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Abstract. We study the uniform approximation of boundary layer functions
exp(−x/d) for x ∈ (0, 1), d ∈ (0, 1], by the p and hp versions of the finite ele-
ment method. For the p version (with fixed mesh), we prove super-exponential
convergence in the range p+ 1/2 > e/(2d). We also establish, for this version,
an overall convergence rate of O(p−1

√
lnp) in the energy norm error which is

uniform in d, and show that this rate is sharp (up to the
√

ln p term) when
robust estimates uniform in d ∈ (0, 1] are considered. For the p version with
variable mesh (i.e., the hp version), we show that exponential convergence,
uniform in d ∈ (0, 1], is achieved by taking the first element at the boundary
layer to be of size O(pd).

Numerical experiments for a model elliptic singular perturbation problem
show good agreement with our convergence estimates, even when few degrees
of freedom are used and when d is as small as, e.g., 10−8. They also illustrate
the superiority of the hp approach over other methods, including a low-order
h version with optimal “exponential” mesh refinement.

The estimates established in this paper are also applicable in the context
of corresponding spectral element methods.

1. Introduction

Our goal in this paper is to develop the approximation theory for boundary layer
functions

u(x) = exp(−ax/d), 0 < x < L,(1.1)

where d ∈ (0, 1] is a small parameter that can approach zero, a > 0 is a constant
and L ≥ 1 is a typical length scale of the problem under consideration. We are
interested in obtaining convergence estimates that are robust, i.e., uniform in d,
when (1.1) is approximated by piecewise polynomials via p and hp type numerical
schemes.

Boundary layers (1.1) arise as solution components in singularly perturbed el-
liptic boundary value problems, a model example of which is

Ldud := −d2u′′d(x) + a2ud(x) = f(x), x ∈ I = (−1, 1),(1.2)
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1404 CHRISTOPH SCHWAB AND MANIL SURI

ud(±1) = α±.(1.3)

A large body of literature has been devoted to their effective resolution. Most
available references analyze the convergence of finite difference or finite element
schemes of fixed (usually low) polynomial degree in conjunction with various mesh
refinements (the h version); see, e.g., [4, 6, 13, 18, 19], and the references therein.

If the mesh refinement is quasi-uniform (or, more generally, independent of d),
either on the whole domain or locally near the boundary, then the optimal (alge-
braic) decrease in the global error is observed provided a condition of the form
h ≤ Cd is met (h being the mesh spacing parameter). Such methods are nonro-
bust, in a sense made precise in §3. In practical terms, the amount of discretization
required with such schemes for satisfactory resolution of the boundary layers may
be infeasible when d is very small. On the other hand, strongly graded d-dependent
mesh refinement, like the one from [20] presented in §6, does lead to robust conver-
gence, at an optimal rate that is algebraic (see [4, 16, 18, 19, 20], where this and
other graded meshes are discussed).

An alternative approach is to increase the polynomial degree and keep the mesh
fixed, i.e., use a p version or spectral element method. In [5], various such schemes
(Galerkin, Tau and Collocation) have been considered for the special case of (1.2)–
(1.3) where f ≡ 0, α+ = 1, α− = 0, using a Chebyshev-weighted spectral approx-
imation. In this paper, we consider the unweighted Galerkin p version/spectral
element approximation. We provide a detailed study of the approximation theory
for this method, showing that an asymptotic superexponential convergence rate for
the error in the energy norm is achieved for p̃ := p+ 1/2 > e/(2d). We also provide
estimates for this error in the preasymptotic phase when d is small, showing that
(A) for (3/(4d))1/2 ≤ p̃ ≤ 2/d, the error is bounded by C exp(−p̃2d/3) and (B)

for p̃ ≤ Kd−
1
2 , the error is bounded by Cp−1 (numerical experiments in §6 are in

agreement with these rates). The results we prove for a single element also hold
when a fixed mesh with several elements is used. Using our various estimates,
we establish that for the pure p version on fixed meshes, the overall robust rate,
uniform in d, is O(p−1

√
ln p) and, up to the

√
ln p term, this is the best possible.

Note that this rate is essentially double the uniform rate of O(h
1
2 ) achievable (for

the global error) by the h version with quasi-uniform meshes (Theorem A.1(ii) of
[13]). It is also double the uniform rate for p version/spectral element methods
that can be established from the results in [5]. (Since the methods in [5] involve a
weighted projection, the estimates there are in (stronger) weighted norms.)

The p-type results in [5] can be considerably improved by using special “mapped”
polynomials in the spectral element method. This is shown in [8, 7], where singular
mappings of appropriately high order are used to establish algebraic rates of con-
vergence that deteriorate relatively slowly as d→ 0. However, these estimates are
still not uniform in d, and therefore, not robust in our sense.

Our main result in this paper shows that excellent robust rates for the uniform
approximation of functions (1.1) can be achieved by using, instead of the pure
p/spectral version, a variable mesh with only one more element. More precisely,
a robust exponential rate can be obtained by using the p version on two elements,
where the first one is of size O(pd). (For problems like (1.2)–(1.3), three elements
are needed, owing to boundary layers at either end — see §6.) We call this an
hp version since the size (though not the number) of elements changes, as does p.
(More appropriately, it is an “rp” method.) Note that an exponential rate is not
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THE p AND hp VERSIONS FOR BOUNDARY LAYERS 1405

possible with either the h version or the pure p/spectral version — the estimates
obtained in the papers above are all algebraic. Finite element computations for
(1.2)–(1.3) presented in §6 confirm the theoretical convergence estimates obtained
here and clearly show the dramatic superiority of this robust hp FEM over other
methods, especially for small d.

Although we concentrate here only on the approximation theory for the one-
dimensional function (1.1) applied to one-dimensional problems like (1.2), the scope
of our results is wider. This is due to the fact that solutions to singularly perturbed
problems over two-dimensional domains ω, arising, e.g., in beam, plate and shell
theory, as well as in reaction-diffusion and certain fluid dynamics problems, also
exhibit boundary layers, which are of the form

uBL(s, x) = C(s) exp(−aρ(x)/d), 0 < s < T, 0 < ρ < ρ0.(1.4)

Here s, ρ denote, respectively, the arc length and normal distance to the bound-
ary, of a point x in a neighborhood of ∂ω, and the function C(s) is smooth. For
several problems of practical interest, decompositions of the solution into a regu-
lar part and such boundary layers uBL(s, x) have been obtained in the literature;
cf. [1] for the Reissner-Mindlin plate, [17] for beam theory, [11, 12] for shells.
Similar decompositions arise also in three-dimensional problems (then, however,
s = (s1, s2) are coordinates in the boundary manifold). The key observation from
(1.4) is that since C(s) is smooth, the boundary layer phenomenon is essentially
one-dimensional, namely, in the direction normal to ∂ω. Hence, the crucial aspect
of the FE approximation of such functions is how the FE spaces are designed in the
ρ direction, i.e., how the function (1.1) is approximated in one dimension. Using
our results, therefore, we can construct two- and three-dimensional FE spaces (with
robust exponential convergence) for the functions (1.4), e.g., using tensor product
spaces in the (s, ρ) coordinates. See [15, 16]. Note that “brute force” mesh refine-
ment will be even less competitive in two dimensions and practically impossible in
three dimensions.

The outline of this paper is as follows. In §2 we present an asymptotic expansion
for the solution of the model problem (1.2)–(1.3) which includes the boundary
layers. The proof uses standard techniques and is provided for completeness in the
Appendix. In §3, we describe the finite element methods and error measures to
be analyzed. We also define the concept of robustness, using a definition from [2].
Section 4 is devoted to the convergence analysis of the p version FEM. In §5, we
consider an hp version for which we prove a robust exponential convergence rate
in various norms. Finally, in §6 we present numerical experiments comparing, in
particular, the p and hp version FEMs analyzed here with an h version from [20],
based on asymptotically optimal meshes. We show that the hp version consistently
outperforms the other versions and that high accuracy can be achieved with few
degrees of freedom for arbitrarily small d (we take values of d as small as 10−8).

