) also indicated that “even incorporating a separate level of

letter representations does not alter the behavior of the [Bayesian

reader] model” (p. 347). Along the same lines, Norris and Ki-

noshita (2007) recently pointed out that the Bayesian reader model

might be compatible with a front-end model of letter position

coding like the one proposed in this article.

The Overlap Model

In the model presented in this article, the identities of the letters

in any string of letters are assumed to be normally distributed over

position. For instance, if the string of letters is the word trail, the

letter a will be associated with Position 3 but also, to a lesser

degree and depending on the size of the standard deviation, to

Positions 2 and 4 and even to Positions 1 and 5 (see top three

panels in Figure 1). Each letter position has a different standard

deviation, which is treated as a free parameter in the model. The

model assumes that a test string that is presented unmasked and for

an unlimited viewing time can produce accurate location coding

(bottom panel of Figure 1), while strings that are presented briefly

have distributions over letter position.

This assumption of position uncertainty allows the overlap

model to capture a number of the well-known effects reported in

the literature on visual word recognition. The model can readily

accommodate the presence of transposed-letters effects when the

transposed letters are adjacent, for example, trail and its

transposed-letter neighbor trial, overlap in Positions 3 and 4,

depending on the standard deviation of the third and fourth letter

positions, as is shown in the second panel of Figure 1. When the

stimuli are trail and train, there is no letter match in the fifth

position, as shown in the top panel of Figure 1. Furthermore, the

model can readily account for the finding that transposed-letter

similarity effects can be found when the transposed letters are

noncontiguous; for example, in the overlap model, caniso and

casino will be more similar to each other than casino and its

two-replacement-letter control caviro (Johnson, 2007; Perea &

Lupker, 2004; Ratcliff, 1981). Finally, the model can readily

account for the finding that the first letter is more important than

interior letters because in fits of the model to data, the standard

deviation in the internal letter positions is larger than the standard

deviation in the first position (Chambers, 1979; Johnson et al.,

2007; Perea & Lupker, 2003a, 2003b; Ratcliff, 1981).

The overlap model was originally applied to data from the

perceptual matching task with manipulations of letter replacements

and letter transpositions from study to test (Ratcliff, 1981, 1985,

1987; Ratcliff & Hacker, 1981; see also Krueger, 1978; Proctor &

Healy, 1985, 1987). In this article, in addition to transposition/

replacement manipulations, we also examine the effect of letter

repetition and changes in the number of letters in the strings

between study and test. The perceptual matching task is not ideal

for studying these manipulations because the 1-s study time would

allow participants to notice a repetition or count the number of

letters in the study string and use this information instead of the

encoded representation of the letter string to make their decision.

1 Logan’s (1996) CODE model uses Laplace distributions, but Van

Oeffelen and Vos (1982) and the overlap model assume that the distribu-

tions are normal. The choice of distribution is unlikely to have a major

effect in the predictions of these models, as long as they are symmetrical

distributions.

Figure 1. The figure shows a representation of the encoding of letter

position according to the overlap model. The shaded areas represent the

overlap between the string TRAIL (bottom panel) and three possible

flashed strings: TRAIN, TRIAL, and TRAIL.
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Thus, we chose a paradigm that allows a full examination of

combinations of letter transpositions and replacements, letter rep-

etitions, and small changes in word length while avoiding (or

reducing) the possibility that participants will adopt alternative

strategies. To accomplish these aims, we chose a forced-choice

perceptual identification paradigm (Ratcliff & McKoon, 1997;

Ratcliff, McKoon, & Verwoerd, 1989). In this task, participants

are presented with a stimulus letter string typically for 10–80 ms,

followed by a mask and then two test letter strings. The partici-

pant’s task is to decide which of the two test strings was presented.

Because the stimulus string is presented briefly and masked, it is

difficult for a participant to determine whether letters are repeated

or to count the length of the string. We chose an encoding time (60

ms) that is in the range of values that produce reasonably accurate

single-letter discrimination (Ratcliff & Rouder, 2000; Thapar, Rat-

cliff, & McKoon, 2003). It is also in the range of time of foveal

encoding needed for almost full word encoding in reading (Rayner,

Inhoff, Morrison, Slowiaczek, & Bertera, 1981; Rayner, Liv-

ersedge, White, & Vergilino-Perez, 2003; Rayner & Pollatsek,

1981; but see White, Johnson, Liversedge, & Rayner, in press, for

a discussion of parafoveal effects). It is reasonable to assume that

the position uncertainty of letters is reduced over time and that

distributions over position represent only the initial encoding pro-

cesses in reading.

When two strings of letters are compared, the overlap model

assumes that an amount of orthographic similarity is computed

from the overlap between the two strings. In our paradigm, the test

string is assumed to have letters exactly located in the correct

position (see Figure 1, bottom panel); the letters are continuously

visible at test in the forced-choice paradigm until the decision is

made. To measure the amount of overlap between a study stimulus

and one of the test stimuli, for each position, the area under the

curve of the letter in the test string in the slot is multiplied by the

area of the same letter in corresponding slot for the study string,

and these products are summed over all the slots. In the case of

five-letter strings, the overlap is

o � �
i�1

5

�
i�1/ 2

i�1/ 2

f1�x�dx �
i�1/ 2

i�1/ 2

f2�x�dx, (1)

where i is the center of the position slot, f1(x) is the distribution of

the first stimulus centered on i, f2(x) is the distribution of second

stimulus, and x is the position along the spatial axis (see Figure 1).

For the two-alternative forced-choice task, the model computes

the amount of overlap between the target stimulus and each of the

two alternatives (i.e., the target stimulus with the correct alterna-

tive [ot] and the target stimulus with the foil [of]). This measure of

overlap between the target stimulus and the two alternatives is

transformed into correct response proportions using a power func-

tion as in Nosofsky and Palmeri (1997) and Ratcliff (1981). The

response probability for the correct alternative is

p(correct) � ot
a/(ot

a � of
a), (2)

where a is a scaling parameter. The parameter a is greater than 1,

and this allows small differences in overlap to produce larger

effects in accuracy. In the experiments presented below, the em-

pirical response proportions were compared with the fits of the

six-parameter model. Large correct response proportions indicate

smaller similarity between the two test strings, and vice versa.

In the rest of this article, we focus on the model’s fits to

experimental data and leave the details of the empirical results for

Appendix A. In the General Discussion, we discuss how the

overlap model might be used as a front end for models of visual

word recognition, and we compare the predictions of the overlap

model with those from other more recent competing computational

models (e.g., SERIOL model, Whitney, 2001, in press; SOLAR

model, Davis, 1999, 2002; open-bigram model, Grainger & van

Heuven, 2003). Given the importance of the masked priming

technique in this area of research, we have included Appendix B to

show how the overlap model might address the results of a number

of manipulations of letter order in the prime letter string from

masked priming studies.

Overview of the Experiments and General Method

We present five experiments in which we used a two-alternative

forced-choice paradigm. On each trial, a target stimulus was pre-

sented for 60 ms on the center of the computer screen, and then it

was subsequently masked with segments of letters. The participant

had to choose between two alternatives that were presented simul-

taneously below the mask (one to the right and the other to the left

of the mask, as can be seen in Figure 2).

In the experiments, we used six different types of foils: (a) foils

in which two letters were transposed, (b) foils in which one letter

was replaced, (c) foils in which two letters were replaced, (d) foils

in which one letter was duplicated, (e) foils in which one letter

migrated from its original position, and (f) foils in which one letter

was added to or taken away from the stimulus. We also examined

the role of the lexical status of the target stimulus and the alter-

natives (i.e., word vs. nonword). Brief descriptions of the condi-

tions and types of foils used in each of the experiments are

presented in Table 1, and a more detailed description of the

materials is presented in Appendix A.

Figure 2. The figure represents a trial in the experiments presented in this

article. First, there is a fixation point on the screen for 500 ms, then the

target is flashed for 60 ms, and then the target is masked and two

alternatives are presented. The participant is asked to choose which of the

two alternatives was flashed.
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Table 1

Types of Items for the Five Experiments

Alternatives Type

Experiment

1a 1b 2 3 4 5

ABCDE XBCDE Single replacements NN WN NN
AXCDE NN NN WN NN NN NN
ABXDE NN NN WN NN NN NN
ABCXE NN NN WN NN NN NN
ABCDX NN NN WN NN NN NN

BACDE Adjacent transpositions NN NN WN; WW NN NN
ACBDE NN NN WN; WW NN NN NN
ABDCE NN NN WN; WW NN NN NN
ABCED NN NN WN; WW NN NN NN

XYCDE Adjacent double replacements NN WN
AXYDE NN NN WN
ABXYE NN NN WN
ABCXY NN NN WN

CBADE Nonadjacent transpositions NN WN; WW NN
ADCBE NN NN WN; WW NN
ABEDC NN NN WN; WW NN
DBCAE NN WN; WW
AECDB NN NN WN; WW NN

XBYDE Nonadjacent double replacements NN WN
AXCYE NN NN WN
ABXDY NN NN WN
XBCYE NN WN
AXCDY NN NN WN

BCADE Letter migration NN
ACDEC NN
CABDE NN
ABDEC NN
ADBCE NN
ABECD NN
AEBCD NN

BCXCD Migration � replacement NN
ACDXE NN
XABDE NN
ABDEX NN
AXBCE NN
ABXCD NN
AXBCD NN

ABBDE Letter repetitions in one alternative NN 2
ABCCE NN 2
ABCDD NN 2
ABADE NN 2
ABCBE NN 2
ABCDC NN 2
ABCDB NN 2

AXBCDE Letter insertions NN 2
ABXCDE NN 2
ABCXDE NN 2
ABCDXE NN 2
ABCDEX NN 2

ABBDE ADBBE Letter repetitions in the two alternatives NN 2
ABCCE ACCBE NN 2
ABCDD ABDDC NN 2
ABADE BADAE NN 2
ABCBE ACBEB NN 2
ABCDC ACBCD NN 2

Note. The marked cells in the table indicate whether a given condition was utilized in the experiment. NN indicates that the two alternatives were nonwords;
WN indicates that one alternative was a nonword and the other was an English word; WW indicates that the two alternatives were English words. In Experiments
4 and 5, the conditions marked with NN 2 indicate that there were two different conditions for the two alternatives. For instance, when the alternatives differed
by a letter insertion, like ABCDE and ABXCDE, the target could be either ABCDE or ABXCDE, and these were different conditions. In other cases, such as letter
replacement/s, we collapsed across target identity; for instance, if the alternatives were ABCDE and ABXDE, the target could be either of the two alternatives.



