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Tumor formation is the result of molecular al-

terations involving cellular regulators (Hanahan 

and Weinberg, 2011) as well as the ability of 

tumor cells to a�ect the tumor microenviron-

ment by smoldering in�ammation (de Visser 

et al., 2006; Mantovani et al., 2008) or even taking 

advantage of in�ammation to grow and metas-

tasize (Zitvogel et al., 2006; Grivennikov et al., 

2010). Indeed, targeted therapies aimed to in-

hibit molecular alterations in tumor cells even 

though inducing antitumor responses have  

improved overall survival only slightly, indicat-

ing that antitumor strategies comprehensive of 

drugs targeting molecular as well as microen-

vironment alterations might be more e�ective 
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Tumor-in�ltrating immune cells can be conditioned by molecules released within the  

microenvironment to thwart antitumor immune responses, thereby facilitating tumor 

growth. Among immune cells, neutrophils play an important protumorigenic role by favor-

ing neoangiogenesis and/or by suppressing antitumor immune responses. Tumor-derived 

oxysterols have recently been shown to favor tumor growth by inhibiting dendritic cell 

migration toward lymphoid organs. We report that tumor-derived oxysterols recruit pro-

tumor neutrophils in a liver X receptor (LXR)–independent, CXCR2-dependent manner, thus 

favoring tumor growth by promoting neoangiogenesis and immunosuppression. We demon-

strate that interfering with the oxysterol–CXCR2 axis delays tumor growth and prolongs 

the overall survival of tumor-bearing mice. These results identify an unanticipated pro-

tumor function of the oxysterol–CXCR2 axis and a possible target for cancer therapy.

© 2013 Raccosta et al. This article is distributed under the terms of an Attribution– 
Noncommercial–Share Alike–No Mirror Sites license for the �rst six months 
after the publication date (see http://www.rupress.org/terms). After six months 
it is available under a Creative Commons License (Attribution–Noncommercial– 
Share Alike 3.0 Unported license, as described at http://creativecommons.org/ 
licenses/by-nc-sa/3.0/).
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Figure 1. Analysis of tumors releasing LXR ligands and quanti�cation of hydroxycholesterols in cell supernatants by chemical ionization–MS 
and HPLC analysis. (A) Luciferase assay for LXR- activation by the indicated tumor CM. Each symbol corresponds to a single experiment, and the line 

represents the mean value (*, P < 0.05; **, P < 0.01; ***, P < 0.0001). RLA, relative luciferase activity. (B) Spectrum derived from 1 mM hydroxycholes-

terol mix solution (containing 22R, 22S, 25, 27, 19, 7, and 4-HC). The molecular mass for the mix of hydroxycholesterols is 402.67 kD. The collision 
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(Vanneman and Drano�, 2012). Tumor microenvironment is 

composed of various cell types, including tumor-associated 

macrophages endowed with phenotypes and functions of  

alternatively activated or M2 macrophages (i.e., expressing 

IL-10, TGF-, ARG1, and mannose receptor; Mantovani and 

Sica, 2010), which have been shown to promote tumor initia-

tion/formation through the induction of immune suppres-

sion, matrix remodeling, and angiogenesis (Murdoch et al., 

2008), and the heterogeneous CD11b+Gr1+ myeloid cells, 

also termed myeloid-derived suppressor cells, comprising im-

mature myeloid progenitors for neutrophils, monocytes, and 

DCs (Gabrilovich and Nagaraj, 2009). CD11b+Gr1+ myeloid 

cells are present in the tumor as well as in bone marrow, pe-

ripheral blood, and spleen of tumor-bearing mice (Bronte and 

Zanovello, 2005). In particular, the immature CD11b+Gr1+ 

bone marrow–derived cells, as well as the CD11bhighGr1high 

Ly6G+ neutrophils, have been recognized as playing an im-

portant protumorigenic role by promoting neoangiogenesis 

(Yang et al., 2004) through the release of MMP9 (Nozawa  

et al., 2006) and Bv8 (Shojaei et al., 2008), thus mediating re-

fractoriness to anti-VEGF therapy (Shojaei et al., 2007a). Neu-

trophils have also been shown to suppress antitumor immune 

responses (Fridlender et al., 2009; De Santo et al., 2010).

Several tumor-derived molecules induce immune sup-

pression by a�ecting tumor-in�ltrating immune cells (Vesely 

et al., 2011). Some of these molecules are intermediate or 

�nal products of the cellular metabolism, such as kynurenine, 

which, alone or together with the depletion of tryptophan, 

has been reported to promote T cell anergy (Mellor et al., 

2003). Similarly, it has been shown that the increased metab-

olism of l-arginine by myeloid cells can result in the impair-

ment of lymphocyte responses to tumor cells (Bronte and 

Zanovello, 2005). Other metabolic pathways have recently 

emerged as protumorigenic. Products of lipid and cholesterol 

metabolism have been demonstrated to damage the function 

of DC both in mouse and in human tumor models. As an  

example, lipid-loaded DCs are not able to e�ectively stimu-

late allogeneic T cells or to present tumor-associated anti-

gens as the result of a reduced antigen processing capability 

(Herber et al., 2010).

Liver X receptor (LXR) ligands, also named oxysterols, are 

involved in cholesterol homeostasis (Repa and Mangelsdorf, 

2000) and in modulating immune responses (Bensinger and 

Tontonoz, 2008). The oxysterol 7,25-HC, which is unable 

to activate LXRs, has recently been involved in B cell migra-

tion to follicles of lymphoid organ through the engagement 

of EBI2 receptor (Hannedouche et al., 2011; Liu et al., 2011). 

We have recently shown that LXR ligands/oxysterols are re-

leased by cancer cells and inhibit CCR7 expression on ma-

turing DCs, therefore dampening DC migration to draining 

lymph nodes and antitumor immune responses (Villablanca  

et al., 2010). Indeed, tumor cells engineered to express the oxy-

sterol inactivating enzyme sulfotransferase 2B1b (SULT2B1b; 

Fuda et al., 2007), fail to activate LXRs in vitro and are de-

layed or rejected when infused in immunocompetent mice 

(Villablanca et al., 2010). Whether tumor-derived LXR ligands/

oxysterols are endowed with other protumorigenic functions, 

thus favoring the formation of hostile microenvironments for 

immune cells, remains elusive.

Here, we show that tumor-derived oxysterols contribute 

to recruit neutrophils in a CXCR2-dependent manner within 

tumor microenvironment, thus favoring neoangiogenesis 

and/or immunosuppression and tumor growth. Importantly, 

we show that oxysterol inactivation, as well as CXCR2 in-

activation, controls tumor growth, thus identifying a new 

protumor role of oxysterols and a new therapeutic target for 

cancer patients.

RESULTS
Functional inactivation of tumor-derived LXR ligands/
oxysterols associates with lower levels of CD11bhighGr1high 
myeloid cells in�ltrating tumors
Several mouse tumors release LXR ligands, as evaluated by a 

luciferase-based assay measuring LXR activation (Fig. 1 A). 

However, the species of LXR ligands produced by these 

tumors, as well as their possible e�ects on tumor-in�ltrating 

immune cells other than DCs (Villablanca et al., 2010), are 

not known.

To identify the hydroxycholesterol species released by tumor 

cells, we performed solid-phase extraction of conditioned me-

dium (CM) from the T cell lymphoma RMA and NIH-3T3 

cells, the latter being unable to activate LXR (unpublished 

data), followed by mass spectrometry (MS) analysis. Cholesterol 

oxidation products share a common fragmentation pattern 

product ion pathway is constituted by the following fragment ions: m/z 385 [M-H2O], m/z 367 [M+H-2H2O], and m/z 369 [M+3H-2H2O]. Results are repre-

sentative of one out of three experiments. (C) Spectra derived from RMA hydroxycholesterols extract. The same molecular ions m/z 385, m/z 369, and m/z 

367 were detected as in B. Results are representative of one out of three experiments. (D) The relative abundance of the three main fragmentation ions 

(m/z 385, m/z 369, and m/z 367) is expressed as arbitrary intensity units (A.U.) with respect to 1 mM mix solution of hydroxycholesterols. (E) The concen-

tration of hydroxycholesterols with respect to ml of media (µmol/ml) is reported. Results (D and E) are representative of three different experiments 

(mean ± SEM). *, P < 0.05 versus medium; **, P < 0.01 versus NIH-3T3–CM. (F and G) HPLC chromatograms of seven single hydroxycholesterol standards 

(F) and of hydroxycholesterols from RMA-CM (G). Two main hydroxysterols are identi�ed on the basis of the retention time: the 22-HC and 27-HC in a 

ratio of 4:1. (H) qRT-PCR for Cyp11a1, Cyp27a1, and Ch25h transcripts expression in RMA relative to NIH-3T3. Results are representative of two experi-

ments (mean ± SEM). *, P < 0.05; ***, P < 0.0001. (I and J) CM from human melanomas (I), and lung and kidney (J) tumors after a few in vitro passages  

(3–4 passages) were collected and tested for the presence of LXR ligands by LXR luciferase-based reporter assay. Each symbol corresponds to a single 

tumor CM tested and the line represents the mean value. **, P < 0.01; ***, P < 0.0001. (K) qRT-PCR analysis for Abcg1 and Srebp-1c mRNA expression in 

myeloid cells from bone marrow of wild-type (WT), RMA-Mock–, and RMA-SULT2B1b–bearing mice (n = 3; mean ± SEM). *, P < 0.05. Results are repre-

sentative of three independent experiments.
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in agreement with the presence of hydroxycholesterols in the 

fetal calf serum used to supplement the culture media (Pie 

and Seillan, 1992). Nevertheless, we observed a higher con-

tent of hydroxycholesterols in RMA-CM than in culture 

medium and in NIH-3T3-CM (10- and 5.5-fold, respectively). 