Throughout, Hk(I) will denote the Sobolev space of order k ∈ N0 on an interval
I ⊂ R, with H0(I) = L2(I) and ‖ · ‖k,I , | · |k,I denoting the norm and seminorm
as usual. Whenever there is no confusion about the domain, we omit the subscript
I. For u, v ∈ L2(I), we denote by (u, v) the L2 inner product. Also, H1

0 (I) = {u ∈
H1(I) : u(±1) = 0}, H1

D(I) = {u ∈ H1(I) : u(±1) = α±} and H−1(I) = (H1
0 )∗,

the dual space. Throughout the paper, C, K will denote generic constants, while
Ci, C̃i will denote constants that are explicitly given or can be easily estimated
from the exposition.
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1406 CHRISTOPH SCHWAB AND MANIL SURI

2. Regularity of the model problem

The variational formulation of the model problem (1.2)–(1.3) reads: Find ud ∈
H1
D(I) such that

Bd(ud, v) = (f, v) ∀v ∈ H1
0 (I).(2.1)

Here, f ∈ H−1(I) and

Bd(u, v) :=

∫
I

{d2u′v′ + a2uv} dx.(2.2)

For every f ∈ H−1(I) the problem (2.1) admits a unique solution ud ∈ H1
D(I), and

if f ∈ Hk(I), then ud ∈ Hk+2(I) ∩H1
D(I). This regularity, however, is nonuniform

in d since in the a priori “shift” estimate

‖ud‖k+2 ≤ C(k, d)‖f‖k, k = 0, 1, 2, . . . ,(2.3)

the constant C strongly depends on d. The following theorem, the proof of which
can be found in the Appendix, presents a decomposition of ud into a smooth part
uMd (x) and boundary layers

ua,d(x) = exp(−a(1 + x)/d), ūa,d(x) = exp(−a(1− x)/d).(2.4)

Theorem 2.1. Let f ∈ H4M+2(I) for some M ∈ N. Then

ud(x) = uMd (x) +AMd ua,d(x) +BMd ūa,d(x),(2.5)

where uMd (x) satisfies the following regularity estimate uniformly in d for ` =
0, 1, . . . , 2M :

|uMd |` ≤ a−1(d/a)2M+2−`|f |(2M+2) + 2a−2
M+1∑
k=0

(d/a)2k|f |2k+`.(2.6)

Further,

|AMd |+ |BMd | ≤ C(a)

{
|α+|+ |α−|+

M∑
k=0

(d/a)2k
(
|f (2k)(−1)|+ |f (2k)(+1)|

)}
,

(2.7)

where C(a) is independent of M and d.

For any interval Ĩ let Πn(Ĩ) denote the set of polynomials on Ĩ of degree ≤ n.
The following result follows by Remark 6.1 in the Appendix.

Corollary 2.1. Let f ∈ Π2M+1(I); then uMd ∈ Π2M+1(I) in (2.5).

Remark 2.1. Analogous results hold when the Dirichlet end conditions (1.3) are
replaced by Neumann or mixed boundary conditions.

For f smooth enough (i.e., M large enough), we see from Theorem 2.1 that the
regularity of ud (in terms of d) will be determined by the boundary layer terms.
We have, in fact, by (2.5)–(2.7),

|ud|` ≤ |uMd |` + |AMd ||ua,d|` + |BMd ||ūa,d|` ≤ C(1 + |ua,d|` + |ūa,d|`),(2.8)

where the constant C depends upon a, f and α± but is independent of d. For the
function ua,d, we have for ` = 0, 1, 2, . . .

|ua,d|` =

(
d

a

) 1
2−` [1− e−4a/d

2

]1/2

≈ Cd 1
2−`,(2.9)
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so that (2.9) and its analog for |ūa,d|`, substituted in (2.8), gives an upper bound
for |ud|`. Since, except for special cases, the coefficients AMd , BNd are nonzero, we
see that the following equivalence generally holds:

|ud|` ≈ C(1 + d
1
2−`), ` = 0, 1, . . . , 2M.(2.10)

To conclude this section, we define the following solution spaces, which will be
used later:

HB
d,M = {ud|ud is a solution of (1.2)–(1.3) with f ∈ H4M+2(I),

‖f‖4M+2 ≤ B, |α±| ≤ B},
HB
d,Πn = {ud|ud is a solution of (1.2)–(1.3) with f ∈ Πn(I) such that

all coefficients in f are absolutely bounded by B, |α±| ≤ B}.

3. The finite element method

For any finite-dimensional subspace S of H1(I), denote SD = S ∩H1
D(I), S0 =

S ∩H1
0 (I). Then a finite element approximation uSd of ud is obtained by restricting

both sides of the weak formulation (2.1) to finite-dimensional subspaces: Find
uSd ∈ SD such that

Bd(u
S
d , v) = (f, v) ∀v ∈ S0.(3.1)

For every d ∈ (0, 1] there exists a unique solution uSd ∈ SD of (3.1).
We will be interested in spaces S of piecewise polynomials on I characterized by

the mesh-degree combination Σ = (∆, ~p), defined as follows. Let the m + 1 ≥ 2
nodal points

−1 =: x0 < x1 < x2 < · · · < xm−1 < xm := 1(3.2)

be given; then the mesh ∆ is defined by

∆ = {Ii}mi=1, Ii = (xi−1, xi), hi = |Ii| = xi − xi−1(3.3)

(we will also write ∆ = {x0, x1, . . . , xm} where convenient).
The degree vector ~p is defined by

~p = (p1, p2, . . . , pm).(3.4)

Then

S(Σ) = {u : u|Ii ∈ Πpi(Ii), Ii ∈ ∆} ∩ C0[−1, 1].(3.5)

Obviously, S(Σ) ⊂ H1(I) and

dimS(Σ) = 1 +
m∑
i=1

pi, N = dimSD(Σ) = dimS(Σ)− 2.(3.6)

By (2.1), (3.1),

Bd(ud − uSd , v) = 0 ∀v ∈ S0(Σ),(3.7)

so that eSd = ud − uSd satisfies

‖eSd ‖d = inf
χ∈SD(Σ)

‖ud − χ‖d.(3.8)

Here the energy norm ‖ · ‖d, 0 < d ≤ 1, is defined by

‖v‖d = (Bd(v, v))1/2 = (d2|v|21 + ‖v‖20)1/2 ≈ d|v|1 + ‖v‖0.(3.9)
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The question we wish to explore here is the design of the spaces S(Σ) such that
‖eSd‖d has a good convergence rate g(N)→ 0 as N →∞ independent of d . To do
this, we recall the definition of robustness from [2].

Definition 3.1. The FEM for problem (3.1) using spaces SD(Σ) is robust with
uniform order g(N) for 0 < d ≤ 1 with respect to solution sets Hd = HB

d,M (or

HB
d,Πn

) and error measures Ed = ‖ · ‖d if and only if

lim
N→∞

((
sup
d∈(0,1]

sup
ud∈Hd

Ed(ud − uNd )

)
1

g(N)

)
= C <∞.

Although we concentrate here primarily on the energy norm, other error mea-
sures could be considered as well: the L2 norm obviously follows as a corollary,
while the maximum norm is considered in Corollary 5.1. Note that by (2.10), the
unscaled H1 norm of ud is not bounded uniformly for d ∈ (0, 1], so that we cannot
expect robustness with uniform order in this norm (see, e.g., estimates (4.3) in [13]).

Let ud ∈ HB
d,M . Using Theorem 2.1 and (3.8), we see immediately that for the

energy norm,

Ed(ud − uNd ) = ‖eSd‖d ≤ inf
χ∈SD

‖(uMd +AMd ua,d +BMd ūa,d)− χ‖d(3.10)

≤ inf
χ1∈S

χ1(±1)=uMd (±1)

‖uMd − χ1‖d

+ |AMd | inf
χ2∈S

χ2(±1)=ua,d(±1)

‖ua,d − χ2‖d + |BMd | inf
χ3∈S

χ3(±1)=ūa,d

‖ūa,d − χ3‖d.