Experiments 1a and 1b: Transposed-Letter Effects With

Nonword Stimuli

In Experiments 1a and 1b, we focused on the discrimination

between two English-like nonwords, one of which was the same as

the flashed stimulus and the other either had two letters transposed

or had either one or two letters replaced with other letters (conso-

nants were replaced with other consonants, and vowels were

replaced with other vowels). We also manipulated the letter posi-

tions for the transpositions and replacements (adjacent letter posi-

tions, or nonadjacent letter positions for the two-letter transposi-

tions and replacements). We used nonwords to have enough

stimuli in all conditions because there are relatively few words that

transpose to words and fewer still for each pair of letter positions

in a word. Given the near-ceiling performance in the conditions in

which the initial letter was manipulated in Experiment 1a, in

Experiment 1b, we reduced the number of conditions in which the

initial letter was manipulated (see Table 1 and Appendix A for a

description of the materials and method). In Experiment 1b, we

kept the condition with the transposition of first and second letters

to provide one condition in which the first letter position changes

to help modeling.

Results and Modeling

The results indicate that adjacent letter transpositions were more

difficult to discriminate than nonadjacent transpositions, transpo-

sitions were more difficult than replacements, and single replace-

ments were more difficult than double replacements but not as

difficult to discriminate as adjacent transpositions. Also, there was

an advantage of the initial letter position (see Appendix A).

To fit the overlap model to the data, we minimized the sum of

squares using a nonlinear least squares minimizing routine (Bates

& Chambers, 1992) that adjusts the values of the six parameters of

the model. The data entered into the minimization routine were the

response proportions for each of the 23 conditions averaged across

participants for Experiment 1a and the 17 conditions for Experi-

ment 1b. The predictions of the model with the best fitting param-

eters are presented in Table 2. Figure 3 shows the empirical data

and the fits of the model for each condition. The circles represent

the empirical data, the error bars represent two standard errors

calculated from the data across participants, and the triangles

represent the prediction of the overlap model. The open symbols

represent transpositions, and the filled symbols represent replace-

ments.

The model fits the patterns of data modestly well, with 30 of the

40 predicted points within two standard errors of the empirical

results (see Figure 3). In Experiments 1a and 1b, the model

predicted that the conditions with the final letters transposed

(transposition of the fourth and fifth letters) would have lower

discriminability than it actually did. In addition, the model under-

estimated the proportions of correct responses for the single re-

placement of the second and third letters. In spite of these misses,

the model does provide a reasonable account of the pattern of data

as a whole.

The best fitting parameters for all experiments are presented in

Table 3. The parameters s1 to s5 refer to the standard deviations of

the letter distribution functions (si corresponds to the ith position),

and the parameter a represents the power to which the match is

raised (see Equation 2). The best fitting values of the parameters

are similar for Experiments 1a and 1b; the s parameter increases as

letter position increases. In Experiment 1a, there is a monotonic

increase in the values of the s parameter; in Experiment 1b, there

is a slight decrease in value from s2 to s3 and also from s4 to s5.

This suggests that the encoding of letter position is more accurate

for the first letter than for the rest of the letters, while the last

position does not seem to enjoy a special status with better spatial

location for these nonword stimuli. This pattern is similar to that

found by Ratcliff (1981) for the perceptual matching task.

Experiment 2: Transposed-Letter Effects With Word

Versus Nonword Target Stimuli

While in Experiments 1a and 1b nonwords were used as stimuli,

in Experiment 2 (see Appendix A) we used English words as

targets, foils, or both. There were three types of trials: In word–

nonword trials, the target stimulus was a word, and the foil was a

nonword; in nonword–word trials, the target stimulus was a non-

word, and the foil was a word; and in word–word trials, both the

target stimulus and the foil were English words (e.g., salt–slat).

The number of transposed-letters word-to-word pairs in English is

relatively small; therefore, relatively few items were available for

each condition in the word–word trials (see Table 1 for a brief

description of the materials).

Results and Modeling

The details of the empirical results are presented in Appendix A.

There was an effect of lexicality in which the accuracy is higher

Table 2

Results From Experiments 1a and 1b

Conditions

Transpositions Replacements

M (2 SEs) Model M (2 SEs) Model

Experiment 1a
1 and 2 .906 (.029) .889 .923 (.037) .971
2 and 3 .625 (.042) .611 .826 (.058) .848
3 and 4 .576 (.041) .570 .768 (.049) .797
4 and 5 .606 (.025) .537 .749 (.060) .747
1 and 3 .922 (.033) .953 .935 (.028) .967
2 and 4 .704 (.051) .713 .783 (.050) .808
3 and 5 .675 (.045) .688 .797 (.045) .792
1 and 4 .912 (.027) .941 .936 (.024) .951
2 and 5 .725 (.043) .773 .799 (.045) .803
1 .927 (.028) .887
2 .777 (.052) .689
3 .733 (.051) .676
4 .663 (.050) .626
5 .657 (.039) .620

Experiment 1b
1 and 2 .865 (.041) .870
2 and 3 .626 (.062) .608 .840 (.052) .887
3 and 4 .606 (.049) .594 .808 (.065) .870
4 and 5 .658 (.042) .558 .807 (.052) .830
2 and 4 .686 (.064) .705 .807 (.060) .843
3 and 5 .749 (.060) .766 .852 (.040) .876
2 and 5 .775 (.054) .808 .854 (.034) .850
2 .798 (.054) .697
3 .815 (.042) .734
4 .720 (.048) .670
5 .710 (.057) .679
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for word–nonword trials (in which the word is the target) than for

word–word trials, which in turn have higher accuracy than

nonword–word trials (in which the nonword is the target). This

demonstrates a bias for word targets. Even though the magnitude

of the effects among the different conditions is reduced for word–

nonword trials, the pattern (the relative sizes of accuracy differ-

ences over conditions) is very similar to the nonword–word trials;

indeed, the pairwise correlations among the three types of trials

and accuracy values from Experiment 1a are all over .90. This

suggests that processing is similar regardless of the lexical status

of the target/foil.

The data entered into the minimization routine were the re-

sponse proportions for each of the 53 conditions. There were 23

transpositions/replacement conditions for word–nonword trials, 23

transposition/replacement conditions for word–nonword trials, and

7 transposition conditions for word–word trials (in this case, there

were not enough pairs of words that produce long-range transpo-

sitions). The eight free parameters (see Table 3) for this experi-

ment were three scaling parameters—one for words (a), another

for nonwords (b), and a separate one for the word–word trials

(aw)—and one set of five standard deviations (s1 to s5). Equation

2 was changed to

p(correct) � ot
a/(ot

a � of
b), (3)

which was used for word–nonword trials, while, for nonword–

word trials, the numerator in Equation 3 was ot
b and the denomi-

nator was ot
a � of

b. In Equation 3, the difference between the a and

b parameters allows differential response bias to words and non-

words; for example, assuming a and b to be � 1, if a � b, the

overlap between first alternative and the stimulus is scaled up to be

larger (so the predicted proportion is larger) relative to the overlap

between the second alternative and the stimulus. For word–word

trials, Equation 2 was used because there was only one scaling

exponent.

The predictions of the model with the best fitting parameters are

presented in Table 4. Figure 4A shows the empirical data (circles)

and the fits (triangles) of the model for each condition in the trials

with word targets, while Figure 4B shows the fits for trials with

nonword targets. The model accounts for the effect of lexical status

of target and foil as well as for the effects of type of trial

(transposed letters, single replacement letter, or double replace-

ment letter). Although the qualitative pattern is adequately cap-

tured by the model, out of 53 data points in this experiment, 10 are

outside the error bars, as can be seen in Figure 4. We carried out

additional fits in which the a and b parameters were free to vary

Table 3

Parameters of the Model for All Experiments

Experiment

Parameter

Exponents1 s2 s3 s4 s5

1a 0.404 1.094 1.179 1.659 1.743 3.941
1b 0.514 1.431 1.184 1.667 1.581 4.911
2 0.499 1.204 1.158 1.295 1.131 aw � 3.753

an � 5.090
aww � 6.220

3 0.488 1.420 1.336 1.384 1.453 3.554
4 0.778 1.674 1.461 1.578 1.509 5.747

7.866
5 0.589 0.988 1.223 1.299 1.429 3.372

Note. The three different exponents for Experiment 2 correspond to word
alternatives (aw), nonword alternatives (an), and word–word trials (aww).
The second exponent in Experiment 4 (7.866) corresponds to the option
without repeated letters. The s parameters belong to Equation 1:

o � �
i�1

5

�
i�1/ 2

i�1/ 2

f1�x�dx �
i�1/ 2

i�1/ 2

f2�x�dx. (1)

The exponents belong to Equation 2, when there is only one, and Equation

3, when there is one exponent per alternative:

p(correct) �
ot

a

(ot
a � of

a)
. (2)

Figure 3. The figure shows the data and model fits for Experiments 1a

(Panel A) and 1b (Panel B). The circles represent the data, and the triangle

represents the model’s fits. The different conditions are represented across

the x-axis, and the proportion of correct responses is represented on the

y-axis. Error bars indicate two standard errors of the mean.
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across lexical status of the target, and we obtained slightly better

fits.

The difference in proportion of correct responses was quite large

between items for word trials and items for nonword trials, and this

can be explained as a bias to select the word alternative (parameter

a for a word target was greater than parameter b for a nonword

target). Because the overlap model does not have an implemented

lexicon, it is important to note that the word superiority effect

found in this experiment is not, by itself, support for the overlap

model. What we interpret as support for the model is that the same

mechanism and the same s parameters can account for the larger

effects in word–word and nonword–word trials as well as the

scaled-down effects in the word–nonword trials.