In particular, the concentrations of hydroxycholesterols, re-

ported as relative abundance of the three molecular ions (m/z 

385, 369, and 367), using 1 mM hydroxycholesterol mix-

ture as a standard (Fig. 1 D), were 0.195 ± 0.012 µmol/ml, 

0.357 ± 0.027 µmol/ml, and 1.973 ± 0.34 µmol/ml for cul-

ture medium, NIH-3T3, and RMA, respectively (Fig. 1 E). 

Two main hydroxycholesterols could be identi�ed on the 

basis of the retention time determined by HPLC analysis using a 

series of standards (Fig. 1 F): 22-HC (22-hydroxycholesterol) 

and 27-HC in a ratio of 4:1 (Fig. 1 G). Accordingly, we found 

that RMA cells expressed transcripts for Cyp11a, Cyp27a1, 

and Ch25h enzymes, which are involved in the synthesis of 

22R-HC, 27-HC, and 25-HC, respectively (Björkhem, 2002; 

Murphy and Johnson, 2008; Mast et al., 2011; Fig. 1 H). In 

similar experiments, we detected 24S-HC in the Lewis lung 

carcinoma (LLC)–CM, and the expression of Cyp46a1 tran-

script by LLC cells (unpublished data). Moreover, we detected 

LXR ligands/oxysterols in tumor-CM from some freshly 

isolated human tumor cells (Fig. 1, I and J). In particular, we 

detected the oxysterols 22-HC and 24S-HC in CM from 

005-mel and MR300 tumor cells (unpublished data). Nota-

bly, we detected in vivo a signature of LXR activation (Abcg1 

and Srebp-1c up-regulation) in cells of the myeloid compart-

ment puri�ed from the bone marrow of RMA-bearing mice, 

but not from mice bearing RMA-SULT2B1b tumors, which 

are unable to produce active LXR ligands/oxysterols (Fig. 1 K). 

These experiments indicate that tumors may release amounts 

of oxysterols su�cient to reach and activate LXR-sensitive 

cells located in organs far away from the tumor.

To evaluate whether these oxysterols were a�ecting other 

immune cells besides DCs in the tumor microenvironment, 

we analyzed by FACS tumor-in�ltrating immune cells from 

14-d established RMA mock-transduced (RMA-Mock) and 

RMA-SULT2B1b and found a higher percentage and num-

ber of CD11bhighGr1high cells in�ltrating RMA-Mock tumors 

(Fig. 2, A–C and E). We found a similar di�erence in terms of 

CD11bhighGr1high cells when comparing mock-transduced 

LLC (LLC-Mock) with LLC-SULT2B1b (Fig. 2, D and F), and 

the LXR ligand-releasing AB1-Mock with AB1-SULT2B1b 

mesotheliomas grown orthotopically in the peritoneal cavity 

(Fig. 2 G and not depicted).

CD11bhighGr1high cells are continuously recruited to tumor sites
To understand whether the accumulation of these cells was 

a result of local proliferation or of their continuous recruit-

ment from circulation, we performed parabiosis experiments, 

joining CD45.1+ and CD45.2+ mice by surgery to establish  

common blood circulation (Wright et al., 2001; Fig. 3 A).  

7 d after RMA challenge in CD45.2+ mice, we separated the 

mice and analyzed tumor in�ltrating cell chimerism by FACS 

(Fig. 3 A). As early as 2 d after separation, we observed a nearly 

during MS chemical ionization, as reported at http://www 

.lipidmaps.org. The analysis of hydroxycholesterol extracts from 

control medium or from NIH-3T3 and RMA-CM showed 

the same qualitative fragmentation pattern (Fig. 1, B and C), 

Figure 2. Tumors producing LXR ligands accumulate higher per-
centages of CD11bhighGr1high myeloid cells at the tumor site.  
(A and B) Analysis of CD11bhighGr1high cells in�ltrating RMA-Mock and 

RMA-SULT2B1b. (A) Flow cytometry representative of one out of 11–12 

experiments. (B) Immuno�uorescence of RMA-Mock tumor stained with 

anti-CD11b (green) and anti-Gr1 (red) mAbs and DAPI (blue). One  

experiment out of four is shown. Bars, 25 µm. (C and D) Percentage of 

CD11bhighGr1high cells in�ltrating RMA-Mock (n = 12; mean ± SEM) and 

RMA-SULT2B1b (n = 11; mean ± SEM) tumors (C), and LLC-Mock and 

LLC-SULT2B1b tumors (n = 13; mean ± SEM; D). *, P < 0.05; **, P = 0.001.  

(E and F) Number of CD11bhighGr1high cells/mg of RMA-Mock (n = 12; 

mean ± SEM) or RMA-SULT2B1b (n = 11) tumors (E), and LLC-Mock and 

LLC-SULT2B1b (n = 3; mean ± SEM) tumors (F). *, P < 0.05. (G) Percentage 

of CD11bhighGr1high cells in�ltrating AB1-Mock and AB1-SULT2B1b tumors 

(n = 14, Intratumor; n = 8, Ascites; mean ± SEM). *, P < 0.05. Results are 

representative of one (F), two (G), or three (C–E) experiments.
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Migration of CD11bhighGr1high bona �de neutrophils  
toward oxysterols is mediated by G protein–coupled  
receptors (GPCRs) and does not require LXR signaling
To characterize the population of myeloid cells migrating to 

22R-HC, we took advantage of the in vitro migration assay. 

Thus, we compared phenotype and morphology of BM-derived 

migrating (CD11bhighGr1high) and nonmigrating (CD11b+Gr1+) 

cells, collected from the lower and upper chamber of migra-

tion transwells, respectively (Fig. S1 A). Morphological and 

cytochemical analyses of the migrating cells showed the pres-

ence of nuclei similar to immature granulocytes and mature 

neutrophils (Fridlender et al., 2009; unpublished data). FACS 

analysis showed that these cells express Ly6G+ and Ly6b+ 

markers typical of immature/mature neutrophils (Fig. S1 B), 

whereas nonmigrating CD11b+Gr1+ cells were phenotypi-

cally di�erent (Fig. S1 C). Additionally, CD11bhighGr1high cells 

expressed higher levels of CCR1, CXCR4, and CXCR2 

chemokine receptors than CD11b+Gr1+ cells, as expected for 

neutrophils (Fig. S1, B and C). In agreement, neutrophils pu-

ri�ed from bone marrow by standard methods (Corada et al., 

2005) migrated to synthetic and tumor-derived LXR ligands 

in vitro and in vivo (unpublished data).

As the synthetic LXR ligand T1317 was not capable of 

triggering cell migration in vitro (Fig. 4 C), we asked whether 

LXR signaling was, indeed, involved in this migration.  

CD11bhighGr1highLy6G+ cells from Lxr/, /, and / 

mice (Alberti et al., 2001) migrated to 22R-HC as well as wild-

type cells, indicating that LXR signaling is not required for their 

migration (Fig. 5 A). The prototypic receptors involved in leu-

kocyte migration belong to the GPCR superfamily (Rossi and 

Zlotnik, 2000) and can be inhibited by pertussis toxin (PTX). 

PTX inhibited the migration of CD11bhighGr1highLy6G+ cells 

to 22R-HC, thus demonstrating that a GPCR is responsible 

for the migration of these cells toward LXR ligands (Fig. 5 B).

Migration of neutrophils toward 22R-HC in vitro  
and in vivo requires CXCR2 engagement and signaling
The recruitment of CD11bhighGr1highLy6G+ cells (hereafter 

referred to as BM-derived neutrophils) into tumors could be 

complete disappearance of donor CD45.1+CD11bhighGr1high 

cells (Fig. 3, A and B), thus indicating that these cells are 

continuously recruited to the tumor site. These results sug-

gest that LXR ligands may behave as chemoattractants for 

CD11bhighGr1high myeloid cells.

Tumor-derived and naturally occurring LXR ligands  
are chemotactic factors for CD11bhighGr1high cells  
in vitro and in vivo
We speculate that CD11bhighGr1high myeloid cells have a BM 

origin. Hence, we evaluated whether LXR ligands indeed  

attract BM cells by performing in vitro migration assays.  

Total BM cells from naive mice migrated to the LXR ligand 

22R-HC but not to the inactive isomer 22S-HC (Fig. 4 A). 

To identify the migrating subset of BM cells, we puri�ed and 

tested the CD11b+ and CD11b populations. Migratory cells 

were in the CD11b+ cell fraction (Fig. 4 B and not depicted). 

We observed by FACS analysis that nonmigrating cells co-

expressed CD11b and Gr1 markers at intermediate levels 

(CD11b+Gr1+ cells), whereas migrating cells were CD11b-
highGr1high (Fig. S1 A), resembling the cell population detected 

in vivo within the tumors (Fig. 2 A). Among the other oxy-

sterols tested, 24S-HC, 27-HC, 19-HC, and 25-HC also in-

duced cell migration (Fig. 4 C). On the contrary, cholesterol, 

some sterol-derived nuclear receptor ligands, and the syn-

thetic LXR ligand T0901317 (T1317) were unable to induce 

cell migration (Fig. 4, C and D).