Assume the space S(Σ) has the following approximation property:

inf
χ∈S

χ(±1)=u(±1)

‖u− χ‖1 ≤ F (N, k)‖u‖k, k = 1, 2, . . . ,(3.11)

where F (N, k) is some (optimal) approximation order (i.e., F (N, k) → 0 as N →
∞). Then for ud ∈ HB

d,M , by Theorem 2.1, the first infimum in (3.10) will tend

to zero at the rate KF (N, 2M) as N →∞, where K is a constant independent of
d (K only depends upon B and M). Also, we may assume by Theorem 2.1 that
|AMd |, |BMd | ≤ K, so that the second infimum in (3.10) will decrease at the rate

K
√
a Φ( da , S), where

Φ(d, S) = inf
χ∈S

χ(±1)=u1,d(±1)

‖u1,d − χ‖d(3.12)

= inf
χ∈S

χ(±1)=u1,d(±1)

{d2|u1,d − χ|21 + ‖u1,d − χ‖20}1/2.

By symmetry about x = 0, the last term in (3.10) will also have the same bound.
Then it may be shown that our FEM will be robust in the sense of Definition 3.1
if and only if Φ(d, S) in (3.12) can be bounded independently of d, i.e.,

sup
d∈(0,1]

Φ(d, S) ≤ G(N).(3.13)

In that case, by (3.10)–(3.13) and Definition 3.1, our FEM will be robust with
uniform order

g(N) = C max{F (N, 2M), G(N)}.(3.14)
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We will use the following related definition.

Definition 3.2. The spaces S(Σ) will be said to approximate boundary layers u1,d

robustly at the rate G(N ) in the energy norm if and only if (3.13) holds.

Remark 3.1. Our main concern in (3.14) is the rate G(N), i.e., finding spaces S(Σ)
such that (3.13) holds with G(N) → 0 uniformly at a sufficiently fast rate. This
is because in general, G(N) will be the dominant term in (3.14), the idea being
that M is large enough so that F (N, 2M) is sufficiently small. For the hp spaces
in §5, however, G(N) → 0 exponentially, so that the algebraic rate F (N, 2M)
achieved by assuming regularity in terms of finite M will dominate as N becomes
sufficiently large. This technical problem could be overcome by restricting the set of
solutions Hd in Definition 3.1 to those for which the first infimum in (3.10) decays
exponentially (or sufficiently fast). In particular, choosing Hd = HB

d,Πn
will make

this infimum vanish for suitable S(Σ) (see Theorem 5.2 ahead).

Remark 3.2. The FE spaces satisfying (3.13) constructed in this paper and the
estimates G(N) established for them are also applicable to various other problems
where the solution can be decomposed into boundary layers and smooth terms.

4. Approximation results for the p version

In this section, we will prove asymptotic error estimates for Φ(d, S) given by
(3.12) as p→∞, in the case that a single element I = (−1, 1) is used, i.e., S(Σ) =
Πp(I). Our first estimate (4.1) will be valid uniformly in d for the range p̃ > e/2d.

(For any integer k, we write k̃ = k + 1
2 .) We will also provide separate estimates

(again uniform in d) for the preasymptotic ranges
√

3/4d ≤ p̃ ≤ 2/d and 1 < p̃ <

Kd−
1
2 . Our final theorem will establish a uniform robustness rate of Cp−1

√
ln p

for the p version over a fixed mesh, which will be shown to be optimal (up to the
factor

√
ln p).

In order to estimate Φ(d, S), we will use the following lemma from [3, Chapter
3], that will give a concurrent approximation of u1,d(x) in the L2(I) norm and
H1(I) seminorm.

Lemma 4.1. Let u, u′ ∈ L2(I) and denote by

an = ñ

∫ 1

−1

u′(x)Pn(x)dx(4.1)

the Legendre coefficients of u′(x). Then there exists χ ∈ Πp(I) such that

χ(±1) = u(±1),(4.2)

‖u′ − χ′‖20,I =
∞∑
n=p

|an|2
ñ

,(4.3)

‖u− χ‖20,I ≤
∞∑
n=p

|an|2
n(n+ 1)ñ

,(4.4)

‖u′ − χ′‖0,I ≤ ‖u′ − ξ′‖0,I(4.5)

for any ξ ∈ Πp(I) satisfying ξ(±1) = u(±1).

For a proof, we refer to [3, Theorem 3.3.4].
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Remark 4.1. The polynomial χ above is obtained as an antiderivative of the trun-
cated Legendre expansion of u′, of degree p− 1. While by (4.5), this is optimal in
the H1(I) seminorm, it is nonoptimal in the ‖ · ‖d norm. Nevertheless, Lemma 4.1
will be sufficient for our purposes here.

The estimates in (4.3), (4.4) obviously depend on the size of the Legendre coef-
ficients an in dependence on d and n. The following lemma gives precise bounds
for these coefficients for our function u ≡ u1,d.

Lemma 4.2. Let u ≡ u1,d and an be defined by (4.1). Then with ñ = n+ 1
2 ,(

1− 2ν0

ñ

)
≤ an(d)

φ(n, d)
≤
(

1− 2ν0

ñ

)−1

for n = 1, 2, . . . ,(4.6)

where

φ(n, d) = (−1)n+1 d−
1
2 ñ

1
2

(1 + z2)
1
4

e−ñ(z−ξ(z)), z = (ñd)−1,(4.7)

ξ(z) = (1 + z2)
1
2 + ln

(
z

1 + (1 + z2)1/2

)
,(4.8)

ν0 =
1

6
√

5
+

1

12
≈ 0.158.

Proof. Using (4.1) and the fact that u′1,d = −d−1u1,d, we have

an = −ñ d−1e−1/d

∫ 1

−1

e−x/d
1

2nn!

dn

dxn
((x2 − 1)n) dx

= (−1)n+1d−n−1e−1/d ñ

2nn!

∫ 1

−1

(1− x2)ne−x/d dx.

Hence, by formula 3.387 of [10],

an(d) = (−1)n+1d−n−1e−1/d ñ

2n
√
π (2d)ñ Iñ(d−1)(4.9)

= (−1)n+1d−1/2
√

2π ñ e−1/d Iñ(d−1),

where Iñ(d−1) is the modified Bessel function ([10, 8.406]). Thus, to obtain the
asymptotic behavior of an(d), we must investigate Iñ(d−1). To this end, we use
asymptotic expansions of Iν(νz) that are uniform for z > 0. Such uniform expan-
sions have been obtained by F.W.J. Olver (see [9] and the references therein).

Let ν = ñ = n+ 1
2 and z = (νd)−1; then

e−1/dIñ(d−1) = e−νz Iν(νz).(4.10)

It is shown in [9] that

e−νzIν(νz) =

(
t

2πν

) 1
2

e−ν(z−ξ(z))
∑m
s=0

Us(t)
νs + εm(ν, t)

1 + εm(ν, 0)
,(4.11)

where t = (1 + z2)−1/2, m ≥ 0 is an integer, and the Us(t) are certain polynomials
of degree 3s in t (see [9]), the first two of which are given by

U0(t) = 1, U1(t) = (3t− 5t3)/24.(4.12)
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The εm in (4.10) are estimated by ([9])

|εm(ν, t)| ≤ ν

(ν − ν0)

V1
t (Um+1)

νm+1
,(4.13)

where

Vba(U) =

∫ b

a

|U ′(t)| dt and ν0 = V1
0 (U1) =

1

6
√

5
+

1

12
.

Simplifying (4.9) and using (4.10)–(4.13) with m = 0 yields, with φ(n, d) as in (4.7),
that

an = φ(n, d)
1 + ε0(ñ, t)

1 + ε0(ñ, 0)
.

The assertion then follows since

0 <
1 + ε0(ñ, t)

1 + ε0(ñ, 0)
≤
(

1− 2ν0

ñ

)−1

.

Remark 4.2. The bounds (4.6) are quite sharp, since, for example, for n ≥ 1 we
obtain that

0.7895 ≤ 1− 2ν0

ñ
,

(
1− 2ν0

ñ

)−1

≤ 1.2667.