Experiment 3: Letter Migrations

In Experiments 1 and 2, we showed that the overlap model

successfully captures the effect of transposed-letter similarity in

the perceptual matching task. In this experiment, we examined

another type of orthographic similarity effect: letter migration (see

Appendix A). In the stimuli used for this experiment, one letter

shifts two positions, and the other letters move one position to

accommodate the shift. For example, in ABCDE versus ACDBE,

the letter B in ABCDE moves from the second to the fourth

position in ACDBE, and the letters C and D both move one

position to the left. Because of the small number of word pairs that

occur in English, we used wordlike nonword pairs (e.g., beald–

bedal).

In sum, for a given nonword, the similar item could be (a) a

transposed-letter item (in this experiment, we used only adjacent

letter transpositions); (b) a single replacement item; (c) a letter-

migration item, in which the ith letter of one string goes to position

j in the other string and the other letters shift to accommodate the

movement; and (d) an orthographic control, in which the migrated

letter is replaced by a new letter (and the other two letters shift).

Although this is not a perfect orthographic control, it adds condi-

Figure 4. The figure shows the data and model fits for Experiment 2. A:

Data and model fits for trials with word targets. B: Data and fits for trials with

nonword targets. The circles represent the data, and the triangles represent the

model’s fits. The different conditions are represented across the x-axis, and the

proportion of correct responses is represented on the y-axis. Error bars indicate

two standard errors of the mean.

Table 4

Results From Experiment 2

Conditions

Transpositions Replacements

M (2 SEs) Model M (2 SEs) Model

Word target and nonword foil
1 and 2 .913 (.044) .910 .916 (.070) .973
2 and 3 .811 (.064) .784 .913 (.054) .919
3 and 4 .777 (.060) .779 .886 (.056) .914
4 and 5 .817 (.062) .781 .861 (.056) .916
1 and 3 .932 (.040) .965 .949 (.048) .974
2 and 4 .860 (.062) .865 .914 (.048) .911
3 and 5 .880 (.046) .885 .938 (.038) .923
1 and 4 .950 (.032) .968 .946 (.052) .970
2 and 5 .883 (.048) .914 .912 (.056) .920
1 .924 (.054) .924
2 .884 (.048) .829
3 .887 (.044) .833
4 .849 (.066) .822
5 .872 (.042) .835

Nonword target and word foil
1 and 2 .877 (.048) .863 .938 (.038) .974
2 and 3 .592 (.086) .528 .856 (.054) .881
3 and 4 .457 (.054) .511 .836 (.044) .872
4 and 5 .614 (.094) .520 .845 (.070) .875
1 and 3 .933 (.050) .962 .956 (.052) .975
2 and 4 .696 (.066) .758 .860 (.058) .866
3 and 5 .724 (.070) .808 .842 (.064) .890
1 and 4 .928 (.044) .967 .933 (.062) .971
2 and 5 .759 (.076) .872 .824 (.066) .885
1 .931 (.054) .893
2 .772 (.066) .664
3 .790 (.060) .674
4 .722 (.070) .644
5 .782 (.066) .681

Word target and word foil
1 and 2 .937 (.036) .910
2 and 3 .722 (.036) .650
3 and 4 .653 (.066) .638
4 and 5 .723 (.052) .643
1 and 3 .940 (.036) .981
2 and 4 .771 (.160) .826
3 and 5 .808 (.066) .867
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tions for which the model has to account. As in Experiment 1b and

to limit the number of conditions that have near ceiling perfor-

mance, most conditions in which the initial letter of the string

could be manipulated were not used.

Results and Modeling

The procedure for fitting the overlap model was the same as in

Experiment 1. The overlap model was fit to the data (circles in

Figure 5), and 21 of the 23 predicted values from the model

(triangles in Figure 5) fit within two standard errors of the data (see

Figure 5 and Table 5). Thus, the model captures the effects of letter

migration and the effects of transposition and replacement with no

additional assumptions relative to the previous experiments.

The parameters of the model are similar to those in the previous

experiments (see Table 3). The s1 parameter is about .5, which is

slightly more than one third of the value of the other s parameters

(that range between 1.336 and 1.454). The scaling parameter (a

parameter) has a value of 3.554, which is slightly lower than the

values for this parameter in the previous experiments with non-

word targets.

Experiment 4: Letter Repetition

In this experiment (see Appendix A), we examined whether the

overlap model can deal with items in which one of the letters is

duplicated, for example, with a target ABCDE and a foil ABBDE

or vice versa. This is an important issue because the effects of this

manipulation might be problematic for some of the letter position

coding models (e.g., the SOLAR and SERIOL models). We also

added conditions with repeated plus migrated letters (e.g., target,

ABCCE, and foil, ACCBE) to further test the model. Note again

that the rapid presentation of the stimulus restricts or eliminates the

strategy of basing the decision on whether the letters are repeated

or not. There were conditions in which the target string included a

repeated letter, conditions in which the foil included the repeated

letter, and conditions in which both alternatives (the target and the

foil) included a repeated letter. To add further constraints, adjacent

transposed-letter and single replacement conditions were also in-

cluded.

Results and Modeling

The data from this experiment provide a stringent test of the

model because there are 37 different conditions and only 7 free

parameters. The reason for such a large number of conditions is

that, unlike the replacement or transposition conditions used in the

previous experiments, in which the two alternatives have the same

type of similarity to each other (e.g., ABCDE has the same

relationship to XBCDE as XBCDE has to ABCDE), the alterna-

tives in the present experiment have an asymmetrical relationship

(e.g., from ABCDE to ABBDE, there is a repetition plus a removal

of the letter C, while from ABBDE to ABCDE, there is an addition

of a letter C and no repeated letter). As can be seen in Table 6 and

Figure 6, performance was very different depending on which of

the two alternatives was the target (i.e., when the target had a

repeated letter, performance was worse than when the target did

not have a repeated letter). This effect cannot be explained by

overlap differences alone; instead, we assumed that the two power

parameters for the overlap values (see Equation 3) are different for

the alternative with repeated letters and for the alternative without

repeated letters. The data show that the participants were biased

toward choosing the alternative without the repeated letters; hence,

the power parameter for the strings without repeated letter is larger

than for strings with repeated letters. This might be because a

repeated letter is difficult to detect in the brief stimulus presenta-

tion and therefore, people tend to choose the alternative without

the repeated letter.

The overlap model (the fits represented by triangles in the

figure) fits 34 out of 37 data points (the circles) in Figure 6 within

two standard errors. The model tended to overestimate perfor-

mance for the conditions in which both the target and the foil had

repeated letters (in particular, adjacent repeated letters) and also

the ABADE versus ABCDE condition. Thus, the model provides

a reasonable account of this data set. Importantly, this is accom-

Figure 5. The figure shows the data and model fits for Experiment 3 (see

text for description of the different types of items). The circles represent the

data, and the triangles represent the model’s fits. The different conditions are

represented across the x-axis, and the proportion of correct responses is

represented on the y-axis. Error bars indicate two standard errors of the mean.

Table 5

Results From Experiment 3

Condition M (2 SEs) Model

Replacement 1 .872 (.042) .848
Replacement 2 .688 (.050) .642
Replacement 3 .696 (.052) .651
Replacement 4 .637 (.046) .646
Replacement 5 .618 (.054) .639
Transposition 1 and 2 .825 (.052) .807
Transposition 2 and 3 .603 (.040) .564
Transposition 3 and 4 .589 (.040) .566
Transposition 4 and 5 .561 (.040) .559
Migration letter 1 to 3 .897 (.038) .885
Migration letter 2 to 4 .668 (.052) .658
Migration letter 3 to 1 .867 (.040) .895
Migration letter 3 to 5 .710 (.058) .651
Migration letter 4 to 2 .649 (.058) .655
Migration letter 5 to 2 .698 (.058) .723
Migration letter 5 to 3 .625 (.054) .660
Migration control letter 1 to 3 .878 (.036) .918
Migration control letter 2 to 4 .730 (.062) .713
Migration control letter 3 to 1 .885 (.048) .895
Migration control letter 3 to 5 .710 (.060) .708
Migration control letter 4 to 2 .704 (.062) .711
Migration control letter 5 to 2 .713 (.060) .739
Migration control letter 5 to 3 .684 (.062) .713
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plished with parameter values similar to those in the previous

experiments (e.g., the s parameter for Position 1 is about half the

size [.778] of those for Positions 2–5, which are similar to each

other [about 1.5]).

Experiment 5: Subset/Superset Stimuli

Up to now, the overlap model has provided a reasonable account

of the data across a wide range of conditions (replacement of

letters, transposition of letters, migration of letters, and lexical

status) in which the target stimulus and the foil have the same letter

length. In Experiment 5 (see Appendix A), we tested whether the

overlap model could deal with the orthographic similarity of items

of different length. There is evidence that items of different length

can compete with each other (e.g., thirty can compete with thirsty;

e.g., Bowers, Davis, & Hanley, 2005; De Moor & Brysbaert, 2000;

Perea, Acha, & Fraga, 2008; Perea & Carreiras, 1998). Van Assche

and Grainger (2006) recently found that inserting one or two

unrelated letters in a target word, hence creating a superset, gen-

erates strong priming effects in the masked priming paradigm (i.e.,

the prime apgricfot facilitates the processing of the word apricot).

We used stimuli of this kind along with conditions employed in

previous experiments to help test the model. The critical conditions

of particular interest are those in which we add one letter to either

the foil or the target. In half of the trials with items of different

length, the target was the six-letter item (target: AXBCDE; foil:

ABCDE), whereas in the other half the target was the five-letter

item (target: ABCDE; foil: AXBCDE).

In sum, for a given nonword, the similar items could be a

transposed-letter item, a single replacement item, or an item with

an added or deleted letter.

Results and Modeling

To fit the overlap model to this experiment, we assumed that the

five- and six-letter strings spanned the same space, as shown in

Figure 7. The top panel represents the overlap (the shaded areas)

across the different positions for five-letter test strings (ABCDE)

compared with the six-letter test string (ABCXDE). The bottom

panel shows the string ABCXDE overlapping with the five-letter

test string (ABCDE).

The model was slightly modified to implement the different

letter positions by making the letter strings span the same range.

In other words, the boundaries at the two ends of the letter

strings were aligned, and the spacing of the boundaries was

wider for the shorter letter string relative to the longer string (as

shown in Figure 7). When the two alternatives were different

only by an inserted letter, the two conditions were different and

required different fits depending on whether the target or the

foil had the inserted letter. This is because the overlap of the

flashed target ABCDE with the alternative ABXCDE has dif-

ferent overlap from the flashed target ABXCDE with the alter-

native ABCDE.