To prove that tumor-derived LXR ligands were involved 

in the migration of CD11bhighGr1high cells in vivo, we in-

jected total BM cells previously labeled with the �uorescent 

dye CFSE (CFSE+CD45.2+) in NOD-SCID mice bearing 

RMA-Mock or RMA-SULT2B1b. 18 h later, we analyzed tu-

mors for the presence of injected cells (CFSE+) and found a 

higher percentage and number of exogenous (CFSE+CD45.2+) 

CD11bhighGr1high cells in�ltrating RMA-Mock, as com-

pared with RMA-SULT2B1b tumors (Fig. 4, F and G, bot-

tom). As expected, the endogenous (CD45.1+) CD11bhigh 

Gr1high cells were also more abundant in RMA-Mock (Fig. 4, E 

and G, top).

Figure 3. Recruitment of CD11bhighGr1high myeloid cells within LXR ligand-releasing tumors. (A and B) Parabiosis experiments. CD11bhighGr1high 

gated cells were analyzed for CD45.1 marker at day 0, 2, 4, and 7 after mice separation. A representative FACS analysis of three experiments is shown (A). 

(B) Quanti�cation of the FACS analysis as in A performed on three mice per group (n = 3 mice per group; mean ± SEM).

http://www.jem.org/cgi/content/full/jem.20130440/DC1
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neutrophils with 22R-HC induced the heterologous desensiti-

zation of the cells to the subsequent response to CXCL5 but 

did not a�ect the migration to CXCL12 (Fig. 5 C). These 

results suggest that 22R-HC and CXCL5 may share the same 

chemotactic receptor, namely CXCR2. Accordingly, heterolo-

gous desensitization of BM-derived neutrophils with CXCL5 

mediated by the CXCL12–CXCR4 and CXCL5–CXCR2 

axes (Yang et al., 2008). We therefore performed a migration 

assay toward 22R-HC, CXCL5, CXCL12, and CCL3, a ligand 

of CCR1. BM-derived neutrophils migrated to 22R-HC, 

CXCL5, and SDF-1, whereas migration to MIP-1 was neg-

ligible (Fig. 5 C). In addition, the pretreatment of BM-derived 

Figure 4. In vitro and in vivo migration of BM-derived CD11bhighGr1high myeloid cells toward natural and tumor-released LXR ligands.  
(A and B) In vitro migration of total BM cells (A) and CD11b+ puri�ed cells (B) toward 15 µM of the LXR ligands 22R-HC and 22S-HC (mean ± SEM).  

Results are representative of four experiments. **, P < 0.01; ***, P < 0.0001. (C and D) Migration of puri�ed CD11b+Gr1+ cells to LXR ligands and to other 

sterol-derived compounds. (C) 22R-HC, 24S-HC, 27-HC, 19-HC, 25-HC, 7-HC, 4-HC, 7-OH, 24,25 EpoxyChol, T1317, and 22S-HC ligands were tested 

at 15 µM. Because of toxicity, 7-HC and 24,25-EC were tested at 5 µM, whereas 19-HC was tested at 1 µM (mean ± SEM). Results are representative of 

two experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.0001. (D) CDCA, chenodeoxycholic acid; GlycoCDCA, glycine chenodeoxycholic acid. CDCA and gly-

coCDCA are FXR ligands, and pregnenolone is an SXR ligand (mean ± SEM). Results are representative of three experiments. ***, P < 0.0001. (E and F) FACS 

analysis of endogenous CD45.1+CD11bhighGr1high (E) and exogenous CFSE+CD11bhighGr1high (F) cells in�ltrating RMA-Mock and RMA-SULT2B1b tumors 

after i.v. infusion of CFSE+ BM cells. One of out of �ve experiments is shown. Numbers in the plots represent mean ± SEM of the percentages of endog-

enous and exogenous cells (n = 5). (G) Number of endogenous CD45.1+CD11bhighGr1high and exogenous CFSE+CD11bhighGr1high cells in�ltrating RMA-Mock 

and RMA-SULT2B1b tumors (n = 5; mean ± SEM). Results are representative of �ve mice per group. ***, P = 0.0003.
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involved in the migration of BM-derived neutrophils toward 

22R-HC (Fig. 5 F).

To investigate the role of the oxysterol–CXCR2 axis in 

neutrophil recruitment in vivo, we performed matrigel plug 

experiments. To distinguish neutrophil migration induced by 

22R-HC from that induced by other CXCR2-binding che-

mokines that are locally released during the in�ammation in-

duced by matrigel inoculation, we injected mice with matrigel 

or their treatment with the CXCR2 antagonist SB225002 

(White et al., 1998) inhibited their migration to CXCL5  

and to 22R-HC (Fig. 5, D and E). To �nally prove the role  

of the CXCR2 receptor, we performed migration ex-

periments using BM-derived neutrophils from Cxcr2/ 

mice (Cacalano et al., 1994). These cells did not migrate  

to either CXCL5 or 22R-HC, whereas they migrated to 

SDF-1, demonstrating that CXCR2 is indeed the receptor 

Figure 5. Migration of CD11bhighGr1high neutrophils toward LXR ligands is independent of LXR and mediated by the GPCR CXCR2. (A) In vitro 

migration of CD11b+Gr1+ cells from wild-type (WT) and Lxrs-de�cient mice to 15 µM 22R-HC or 22S-HC (mean ± SEM). Results are representative of two 

experiments. *, P < 0.05; **, P < 0.01. (B) Migration of PTX-treated CD11b+Gr1+ cells to 15 µM 22R-HC or 22HS-HC (mean ± SEM). Results are representa-

tive of two experiments. **, P < 0.01. (C) Migration of pretreated CD11b+Gr1+ cells to 15 µM 22R-HC, or 100 ng CXCL5, CXCL12, or CCL3 (mean ± SEM). 

Results are representative of four experiments. **, P < 0.01; ***, P < 0.0005. (D and E) Migration of CXCL5 (E) or SB225002 (F) pretreated CD11b+Gr1+ cells 

to 15 µM 22R-HC or 100 ng CXCL5 (mean ± SEM). Results are representative of two experiments. *, P < 0.05; **, P < 0.01. (F) Migration of WT, Cxcr2+/, 

and Cxcr2/ CD11b+Gr1+ cells to 15 µM 22R-HC, or 100 ng CXCL5 or CXCL12 (mean ± SEM). Results are representative of four experiments. **, P < 0.01; 

***, P < 0.0001.
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Oxysterol-migrating neutrophils favor tumor growth  
by promoting neoangiogenesis or immunosuppression
Because the inactivation of oxysterols by SULT2B1b-ex-

pressing tumors induces tumor growth delay or rejection 

(Villablanca et al., 2010), we hypothesized that neutrophils 

recruited by tumor-derived oxysterols could exert protu-

mor activities (i.e., immunosuppression and/or neoangio-

genesis), as already reported by others (Yang et al., 2004; 

Nozawa et al., 2006; Fridlender et al., 2009). Therefore, we 

investigated the protumor functions of 22R-HC–migrating 

plugs containing CXCL5, 22R-HC, or 22S-HC alone or in the 

presence of anti-CXCL1, 3, 5, and 7 mAbs (Fig. 6 A). 5 h later,  

plugs were analyzed for the presence of CD11b+Ly6G+ neu-

trophils (Fig. 6 A). CXCL5 and 22R-HC induced a high 

recruitment of neutrophils, whereas 22S-HC behaved as matri-

gel alone (Fig. 6 A). Anti-CXCL mAbs almost completely in-

hibited migration induced by CXCL5 (88.6% inhibition) and 

22S-HC (80% inhibition), whereas 22R-HC–induced migra-

tion was only partly inhibited (48.3% inhibition) (Fig. 6 A), 

indicating that 22R-HC is indeed able to recruit neutrophils 

in vivo. Accordingly, the percentage of neutrophil in�ltration 

in RMA-Mock and RMA-SULT2B1b (Fig. 2 C) correlated 

with the availability of active oxysterols, but not with the con-

tent of CXCL1 and CXCL5 chemokines detected within the 

tumor, as shown by quantitative analyses reporting higher lev-

els of CXCL1 and CXCL5 chemokines in RMA-SULT2B1b 

than in RMA-Mock (Fig. 6, B and C). 22R-HC–induced 

migration was mediated by CXCR2, as it was inhibited when 

mice bearing 22R-HC–embedded plugs were treated with 

the CXCR2 antagonist SB225002 (Fig. 6 D). Finally, in vivo 

neutrophil migration was also independent of LXR signaling, 

as demonstrated by the migration of Lxr/ neutrophils 

toward 22R-HC–embedded matrigel plugs (Fig. 6 E).

The engagement and activation of CXCR2 by 22R-HC 

was demonstrated by three experimental approaches. First, 

22R-HC was able to induce CXCR2 down-regulation, as 

evaluated by FACS analysis (Fig. 7 A). Second, in a concentra-

tion-dependent manner, 22R-HC stimulated the binding of 
35S-GTPS to membranes from CXCR2-expressing L1.2 

cells, but not from Mock-L1.2 cells, with an EC50 value of 

1.32 ± 0.25 µM (Fig. 7, B and C). On the contrary, 22S-HC 

did not activate any 35S-GTPS binding, suggesting that this 

oxysterol does not interact with CXCR2 (Fig. 7, B and C).  