Lemma 4.2 reduces the description of the asymptotic behavior of an(d) to a
discussion of the function φ(n, d). We then obtain the following bounds on the
approximation errors (4.3), (4.4).

Lemma 4.3. We have

‖u′ − χ′‖20 ≤
∞∑
n=p

θ+(n, d) e−2ñ(z−ξ(z)),(4.14)

‖u− χ‖20 ≤
∞∑
n=p

1

n(n+ 1)
θ+(n, d) e−2ñ(z−ξ(z)),(4.15)

‖u′ − χ′‖20 ≥
∞∑
n=p

θ−(n, d) e−2ñ(z−ξ(z)),(4.16)

where z = (ñd)−1, ξ(z) is as in (4.8) and

θ±(n, d) :=

(
1− 2ν0

ñ

)∓2

(d2 + ñ−2)−
1
2 .(4.17)

As is readily apparent from the expression for φ(n, d) in (4.7), we can expect
exponential decay of an as n → ∞ provided the function z − ξ(z) is positive and
of reasonable size. The following lemma provides bounds for z − ξ(z) in terms of
the asymptotes shown in Figure 1. The proof follows by elementary arguments.

Lemma 4.4. For any z > 0, we have z−ξ(z) ≥ 0. Moreover, the following bounds
hold:

−(1 + ln(z/2)) ≤ z − ξ(z) ≤ z − (1 + ln(z/2)),(4.18)

1

2z
− 1

24z3
≤ z − ξ(z) ≤ 1

2z
.(4.19)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1412 CHRISTOPH SCHWAB AND MANIL SURI

Figure 1. The function z− ξ(z) (- -) and its asymptotes 1/(2z)−
1/(24z3) (—) and −(1 + ln(z/2)) (· · ·)

We prove now an error bound for sufficiently large p (p̃ > e/2d).

Theorem 4.1. Let r := e/(2p̃d) < 1. Then for u ≡ u1,d there exists a polynomial
χ ∈ Πp(I) such that χ(±1) = u(±1) and

‖u′ − χ′‖0 ≤ C1d
−1/2rp̃(1− r2)−1/2,(4.20)

‖u− χ‖0 ≤ C0d
1/2rp̃(1− r2)−1/2.(4.21)

Here, Ci are independent of p and d (numerical values can be read off the proof ).

Proof. By (4.14), (4.17), we must estimate the sum

S+ =
∞∑
n=p

(
1− 2ν0

ñ

)−2

(d2 + ñ−2)−
1
2 e−2ñ(z−ξ(z))(4.22)

≤
(

1− 4ν0

3

)−2 ∞∑
n=p

d−1 e−2ñ(z−ξ(z)).

Using the lower bound in (4.18), we get

S+ ≤ (1− 4ν0/3)−2d−1
∞∑
n=p

( e

2ñd

)2ñ

(4.23)

= C2
1 d
−1

∞∑
n=p

r2ñ = C2
1 d
−1r2p̃(1− r2)−1.
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This is (4.20). To prove (4.21), we observe that r < 1 implies that

1

p(p+ 1)
≤ 9

8p̃2
≤ 9

8

(
4d2

e2

)
=

9d2

2e2
.

Hence,

1

p(p+ 1)
S+ ≤ C2

0 d r
2p̃(1− r2)−1, C2

0 =
9

2e2
C2

1 ,

and (4.21) follows.

Corollary 4.1. Let Φ(d, S) be as in (3.12). Then for r = e/(2p̃d) < 1,

Φ(d, S) ≤ C2d
1/2 rp̃(1− r2)−1/2, C2 = (C2

0 + C2
1 )1/2.(4.24)

Remark 4.3. The asymptotic rate of convergence with respect to p in (4.20) and
hence (4.24) is optimal up to a constant depending on d, since by (4.16),

‖u′ − χ′‖20 ≥
∞∑
n=p

θ−(n, d) e−2ñ(z−ξ(z)) =: S−.

Using the upper bound in (4.18) yields

S− ≥
(

1− 2ν0

p̃

)2 ∞∑
n=p

(d2 + ñ−2)−
1
2 e−2/d r2ñ

≥
(

1− 4ν0

3

)2

e−2/dd−1
∞∑
n=p

(1 + z2)−1/2 r2ñ

≥
(

1− 4ν0

3

)2

(1 + 4/e2)−
1
2 e−2/dd−1 r2p̃ (1− r2)−1,

since z = (ñd)−1 ≤ (p̃d)−1 < 2/e. Hence,

‖u′ − χ′‖0 ≥ C3 e
−1/d d−1/2 rp̃(1− r2)−1/2.

Now χ is the same polynomial as in Lemma 4.1, so that (4.5) holds. Comparing
the above estimate with (4.20), we see that (4.20), (4.24) are optimal in p for any
fixed d > 0 as p→∞.

The estimates in Theorem 4.1 are useful for the case that p̃ is large compared
to e/(2d). Such a situation arises in the next section, where this theorem will be
applied. In actual practice, if d is small, then it can be difficult to ever be in this
asymptotic range of p̃. The computational results in §6 show that convergence is
observed in the preasymptotic range p̃ ≤ e/(2d) as well. Therefore, we now obtain

estimates for the rate of decrease of the error in the range
√

3/(4d) ≤ p̃ ≤ e/(2d).
In Theorem 4.1, we used the bounds (4.18) as well as (4.19), the latter being

sharper for the range p̃ ≤ e/(2d), i.e., z ≥ 2/e (see Figure 1). It is seen that the
two lower bounds for z − ξ(z) in Lemma 4.4 intersect at the root of

1

2z
− 1

24z3
+ 1 + ln

(z
2

)
= 0,

i.e., at z∗ = 0.51388 . . . , which is close to 0.5. Our estimate will therefore be valid
for z ≥ 0.5, i.e., in the extended range

√
3/(4d) ≤ p̃ ≤ 2/d.
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Theorem 4.2. Assume that
√

3/(4d) ≤ p̃ ≤ 2/d. Then, for u ≡ u1,d, there exists
a polynomial χ ∈ Πp(I) such that χ(±1) = u(±1) and

‖u′ − χ′‖20 ≤ C2
1

(
p̃+

3

4d

)
exp(−2p̃2d/3) + C3 d

−1(e/4)4/d,(4.25)

‖u− χ‖20 ≤
9

8
C2

1 p̃
−2

(
p̃+

3

4d

)
exp(−2p̃2d/3) +

4

15
C3 d(e/4)4/d.(4.26)

Here the constants Ci are independent of p and d (and are given in the proof below).

Proof. Let us define the index sets

I1(d) = {n ∈ N : p̃ ≤ ñ < 2/d}, I2(d) = {n ∈ N : ñ ≥ 2/d}.
Then, taking χ to be the polynomial in Lemma 4.1, we have by (4.14)

‖u′ − χ′‖20 ≤ S1 + S2, Si =
∑
n∈Ii

θ+(n, d) e−2ñ(z−ξ(z)).

The quantities S1 and S2 will be estimated using the lower bounds in (4.19) and
(4.18), respectively. First, by (4.19),

S1 ≤
∑

n∈I1(d)

θ+(n, d) exp

(
−2ñ

(
1

2z
− 1

24z3

))
,(4.27)

where, since n ∈ I1(d), we have 0 < z−1 = ñd < 2, so that 0 < z−3 < 4z−1. Hence,

1

2z
− 1

24z3
≥ 1

2z
− 1

6z
=

1

3z
,

and (4.27), (4.17) give (with C1 = (1− 4ν0/3)−1 as in (4.23))

S1 ≤ C1

∑
n∈I1(d)

ñ(1 + ñ2d2)−1/2 e−
2
3 ñ

2d.

Now the function xe−
2
3x

2d attains its global maximum at x =
√

3/(4d) and is

decreasing for x >
√

3/(4d). Hence,

S1 ≤ C1

∑
n∈I1(d)

ñ e−
2
3 ñ

2d ≤ C1

(
p̃e−

2
3 p̃

2d +

∫ 2/d

p̃

xe−
2
3x

2ddx

)

≤ C1

(
p̃+

3

4d

)
e−

2
3 p̃

2d.