The fits of the model to the data were performed as in the

previous experiments (see Figure 8 and Table 7). The model

accounts for the replacement and transposition conditions reason-

Figure 6. The figure shows the data and model fits for Experiment 4. The

circles represent the data, and the triangles represent the model’s fits. The

different conditions are represented across the x-axis, and the proportion of

correct responses is represented on the y-axis. Error bars indicate two

standard errors of the mean.

Table 6

Results From Experiment 4

Type of Item

Condition

M (2 SEs) ModelFoil Target

Repeated letters only in foil ABBDE ABCDE .799 (.077) .755
ABCCE ABCDE .821 (.057) .727
ABCDD ABCDE .794 (.082) .743
ABADE ABCDE .790 (.079) .866
ABCBE ABCDE .738 (.071) .798
ABCDC ABCDE .766 (.091) .806
ABCDB ABCDE .820 (.066) .848

Repeated letters only in target ABCDE ABBDE .691 (.083) .699
ABCDE ABCCE .686 (.082) .692
ABCDE ABCDD .680 (.083) .696
ABCDE ABADE .683 (.070) .632
ABCDE ABCBE .692 (.074) .674
ABCDE ABCDC .653 (.071) .683
ABCDE ABCDB .697 (.096) .678

Repeated letters in both ABBDE ADBBE .714 (.077) .753
ABCCE ACCBE .674 (.081) .753
ABCDD ABDDC .746 (.072) .799
ABADE BADAE .812 (.087) .872
ABCBE ACBEB .705 (.093) .676
ABCDC ACBCD .727 (.065) .686
ADBBE ABBDE .722 (.076) .753
ACCBE ABCCE .784 (.073) .753
ABDDC ABCDD .751 (.075) .800
BADAE ABADE .887 (.059) .835
ACBEB ABCBE .752 (.070) .686
ACBCD ABCDC .728 (.090) .676

Transpositions ACBDE ABCDE .642 (.071) .590
ABDCE ABCDE .620 (.054) .596
ABCED ABCDE .695 (.073) .592
CBADE ABCDE .865 (.063) .954
ADCBE ABCDE .708 (.082) .743
ABEDC ABCDE .759 (.072) .790
AECDB ABCDE .806 (.073) .862

Replacements AXCDE ABCDE .784 (.077) .728
ABXDE ABCDE .783 (.057) .757
ABCXE ABCDE .762 (.082) .740
ABCDX ABCDE .460 (.079) .750
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ably well. It underestimates performance in the transposition of the

fourth and fifth letters and also in the single letter replacement

conditions. Nonetheless, the model successfully captures the most

important aspects of performance in the letter-insertion trials, with

all fits (triangles in Figure 8) for these conditions within two

standard errors of the empirical values (circles in Figure 8). As in

previous experiments, the parameters of the model behaved in a

predictable way (i.e., the s parameter monotonically increased as a

function of letter position from about .6 for s1 to an average of 1.5

for s2–s5). In sum, the overlap model provides a good account of

the effects of similarity between two strings of different length by

using parameter values very similar to those obtained in previous

experiments (see Table 3).

General Discussion

The present article has shown how the overlap model can

accommodate a variety of effects from experiments that manipu-

late letter transpositions, letter replacements, letter migrations,

letter repetitions, and letter additions/deletions across five percep-

tual identification experiments. In each experiment, a letter string

was presented briefly, it was then masked, and then two test

alternatives were presented: One was the target string, and the

other was a foil implementing the manipulation of interest. The

model does that by implementing minimal assumptions, which are

shared by models of object location (e.g., the CODE model,

Logan, 1996).

The data from the experiments can be summarized as follows:

(a) Letter transpositions produced lower accuracy values than their

orthographic control conditions; (b) single replacements produced

higher accuracy than transpositions; (c) double replacements pro-

duced better performance than single replacement and transposed-

letters strings; (d) when the test strings were a word and a non-

word, there was a bias to choose the word; (e) repetition of letters

exhibited a bias—when the target in the forced-choice task in-

cluded an adjacent repeated letter, participants chose the foil (with

no repeated letters) in a higher proportion of the trials than in other

conditions; and (f) when the length of the string changed with an

Figure 8. The figure shows the data and model fits for Experiment 5. The

circles represent the data, and the triangles represent the model’s fits. The

different conditions are represented across the x-axis, and the proportion of

correct responses is represented on the y-axis. Note that there are two types of

letter insertion trials: The letter insertion could be in the foil or in the target.

Error bars indicate two standard errors of the mean.

Figure 7. The figure shows a representation of the encoding of letter

position with mismatching number of letters. In the top panel, the shaded areas

represent the five-letter string ABCDE overlapping with the six-letter test

string ABCXDE; in the bottom panel, the shaded areas represent the overlap

between the six-letter string ABCXDE and the five-letter test string ABCDE.

Table 7

Results From Experiment 5

Condition M (2 SEs) Model

Transposition 1 and 2 .789 (.049) .770
Transposition 2 and 3 .583 (.050) .609
Transposition 3 and 4 .594 (.032) .575
Transposition 4 and 5 .604 (.034) .559
Replacement 2 .735 (.049) .686
Replacement 3 .712 (.050) .651
Replacement 4 .669 (.035) .644
Replacement 5 .655 (.035) .625
Foil insertion between 1 and 2 .670 (.055) .672
Foil insertion between 2 and 3 .651 (.058) .652
Foil insertion between 3 and 4 .621 (.064) .652
Foil insertion between 4 and 5 .621 (.062) .662
Foil insertion after 5 .664 (.061) .674
Target insertion between 1 and 2 .669 (.060) .688
Target insertion between 2 and 3 .656 (.066) .648
Target insertion between 3 and 4 .615 (.065) .643
Target insertion between 4 and 5 .595 (.067) .636
Target insertion after 5 .630 (.064) .640
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insertion of a letter relative to the other test alternative, participants

appeared to base their response on string similarity, consistent with

the overlap model and with the data from other manipulations.

The effects of each of these conditions, namely, letter transpo-

sition, single letter replacement, double letter replacement, letter

migration, letter insertion, and letter repetition, interacted with

position of the manipulation in letter string. Specifically, any

manipulation in which the first letter in a string was altered

produced higher accuracy than manipulations that involved inte-

rior letters; in contrast, the effect of manipulating the final letter

did not differ from those in which interior letters were manipulat-

ed.2 The effects of the manipulations on accuracy were modulated

not only by position within the letter string but also by the lexical

status of the strings: There was better performance with word

targets than with nonword targets.

The Overlap Model

We have used Ratcliff’s (1981) theory of order relations to

account for the encoding of letter positions. This account is based

on the assumption that the representation of a letter is distributed

across ordinal positions in the letter string. The similarity between

two strings is the degree of overlap between the letters of the same

identity, and the overlap is transformed to accuracy using a power

function.

Most of the values predicted by the model were within two

standard errors of the data. In most experiments, more than 20

conditions that included many different types of manipulations of

a string of letters were fitted with six or seven free parameters.

Furthermore, this was accomplished with a high degree of consis-

tency in the parameter values (especially the standard deviations

parameter s of the overlap) across the experiments and with

minimal additional assumptions for the different types of trials.

Later in the General Discussion, we show how we can take

advantage of the parameter consistency to reduce the number of

parameters related to position uncertainty from five to two. There

were a total of 171 conditions in the experiments reported in this

paper; the correlation between the empirical accuracies for these

171 conditions and the predictions of the overlap model was r �

.942, t(169) � 36.52, p � .001. Figure 9 presents a plot of the

empirical data and the model’s predictions; as can be seen, the

model does not exhibit any systematic departures from the empir-

ical data.

Figure 10 shows a plot of the overlap between the targets and

the foils for each condition and the predicted error rate. There is a

curvilinear relationship that is particularly clear in the higher

accuracy conditions. This means that changes in the overlap values

produce smaller effects in the predicted accuracy rates in easier

conditions than in difficult conditions. Note that in Experiments 2

and 4, the data fall on points that form more than one line per

experiment. They represent those conditions in which two scaling

parameters (one for each alternative) were used, as in the word–

nonword condition (w points in the figure), the word–word con-

dition (x points in the figure), and in the conditions with repeated

letters in the target but not in the foil (4 points in the figure). The

a parameter scales the differences in overlap values and differen-

tially scales the match between the target and each of the two

alternatives.

Finally, we should note that the s parameter in the overlap model

has a straightforward interpretation in terms of developmental

studies in letter position coding. Prior research has found that

transposed-letter effects are greater for beginning readers than for

adult readers (Acha & Perea, 2008b; Castles, Davis, & Forster,

2003; Perea & Estévez, 2008). As pointed out by Castles et al.

(2003), “the immature word recognition system tolerates a degree

of error in letter position if letter identity requirements are ful-

filled” (p. 353). In the overlap model, the noisy locations of objects

(e.g., letters) in beginning readers would be reflected as larger s

values. Note that in an extreme case, an impairment of the pro-

cesses underlying letter position coding may lead to letter position

dyslexia (see Friedmann & Gvion, 2001, 2005).

Implications for Modeling Word Recognition

Three other models of letter position encoding have been pro-

posed in the past decade: the open-bigram model (Grainger & van

Heuven, 2003), the SERIOL model (Whitney, 2001, in press), and

the SOLAR model (Davis, 1999, 2002). In this section, we briefly

summarize them and show results from simulations of these three

models along with the overlap model’s fits to the empirical data

presented in this article. It is critical to point out that there are two

reasons why these predictions should not be used to rule out those

models: (a) Only the letter coding component of such models is

2 As Whitney (2001) noted, previous research in which there was a

final-letter advantage involved presentation durations of 75 ms or more,

whereas those experiments in which a final-letter advantage did not occur

involved presentation durations of 50 ms or less; in the present experi-

ments, the stimulus was presented for 60 ms, and the observed pattern is

consistent with Whitney’s review. Ratcliff (1981) found final-letter advan-

tage in some conditions in his perceptual matching experiments. The

overlap model accommodated the final-letter assumption with a smaller

standard deviation for the final-letter position relative to earlier letter

positions.