As expected, the natural CXCR2 ligand IL-8 stimulated  
35S-GTPS binding, with an EC50 of 2.50 ± 0.17 nM (Fig. 7 B). 

Furthermore, we observed a dose-dependent inhibition of 
35S-GTPS binding when 22R-HC was displaced by increas-

ing concentrations of the CXCR2 antagonist SB225002 

(Fig. 7 D). Third, 22R-HC inhibited the cAMP formation 

elicited by 1 µM forskolin in a dose-dependent manner, with 

an EC50 value of 1.32 ± 0.25 µM in CXCR2-expressing 

CHOK1 but not in Mock-CHOK1 cells (Fig. 7, D and E). 

Yet in this system, the CXCR2 antagonist SB225002 coun-

teracted the inhibition of cAMP formation elicited by 10 µM 

22R-HC in a dose-dependent manner (unpublished data). 

Notably, the EC50 values of 22R-HC–CXCR2 interactions 

that we detected (1.32 µM) are in the same range as those re-

ported for 22R-HC–LXR activation (1.5 µM; Janowski et al., 

1996), indicating that 22R-HC oxysterol is able to activate 

both LXRs and CXCR2 with a similar potency.

Additionally, 22R-HC and 25-HC displaced 125I-IL-8 

from CXCR2-expressing cells in a dose-dependent manner 

(Fig. 7 G), whereas 22S-HC and 4-HC (two oxysterols un-

able to promote cell migration, Fig. 4 C) did not (unpublished 

data), thus suggesting that 22R-HC, 25-HC and IL-8 could 

bind the same domain of CXCR2.

Figure 6. In vivo migration of neutrophils toward 22R-HC Oxy-
sterol. (A) Total number of CD11bhighLy6G+ neutrophils migrated toward 

matrigel plugs embedded with 500 ng CXCL5, or 500 µM 22R-HC or 22S-HC 

in the absence (black bars) or presence (white bars) of mAbs blocking 

CXCL1, 3, 5, and 7 chemokines. Neutrophil migration toward matrigel 

alone is represented in red. Results are representative of three to six mice 

per group (mean ± SEM). **, P < 0.01; ***, P < 0.0001. (B and C) Quanti�-

cation of tumor environment–produced CXCL1 and CXCL5 chemokines. 

Cell suspensions from 7-d established RMA-SULT2B1b tumors release 

higher amounts of CXCL5 (B) and CXCL1 (C) chemokines than cell suspen-

sions from 7-d established RMA-Mock (mean ± SEM). Data are represen-

tative of three experiments. *, P < 0.05; **, P < 0.01. (D) Total number of 

CD11bhighLy6G+ neutrophils migrated toward matrigel plugs embedded 

with 500 µM of 22R-HC after the treatment of mice with the CXCR2  

antagonist SB225002 (white bars) or vehicle (black bars; n = 6 mice; mean 

± SEM). Results are representative of two experiments. *, P < 0.05.  

(E) Total number of Lxr/ CD11bhighLy6G+ neutrophils in�ltrating 

matrigel plugs embedded with 500 µM 22R-HC or 22S-HC. Results are 

representative of three mice per group (mean ± SEM). **, P = 0.0015.
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Figure 7. The Oxysterol 22R-HC binds and activates CXCR2. (A) Flow cytometric analysis of CXCR2 expression by CD11bhighGr1high cells untreated 

(UT) or incubated with CXCL12, CXCL5, 22R-HC, 22S-HC, or SB225002 (mean ± SEM). Results are representative of three experiments. **, P < 0.01;  

***, P < 0.0005. (B and C) Dose-dependent stimulation of 35S-GTPS binding on L1.2-CXCR2 (B) or L1.2-mock (C) cellular membranes by oxysterols and  

IL-8. All data are expressed as percentage of basal 35S-GTPS binding (set to 100%; mean ± SEM). Results are representative of three experiments. *, P < 0.05;  

**, P < 0.01 versus basal value. (D) SB225002 inhibits 35S-GTPS binding stimulated by 10 µM 22R-HC (IC50 of 22.41 ± 4.83 nM) and by 10 nM IL-8 used 

as control (IC50 of 16.64 ± 3.64 nM). All data are expressed as percentage of basal 35S-GTPS binding (set to 100%; mean ± SEM). Results are representa-

tive of three experiments. **, P < 0.01; ***, P < 0.001 versus basal value. (E and F) Dose-dependent inhibition of forskolin-induced cAMP accumulation in 

CXCR2-expressing cells (E) or mock cells (F) by oxysterols and IL-8. Results are expressed as percentage of FK-stimulated cAMP levels, set to 100%  

(mean ± SEM). Results are representative of three experiments. **, P < 0.01; ***, P < 0.001 versus basal value. (G) Percentage of 125I-IL-8 bound to  

L1.2-CXCR2 cells in the presence of 100, 50, 10, or 1 µM 22R-HC or 22S-HC (mean ± SEM). Results are representative of three experiments.
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neutrophils in vitro and in vivo in RMA, AB1, and LLC 

tumor models.

In vitro, BM-derived 22R-HC–migrating neutrophils 

(CD11bhighGr1high) were unable to suppress both the priming 

(Fig. 8 A) and the restimulation (Fig. 8 B) of OVA-speci�c  

OT-I T cells. However, they released a high amount of total 

MMP-9 (Nozawa et al., 2006; Fig. 8 C), expressed high mRNA 

levels of the proangiogenic factor Bv8 (Shojaei et al., 2008;  

Fig. 8 D), and released Bv8 when exposed for 18 h to tumor 

CM (Fig. 8 E).

In vivo, we tested whether RMA-in�ltrating neutrophils 

were endowed with immunosuppressive functions, as neu-

trophils may acquire an immunosuppressive ability within 

the tumor microenvironment (Fridlender et al., 2009; De 

Santo et al., 2010). However, we failed to detect any sup-

pression of OT-I T cell activation (Fig. 8 F). In agreement  

with the reported in vitro proangiogenic functions, we ob-

served an increased number of abnormal CD31+ vessels  

by immunohistochemistry (Fig. 8 G) and a higher percent-

age of CD45CD31+ cells in 6-d established matrigel plugs 

Figure 8. Oxysterol-migrating neutrophils enhance RMA tumor growth by promoting neoangiogenesis. (A and B) Proliferation of OT-I  

splenocytes naive (A) or memory (B) labeled with the cytosolic dye CFSE and pulsed with the ovalbumin peptide SIINFEKL in the presence of 50%  

CD11bhighGr1high (22R-HC migrating) or CD11b+Gr1+ (22R-HC nonmigrating) cells (mean ± SEM). Results are representative of two experiments.  

(C) 22R-HC migrating neutrophils release higher amounts of MMP9 than nonmigrating cells and splenocytes (mean ± SEM). Results are representative of 

two experiments. ****, P < 0.0001. (D) qRT-PCR analysis for Bv8 mRNA expression in CD11b+, and 22R-HC migrating (CD11bhighGr1high) and nonmigrating 

(CD11b+Gr1+) cells (mean ± SEM). Results are representative of three experiments. **, P < 0.01. (E) Release of Bv8 protein by CD11b+, and 22R-HC migrat-

ing (CD11bhighGr1high) and nonmigrating (CD11b+Gr1+) cells and by 22R-HC migrating cells incubated with medium or RMA-CM. RMA-CM alone was also 

tested (mean ± SEM). Results are representative of three experiments. ***, P < 0.0001. (F) Proliferation of OT-I naive splenocytes labeled with the cytosolic 

dye CFSE and pulsed with the SIINFEKL peptide in the presence of 50% (1:2) or 25% (1:4) of CD11bhighLy6G+ neutrophils isolated from RMA tumors  

(mean ± SEM). Results are representative of two experiments. (G) Immunohistochemistry showing CD31+ endothelial cells in RMA alone (left) or coin-

jected with CD11bhighGr1high neutrophils (right). Arrows indicate enlarged and abnormally shaped vessels. One experiment out of four is shown. Bars,  

100 µm. (H) Percentage of CD45CD31+ cells (presented as in A). Individual mouse data are shown (mean, horizontal line). *, P < 0.05; **, P < 0.01.  

(I) Box plots representing weights of RMA tumors alone (n = 13) or coinjected with 22R-HC migrating (CD11bhighGr1high; n = 16) or nonmigrating 

(CD11b+Gr1+; n = 19) cells. Results are representative of three experiments. *, P < 0.05; **, P < 0.01.
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containing RMA (Fig. 8 H) or B16F1 (not depicted) ad-

mixed with 22R-HC–migrating CD11bhighGr1high neutro-

phils. These results paralleled the increased tumor weight we 

observed when RMA tumors were admixed with 22R-HC–

migrating CD11bhighGr1high neutrophils (Fig. 8 I). In contrast, 

we observed tumor growth delay, decrease of neutrophil  

but not of CD11b+Gr1+ cell in�ltration, and reduction of 

CD45CD31+ endothelial cells when we treated RMA-

bearing mice intratumor with an anti-Gr1 mAb (Fig. 9, A–C;  

and not depicted).