For the term S2, we use (4.18). Noting that ñ−1 ≤ d/2, we have

S2 ≤
∑
ñ≥2/d

θ+(n, d)
( e

2ñd

)2ñ

≤ C̃3d
−1

∑
ñ≥2/d

(e
4

)2ñ

,

where C̃3 = (1− ν0)−2
(

4
5

)1/2
. Summing the geometric series leads to the last term

in (4.25), where C3 = C̃3(1− e2/16)−1.
For the L2 estimates, (4.15) gives

‖u− χ‖20 ≤ S̃1 + S̃2, S̃i =
∑

n∈Ii(d)

1

n(n+ 1)
θ+(n, d) e−2ñ(z−ξ(z)), i = 1, 2.
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It is easy to see that

S̃1 ≤
1

p(p+ 1)
S1 ≤

9

8p̃2
S1.

Also, for n ∈ I2(d), we have n(n+ 1) ≥ 16− d2

4d2
≥ 15

4d2
for d ≤ 1, so that

S̃2 ≤
4d2

15
S2.

The theorem follows.

Theorem 4.2 leads to the following corollary.

Corollary 4.2. For
√

3/(4d) ≤ p̃ ≤ 2/d,

Φ(d, S) ≤ C4 e
− p̃

2d
3 + C5

(e
4

) 2
d

,(4.28)

where the constants Ci are independent of p, d.

Proof. Using the definition of Φ(d, S), we obtain from Theorem 4.2,

(Φ(d, S))2 ≤ C2
1

(
p̃+

3

4d

)(
d2 +

9

8
p̃−2

)
e−

2
3 p̃

2d +
19

15
C3

(e
4

) 4
d

.

Hence, (4.28) holds with C2
5 = 19

15C3 and

C2
1

(
p̃d2 +

3

4
d+

9

8
p̃−1 +

27

32

p̃−2

d

)
≤ C2

1

(
4p̃−1 +

3

2
p̃−1 +

9

8
p̃−1 +

9

8

)
≤ C2

4 .

We see from Corollary 4.2 that for small d, since the term C5(e/4)2/d is negligible,
the first term C4 exp(−(p̃2d)/3) in (4.28) will dominate. Hence, the error will
decrease at an exponential rate in this range when p̃2d/3 is large enough. For
p̃ > e/(2d), a better estimate may be provided by Theorem 4.1. When p̃2d/3 is

small (i.e., p̃ = Kd−
1
2 ), the estimate (4.28) deteriorates. We will therefore establish

another bound, which is valid in the range 1 < p̃ ≤ Kd−
1
2 . First, we prove the

following lemma.

Lemma 4.5. There exists a unique polynomial χ ∈ Πp(I) that minimizes ‖χ‖0
subject to the constraints χ(±1) = α±. This polynomial χ satisfies

1

C

max(|α+|, |α−|)
p

≤ ‖χ‖0 ≤ C
max(|α+|, |α−|)

p
,(4.29)

‖χ‖1 ≤ C max(|α+|, |α−|)p,(4.30)

with C > 1 a constant independent of α±, p.

Proof. We may write χ in the Legendre series expansion satisfying the end con-
straints,

χ(x) =

p∑
k=0

akPk(x),

p∑
k=0

ak(±1)k = α±.
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Introducing Lagrange multipliers for the constraints, we get the minimization prob-
lem

min
~a,λ+,λ−

F (~a, λ+, λ−) =

p∑
k=0

ωka
2
k + λ+(

p∑
k=0

ak − α+) + λ−(

p∑
k=0

ak(−1)k − α−),

where ωk = 2/(2k + 1). Let A = p(p + 1)2(p + 2)/4. Then it may be shown that
the unique minimizer for the above is given by

λ± =
2

A

(
α∓(−1)p

(p+ 1)

2
− α± (p+ 1)2

2

)
,

ak = (α+ + (−1)kα−)
((p+ 1)2 − (−1)p+k(p+ 1))

2Aωk
,

from which the bounds for ‖χ‖0 in (4.29) follow easily. The bound for ‖χ‖1 follows
by the inverse inequality for polynomials,

|χ|1 ≤ Cp−2‖χ‖0.

Theorem 4.3. Assume that 1 < p̃ ≤ Kd−
1
2 for some K (which may depend upon

p̃, d). Then for such p, d,

Φ(d, S) ≤ CKp−1,(4.31)

where the constant C is independent of K, p and d.

Proof. We note that for any χ ∈ Πp(I) satisfying χ(±1) = u1,d(±1),

Φ(d, S) ≤ C(‖u1,d‖d + d|χ|1 + ‖χ‖0).

We use (2.9) to bound ‖u1,d‖d and choose χ as in Lemma 4.5, with α± = u1,d(±1).
Then we obtain by (4.29), (4.30),

Φ(d, S) ≤ C(d
1
2 + dp+ p−1).(4.32)

Now since p̃ ≤ Kd−
1
2 , we have d

1
2 ≤ Kp̃−1. Substituting this in (4.32) gives

(4.31).

Let us now put together the results of Theorems 4.1–4.3. The following theorem
shows that the spaces S(Σ) = Πp(I) approximate boundary layers u1,d robustly
at the rate G(p) = Cp−1

√
ln p in the energy norm (in the sense of Definition 3.2).

Moreover, the best robust rate possible is Cp−1, so that the result established is
optimal up to a factor

√
ln p.

Theorem 4.4. Let S(Σ) = Πp(I). Then

Cp−1 ≤ G(p) = sup
d∈(0,1]

Φ(d, S) ≤ Cp−1
√

ln p,

where C is a constant independent of p.

Proof. Let d ∈ (0, 1] be arbitrary. Suppose first that

1 ≤ p̃

2
√

ln p
≤
√

3

4d
, i.e., 1 ≤ p̃ ≤

√
3 ln p

d
.

Then by Theorem 4.3, with K =
√

3 ln p, we have in this range

Φ(d, S) ≤ CKp−1 ≤ Cp−1
√

ln p.
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Next, for
√

3/(4d) ≤ p̃/(2
√

ln p) ≤ 2/(2d
√

ln p) we may use Corollary 4.2, by
which

Φ(d, S) ≤ C4e
−p̃2d/3 + C5

(e
4

) 2
d

.

Since p̃/(2
√

ln p) ≥
√

3/(4d), we have p̃2d/3 ≥ ln p, so that exp(−p̃2d/3) ≤ 1/p.

Also, since 2/d ≥ p̃, it follows that (e/4)
2/d ≤ (e/4)

p̃ ≤ p−1. Hence,

Φ(d, S) ≤ Cp−1(4.33)

in this range. Finally, it is easy to see that the estimate for Φ(d, S) for the range
p̃ > 2/d, given by Theorem 4.1, also satisfies (4.33).

To establish the lower bound, we note that by the triangle inequality, for any
χ ∈ Φp(I) with χ(±1) = u(±1),

Φ(d, S) ≥ ‖χ‖d − ‖u‖d
≥ ‖χ‖0 − ‖u‖d.

If d→ 0, then ‖u‖d → 0. But, by Lemma 4.5, ‖χ‖0 ≥ Cp−1, giving the result.

Suppose the p version is used with a fixed mesh for problems (3.1). Then the
rate F (N, k) in (3.11) satisfies

F (N, k) ≤ Cp−(k−1),

so that the first infimum on the right side of (3.10) will certainly be less than Cp−1,
uniformly in d whenever k ≥ 2. Using Theorem 4.4 on the whole interval [−1, 1],
we can bound the infima involving boundary layers uniformly by Cp−1

√
ln p (the

fact that we have more than one interval can only enhance this rate). Hence, the
p version is robust with uniform order Cp−1

√
ln p. Moreover, this robust rate is

optimal up to
√

ln p, since for d→ 0, the approximation of the boundary layer terms
in the end intervals cannot be better than Cp−1 by Theorem 4.4. We therefore have
the following result.