Figure 9. Plot of the predictions of the overlap model and the empirical

error rates across all experiments. The symbols correspond to the different

types of experiments in this article. a � Experiment 1a (nonword target and

foils); b � Experiment 1b (nonword targets and foils with no manipula-

tions of the first letter); w � Experiment 2 (word targets and nonword

foils); n � Experiment 2 (nonword targets and word foils); x � Experiment

2 (word targets and word foils); 3 � Experiment 3 (nonword targets and

foils with letter migration); 4 � Experiment 4 (nonword targets and foils

with double letters); 5 � Experiment 5 (nonword targets and foils with

letter insertion).
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tested, and (b) the simulations produce results based on generic

parameter values (not fits).

Grainger and van Heuven’s (2003) open-bigram model is based

on the assumption that the relative position of a letter is coded on

the basis of its local context, that is, coded with the context of

letters that co-occur within the string (up to a limit of two inter-

vening letters). This local context corresponds to a set of open-

bigram units. For instance, the open bigrams for the word judge

would be ju, jd, jg, ud, ug, ue, dg, de, and ge. Under Grainger and

van Heuven’s original formulation, je would not be an activated

open bigram because its distance is beyond the limit of two

intervening letters.3

The architecture of the Grainger and van Heuven (2003) model

is shown in Figure 11. The input for the model is the visual

stimulus, processed by the alphabetic array, which is a bank of

detectors that processes all the characters in parallel and provides

an accurate retinotopic map of the string. The information in the

alphabetic array is fed on to the relative order map, which is

composed of units that code whether ordered pairs of letters are

present in the alphabetic array. Grainger and van Heuven used this

model to compute similarity between primes and targets to account

for masked priming results with transposed-letter items.

The SERIOL (sequential encoding regulated by inputs to oscil-

lation within letter units; Whitney, 2001, in press; see also Whit-

ney & Berndt, 1999; Whitney & Lavidor, 2005) model was de-

signed to explain the process of reading strings of letters, from

graphic feature detection to word identification. The model has

five implemented layers: edge, feature, letter, bigram, and word.

This model uses a letter-tagging coding scheme, in which each

letter is marked for the ordinal position in which it occurs within

a letter string. For instance, the word slat would be represented by

S-1, L-2, A-3, T-4. This letter-tagging scheme is also accompanied

by the activation of bigram nodes—ordered pairs of letters—so

that the word slat would be represented by the following bigrams:

sl, la, at, sa, st, and lt (cf. Grainger & van Heuven’s, 2003, model).

For example, slat shares three bigram nodes with the transposed-

letter neighbor salt (sa, lt, sl), which is the same number it shares

with the one-letter-different neighbor scat (sa, at, st). Thus, salt

would be equally similar to and equally confusable with both slat

and scat.

More specifically, in the SERIOL model, during the process of

visual word recognition, each letter node undergoes synchronous

excitatory subthreshold oscillations resulting in a sequential firing

in left-to-right sequential manner (in Western languages). In the

oscillatory cycle, only the letter node receiving the highest level of

input can exceed threshold and fire (e.g., the letter t in the word

trial), and as excitation increases over time, the letter node receiv-

ing the next highest level of input can fire (i.e., r), and so on. It is

important to note that the temporal encoding of letter nodes also

activates bigram nodes and that the activity across bigram nodes is

used to activate lexical units. The amount of activation of each

bigram node depends on its constituent letter activations, although

it is also influenced by the firing delay between those letter nodes

when neither letter node is highly activated (i.e., the firing delay

makes the open bigram tr more highly activated than the open

bigram ta in the word trial). Thus, the bigrams that encode the

first/second and first/last letters of a string are the most highly

activated, and those encoding the second/third and second/last

letters are the next most highly activated, and so on (see Whitney

& Lavidor, 2005). As a result, two words will be the most per-

ceptually similar when they share the most highly active bigrams,

and this would be independent of string length. This predicts that

hose may activate the lexical entry of house (i.e., the effects of

addition/deletion neighbors; see Experiment 5).

Both the open-bigram model and the SERIOL model require an

input that contains information about letter position before they can

extract the bigrams. More specifically, these models use this input (in

which the letter positions are correctly encoded) to produce a noisy

encoding of position. The SOLAR model, on the other hand, uses a

spatial coding scheme (see Figure 12 for a graphical representation) in

which the order of letters is coded by the relative activity of a set of

letter nodes. In this way, the transposed-letters words salt and slat

3 In our experiments, we have shown that letter transpositions that are

even three letters distant show larger similarity than the control conditions;

however, the Grainger and van Heuven (2003) model could readily be

extended to include bigrams separated by more than two letters.

Figure 10. Plot of the overlap value and the predicted error rates for all

the experiments. The symbols correspond to the different types of exper-

iments in this article. a � Experiment 1a (nonword target and foils); b �

Experiment 1b (nonword targets and foils with no manipulations of the first

letter); w � Experiment 2 (word targets and nonword foils); n � Exper-

iment 2 (nonword targets and word foils); x � Experiment 2 (word targets

and word foils); 3 � Experiment 3 (nonword targets and foils with letter

migration); 4 � Experiment 4 (nonword targets and foils with double

letters); 5 � Experiment 5 (nonword targets and foils with letter insertion).

Figure 11. Architecture of the open-bigram model. The alphabetic array

is a bank of letter detectors that processes the visual stimulus. The infor-

mation in the alphabetic array is decomposed in the relative position map,

which in turn activates the whole-word representations in the O-word layer

(adapted from Figure 1 in Grainger & van Heuven, 2003).
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share the same set of letter nodes, but they produce different spatial

patterns. The SOLAR model also assumes the presence of a left-to-

right serial input (in Western languages), such that the letters are

processed sequentially. Because serial position is coded by relative

activities rather than via position-specific codes, and because of the

way the network computes bottom-up input, salt and slat are more

similar and, hence, more confusable than slat and scat. Thus, the

SOLAR model can readily explain some transposed-letters similarity

effects. The coding scheme of the SOLAR model is only the front end

of the model; indeed, the model can account for a number of phe-

nomena in the literature (e.g., lexical status, frequency, orthographic

neighborhood, masked priming, and pseudohomophone effects).

There is one basic difference between the overlap model and

the open-bigram, SERIOL, and SOLAR models. These last

three models include an intermediate stage that requires (and

uses) accurate information about letter position to extract big-

rams to represent order. This order representation is then used

to produce a noisy representation of position. One can ask why

the system cannot access this accurate information about posi-

tion. In contrast, in the overlap model a perfectly accurate

position encoding is not available during matching a test to a

study string (though accurate position information might be

produced by other processes).

We compared the predictions of the four models (the overlap

model, the SERIOL model, the open-bigram model, and the

SOLAR model) by using predictions from the parameter values

for the overlap model and by using Davis’s (2007) MatchCal-

culator program4 for the latter three models. Again, the output

of the MatchCalculator program is obtained with generic pa-

rameter values, unlike the predictions of the overlap model,

which are obtained by fitting the model to the data. The pre-

dictions were used to produce correlations between target–foil

similarities for each model and between the models and the

empirical error rates (averaged from Experiments 1a, 1b, 3, and

5) for the transposed-letter, letter replacement, letter migration,

control for letter migration, and letter insertion conditions. For

the overlap model, we did not include the scaling parameter a,

so the comparison among models was solely on the basis of

string similarity. The scatterplots between the models’ string

similarity predictions and the empirical error-rate values are

shown in Figure 13. The correlations between the model simi-

larities and the data are .588 for the open-bigram model,5 .655

for the SOLAR model,6 .850 for the SERIOL model, and .927

for the overlap model. This very high correlation found between

the data and the overlap model indicates that our model pro-

vides an excellent description of how string similarity affects

performance in the forced-choice task. Of course, comparing

these correlations should be done with caution, and they are

presented here not with the intention of falsifying the other

models but to show that the overlap model can account for the

data at least as well as the letter coding component of the other

models.

Interestingly, we should also note that a nonimplemented neural

model of letter position coding has been proposed recently by

Dehaene, Cohen, Sigman, and Vinckier (2005). This model as-

4 This program can be downloaded from Colin Davis’s Web site at

http://www.pc.rhul.ac.uk/staff/c.davis/Utilities/MatchCalc/index.htm.
5 In a recent article, Grainger, Granier, Farioli, Van Assche, and van

Heuven (2006) indicated that open bigrams would be weighted according

to the amount of distance between the component letters in the input string.

In this case, the predictions of this “overlap open-bigram” model would be

closer to those provided by the SERIOL model.
6 It is possible that some tweaking of the parameters of the SOLAR

model would produce a better correlation value. One option, suggested by

Colin Davis, would be to compute the correlation after a constant of .3 had

been subtracted from the match value for each of the 16 conditions in

which there was a mismatch between the initial letters of the target and foil

stimuli (e.g., the match between ABCDE and BACDE would change from

.89 to .59, whereas the match between ABCDE and ACBDE would remain

unchanged at .89). The subtraction of this constant would be intended to

reflect the decreased likelihood of participants choosing a foil with a

mismatch in the initial letter (whether due to phonological factors or purely

orthographic factors based on the reduced position uncertainty associated

with this position). This modification had the effect of increasing the

correlation coefficient up to r � .90.

Figure 12. The different panels in the figure show the sequential coding in the SOLAR model for the words

SLAT, SCAT, SALT and SOAP (adapted from Figure 1 in Davis & Bowers, 2004). Within each panel, the x-axis

shows an unordered set of letters, and the y-axis shows the activation for each of these letters.
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sumes the existence of a noisy letter-detection system at the level

of the so-called visual word form area, an assumption that is

compatible with the overlap model, and furthermore, it provides

biological plausibility to the idea of noisy letter position coding in

terms of neural activity.

Finally, the generalization of the front end of a visual word-

recognition model to the context of normal reading is challenging

for all current coding schemes, in particular the role of parafoveal

information. In turn, a highly successful model of normal reading

such as the EZ reader model (Reichle, Pollatsek, Fisher, & Rayner,

1998) does not have a lexical/orthographic module, and hence, it

makes no specific predictions concerning letter position coding

(see Johnson et al., 2007). Further research is necessary to provide

a link between the input coding scheme in models of visual word

recognition and the when/where processes in models of eye-

movement control. Consistent with the assumptions of the overlap

model, letter position coding in normal reading is less accurate in

the measures that reflect early stages (e.g., first fixation durations

in parafoveal priming experiments), while it becomes more precise

in later measures of eye movements (see Johnson, 2007).