Figure 9. Neutrophil depletion and CXCR2 inactivation control tumor growth by reducing angiogenesis in RMA tumor model. (A) RMA tumor 

growth in mice administered with 30 µg anti-Gr1 or control antibody (n = 15 mice per group). Results are representative of two experiments. ***, P = 

0.0001. (B) Percentage and number of RMA-in�ltrating neutrophils after intratumor administration of anti-Gr1 or control antibody (n = 5 mice per 

group; mean ± SEM). *, P = 0.038; **, P = 0.0033. (C) Percentage of CD45CD31+ cells in RMA injected with anti-Gr1 or control antibody (n = 7 mice per 

group). Individual mouse data are shown (mean, horizontal line). Results are representative of two experiments. **, P = 0.0031. (D) Treatment of RMA-

Mock–bearing mice with vehicle or 0.8 mM SB225002 (n = 7–8; mean ± SEM). Results are representative of one out of two experiments. **, P < 0.001;  

***, P = 0.0009. (E) Growth of RMA in WT and Cxcr2/ chimera mice treated or not with 0.8 mM SB225002 (n = 5–6; mean ± SEM). Results are represen-

tative of one out of two experiments. *, P < 0.05; **, P = 0.0001. (F) Percentage of CD11b+Ly6G+ neutrophils in�ltrating RMA-Mock injected in WT (n = 5; 

mean ± SEM) or in Cxcr2/ (n = 6; mean ± SEM) chimera mice. **, P = 0.0010. (G) Percentage of CD45CD31+ cells in RMA-Mock injected in WT or 

Cxcr2/ chimera mice (n = 5 mice per group). Individual mouse data are shown (mean, horizontal line). *, P = 0.01.
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To investigate the role of CXCR2 receptor activation  

in vivo and to mimic a possible pharmacologic antitumor 

therapy, we treated RMA-bearing mice with the CXCR2 

antagonist SB225002 and found a signi�cant delay of RMA 

growth (Fig. 9 D). However, as in the tumor microenviron-

ment, CXCR2 is expressed by neutrophils and at lower levels 

(unpublished data) by some mature endothelial cells (Strieter  

et al., 2006), and we performed tumor growth experiments in 

wild-type and in Cxcr2/ bone marrow chimera to distinguish 

the role of the two cell populations. SB225002 signi�cantly 

delayed tumor growth in wild-type but not in Cxcr2/ chi-

mera mice (Fig. 9 E). Moreover, in these tumors we detected 

a reduced percentage of neutrophils and CD45CD31+ en-

dothelial cells (Fig. 9, F and G), thus demonstrating that in the 

RMA tumor model, tumor-released oxysterols favor tumor 

growth by recruiting proangiogenic neutrophils. Whether 

oxysterols may also have an e�ect on BM-derived endothelial 

progenitor cells expressing CXCR2 deserves a deeper inves-

tigation in suitable tumor models (Shaked et al., 2008).

As reported above, we also investigated the possible protu-

mor role of oxysterol-recruited neutrophils in AB1 and LLC 

tumor models. We observed a reduced number of perito-

neal tumor nodules associated with a reduction of neutro-

phils and CD45CD31+ endothelial cells when we treated 

AB1-bearing mice with the CXCR2 antagonist SB225002 

(Fig. 10, A–C). Similar results were obtained by inactivating 

oxysterols with SULT2B1b. Indeed, we observed a lower 

number of peritoneal tumor nodules and prolonged survival 

of mice bearing AB1-SULT2B1b as compared with mice 

bearing AB1-Mock tumors (not depicted and Fig. 10 D). The 

prolonged survival was associated with a lower percentage of 

in�ltrating neutrophils (Fig. 2 G) and CD45CD31+ endo-

thelial cells (Fig. 10 E).

In the LLC tumor model, we also observed a signi�cant 

growth delay when we treated tumor-bearing mice with 

SB225002 (Fig. 10 F) and when LLC was grown in Cxcr2/ 

bone marrow chimera mice (Fig. 10 G). In this experimental 

setting, tumor growth delay paralleled the reduction of neu-

trophil in�ltration (Fig. 10 H). However, we failed to detect 

any di�erence in the percentage of CD45CD31+ cells be-

tween LLC tumors from wild-type and Cxcr2/ chimera 

mice (Fig. 10 I). Similar results were obtained when BM- 

derived neutrophils were coinjected in matrigel admixed 

with LLC tumor cells (Fig. 10 J). These results suggest that 

mechanisms di�erent from those acting in the RMA and AB1 

tumors are responsible for tumor promotion by neutrophils 

in LLC tumor, such as immune suppression. Indeed, neutro-

phils puri�ed from LLC tumors were able to suppress OT-I 

T cell activation (Fig. 10 K), thus indicating that in this 

tumor model, neutrophils mainly exert their protumori-

genic activity by the immune suppression of antitumor im-

mune responses.

Altogether, these results indicate that some tumor-derived 

oxysterols recruit neutrophils in a CXCR2-dependent man-

ner, which in turn exploit (i.e., neoangiogenesis) or acquire 

(i.e., immune suppression) protumor activities, thus favoring 

tumorigenesis. The inactivation of the oxysterol–CXCR2–

neutrophil axis is able to e�ectively counteract tumor growth.

DISCUSSION
In recent years, bone marrow–derived immature and mature 

myeloid cells have been extensively investigated, as they are 

endowed with a high capability to exert protumor functions 

(Gabrilovich et al., 2012). Indeed, these cells can suppress  

antigen-speci�c immune responses (immature myeloid cells 

or myeloid-derived suppressor cells), exert a proangiogenic 

activity (immature myeloid cells or neutrophils; Murdoch  

et al., 2008; Motz and Coukos, 2011), or induce chemoresis-

tance and invasion or metastasis (immature myeloid cells; Yang 

et al., 2008; Acharyya et al., 2012). These cells are recruited to 

tumor microenvironment mainly by chemokines constitu-

tively released by tumor and stromal cells (Mantovani et al., 

2010; Qian et al., 2011; Acharyya et al., 2012) or produced 

after some aggressive treatments (Kerbel, 2008). Our study 

highlights an unanticipated role of tumor-derived oxysterols/

LXR ligands, which contribute to the recruitment of protu-

mor neutrophils in a CXCR2-dependent manner, ultimately 

favoring tumor growth.

The migration of neutrophils to the oxysterol 22R-HC 

did not require LXR signaling because it occurred also with 

neutrophils from Lxr/, /, and / mice but re-

quired the functional interaction with the GPCR CXCR2, 

as demonstrated by the 22R-HC–mediated activation of  
35S-GTPS binding and by the inhibition of cAMP forma-

tion elicited by forskolin stimulation. The interaction between 

oxysterols and GPCRs has recently been described to occur 

for the oxysterol 7,25-HC, which speci�cally binds EBI2 

but not LXRs (Hannedouche et al., 2011). The CXCR2- 

activating oxysterols identi�ed by our study have been pri-

marily reported to bind LXRs (Janowski et al., 1996). 

However, the EC50 values of CXCR2/22R–HC interaction 

we measured (1.32 µM) turned out to be very similar to those  

reported by Janowski et al. (1996) for LXR/22R–HC inter-

action (1.5 µM). In this context, our results are in agreement 

with a recent in vitro study showing that the oxysterol 20S-HC 

activates the 7-transmembrane oncoprotein smoothened, in 

addition to LXRs, with a similar potency (i.e., 3 µM for 

smoothened, and 4–7 µM for LXR; Nachtergaele et al., 

2012). Notably, Nachtergaele et al. (2012) reported that the 

oxysterol 20S-HC could act as allosteric modulator of protein 

binding. Instead, in our system we did not observe any syner-

gistic e�ect when neutrophils were allowed to migrate in vitro 

toward mixtures of 22R-HC and CXCR2 ligands (unpub-

lished data). Altogether, these observations identify the oxy-

sterols as molecules endowed with a broad range of activity 

(i.e., binding to LXRs and/or to other receptors) depend-

ing on the tissue and the pathophysiologic conditions of  

the microenvironment in which they are produced. Indeed,  

in our tumor models, the dual role of oxysterols, i.e., the 

CXCR2-mediated recruitment of protumorigenic neutro-

phils and the recently described LXR-dependent dampening of 

DC migration (Villablanca et al., 2010), coexists and adds up 
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Figure 10. Pharmacologic or genetic CXCR2 inactivation controls tumor growth by reducing angiogenesis and immunosuppression in AB1 and 
LLC tumor models. (A) Number of peritoneal tumor nodules in AB1-bearing mice treated with vehicle or 0.8 mM SB225002 (n = 5 mice per group). Individual 

mouse data are shown (mean, horizontal line). **, P = 0.0071. (B) Percentage of CD11bhigh Gr1highLy6G+ neutrophils in�ltrating AB1 tumors from mice treated with 

vehicle or with SB225002 (n = 5 mice per group; mean ± SEM). **, P = 0.0045. (C) Percentage of CD45CD31+ cells in AB1 tumors from mice treated with vehicle 

or SB225002 (n = 5 mice per group). Individual mouse data are shown (mean, horizontal line). *, P = 0.011. (D) Survival of mice injected with AB1 tumor cells 

expressing SULT2B1b or mock-transduced. Mean ± SEM of one experiment. Statistical comparison was performed by the log-rank test with 10 mice per group.  

P < 0.0001. (E) Percentage of CD45CD31+ cells in AB1-Mock and AB1-SULT2B1b tumors (n = 13). Individual mouse data are shown (mean, horizontal line). 