Theorem 4.5. The p version with fixed mesh for problems (3.1), 0 < d ≤ 1, is
robust with uniform order g(p) satisfying

Cp−1 ≤ g(p) ≤ Cp−1
√

ln p

with respect to solution sets HB
d,M (or HB

d,Πn
) and error measure the energy norm.

Remark 4.4. In terms of the number of degrees of freedom N , we see that g(N) ≈
N−1
√

lnN . This is essentially twice the best uniform rate of N−1/2 that can be
attained using the h version with a quasiuniform mesh [13]. Hence, the “doubling”
phenomenon for the rate of convergence for the p version, which is well known for
the case that (x + 1)α type singularities are present at x = −1 (see, e.g., [3]),
also occurs when the solution contains boundary layer components of the type
exp(−(x+ 1)/d) at x = −1.

5. Approximation results for an hp version

In the previous section, we showed that the p version over a single element yields
a super-exponential rate of convergence for p̃ > e/2d. Also, the error decreases at

the (exponential) rate exp(−p̃2d/3) in the preasymptotic range
√

3/(4d) ≤ p̃ ≤ 2/d
for small d. Unfortunately, in practice both these ranges may be difficult to achieve
if d is small and p is restricted (p ≤ 8 is typical in programs such as MSC/PROBE
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and STRESSCHECK), so that all that may be observed is the uniform rate of
O(p−1

√
ln p) predicted by Theorems 4.3, 4.4. In this section, we show that if only

one extra element of size O(pd) is inserted in the boundary layer, then robust
exponential convergence is achieved uniformly for 0 < d ≤ 1 as p increases. Since
the mesh is changed at each step when p is increased, we call this an hp version
FEM (more appropriately, it is an rp version FEM). Naturally, if the polynomial
degree p is sufficiently large, we have to allow a transition to the single-element
mesh analyzed in Theorem 4.1.

A more general question that could be considered is, given N degrees of freedom
(N as in (3.6)), for what mesh-degree combination Σ (i.e., choice of SD) is the
error minimized? We do not consider this theoretical question here, since the
simple two-element mesh below already gives exponential convergence, uniformly
in d. This mesh is easier to implement than a general hp version, and moreover, in
computational experiments performed using meshes with more elements, we were
unable to achieve better convergence rates (see §6 and [20]). Note that the mesh-
degree combination we propose is similar to the optimal mesh-degree combination
obtained for a related problem by Scherer in [14] (see Remark 5.2).

The following theorem is our main result in this section.

Theorem 5.1. Let I = (−1, 1) and u(x) = u1,d = exp(−(x + 1)/d). Let further
Σ = (∆, ~p) be such that for p ≥ 1

~p = {p, 1}, ∆ = {−1,−1 + κp̃d, 1} if κp̃d < 2,

~p = {p}, ∆ = {−1, 1} if κp̃d ≥ 2,

where 0 < κ0 ≤ κ < 4/e is a constant independent of p and d. Then there exists
up ∈ S(Σ) such that up(±1) = u(±1) and

‖u− up‖d ≤ d1/2C6 α
p̃, ‖u− up‖0 ≤ d1/2C7 α

p̃, ‖u′ − u′p‖0 ≤ d−1/2C8 α
p̃.

(5.1)

Here the constants are independent of p and d but depend on κ0 and

α :=

{
e/(2p̃d) if κp̃d ≥ 2,

max
{
κe/4, e−(κ−ε)

}
if κp̃d < 2

}
< 1,(5.2)

with ε > ln p/(2p) arbitrary.

Proof. If κp̃d ≥ 2, we have that r = e/(2p̃d) < 1, owing to our assumption that κ <
4/e. Therefore, Theorem 4.1 is applicable, and a p-increase in the single-element
mesh ∆ = {−1, 1} yields exponential convergence with the number r decreasing
with p.

Consider now the case κp̃d < 2, i.e., the two-element mesh ∆ = {−1,−1 +
κp̃d, 1}. We assume first that p̃ ≥ 2/κ0 and construct the function up(x) ∈ S(Σ)
elementwise. Denote I1 = (−1, a), where a = −1 + κp̃d, κ0 ≤ κ < 4/e, and let
s1 ∈ Πp(I1). Transforming I1 to I = (−1, 1), we see that for t = 0, 1,∫ a

−1

(
dt

dxt
(u− s1)

)2

dx =

(
2

κp̃d

)2t−1 ∫ 1

−1

(
dt

dyt
(ũ− s̃1)

)2

dy.

Here, f̃(y) denotes the image on I of any function f(x) defined on I1. Consequently,

we obtain that ũ(y) = exp(−(y + 1)κp̃/2) = u1,d̃(y), where d̃ = 2/κp̃.
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Since κ < 4/e, we have r := e/(2p̃d̃) = κe/4 < 1. Now Theorem 4.1 and Corol-
lary 4.1 apply uniformly to functions u ≡ u1,d for all d ∈ (0, 1]. Since p̃ ≥ 2/κ0 ≥
2/κ we have that d̃ < 1, and hence Theorem 4.1 and Corollary 4.1 will apply when d

is chosen to be d̃. Then, since r < 1, we obtain a polynomial sp ∈ Πp(I1) satisfying

sp(−1) = u(−1), sp(a) = u(a),(5.3)

and

‖ d
t

dxt
(u− sp)‖20,I1 ≤ C

2
t

(
2

κp̃d

)2t−1

d̃1−2t r2p̃

(1− r2)
, t = 0, 1,(5.4)

(d2‖u′ − s′p‖20,I1 + ‖u− sp‖20,I1)1/2 ≤ C2 d
1/2 rp̃

(1− r2)1/2
.(5.5)

This gives the asserted bound on I1 in the case p̃ > 2/κ0. Since this excludes only
finitely many values of p, these estimates hold for all p after possibly adjusting the
constants Ct, t = 0, 1, 2 in (5.4), (5.5).

As noted in Remark 4.1, the approximation sp(x) constructed via Lemma 4.1
is optimal in the | · |1 seminorm but not in the ‖ · ‖d norm. For fixed d > 0,
sp yields the optimal-order error as p → ∞, but is suboptimal as d → 0, owing
to the enforcement of the interpolation condition (5.3). Therefore, we modify sp
as follows: let up = sp − s1 + s̃1, where s1 is the linear interpolant of u1,d(x) at
x = −1 and x = a, and s̃1 is a linear function such that s̃1(−1) = u(−1) and
s̃1(a) = max{d1/2u(a), u(1)}. Then

‖u− up‖d,I1 = ‖u− (sp − s1 + s̃1)‖d,I1(5.6)

≤ ‖u− sp‖d,I1 + ‖s1 − s̃1‖d,I1 .

The first term was estimated in (5.5), so we estimate the second term. We have∫ a

−1

(s1 − s̃1)2dx ≤ max
−1≤x≤a

|(s1 − s̃1)(x)|2 (1 + a)

≤ |(1−
√
d)u(a)|2 (1 + a).

Since 1 + a = κp̃d and u(a) = exp(−(a+ 1)/d) = exp(−κp̃), we get

‖s1 − s̃1‖20,I1 ≤ e
−2κp̃κp̃d.

Also, ∫ a

−1

(s′1 − s̃′1)2dx ≤ (1−
√
d)2 |u(a)|2 (1 + a)−1 ≤ e−2κp̃

κp̃d
.