Reducing Number of Parameters in the Overlap Model

As can be seen in Table 3, the values of standard deviation

parameters are quite similar across experiments. This allows us to

reduce the number of parameters by fitting the standard deviation

for each position with a simple exponential growth to asymptote

function over letter position:

si � d(1 � exp[�(i � .5)/r]). (4)

The value of the s parameter rises across letter positions (i) with rate

r until it reaches an asymptotic value d. By using this function, we are

able to reduce the number of free parameters for s from five to two

with relatively little loss of accuracy of the fits; these two parameters,

along with one or two scaling parameters (a in Equation 2 or a and b

in Equation 3) yield three or four free parameters, which are able to

account for between 16 and 36 degrees of freedom per experiment in

the data. Figure 14 shows the best fitting exponential functions (the

lines) and the s parameters reported in Table 3. Each of the panels

corresponds to a different data set: The A points (in the top left panel)

correspond to the s1 to s5 parameters in Experiment 1a; the B’s

Figure 13. The bottom left panels show scatterplots of the similarity values for the four models (overlap model,

SERIOL model, open-bigram model, and SOLAR model) and the error-rate data. The points are represented by

numbers that correspond to the type of item: 1 � adjacent transpositions; 2 � nonadjacent transpositions; 3 �

single replacements; 4 � adjacent replacements; 5 � nonadjacent replacements; 6 � letter migration; 7 �

migration � insertion; 8 � double letters; 9 � nonadjacent letter repetition; 0 � letter insertion. The diagonal

panels show histograms of values, and the top right panels show the correlations.
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correspond to Experiment 1b; and the 2’s, 3’s, 4’s, and 5’s correspond

to Experiments 2, 3, 4, and 5, respectively. As can be seen, the

exponential growth to an asymptote provides an excellent description

of the s parameter behavior across position.

For each data set, after the exponential function was fit to the

original parameters (the ones reported in Table 3), a new set of s

values was generated with Equation 4. Then, the original scaling

parameters (the a and b in Equations 2 and 3) were used to

generate predictions.

The predictions from the three or four parameter (asymptote,

rate, and one or two scaling exponents) model provide an excellent

account of the experimental data. Figure 15 presents a plot of the

obtained error rates and the error rates predicted by the simplified

model, and it is very similar to Figure 9, which used the original

standard deviation parameters. The correlation between the ob-

served and the predicted error-rate values is r � .923, t(169) �

31.07, p � .001, which is only marginally smaller than the one

with the original parameters (r � .942).

To reduce the number of parameters even more, we obtained the

average values for the asymptote d and the rate r across the six data

sets (average r � 1.094, and average d � 1.544) and generated

overlap values (Equation 1) for the 81 conditions (Experiments 1a,

1b, 3, and 5) for which two exponents were not needed (Equation

3). The overlap values generated by this two-parameter model

have a correlation with experimental accuracy values of r � .915,

t(79) � 20.187, p � .001 (see Figure 15).

To reiterate, these same conditions were used to obtain the

correlations between the data and the open-bigram, SOLAR, and

SERIOL models. The correlations between the error-rate data and

the models were .616 for the open-bigram model, .703 for the

SOLAR model, and .895 for the SERIOL model. Thus, this highly

simplified version of the overlap model (with parameter values

obtained by averaging across experiments) provides a fit to the

data that is as good as or better than the open-bigram, SOLAR, and

SERIOL models described above. The correlation of overlap with

experimental data for the two-parameter model puts the compari-

son of the overlap model on a closer footing with the comparisons

with the SERIOL, open-bigram, and SOLAR models because the

models are not individually fit to experimental data.

To provide one additional comparison in which none of the models

had been fit to data, we compared the similarity match values from the

overlap, SERIOL, open-bigram, and SOLAR models with data from

Experiment 3 in Ratcliff (1987). This experiment was designed to

distinguish between conditions in which absolute position is similar in

study and test strings and conditions in which relative position is

similar in study and test strings. For example, for a study string

ABCDE, the test string BCDEA has no letter in correct absolute

position but has four letters in correct relative position. None of the

Figure 14. The different panels show the parameters s1 to s5 for each of the data sets A � Experiment 1a; B �

Experiment 1b; 2 � Experiment 2; 3 � Experiment 3; 4 � Experiment 4; 5 � Experiment 5. The lines show

the best fitting exponential approach to a limit function.
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four models were fit to the data, and the generic parameter values

(including the two exponential function parameters from the overlap

model) were used to generate similarity values. The error-rate data

and models’ predictions are shown in Table 8, and the simplified

(two-parameter) overlap model provides a better account of the data

(r � .850 between overlap and proportion of correct) than the SOLAR

(r � .522; but see footnote 6), SERIOL (r � .603), and open-bigram

(r � .545) models. Thus, it is clear that the overlap model provides a

highly plausible mechanism for the early stages of letter position coding.

Finally, Appendix B also provides some overlap values for com-

parison with masked priming effects. These additional analyses show

that the positional encoding mechanisms described in this article are

compatible with the masked priming effects that have been reported in

a segment of the literature on letter position coding.

In sum, developing theories that can be applied across experi-

mental domains is an important step toward the goal of developing

general theoretical principles of cognition. The overlap model

discussed in this article is based upon principles similar to modern

attention theories like Logan’s (1996) CODE theory and classic

theories of order information in memory like Estes’s (1975). We

Figure 15. The figure shows plots of the similarity values for the

two-parameter model (a rate r of 1.105 and an asymptote d of 1.617 for

the exponential function in Equation 4). a � Experiment 1a; b �

Experiment 1b; 3 � Experiment 3; 5 � Experiment 5.

Table 8

Predictions of Different Models and Data From Archival Data (Ratcliff, 1987, Experiment 3)

Alternatives

Model
Error rate in Ratcliff’s
(1987) Experiment 3SOLAR Open bigram SERIOL Overlap

ABCDE ABCED .68 .78 .70 1.61 .570
ABCDE ABDCE .87 .89 .82 1.60 .391
ABCDE ABDEC .62 .67 .54 1.46 .238
ABCDE ABECD .62 .67 .54 1.45 .237
ABCDE ABEDC .61 .56 .39 1.40 .254
ABCDE ACBDE .87 .89 .82 1.55 .330
ABCDE ACBED .55 .67 .53 1.46 .224
ABCDE ACDBE .74 .78 .67 1.41 .268
ABCDE ACDEB .67 .56 .57 1.30 .178
ABCDE ACEBD .46 .56 .47 1.26 .164
ABCDE ACEDB .56 .44 .43 1.24 .157
ABCDE ADBCE .74 .78 .66 1.36 .263
ABCDE ADBEC .46 .56 .47 1.23 .162
ABCDE ADCBE .68 .67 .51 1.32 .244
ABCDE ADCEB .53 .44 .43 1.21 .173
ABCDE ADEBC .38 .44 .43 1.03 .139
ABCDE ADECB .38 .33 .30 1.05 .137
ABCDE AEBCD .67 .56 .57 1.25 .162
ABCDE AEBDC .56 .44 .43 1.20 .174
ABCDE AECDB .60 .33 .33 1.19 .210
ABCDE AECBD .53 .44 .43 1.21 .159
ABCDE AEDBC .38 .33 .30 1.06 .157
ABCDE AEDCB .47 .22 .16 1.09 .149
ABCDE AXCDE .80 .56 .66 1.38 .250
ABCDE ABXDE .80 .56 .59 1.43 .218
ABCDE ABCXE .80 .56 .66 1.44 .333
ABCDE ABCDX .80 .67 .66 1.45 .380
ABCDE BACDE .68 .78 .69 1.20 .113
ABCDE CBADE .61 .56 .38 0.94 .090
ABCDE DBCAE .60 .33 .33 0.88 .090
ABCDE EBCDA .60 .33 .33 0.86 .092
ABCDE XBCDE .80 .67 .66 1.09 .129
ABCDE CABDE .62 .67 .54 0.95 .100
ABCDE BCADE .62 .67 .54 1.03 .105
Correlation between Ratcliff

(1987) data and model
predictions r � .522 r � .545 r � .603 r � .850
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hope that the overlap model can serve as a common organizing

structure between the fields of attention, memory, and word rec-

ognition.
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Appendix A

Methods and Results

This appendix includes the Method and Results sections for all

experiments.

General Method

Participants

Northwestern University (Evanston, IL) undergraduates partici-

pated in these experiments. There were 18 participants in Experiment

1a, 17 in Experiment 1b, 24 in Experiment 2, 20 in Experiment 3, 22

in Experiment 4, and 32 in Experiment 5. None of the participants

took part in more than one experiment, and all of them were fulfilling

a requirement for an Introduction to Psychology class.

Materials

For all experiments, we created sets of similar stimuli by rearrang-

ing the letters in either pseudowords or English words. The

pseudowords (1,380 of them) were created by substituting the vowels

in an English word with other vowels. Each target stimulus (or any of

the items generated by it) was presented only once. Table 1 in the

main text shows what types of stimuli were used in each of the

experiments. During the generation of items, vowels were always

replaced by vowels, and consonants were always replaced by conso-

nants in the replacement conditions. Of course, this produced an

unavoidable confound—transpositions might alter the consonant–

vowel structure to a higher degree than replacement items—however,

we do not believe that this affected the results in a fundamental way.

Experiment 1. In Experiment 1, the alternatives in the forced-

choice task were a pseudoword and a similar letter string that was

generated by either transposing two letters, replacing one letter, or replac-

ing two letters (see Table 1 in the main text). There were 23 types of

stimuli in Experiment 1a and 17 in Experiment 1b. In Experiment 1a,

there were 15 experimental blocks with 92 trials each, and in Experiment

1b, there were 18 experimental blocks with 68 trials each.