Results are representative of two experiments. ***, P < 0.0001. (F) Growth of LLC tumor in mice treated or not with 0.8 mM SB225002 (seven mice per group; 

mean ± SEM). *, P < 0.05; ***, P < 0.001. (G) Growth of LLC in WT and Cxcr2/ chimera mice. (n = 12–13 mice per group; mean ± SEM). Results are representative 

of two experiments. ***, P < 0.0001. (H) Percentage of CD11b+Ly6G+ neutrophils in�ltrating LLC injected in WT or in Cxcr2/ chimera mice (n = 4 mice per group; 

mean ± SEM). Results are representative of one out of two experiments. ***, P < 0.0001. (I) Percentage of CD45CD31+ cells in LLC injected in WT or Cxcr2/ 

chimera mice (n = 4 mice per group). Individual mouse data are shown (mean, horizontal line). (J) Percentage of CD45-CD31+ cells in LLC tumors alone (n = 8) or 

coinjected with 22R-HC–migrating neutrophils (n = 9). Individual mouse data are shown (mean, horizontal line). Results are representative of one out of two ex-

periments. ns, not signi�cant. (K) Proliferation of OT-I naive splenocytes labeled with the cytosolic dye CFSE and pulsed with the SIINFEKL peptide in the presence 

of 50% (1:2), 25% (1:4), or 12.5% (1:8) of neutrophils isolated from LLC tumors (mean ± SEM) Results are representative of two experiments. ***, P < 0.0001.
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to promote tumor growth. This is con�rmed by tumor growth 

experiments in Lxr/ bone marrow chimera mice, in which 

the growth rate of the oxysterol-releasing RMA-Mock is, how-

ever, higher than that of RMA-SULT2B1b, where the oxyste-

rols are inactivated (unpublished data). Notably, in our tumor 

model LXR- does not seem to play a major role, as RMA-

Mock showed the same growth rate in Lxr/ and wild-

type bone marrow chimera mice (unpublished data). The 

identi�cation of oxysterols (22R-HC, 20S-HC, etc.) endowed 

with the promiscuous ability to activate two di�erent recep-

tors highlights the need to carefully investigate these mole-

cules to identify new biological functions associated with 

oxysterols in di�erent physiological and pathological condi-

tions, including tumors.

The in vivo experiments using 22R-HC–embedded 

matrigel plugs indicate that oxysterols may contribute, to-

gether with CXCL chemokines (Fig. 6 A), to neutrophil re-

cruitment within tumor microenvironment, as indicated by 

the detection of higher numbers of neutrophils in oxysterol-

releasing tumors. These results are further corroborated by the 

observation that the percentage of neutrophil in�ltration cor-

related with the availability of active oxysterols, but not with 

the content of CXCL1 and CXCL5 chemokines detected 

within the tumor (Fig. 6, B and C). Recently, di�erent mo-

lecular mechanisms able to modify protein structure within 

tumors (Nagaraj et al., 2007; Molon et al., 2011) or in dam-

aged tissues (Venereau et al., 2012) have been reported. Par-

ticularly, protein nitration has been demonstrated to modify 

the chemotactic capacity of chemokines present in tumors. In 

this context, the chemoattractant ability of oxysterols might 

play a relevant role in the tumor microenvironment, in which 

chemokines could be structurally and functionally altered 

(Molon et al., 2011). Whether, this mechanism is also relevant 

for the recruitment of immune cells in some phases of physi-

ological in�ammatory processes (i.e., wound healing) will re-

quire further studies.

We report that RMA tumor cells produce 22R-HC and 

27-HC oxysterols and other species that we are characteriz-

ing (Fig. 1 G), whereas LLC tumor cells produce 24S-HC 

(not depicted). However, a clear picture of how and when 

oxysterols are produced within tumor microenvironment re-

mains elusive. RMA and LLC constitutively express transcripts 

for the oxysterol-generating enzymes Cyp11a1, Cyp27a1, and 

Cyp46a1 (Fig. 1 H and unpublished data; Björkhem, 2002; 

Mast et al., 2011). However, a nonenzymatic pathway, involv-

ing reactive oxygen species that are frequently increased in 

the tumor microenvironment (Murphy and Johnson, 2008), 

can also participate in oxysterol generation, further contribut-

ing to the production and accumulation of oxysterols in vivo. 

Moreover, recent studies reveal additional complexity. In-

deed, other cells of the microenvironment have been reported 

to express oxysterol-producing enzymes and to generate 

oxysterols (Diczfalusy et al., 2009; Yi et al., 2012). Because 

tumor microenvironment is a complex tissue, in which all 

the cells described so far to generate oxysterols are present 

(tumor cells, stromal cells, and immune cells), we speculate that  

appropriate mouse models are needed to investigate the rela-

tive contribution of oxysterol-producing cells within tumors. 

The investigation of cells and factors regulating oxysterol pro-

duction should clarify in the near future the mechanisms re-

sponsible for oxysterol generation, their overall contribution 

to tumorigenesis, and possibly identify drugs capable of in-

hibiting their in vivo generation.

The demonstration that some freshly isolated human 

tumor cells release oxysterols able to bind both LXR and 

CXCR2 (Fig. 1 I and J; and not depicted), along with the 

observation that higher numbers of intratumor neutrophils 

severely a�ect overall survival of kidney cancer patients  

(Jensen et al., 2009), suggests that manipulating LXR ligands 

and their interaction with CXCR2 and immune cells could 

provide additional targets for the development of new anti-

tumor therapies.

MATERIALS AND METHODS

Animal studies and reagents. C57BL/6 CD45.1 or CD45.2, Balb/C and 

NOD-SCID mice were from Charles River and Harlan. Cxcr2+/ and 

Cxcr2/ mice were from The Jackson Laboratory. Lxr/ knockout mice 

were generated as described previously (Alberti et al., 2001). Mice were 

maintained in the pathogen-free facility of San Ra�aele Scienti�c Institute. 

Experiments were conducted in compliance with the Institutional Animal 

Care and Use Committee program (IACUC no. 341 and 436). Most anti-

bodies were from BD. CXCL5, CXCL12, CCL3, and IL-8 were from R&D 

Systems. 22R-HC, 22S-HC, 25-HC, 24,25 Epoxycholesterol, 7-HC, Cho-

lesterol, chenodeoxycolic acid, and Glyco-CDCA were from Sigma-Aldrich 

and from Avanti Polar Lipids. 24-HC, 27-HC, 4-HC, and 7-HC were 

from Avanti Polar Lipids. 19-HC was from Santa Cruz Biotechnology, Inc. 

T0901317 and Pregnenolone were from Cayman. CFSE was used at 4 µM 

(Molecular Probes). PTX and PTX B-Oligomer were from Enzo Life Sci-

ences. Rat anti–mouse CD11b MicroBeads were from Miltenyi Biotec. 

SB225002 was from Tocris. Dead Cell Stain kit (Live/Dead Fixable Far red) 

was from Invitrogen. Buthlyhydroxytoluene (BHT) and solvents of HPLC 

grade were obtained from Sigma-Aldrich. The C18 cartridges (360 mg) were 

obtained from Waters Chromatography EUROPE (Netherlands).

Promoter reporter assay for nuclear receptor activity. We transfected 

105 HEK293 cells/well with 100 ng of the plasmid pMH100X4-TK- 

luc/well together with 100 ng/well pCMX-Gal4-LXR plasmid using  

FuGene 6 Transfection Reagent (Roche). 4 h after transfection, we treated the 

cells with tumor CM for 24 h. Luciferase activity was evaluated by Luciferase 

Reporter Assay Systems (Promega) according to the manufacturer’s pro-

tocol. We used 30 ng -galactosidase/well for transfection normalization 

(Villablanca et al., 2010).

Sample collection and solid-phase extraction of hydroxycholester-

ols. All the cell lines analyzed were seeded at 105 cells/ml and cultured for  

48 h. Then, conditioned media were collected, added to butylhydroxytolu-

ene (40 µM �nal concentration) to avoid cholesterol oxidation (Gilardi et al., 

2009), and stored at 80°C until processing. Hydroxycholesterol extraction 

was made as previously described (Burkard et al., 2004). In brief, the C18 

cartridges were preconditioned with 1 ml n-heptane/2-propanol (50:50,  

vol/vol), 1 ml methanol, and 2 ml of water. 2 ml of the cell-free medium was 

then applied to the cartridge using only gravity. Afterward, the cartridge was 

washed with 4 ml methanol-water (75:25, vol/vol) and brie�y dried under 

vacuum. Hydroxysterols were desorbed with 2 ml n-heptane/2-propanol 

(50:50, vol/vol) using only gravity. The eluted substances were dried at 30°C 

by evaporation (Rotavapor), and the residue was dissolved in 200 µl of meth-

anol and subjected to CI-MS analysis and HPLC analysis.
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MS analysis. MS was performed on a Thermo Electron TRACE DSQTM 

spectrometer through the rapid heating �lament Direct-Exposure Probe 

(DEP) insertion mode. The MS analyses were performed in chemical ioniza-

tion (CI-MS) using methane as reactant gas at an electron energy of 70 eV 

with a source temperature of 200°C.

High performance liquid chromatography (HPLC). An HPLC 

method was developed based on the HPLC-ESI-MS methods described in 

McDonald et al. (2007). Hydroxycholesterols were resolved using reverse 

phase HPLC (RP-HPLC) equipped with a Waters 996 Photodiode Array 

Detector (wavelength 213 nm). A 100 µl aliquot of lipid extract (in methanol) 

or standard solution was loaded onto a RP-HPLC column (5 µm, 250 × 4 mm 

LiChrospher 100 RP18 column; Merck) equipped with a guard column. 