Hence,

d‖s′1 − s̃′1‖0,I1 ≤
d1/2

√
κp̃
e−κp̃

and altogether

‖s1 − s̃1‖d ≤ d
1
2

(
κp̃+

1

κp̃

) 1
2

e−κp̃(5.7)

≤ d 1
2

(
κ+

1

κ

) 1
2

e−(κ−ε)p̃
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for any ε >
ln p̃

2p̃
(ε =

1

2e
works for all p). Then, from (5.5)–(5.7),

‖u− up‖2d,I1 ≤ C̃
2
0 d

{(κe
4

)2p̃

+ e−2(κ−ε)p̃
}
.(5.8)

Next we consider I2. Here we select up ∈ Π1(I2) to be the linear interpolant

between max{d1/2u(a), u(1)} at x = a and u(1) at x = 1. One verifies that

up(x) = (u(1)−max{u(1),
√
d u(a)})(x− a)

1− a + max{u(1),
√
d u(a)}.(5.9)

Now let
2

κd
≥ p̃ ≥ 2

κd
− | ln d|

2κ
. Then, since

| ln d|
2κ

≤ e−1

2κd
, we have p̃ ≥ (4− e−1)

2κd
in this range. Also,

u(1) ≥
√
d u(a) and 1− a ≤ | ln d|d

2
≤ ln

(
2p̃κ

(4− e−1)

)
d

2
.

Hence, ∫ 1

a

u2
p dx ≤ u2(1)

| ln d|d
2

≤ d

2
ln

(
2p̃κ

(4− e−1)

)
e−2κp̃ ≤ C̃1 de

−2(κ−ε)p̃,(5.10)

∫ 1

a

(u′p)
2 = 0.

Next, for p̃ <
2

κd
− | lnd|

2κ
,

u(1) <
√
d u(a) and

1

1− a ≤
2

d| ln d| .

Hence, ∫ 1

a

u2
p dx ≤ (

√
d u(a))2 (1− a) ≤ 2de−2κp̃,(5.11)

∫ 1

a

(u′p)
2dx ≤ 2d u2(a)

| ln d| d ≤
2e−2κp̃

| ln d| .

For d ≤ e−1, this gives

d2

∫ 1

a

(u′p)
2dx ≤ 2d2e−2κp̃.(5.12)

For e−1 < d ≤ 1, we have by (5.9) that∫ 1

a

(u′p)
2 dx ≤ 2

(
(u(1)− u(a))2

1− a +
(1−

√
d)2 u2(a)

1− a

)
.

By the Mean Value Theorem, there exists ξ ∈ [a, 1] such that u(1) − u(a) =
u′(ξ)(1− a), so that

d2

∫ 1

a

(u′p)
2dx ≤ 2e−2( ξ+1

d )(1− a) + 4d
(1−

√
d)2 u2(a)

| ln d|(5.13)

≤ C̃2de
−2κp̃
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uniformly as d→ 1, where C̃2 may be explicitly evaluated. Hence, we conclude by
(5.10)–(5.13) that

‖up‖2d,I2 ≤ C̃3 d e
−2(κ−ε)p̃.(5.14)

Also, it is easy to verify that

‖u‖20,I2 ≤
d

2
e−2κp̃, ‖u′‖20,I2 ≤

2

d
e−2κp̃,(5.15)

so that by (5.14), (5.15) and the triangle inequality,

‖u− up‖2d,I2 ≤ C̃4de
−2(κ−ε)p̃.(5.16)

Then the first inequality in (5.1) follows from Theorem 4.1, (5.8), (5.16). The other
two inequalities also follow from the estimates above.

Remark 5.1. The constant κ in Theorem 5.1 could be selected such that κ∗e =
4e−κ

∗
, which yields κ∗ ≈ 0.71. This gives α ≈ e−κ

∗
in (5.2) when two elements

are being used. This value for κ∗ is, however, not optimal since it is obtained by
optimizing some upper bounds. The optimal choice of κ is numerically addressed
in §6 ahead. Use of the above value of κ∗, however, simplifies the bounds above.

Remark 5.2. The choice of Σ = (∆, p̃) used in Theorem 5.1 is similar to that
obtained by Scherer in [14]. He considered the best mesh-degree combination (for
a fixed number of degrees of freedom N) that would minimize the L∞ error of best
approximation (by discontinuous piecewise polynomials) of the function e−x on the
interval [0,∞). He was able to solve this problem explicitly — the asymptotically
optimal Σ was given by ∆ = {0, q0(p + 1),∞}, ~p = {p, 1}, where p = N − 2
and q0 = 0.89548641 . . . . For this Σ, Scherer showed that the asymptotic L∞

convergence rate was e−q0N = e−q0(p+2), which (up to an algebraic factor in N)
was, asymptotically, the best possible for any mesh-degree combination.

We can also deduce pointwise error bounds.

Corollary 5.1. Under the assumptions of Theorem 5.1 we have

‖u− up‖L∞(I) ≤ C9α
p̃(5.17)

with α as in Theorem 5.1.

Proof. This follows from (5.1) and the interpolation inequality

‖v‖L∞(I) ≤ 2‖v‖1/2L2(I) ‖v
′‖1/2L2(I).

Remark 5.3. The estimates in Theorem 5.1, Corollary 5.1 are obtained using poly-
nomials of degree 1 in I2. They evidently remain valid if I2 is subdivided and/or
the degree p is greater than 1 in I2.

Theorem 5.1 says that it is sufficient to use two intervals of the type described to
resolve boundary layers with a robust exponential convergence rate. As discussed
in §2, the solution will typically have other (smoother) components as well. For the
approximation of these components, the mesh-degree combination of Theorem 5.1
will typically not be sufficient and will have to be enhanced (e.g., by subdivision
or p-increase in element 2). This enhancement will ensure that the rate F (N, k)
in (3.11), which measures the approximation of these smoother components, is
sufficiently rapid. For solutions in HB

d,M , the robust rate of convergence g(N) of

the hp version will then be given by (3.14), where G(N) represents the exponential
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rate (5.1). As noted in Remark 3.1, the overall rate will be exponential only if
the smooth components are also approximated exponentially. One such case occurs
when f is a polynomial, as noted in the theorem below. (Note that we have a
boundary layer at each end-point now.)

Theorem 5.2. Consider the hp version for problem (3.1), 0 < d ≤ 1, with Σ =
(∆, ~p) given by

~p = {p, p, p}, ∆ = {−1,−1 + κp̃d, 1− κp̃d, 1} if κp̃d < 1,(5.18)

~p = {p, p}, ∆ = {−1, 0, 1} if κp̃d ≥ 1,

where κ is as in Theorem 5.1. Let α < 1 be defined as in (5.2) (with the condition
κp̃d < 2 replaced by κp̃d < 1). Then there exists a constant C > 0 independent of
p and d such that with respect to solution sets HB

d,Πn
and error measure the energy

norm, this version is robust with uniform order g(p) = Cd1/2αp̃ for p ≥ n.

Proof. The theorem follows easily by (3.10), Corollary 2.1 and Theorem 5.1.

6. Numerical results

In this section, we present the results of numerical computations for the model
problem (1.2)–(1.3), where:

f(x) ≡ 1, α+ = α− = 0, a = 1.(6.1)

The exact solution is then given by

ud(x) = 1− cosh(x/d)

cosh(1/d)
,(6.2)

so that

‖ud‖2d = Bd(ud, ud) = (1, ud) = 2− 2d tanh(1/d) = O(1).(6.3)

Note that since f(x) is a polynomial of degree 0, Corollary 2.1 applies. Noting
(6.3), we conclude that the relative error in the energy norm,

ER(d) = ‖ud − uSd‖d/‖ud‖d,
should behave like Φ(d, S) given by (3.12). All graphs shown in this section will
depict ER(d) versus the number of degrees of freedom in the finite element method.
The value of d (and, where applicable, of κ) will be stated with the figures. All
computations were done in double precision on an SGI indigo2 workstation using
MATLAB 4.1.

We first consider the p version over a single element. Figure 2 shows ER(d)
plotted versus the number of degrees of freedom N = p− 1, for various values of d,
in a semilog scale. By Corollary 4.1, for p̃ > e/2d, the error will be in the asymptotic
(superexponential) range. This is only reached, however, when p ≈ 13 for d = 0.1,
p ≈ 136 for d = 0.01, p ≈ 1359 for d = 0.001 and p ≈ 13, 591 for d = 0.0001. We
see that, except for the first value, none of the rest can be considered as within a
practical range of p. For d = 0.1, however, the graph in the semilog scale of Figure
2 is close to a straight line for p in this range, showing agreement with the theory.