Experiment 2. There were two sets of materials. The first set

included 814 five-letter words selected from the Kučera and Francis

(1967) list. The words had a mean frequency of occurrence of 68 per

million (range: 4–2,714). For a given word, the similar nonword

items could be a transposed-letter item, a single replacement item, or

a double replacement item. Transpositions, replacements, and single

replacements were constructed the same way as in Experiment 1a. A

second set of 201 word–word pairs was also selected from the Kučera

and Francis (1967) norms. In these pairs, words shared all the letters

except for two that were transposed (e.g., adjacent transposed-letters

pairs such as trial–trail or nonadjacent transposed-letters pairs such

risen–siren). Note that we did not use replacement items because of

the very low number of words that can generate both a replaced-letter

and a transposed-letter word neighbor. The mean frequency of the

words was 36 and 20 per million for the adjacent transposed-letters

and the nonadjacent transposed-letters words, respectively. Given the

small number of word–word pairs of five letters, we also used word–

word pairs of six and seven letters (making the mean letter length 5.6

letters and the range 5–7). Each participant was shown 736 trials

randomly chosen from the word–nonword set (all five letters long and

counterbalanced across participants) and 192 (randomly selected from

the set of 201) trials from the word–word set. If one participant was

presented with a word target in the word–nonword pair, the next one

would be shown the nonword as a target. Overall, there were eight

experimental blocks with 116 trials each, for a total of 928 trials.

Experiment 3. The pseudoword list was used in Experiment 3,

in which there were 23 conditions that included single letter

replacement conditions, adjacent letter transposition conditions,

letter migration conditions, and orthographic controls for the letter

migration conditions. For example, assuming ABCDE as one of

the alternatives, in the letter migration conditions the other alter-

natives were BCADE, ACDBE, CABDE, ABDEC, ADBCE, AB-

ECD, and AEBCD; and an orthographic controls for the letter-

migration items were BCXDE, ACDXE, XABDE, ABDEX,

AXBCE, ABXCD, and AXBCD. Overall, there were 13 experi-

mental blocks with 92 trials each (four items of each of the 23

conditions per block), for a total of 1,196 trials.

Experiment 4. The pseudoword list was used in Experiment 4.

Thirty-seven conditions were used in this experiment. For a stimulus

without any repeated letters (e.g., ABCDE), the foils could be non-

words with a letter repeated in an adjacent or nonadjacent position

(ABBDE, ABCCE, ABCDD, ABADE, ABCBE, ABCDC, and AB-

CDB). The strings with repeated letters were also used as targets, with

the foils being strings with no repeated letters. The third type of item

consisted of foils and targets with repeated letters (12 conditions:

ABBDE vs. ADBBE, ABCCE vs. ACCBE, ABCDD vs. ABDDC,

ABADE vs. BADAE, ABCBE vs. ACBEB, and ABCDC vs.

ACBCD). In addition, to further constrain the model, we included

transposed-letter items and single replacement items, as in the previ-
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ous experiments. For each participant, 1,249 pairs were selected.

Overall, there were 13 experimental blocks with 96 trials each.

Experiment 5. The pseudoword list was used in Experiment 5.

In addition to transposed-letter and single replacement letter items,

this experiment featured the insertion of letters; if one of the

alternatives was ABCDE, then the other alternative was AXB-

CDE, ABXCDE, ABCXDE, ABCDXE, or ABCDEX. For each

participant, 1,080 pairs were randomly selected. There were 15

experimental blocks with 72 trials each.

Procedure

Participants were tested in groups of one to three. PC-compatible

computers controlled presentation of the stimuli and recording of re-

sponse times. Stimuli were presented on a 15-in. computer monitor in

24-point BrHand font (similar to nonproportional Courier fonts). On each

trial, a fixation point (a � sign) was presented for 500 ms on the center

of the screen. Then, an uppercase letter string was presented on the center

of the screen for 60 ms, followed by a mask with an image composed by

random segments of letters. Two uppercase letter strings were presented

two lines below the mask, one to the left and the other to the right of the

location where the stimulus test had been presented (see Figure 2 in the

main text). One of the alternatives was the stimulus item, and the other

was a foil. Participants were told to indicate which alternative was the

stimulus item that had been presented briefly. The order of presentation

was randomized across participants, and in all experiments, each alterna-

tive was the correct response in equal number of trials.

Results for All Experiments

Experiment 1

In this and in subsequent experiments, responses with latencies

less than 250 ms or greater than 1,600 ms were excluded from the

analyses (less than 1% of all responses). Response probabilities

were calculated for each participant for each condition, and then,

they were averaged across participants.

Table 2 in the main text shows the response probabilities for each

condition. In this and in subsequent experiments, unless otherwise

noted, all significant effects had p values of less than .05. For Exper-

iment 1a, we first conducted an analysis of variance (ANOVA) to

examine the effect of position across the five conditions with a single

letter replacement. The results showed a significant effect of position,

F(4, 68) � 43.94, which was caused mainly by the elevated propor-

tion of correct responses when the mismatch occurred in the initial

letter position. Second, we conducted an ANOVA to examine, for

adjacent transpositions/replacements, the effects of type of trial (trans-

position or replacement) and letter position(s) being manipulated

(first/second, second/third, third/fourth, and fourth/fifth). The

ANOVA showed an effect of letter position, F(3, 51) � 70.54; type

of trial, F(1, 17) � 89.61; and more important, an interaction between

the two factors, F(3, 51) � 14.10: The transposed-letter effect was

smaller when the transposition involved the initial letter position.

Third, we conducted a parallel ANOVA with nonadjacent letter

positions (one letter in between) to examine the effects of type of trial

(transposition or replacement) and letter position(s) being manipu-

lated (first/third, second/fourth, and third/fifth). Again, the ANOVA

showed an effect of letter position, F(2, 34) � 78.87; type of trial, F(1,

17) � 57.48; and more important, an interaction between the two

factors, F(2, 34) � 11.88: The transposed-letter effect was smaller

when the transposition involved the initial letter position. Fourth, we

conducted a parallel ANOVA with nonadjacent letter positions (two

letters in between) to examine the effects of type of trial (transposition

or replacement) and letter position(s) being manipulated (first/fourth,

second/fifth). Again, the ANOVA showed an effect of letter position,

F(1, 17) � 92.37; type of trial, F(1, 17) � 14.02; and more important,

an interaction between the two factors, F(1,1 7) � 4.77: The

transposed-letter effect was smaller when the transposition involved

the initial letter position.

We should also note that, across all conditions involving the

manipulation of two letters in Experiment 1a, transposing letters

yielded lower discriminability values than replacing letters, repli-

cating previous research (Perea & Lupker, 2003b; Ratcliff, 1981,

1985; Ratcliff & Hacker, 1981); for all but three conditions, this

difference was highly significant ( p � .005). For three conditions

in Experiment 1a, the difference between transposition and re-

placement trials was not significant (transpositions of Letters 1 and

2, 1 and 3, and 1 and 4), which was probably due to near-ceiling

levels of performance in the conditions that involved changes in

the first letter position. Although this level of accuracy is not

surprising given the importance of the initial letter in visual word

recognition, it could be argued that this pattern was the result of the

participants paying more attention to the first letter position. Ex-

periment 1b reduced the number of conditions by eliminating most

of the transposition/replacement conditions involving the first let-

ter position to examine whether the results would be similar when

participants were discouraged (via the proportion of items) from

attending to the first position of the string.

For Experiment 1b, we followed the same strategy as in Exper-

iment 1a. That is, we first conducted an ANOVA to examine the

effect of position across the four conditions with a single letter

replacement. The results showed a significant effect of position,

F(3, 48) � 10.99, which was caused mainly by the elevated

proportion of correct responses when the mismatch occurred in the

initial letter position. Second, we conducted an ANOVA to exam-

ine, for adjacent transpositions/replacements, the effects of type of

trial (transposition or replacement) and letter position(s) being

manipulated (second/third, third/fourth, and fourth/fifth). The

ANOVA showed a significant effect of type of trial, F(1, 16) �

105.53, and also an interaction between the two factors, F(2, 32) �

3.92. Third, we conducted a parallel ANOVA with nonadjacent

letter positions (one letter in between) to examine the effects of

type of trial (transposition or replacement) and letter position(s)

being manipulated (second/fourth, third/fifth). The ANOVA

showed an effect of letter position, F(1, 16) � 5.64, and type of

trial, F(1, 16) � 70.95. Fourth, we conducted a parallel ANOVA

with nonadjacent letter positions (two letters in between) to exam-

ine the effects of type of trial (transposition or replacement) for

positions second/fifth. Again, the ANOVA showed an effect of

letter transposition, F(1, 16) � 18.77.

What we should also note is that, in Experiment 1b, all the pairwise

t tests between the transposed-letter conditions and their replacement

controls were highly significant (the range of t values was from 4.33

to 9.51, and all ps were � .001). It is interesting to note that in these

experiments, changes in the (final) fifth letter position (e.g., replace-

ment of Letter 5, replacement of Letters 4 and 5, and transposition of

Letters 4 and 5) yielded performance levels similar to conditions with

changes in the internal letter positions.
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Experiment 2

Table 4 and Figure 4 in the main text show the response

probabilities for each condition. Response probabilities were cal-

culated across individuals and were submitted to ANOVAs with

three within-participant factors: lexical status of the target (e.g.,

word or nonword), type of trial (transposition or replacement), and

letter position(s) being manipulated (e.g., 1, 1 and 2, etc.).

There was a large effect of lexical status of the target string on

accuracy, F(2, 23) � 28.06. Responses were more accurate when the

targets were words than when they were nonwords. The patterns of

results within the different types of trial, however, are very similar; the

average accuracy rates for the transposed-letter stimuli had a corre-

lation of r � .976, t(5) � 10.06, between the nonword–word and the

word–word trials; r � .988, t(5) � 14.27, between the word–nonword

and the word–word trials; and r � .940, t(21) � 12.61, between the

nonword–word and the word–nonword trials. A more detailed dis-

cussion of the implications of the lexicality effects will be presented

in conjunction with a discussion of the parameter estimates for this

experiment. Also, as in Experiment 1, replacement items were more

accurate than transposition items, F(1, 23) � 91.94, but as noted

earlier, the position of the replacements affected the size of the effect,

as is indicated by the significant interaction between letter position

and replacement/transposition, F(1, 23) � 91.99.