Elution of hydroxycholesterols was performed at �ow rate of 300 µl/min, 

with a gradient formed by the solvent system A, consisting of methanol/

water (85:15, vol/vol) and solvent system B consisting of methanol, both 

containing 5mM ammonium acetate. The gradient elution program was as 

follows: for RMA-CM analysis, 3 min with solvent A, 33 min with a linear 

gradient from 100% solvent A to 100% solvent B, 15 min with 100% solvent 

B, 5 min with a linear gradient from 100% solvent B to 100% solvent A; for 

all the other CM analyzed, 3 min with solvent A, 55 min with a linear gradi-

ent from 100% solvent A to 100% solvent B, 10 min with 100% solvent B,  

5 min with a linear gradient from 100% solvent B to 100% solvent A, and 

maintained for 10 min to reequilibrate the column before the next run.

Chemotaxis assay. Chemotaxis assays were performed using 5-µm pore 

polycarbonate �lters in a 24-well transwell chamber (Corning Costar Cor-

poration). Total bone marrow or CD11b+ puri�ed cells (2 × 105/100 µl) 

were seeded in the upper chamber, whereas in the lower chamber 600 µl of 

medium (RPMI 0.5% BSA) containing 15 µM 22R-HC or 22S-HC or 100 ng 

CXCL5, CXCL12, CCL3, or IL-8. 2 h later, migrated cells were measured by 

�ow cytometer acquisition of a �xed number of beads (10,000/sample; Poly-

sciences). GPCR involvement was investigated by pretreating the cells for  

90 min at 37°C with 500 ng PTX. Desensitization experiments were per-

formed by pretreating the cells for 30-45 min at room temperature with  

50 µM 22R-HC or 2 µg/ml CXCL5. 500 ng PTX B-Oligomer was used as 

control of PTX inhibition. Experiments with SB225002 were performed 

treating the cells with 20 µM SB225002 before migration. Results of migra-

tion experiments were calculated as described previously (Villablanca et al., 

2010). Spontaneous migration was always subtracted with the exception of 

the experiments reported in Fig. 2 (C and D).

Analysis of tumor-in�ltrating cells. RMA-Mock, RMA-SULT2B1b, 

LLC-Mock, and LLC-SULT2B1b tumors have been described previously 

(Villablanca et al., 2010). AB1-Mock and AB1-SULT2B1b were obtained by 

engineering AB1 cells with lentivirus encoding SULT2B1b or empty vector 

as described previously (Villablanca et al., 2010). Tumors collected 14–15 d 

after injection were cut into small fragments and digested for 45-60 min at 

37°C with 1.4 mg/ml collagenase A, B, and D (Roche) and 40 µg/ml DNase 

(Roche) mixture in RPMI medium with 10% FBS. Single cell suspensions 

were washed and labeled with Dead Cell Stain kit reagents for 30 min at 4°C. 

After washing, the cells were incubated for 5 min at RT with Fc-blocking 

solution (10 µg/ml mouse Fc Block; BD) and labeled with CD11b, Gr1, 

CD45.1, or CD45.2 mAbs. Samples were run by FACSCalibur �ow cytom-

eter (BD) and analyzed by FlowJo software gating on live cells. 10 µM 22R-

HC or 22S-HC were administered every 2 d intratumor. After 14 d, collected 

cells were analyzed as described above.

Real-time RT-PCR experiments. Myeloid cells (immature and mature) 

were puri�ed by percoll gradients from bone marrow of wild-type mice, 

or mice injected with RMA-Mock- or RMA-SULT2B1b. Total RNA 

was isolated with TRIZOL (Invitrogen). Reverse transcription was per-

formed from 1–2 µg of total RNA, using MLV-reverse transcription (In-

vitrogen). qRT-PCR was performed using real-time PCR (ABI PRISM 

7900; Applied Biosystems) and Sybr Green. The comparative Ct method 

was used to quantify transcripts normalized to cyclophillin as a gene refer-

ence. qRT-PCR was performed using primers speci�c for the LXR target  

genes Abcg1 and Srebp-1c. Primers for Bv8 have been reported in Shojaei 

et al. (2007b). Primers for Cyp11a1, Cyp27a1, and Ch25h are as follows:  

Cyp11a1 forward, 5-AGAGTTTCCAAAAGTATGGCCC-3; reverse,  

5-ATACTGGTGATAGGCCACCCAGG-3. Cyp27a1 forward, 5-GAC-

CTCCAGGTGCTGAAC-3; reverse 5-CTCCTGTCTCATCACTTG-

CTC-3. Ch25h forward, 5-CTGCCTGCTGCTCTTCGACA-3; reverse, 

5-CCGACAGCCAGATGTTAATC-3.

In vivo migration experiments. We injected NOD-SCID mice with 

RMA-Mock or RMA-SULT2B1b. 13–14 d later, we transferred 10 × 106 

CFSE-labeled total bone marrow cells into tumor-bearing mice. 18 h later, 

tumors were processed as described before. The percentage and number of 

bone marrow–derived exogenous and endogenous CD11bhighGr1high cells 

was evaluated by gating on CFSE+ and CD45.1+ cells, respectively.

Parabiosis experiments. 6–8-wk-old sex-matched congenic C57BL/6 

wild-type mice were joined at the �anks as described in Wright et al. (2001). 

3 d later, 5 × 105 RMA cells were injected s.c. in the �ank of the CD45.2 

mice. Mice were surgically separated 7, 4, and 2 d prior to collection of  

tumors and analysis.

Immuno�uorescence, immunohistochemistry, and immunocyto-

chemistry. For immuno�uorescence, we used anti–CD11b-FITC, biotinyl-

ated anti-Gr1 antibody revealed by streptavidin, Alexa Fluor 555 (Invitrogen), 

and DAPI. We embedded samples in OCT freezing medium and prepared 

tissue sections 7 mm thick, which were then �xed in 4% paraformaldehyde. 

Images were taken by the Eclipse i80 microscope (Nikon). For immuno-

histochemistry, tumor samples were embedded in optimal cutting tempera-

ture medium and frozen in liquid nitrogen. We stained 3-µm para�n sections 

with H&E for morphological analysis or immunostained them with rat anti-

CD31 mAb (Serotec), followed by a biotinylated conjugated rat-speci�c  

antibody (Biocare). Reactions were visualized with horseradish peroxidase–

conjugated streptavidin and 3,3 diaminobenzidine as chromogen (Biogenex). 

Slides from LXR ligand migrating CD11bhighGr1high cells were prepared by 

centrifugation at 1,500 rpm for 10 min in a Shandon Cytospin 3. Cells were 

stained using May-Grunwald-Giemsa and evaluated under light microscopy.

Matrigel plug assays. 300 µl matrigel containing 0.5 mM 22R-HC or  

0.5 mM 22S-HC (100 µl) was injected subcutaneously into C57BL/6 mice. 

Plugs were removed after 5 h, digested for 1 h at 37°C with 1.8 U/ml Dip-

sase (Gibco), and analyzed by FACS as described above. 0.8 mM SB225002 

was given intraperitoneally 2 d before matrigel injection. Matrigel contain-

ing CXCL5, 22R-HC, or 22S-HC alone or together with blocking anti-

bodies against mouse CXCL1, CXCL3, CXCL5, and CXCL7 chemokines 

(R&D Systems; 10 µg each) was injected subcutaneously into C57BL/6 

mice. 5 h later, plugs were removed and analyzed as described above.

CXCL1 and CXCL5 ELISA assays. 7-d-established RMA-Mock and 

RMA-SULT2B1b tumors were collected and digested mechanically and en-

zymatically up to single cell suspension. Cells were counted and plated in 24-

well plates (106 cells/well in 1 ml). After 24 h, supernatants were collected 

and the content of CXCL1 and CXCL5 was measured according to the 

manufacturer’s recommendations. CXCL1 and CXCL5 ELISA kits were 

from R&D Systems.

Viral vectors and transduction procedures. The mCXCR2-NGFr 

lentiviral transfer vector was generated by cloning the murine CXCR2 

cDNA in place of the GFP into the self-inactivating hPGK.GFP.wPRE.

mhCMV.NGFr.SV40PA lentiviral vector (AgeI–SalI sites). Concentrated 

VSV-G–pseudotyped LV stocks were produced and titred as described previ-

ously (Villablanca et al., 2010). L1.2 cells were transduced with 108 or 109 

transduction units (TU)/ml VSV-G–pseudotyped LV stocks, corresponding 

to 1.5 or 15 MOI (Villablanca et al., 2010).
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Down-regulation of CXCR2. CD11b+ cells were treated with 50 µM of 

22R-HC or 22S-HC, 2 µg/ml CXCL5, 1 µg/ml SDF-1, or 10 µM 

SB225002 for 30 min at room temperature. After washing, the cells were  

labeled with anti-CD11b, anti-Gr1, and anti-CXCR2 mAbs and run  

by FACS.

35S-GTPS binding assay. Mock- or CXCR2-transduced L1.2 cells were 

homogenized in 5 mM Tris–HCl and 2 mM EDTA, pH 7.4, and centrifuged 

at 48,000 g for 15 min at 4°C. The resulting pellets (plasma membranes) were 

washed in 50 mM Tris–HCl and 10 mM MgCl2, pH 7.4, and stored at 

80°C until use. The assay was performed as described in de Kruijf et al. 