Turning to the case d = 0.01, we note that Corollary 4.2 predicts for d small and√
3/(4d) ≤ p̃ ≤ 2/d, i.e., 5 ≤ p ≤ 200, that log(ER) should behave like −γ p̃2d,

where γ > 0 is independent of d (the value of γ in Corollary 4.2 is 1/3, but this may
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Figure 2. The p version with one element

not be optimal). Hence, we should observe a parabolic curve for d = 0.01 when p
is large enough. Again, the graph in Figure 2 is consistent with this bound.

As d becomes even smaller, the error in Figure 2 is seen to deteriorate further.
For 1 ≤ p̃ ≤ Kd− 1

2 , Theorem 4.3 predicts a convergence rate of only CKp−1. This
is precisely what is observed in Figure 6 (d = 10−3) and Figure 7(d = 10−6) ahead.
The graphs are now in a log− log scale, and we observe straight lines with slope
−1. The “doubling” over the rate of convergence with the uniform h version is also
clearly apparent from these figures.

Let us now consider the hp version, i.e., the p version on a variable mesh. Since
our model solution (6.1) has a boundary layer at each endpoint of the domain, the
minimum number of elements as in Theorem 5.2 will now be 3, with Σ given by
(5.18). (Since f is a polynomial of degree 0, we can actually take the minimal
degree vector to be ~p = {p, 1, p}.) From Theorem 5.2, we have the error estimate

ER ≤ C(κ)d1/2αN/2, N = dim(S0(Σ)) = 2p+ 1,(6.4)

with α given by (5.2). The experiments in Figure 3, obtained with κ = κ∗ = 0.71,
clearly show the uniform exponential convergence as well as the factor d1/2, since
log(ER(d)) plotted against N is a straight line, which translates downwards as d
decreases. By Remark 5.1, for κ = 0.71, we have α ≈ e−0.71 for p large — this is
the same value that emerges by measuring the slopes in Figure 3. Note that the
striking accuracy obtained for small d is not possible with a comparable number of
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Figure 3. The hp version for three elements with κ = 0.71

degrees of freedom and methods based on a single element (see, e.g., the results in
[7, 5]).

In Figure 4, we investigate the convergence of the three-element hp version for
different values of κ, when d = 10−6 (other values of d show similar results). We
observe that κ = κ∗ = 0.71 is not quite optimal, since κ = 1 gives better results.
Careful examination shows that the graph for κ = 1 consists of two linear pieces
with different slopes. This is due to the fact that initially, the error in the central
interval is dominant, so that the value of α in (5.2), (6.3) is close to e−κ. As p
increases, the size of this interval decreases and the error in the other two intervals
eventually dominates, with α behaving like κe/4. (Recall that we obtained κ∗ by
setting e−κ equal to κe/4, so that only one straight line is observed in this case.)

Finally, in Figures 5 – 7, we show a performance comparison between the various
methods for d = 10−2, 10−3 and 10−6, respectively (smaller values of d up to
10−8 were tested, for which the behavior was similar to d = 10−6). In these
figures, we have shown the results with four methods: (a) the p version with one
element, (b) the h version with p = 1, (c) the hp version with 3 elements taking
~p = (p, p, p) and κ = 1 and (d) the h version (taking p = 1) with the exponential
mesh ∆ = {−1, x1, . . . , xm−1, 1}, where, for m even,

xm
2 ±i = ∓dp̃ ln

(
1− c2i

m

)
, i = 0, . . . ,

m

2
,(6.5)
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Figure 4. The dependence on parameter κ

with c = 1− exp(−1/(dp̃)). The mesh (6.5) is derived in [16, 20]. We observe the
following.

(i) The uniform h version converges with order O(N−1/2), the p version on a
single element with order O(N−1), and the h version with exponential mesh
at the optimal algebraic rate of O(N−1).

(ii) Both the h version with exponential mesh and the hp version have an error
which behaves like O(d1/2) in dependence on d. The other two versions do
not display this translation as d→ 0.

(iii) For d = 10−2, the p version rapidly reaches a superexponential rate, and even-
tually becomes the method with the fastest convergence. Asymptotically, i.e.,
for κp̃d > 2 and fixed d, the p version with a single element will always have
the best convergence rate according to Theorems 4.1 and 5.1. Accordingly,
Theorem 5.1 indicates that at about κp̃d = 2 one must switch from the hp ver-
sion to a single-element p version. For d = 10−2, this is apparent in Figure 5,
where the one-element p version becomes superior at some point. However, as
is clearly visible in Figures 6 and 7, this point may occur so late that the only
feasible method (in the practical range of p) is the three-element hp version.
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Figure 5. Comparison of various methods, d = 10−2

Appendix

We prove Theorem 2.1. For M ∈ N, we define

ωMd (x) =
M∑
k=0

d2ka−2k−2f (2k)(x).(6.6)

Then we see, using (1.2), that RMd = ud − ωMd satisfies

LdR
M
d = f − LdωMd = (d/a)2M+2f (2M+2)(x) =: g(x).(6.7)

For M large, we see that ωMd will satisfy (1.2) up to the correction g(x). However, in
general, the boundary conditions (1.3) will not be satisfied. We therefore introduce
appropriate boundary layer terms to enforce (1.3). For this purpose, we define
uBLk (x) to be the unique solution of

Ldu
BL
k (x) = 0 on I,(6.8)

uBLk (±1) = C±k := δ0,kα
± − a−2k−2f (2k)(±1).(6.9)

Then with ua,d and ūa,d as defined in (2.4), we may verify that

uBLk (x) = Akua,d(x) +BK ūa,d(x),(6.10)
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Figure 6. Comparison of various methods, d = 10−3

where

Ak =
C−k − C

+
k e
−2a/d

1− e−4a/d
, Bk =

C+
k − C

−
k e
−2a/d

1− e−4a/d
.(6.11)

Then we write

UBLM (x) =
M∑
k=0

d2kuBLk (x) = AMd ua,d(x) +BMd ūa,d(x),

where AMd =
∑M
k=0 d

2kAk and BMd =
∑M
k=0 d

2kBk. We see that

|AMd | ≤
M∑
k=0

d2k|Ak| ≤ (1− e−4a)−1
M∑
k=0

d2k(|C−k |+ |C
+
k |),(6.12)

with a similar bound holding for |BMd |. Equation (2.7) follows from (6.12) and
(6.9).

We now define

rMd = ud − ωMd −AMd ua,d −BMd ūa,d = RMd − UBLM .

Then rMd ∈ H1
0 (I) and rMd satisfies (6.7). Hence,

‖rMd ‖2E := Bd(r
M
d , r

M
d ) = (g, rMd ) ≤ ‖g‖0 ‖rMd ‖E.
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Figure 7. Comparison of various methods, d = 10−6

From this we deduce (using (6.7)) that

‖rMd ‖0 ≤ a−1(d/a)2M+2‖f (2M+2)‖0, |rMd |1 ≤ a−1(d/a)2M+1‖f (2M+2)‖0.(6.13)

Since rMd satisfies (6.7), we may differentiate (6.7) successively to obtain, using
(6.13),

|rMd |` ≤ a−1(d/a)2M+2−`‖f (2M+2)‖0 + a−2
`−2∑
k=0

(d/a)2M+2−`+k‖f (2M+2+k)‖0,

(6.14)

where ` = 0, 1, . . . , 2M . Moreover, from (6.6), we see that for ` = 0, 1, . . . , 2M

|ωMd |` ≤ a−2
M∑
k=0

(d/a)2k‖f (2k+`)‖0.(6.15)

Define uMd = ωMd + rMd . Then (2.5) holds. Also, using (6.14)–(6.15), we may
establish (2.6).

Remark 6.1. Suppose f ∈ Π2M+1(I). Then in (6.7), we have g(x) ≡ 0, so that,
since rMd ∈ H1

0 (I) satisfies (6.7), we must have rMd = 0. Hence, uMd = ωMd , and it
is seen by (6.6) that uMd ∈ Π2M+1(I).
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