Experiment 3

Response probabilities (shown in Table 5 in the main text) were

calculated across individuals. As in the previous experiments,

transposition trials were more difficult than replacement trials, as

shown by pairwise t tests between the transposition letter items and

the single replacements, which were all significant (even that for

transposition of Letters 1–2 and replacement of Letter 1), and the

overall pattern of results was similar to those in previous experi-

ments. In addition, migration trials were slightly more difficult

than their orthographic controls (see Figure 5 in the main text).

However, t tests for migrated letters versus their orthographic

controls were significant only for the migration from Letter 2 to

Position 4, t(19) � 3.00; Letter 4 to Position 2, t(19) � 2.56; and

Letter 5 to Position 3, t(19) � 3.17. Again, when the first letter was

manipulated in any way, the probability of a correct response was

high, and differences among type of items were small.

Experiment 4

Table 6 and Figure 6 in the main text show the response probabilities

for each condition in this experiment. Note that in this experiment, there

are no explicit orthographic controls because there are enough conditions

to constrain the model. Repeated letters had a large effect on accuracy:

For items in which the target had a repeated letter and the foil did not,

performance was worse (accuracy was .684 for adjacent letter repetition

and .681 for nonadjacent letter repetition) than for items in which the foil

and not the target had a repeated letter (accuracies of .807 and .779 for

items with foils that included adjacent letter repetitions and nonadjacent

letter repetitions, respectively, p � .001). In addition, accuracy for trials in

which both the target and the foil included repeated letters was about

halfway between conditions that had either a repeated letter in the target

or a repeated letter in the foil. The accuracy values for items with targets

and foils with repeated letters were .786 for adjacent letter repetitions and

.720 for nonadjacent letter repetitions. This shows that there was a bias

toward choosing the alternative without the repetition. As in the previous

experiments, transposition trials were more difficult than replacement

trials, and when the first letter was manipulated in any way, the proba-

bility of correct responses was high, and differences among items types

were reduced.

Experiment 5

The pattern of results for replacement and transposed letters is

the same as in the previous experiments (see Table 7 and Figure 8

in the main text). The accuracy of items of unequal letter length is

between that for replaced and transposed-letter items, F(2, 28) �

18.365. The position of the insertion of the letter yielded signifi-

cant differences, F(4, 28) � 6.344.

For the inserted letter conditions, accuracy decreased from the first

position, as the position of the inserted letter moved toward the right,

and then it was greater again for the last position, Position 4 versus 5,

t(28) � 3.338; Position 1 versus 3, t(28) � 4.497. In addition,

insertion of letters in the target produced lower accuracies than inser-

tion of letters in the foil only for the rightmost letter positions; for

Position 4, t(28) � 1.815, and for Position 5, t(28) � 2.346.

Appendix B

Masked Priming and the Overlap Model

One central technique for studying the processes underlying visual

word recognition has been the masked priming paradigm (Forster &

Davis, 1984). As Grainger (2008) indicated, “in the last two decades

masked priming has become a key tool for studying all aspects of

visual word recognition, using both behavioral measures of perfor-

mance and also more direct measures of brain activity” (p. 8). In this

technique, a forward-masked, lowercase prime is presented briefly

(30–66 ms) and is subsequently replaced by the uppercase target.

When used in the context of the lexical decision task—the most

popular laboratory word identification task—participants have to de-

cide whether the uppercase item is a word or a nonword. A manip-

ulation that is currently popular is one in which the relationship

between the letters in the target are altered by replacement or trans-

position to form the prime (e.g., Andrews, 1996; Castles et al., 2003;

Christianson, Johnson, & Rayner, 2005; Forster et al., 1987; Guerrera

& Forster, 2007; Perea & Carreiras, 2006a, 2006b; Perea & Lupker,

2003b; Schoonbaert & Grainger, 2004). Then, these various condi-

tions are used to test the word-recognition models.

It seems natural that the overlap model should apply to data

from these studies. There are two limitations, though. First, the

masked priming effects obtained are very small, of the order of

10–25 ms. This means that, in any experiment, all one really

knows is whether a mean reaction time (RT) for a condition is

significantly different from a control condition or not. Anything

finer grained is extremely difficult to detect. For example, Perea,

Duñabeitia, and Carreiras (2008) failed to find a significant dif-
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ference between the transposed-letter priming effect when the

nonadjacent internal transposition had one letter between the two

transposed letters and when the nonadjacent internal transposition

had two letters between the two transposed letters. This failure to

obtain a difference was probably due to lack of power at detecting

a very small effect with the masked priming paradigm. This is in

contrast to our identification paradigm, in which differences in

accuracy are large and graded and differences among conditions

are easily measurable. Second, one major problem with the

masked priming task is that currently there is no good model of the

decision process that accounts for accuracy and RT distributions

for correct and error word and nonword responses. Furthermore,

masked priming effects for words in lexical decision differ for

word and nonword primes (e.g., Carreiras & Perea, 2002), which

suggests that one may need to have a model of lexical decision. We

can imagine an application of the diffusion model (Ratcliff, 1978,

1981; Ratcliff & McKoon, in press; Ratcliff & Rouder, 1998;

Ratcliff, Van Zandt, & McKoon, 1999), as in Ratcliff, Gomez, and

McKoon (2004) and Gomez, Ratcliff, and Perea (2007), that might

be able to be applied, but this is beyond the scope of this article.

One major difference between the masked priming task and our

matching task is that in masked priming, there is no effect of the prime on

nonword responses in most of the masked priming experiments, whereas

in the identification paradigm, there are large effects on nonword identi-

fication—in fact, most of our experiments used nonword targets. We

attribute this to the fact that in an identification task, participants have to

explicitly process the whole letter string and decide which of two targets

it matches, but in priming, the data suggest that any test string that is

nonwordlike can be rejected without much processing of the individual

letters. There are other effects of nonword primes on word identification

in lexical decision. If the nonwords are wordlike, RT is slowed, and

accuracy is reduced for word targets (e.g., Ratcliff et al., 2004). Further-

more, it is important to note that masked priming effects may differ

depending on the nature of the experimental task; as indicated by Norris

Table B1

Masked Priming Effects and Overlap Values for Recently Published Articles

Davis & Bowers (2006) Experiments 2 & 3

Target Prime conditions

ANKLE AXKLE ANKXE AKXLE ANXKE

Priming effect (ms) 30 31 18 18
Overlap value 1.57 1.31 1.31 1.26 1.26

Guerrera & Forster (2007) Experiment 1

Target Prime conditions

12345678 13254768 21345687

Priming effect (ms) 45 30 23
Overlap value 2.35 2.05 1.90

Guerrera & Forster (2007) Experiment 2

Target Prime conditions

12345678 13254768 12436587 21436578

Priming effect (ms) 16 29 16
Overlap value 2.35 2.05a 2.05 1.80

Guerrera & Forster (2007) Experiment 3

Target Prime conditions

12345678 13254768 43218765 21436587

Priming effect (ms) 27 1 1
Overlap value 2.35 2.05 0.96 1.69a

Grainger, Granier, Farioli, Van Assche, & van Heuven (2006) Experiments 2, 3, & 5

Target Prime conditions

1234567 12345 34567 13457

Priming effect (ms) 37 26 23
Overlap value 2.10 1.57 1.31 1.57a

Note. All the priming effects are significant except the 43218765 and 21436587 conditions in Guerrera and Forster (2007). The overlap model standard
deviations in the letters were 0.7 for the first letter and 1.5 for the remaining letters.
a Conditions in which the overlap model would predict larger priming effects.
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and Kinoshita (2007), masked priming effects for nonwords can be easily

obtained with a same–different task but not with the lexical decision task

(see also Perea & Acha, 2008, for similar results). This suggests that

modeling masked priming effects in conjunction with nonword effects

will not be simple.

However, it is fair to ask how well the overlap model predicts the

differences in word target conditions for the various transposition

manipulations to see whether it could be a candidate to play a role in

word identification in this masked priming paradigm. To do this, we

selected eight experiments from three recent articles from the litera-

ture that have examined transpositions in masked priming (Davis &

Bowers, 2006; Grainger, Granier, Farioli, Van Assche, & van Heu-

ven, 2006; Guerrera & Forster, 2007). We generated overlap values

for the same conditions using a minimal version of the overlap model,

with standard deviations in the letters that were 0.7 for the first letter

and 1.5 for the remaining letters. The orthographic similarity (overlap)

between the prime and the targets was calculated using Equation 1

from the main text. These are displayed in Table B1. For this simple

version of the model with parameter values not generated by fits to

data, the overlap model predicts priming effects that are consistent

with the small priming effects obtained in the experiments, with only

two exceptions. There are two things to say about the exceptions:

First, the model was not fit, so idiosyncratic values of the standard

deviations might alter the predictions somewhat; second, the size of

the masked priming effects are small, and differences in the patterns

of results might be obtained upon replication.

Thus, the overlap model may work as a front end of a fully

implemented model of visual word recognition, and hence, it is not

restricted to the specific characteristics of the matching paradigm. One

example is the Bayesian reader model (Norris, 2006). As we indicate

in the main text, the Bayesian reader model can easily use the overlap

module as a front end of the model—instead of the position-specific

coding scheme of the original implementation of the model (see

Norris & Kinoshita, 2007).

Appendix C

Code in R for the Overlap Model

# This code will print out overlap value and response prob.
# Assuming that one of the target is the string “12345”

# Edit to modify the other alternative
# for replacements, use “6”

# Example 1: replacement of second letter
# foil�c(1,6,3,4,5)

# Example 2: transposition of letters 2 and 3
foil � c(1,3,2,4,5)

# Edit to change parameter values s1 to s5 and a
par�c(.404,1.094,1.179,1.659,1.743,3.941)

sd�par
al�sd[6]
mn�c(1,2,3,4,5)
bo�c(.5,mn�.5)
ov�matrix (0,5,5)
for(j in 1:5){
for(i in 1:5){
ov[i,j]�pnorm(bo[i�1],mn[j],sd[j])�pnorm(bo[i],mn[j],sd[j])

}
}
ov�rbind(ov,c(0,0,0,0,0))

x�0
y�0
m��c(1,2,3,4,5)
for(i in 1:5)x�x�sum(ov[foil[i],i])
for(i in 1:5)y�y�sum(ov[m[i],i])
p�xˆal/(xˆal�yˆal)

print(“overlap value”); print(x)
print(“response p.”); print(1�p)
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