(2011) with minor modi�cations. In brief, aliquots of control or 10 µg 

CXCR2-expressing membranes were incubated in 96-well plates in assay 

bu�er (20 mM Hepes, 3 mM MgCl2, and 100 mM NaCl, pH 7.4) supple-

mented with 3 µM GDP, 0.15 nM 35S-GTPS (1,250 Ci/mmol; Perkin 

Elmer), and di�erent compound concentrations (10–50 µM). 0.1–50 nM of 

the CXCR2 agonist IL-8 was also assayed in parallel as a reference com-

pound. SB225002 antagonist was added for 5 min before the addition of IL-8 

or 22R-HC to determine the inhibition of the agonist-mediated G protein 

activation. After incubation at room temperature in a shaking water bath for 

60 min, cells were harvested by rapid �ltration and assayed for 35S radioactiv-

ity. Nonspeci�c 35S-GTPS binding was measured with 50 µM GTPS. 

Analysis and graphic presentation of 35S-GTPS binding data were obtained 

by a nonlinear multipurpose curve �tting computer program (Prism; Graph-

Pad Software).

Measurement of cAMP levels. Intracellular cAMP levels were measured 

using a competitive binding method (Daniele et al., 2011). In brief, mock- or 

CXCR2-transduced CHOK1 cells were seeded on 24-well plates (48 × 103 

cells/well) in 0.5 ml of medium. After 24 h, the entire medium was removed, 

and the cells were incubated at 37°C for 15 min with 0.4 ml DMEM in the 

presence of 20 µM of the phosphodiesterase inhibitor 4-[(3-butoxy-4- 

methoxyphenyl)-methyl]-2-imidazolidinone (Ro20-1724). The dose–response 

curve of tested ligands was evaluated by assessing their ability to inhibit 

cAMP accumulation stimulated by 1 µM forskolin. The compounds were 

added to cells for 15 min. When required, cells were preincubated for 10 min 

with SB225002 antagonist. The reaction was terminated by the removal of 

the medium and the addition of 200 µl of 0.4 N HCl. After 30 min, lysates 

were neutralized with 50 µl 4 N KOH, and the suspension was centrifuged 

at 800 g for 5 min. For the determination of cAMP production, the cAMP 

binding protein was incubated with 2 nM [3H]cAMP and 50 µl of cell lysate 

or cAMP standard (0–16 pmol) at 0°C for 150 min in a total volume of  

300 µl. The bound radioactivity was separated by rapid �ltration through 

GF/C glass �ber �lters (PerkinElmer Life and Analytical Sciences) and 

washed twice with 4 ml of 50 mM Tris-HCl, pH 7.4. The radioactivity was 

measured by liquid scintillation spectrometry.

Receptor binding assay. Competition for the binding of 125I-labeled IL-8 

([125I]IL-8; sp. act., 2,200 Ci/mmol; Perkin Elmer) to mouse L1.2 cells was 

conducted as described previously (Sozzani et al., 1997). Mock- or CXCR2-

transduced L1.2 cells (0.8 × 106/50 µl) in binding medium (RPMI 1640 

with 1 mg/ml BSA) were incubated with 0.3 nM of labeled chemokine in 

the presence of 300 nM of unlabeled IL-8 or 100 µM 22R-HC, 25-HC, 

22S-HC, or 4-HC at 4°C for 2 h. Dose-dependent inhibition experiments 

were performed by incubating the cells with 100, 50, 10, or 1 µM 22R-HC 

or 22S-HC. At the end of the incubation, cells were pelleted through a cush-

ion of oil by microcentrifugation. The radioactivity present in the tip of the 

tubes was evaluated using a gamma counter. Nonspeci�c binding to L1.2 

mock-transduced cells was always subtracted for each condition described.

OT-I proliferation assay. Splenocytes from OT-I mice were labeled with 

4 µM CFSE. Then they were washed and pulsed for 1 h at 37°C with 2 µg/ml 

SIINFEKL peptide. LXR ligand migrating and nonmigrating CD11b+ 

Gr1+ cells (105 or 5 × 104) were cultured in 96-well round-bottomed plates 

with 2 × 105 CFSE-labeled OT-I splenocytes. 105, 5 × 104, and 2.5 × 104 

tumor-in�ltrating neutrophils were puri�ed using Ly6G-microbeads (Miltenyi 

Biotec), analyzed by FACS (CD11b+Ly6G+ were >90% of the cells), and 

then cultured in 96-well round-bottomed plates with 2 × 105 CFSE-labeled 

OT-I splenocytes. Cells were analyzed 3 d later with a FACSCalibur �ow cy-

tometer with FlowJo software. Data are presented as the percentage of prolif-

eration of SIINFEKL-pulsed, CFSE-labeled OT-I splenocytes relative to the 

proliferation of SIINFEKL-pulsed, CFSE-labeled OT-I splenocytes alone 

(set as 100%). To test OT-I memory cells, we harvested OT-I splenocytes 

from OT-I mice previously immunized (10 d) with 5 µg SIINFEKL peptide 

emulsi�ed in complete Freund’s adjuvant.

Mouse total MMP-9 and Bv8 assays. 22R-HC migrating and nonmi-

grating cells and fresh splenocytes (2 × 106 cells/ml) were plated in 24-well 

plates. After 24 h, supernatants were collected and the content of total 

MMP-9 was measured according to manufacturer’s recommendations (mouse 

total MMP-9; Quantikine; R&D Systems). For Bv8 ELISA assay, we plated 

22R-HC migrating and nonmigrating cells in 24-well plates (3 × 106 cells/well 

in 1 ml) in the absence or in the presence of RMA-CM. After 24 h, superna-

tants were collected and the content of Bv8 was measured according to man-

ufacturer’s recommendations (Bv8 ELISA kit; Uscn; Life Science! Inc.).

Angiogenesis assay. We injected mice with 2 × 105 RMA or LLC tumor 

cells alone or admixed with either 22R-HC migrating CD11bhighGr1high or 

nonmigrating CD11b+Gr1+ cells (105) resuspended in 100 µl PBS, mixed 

with 100 µl of matrigel. 6 d later, mice were sacri�ced and matrigel plugs 

collected and digested with 1.4 mg/ml collagenase A, B, and D and 1.8 U/ml 

Dispase. Cell suspensions were labeled with Dead Cell Stain kit reagents for 

30 min at 4°C. After washing, cells were incubated for 5 min at room tem-

perature with Fc-blocking solution (10 µg/ml mouse Fc Block; BD) and la-

beled with CD31 and CD45 mAbs. We analyzed the samples by FACS 

(Mazzieri et al., 2011) and considered the endothelial cells as DeadCD45 

CD31+ cells. Experiments with B16F1 were performed by injecting 0.5 × 105 

B16F1 cells alone or admixed with 5 × 105 BM-puri�ed neutrophils.

Tumor challenge in wild-type, Cxcr2/, Lxr/, or Lxr/ chi-

mera mice. C57BL/6 mice were injected subcutaneously with 1 × 105 

RMA, 3 × 105 LLC, or intraperitoneally with 3 × 106 AB1 tumor cells. We 

evaluated tumor size by measuring perpendicular diameters by a caliper. For 

AB1 tumors, we evaluated overall survival and the number of peritoneal 

tumor nodules 14 d after tumor inoculation. Data are reported as the mean 

tumor volume ± SEM. We gave 0.8 mM SB225002 (Tocris) or DMSO in-

traperitoneally every 2 d, starting 5 d after tumor infusion. We gave 10 µM 

22R-HC intratumor every 2 d. We transplanted lethally irradiated (11 Gy) 

C57BL/6 mice with bone marrow of Cxcr2/, Lxr/, Lxr/, or WT 

mice (5 × 106 bone marrow cells/mouse). 6–8 wk later, we challenged mice 

with RMA with or without SB225002, or with LLC. Cxcr2/ genotype 

was performed by PCR on splenocytes at the end of the experiments. 

Lxr/ or Lxr/ genotype was performed by PCR on blood cells before 

tumor challenge. Because Cxcr2/ chimera mice underwent death during 

the reconstitution phase, we treated transplanted mice with enro�oxacin for 

15 d (7.5 mg/150 µl Baytril 5% solution in 300 ml of drinking water) ac-

cording to the indication of the veterinary sta� of our spf facility.

Neutrophil depletion experiments. C57BL/6 mice were injected subcu-

taneously with RMA (1 × 105). 7 d later, we performed neutrophil depletion 

by intratumor injections of 30 µg of puri�ed anti-Ly6G antibody 1A8 (Bio-

Legend) or rat IgG control antibody (Jackson ImmunoResearch Laborato-

ries, Inc.) twice per week, as described in Fridlender et al. (2009). Tumor 

neutrophil depletion and angiogenesis were evaluated at the end of the tumor 

challenge by �ow cytometry using anti-CD11b, anti-Gr1, anti-CD31, and 

anti-CD45 mAbs. Tumor growth was analyzed as described above.

Statistical analysis. Data are expressed as mean ± SEM and were analyzed 

for signi�cance by ANOVA with Dunnet’s, Bonferroni’s, or Tukey’s multi-

ple comparison test, or by Student’s t test. The analysis was performed with 

Prism software.
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Online supplemental material. Fig. 1 shows the morphological and phe-

notypic characterization of gated 22R-HC migrating and nonmigrating 

CD11b+Gr1+ cells. Online supplemental material is available at http://www 

.jem.org/cgi/content/full/jem.20130440/DC1.
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