〇 Open access • Journal Article • DOI:10.1112/S002557930001069X

The p-periodicity of the groups GL ($\mathrm{n}, \mathrm{Os}(\mathrm{K})$) and $\mathrm{SL}(\mathrm{n}, \mathrm{Os}(\mathrm{K}))$

- Source link
B. Bürgisser, B. Eckmann

Published on: 01 Jun 1984 - Mathematika (London Mathematical Society)

Related papers:

- On the Stability and Gelfand Property of Symmetric Pairs
- SL2 over group rings of cyclic groups
- The homotopy types of $\mathrm{SU}(\mathrm{n})$-gauge groups over S6
- Homological vanishing for the Steinberg representation
- Criterion for the Equality of Norm Groups of Idele Groups of Algebraic Number Fields

ETHzürich

The p-periodicity of the groups GL (n, Os(K)) and SL(n, Os(K))

Journal Article

Author(s):

Bürgisser, B.; Eckmann, B.

Publication date:

1984

Permanent link:

https://doi.org/10.3929/ethz-b-000422878

Rights / license:

In Copyright - Non-Commercial Use Permitted

Originally published in:

Mathematika 31(1), https://doi.org/10.1112/S002557930001069X

THE p-PERIODICITY OF THE GROUPS $\operatorname{GL}\left(n, O_{S}(K)\right)$ AND $\operatorname{SL}\left(n, O_{S}(K)\right)$

B. BÜRGISSER AND B. ECKMANN

§1. Introduction. 1.1. In this paper we investigate the p-periodicity of the S-arithmetic groups $G=\operatorname{GL}\left(n, O_{S}(K)\right)$ and $G_{1}=\operatorname{SL}\left(n, O_{S}(K)\right)$ where $O_{S}(K)$ is the ring of S-integers of a number field K (cf. [12, 13]; S is a finite set of places in K including the infinite places). These groups are known to be virtually of finite (cohomological) dimension, and thus the concept of p-periodicity is defined; it refers to a rational prime p and to the p-primary component $\hat{H}^{i}(G, A, p)$ of the FarrellTate cohomology $\hat{H}^{i}(G, A)$ with respect to an arbitrary G-module A. We recall that \hat{H}^{i} coincides with the usual cohomology H^{i} for all i above the virtual dimension of G, and that in the case of a finite group (i.e., a group of virtual dimension zero) the \hat{H}^{i}, $i \in \mathbb{Z}$, are the usual Tate cohomology groups. The group G is called p-periodic if $\hat{H}^{i}(G, A, p)$ is periodic in i, for all A, and the smallest corresponding period is then simply called the p-period of G. If G has no p-torsion, the p-primary component of all its \hat{H}^{i} is 0 , and thus G is trivially p-periodic.

We shall determine the rational primes p for which the above S-arithmetic groups are p-periodic, and compute the value of the p-period.

Partial results in that direction have been obtained earlier [3]. The present procedure is simpler and yields complete answers.
1.2. Our method is based on the following fact. Let G be any group of virtually finite dimension, and N a torsion-free normal subgroup of finite index in G. If G / N is p-periodic with p-period m_{p}, then G itself is p-periodic with p-period dividing m_{p} (see Section 5). In the case of the S-arithmetic groups G and G_{1} above we take for N or N_{1}, respectively, the principal congruence subgroup of G or G_{1}, with respect to a certain prime ideal P of $O_{s}(K)$. This prime ideal can be chosen in such a way that N and N_{1} are torsion-free and that the absolute norm $\mathfrak{N}(P)=\left|O_{S}(K) / P\right|=q$ is a rational prime suitable for our purpose. Then

$$
G_{1} / N_{1} \cong \mathrm{SL}\left(n, \mathbb{F}_{q}\right) \subset G / N \subset \mathrm{GL}\left(n, \mathbb{F}_{q}\right)
$$

Thus the task is reduced essentially to investigating the p-periodicity of the finite groups $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ and $\operatorname{SL}\left(n, \mathbb{F}_{q}\right)$. It turns out (Section 4) that both these groups are p-periodic if $\frac{1}{2} n<h_{p}(q) \leqslant n$, where $h_{p}(q)$ is the order of the residue class of q in $(\mathbb{Z} / p \mathbb{Z})^{*}$; and that then the p-period is $2 h_{p}(q)$.

The "suitable choice" of P is such that, in addition to rendering N and N_{1} torsion-free, its norm $\mathfrak{N}(P)=q$ fulfills $h_{q}(p)=\phi_{K}(p)$, the degree over K of the p-th cyclotomic extension $K\left(\zeta_{p}\right)$ of K. It then follows that G and G_{1} are p-periodic for $\frac{1}{2} n<\phi_{K}(p) \leqslant n$ with p-period dividing $2 \phi_{K}(p)$.
1.3. The existence of such a prime ideal is guaranteed by a number-theoretic lemma which we formulate and prove in Section 2, in a slightly more general version than actually needed (Lemma 2.2).

Let p be an odd rational prime, and r a positive integer. There exist infinitely many prime ideals P in $O_{S}(K)$ such that $\mathfrak{M}(P)$ is a rational prime q whose residue class has order $\phi_{K}\left(p^{r}\right)$ in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$.

This lemma is useful also for other applications, in particular, in computations concerning the projective class group of certain arithmetic groups (see [7]), and in connection with topological problems as mentioned in [4].
1.4. In order to obtain, for the appropriate rational primes p, the precise value of the p-period of the groups G and G_{1} we exhibit certain finite subgroups; they are obtained as semi-direct products of the group of p-th roots of unity with the Galois group of $K\left(\zeta_{p}\right)$ over K. Since quite generally any subgroup of a p-periodic group is also p-periodic, with p-period dividing that of the group, we thus get lower bounds for the p-periods of G and G_{1}. It turns out that they agree with the upper bounds $2 \phi_{K}(p)$ except for the special case $\operatorname{SL}\left(\phi_{K}(p), O_{S}(K)\right.$). The final results (Theorems 5.2 and 5.4 with Remarks) are as follows.

The groups $\mathrm{GL}\left(n, O_{S}(K)\right), n>0$, and $\mathrm{SL}\left(n, O_{S}(K)\right), n>2$, are p-periodic for all rational primes p with $\frac{1}{2} n<\phi_{K}(p) \leqslant n$; the p-period is $2 \phi_{K}(p)$ except for $\operatorname{SL}\left(\phi_{K}(p), O_{S}(K)\right)$ where it is either $\phi_{K}(p)$ or $2 \phi_{K}(p)$ depending on the number field K. For $\phi_{K}(p) \leqslant \frac{1}{2} n$ they are not p-periodic, and for $\phi_{K}(p)>n$ they have no p-torsion. The group $\operatorname{SL}\left(2, O_{S}(K)\right)$ is periodic (i.e., p-periodic for all p) with period 2 or 4.
§2. The number-theoretic lemma. 2.1. We consider an algebraic number field K and its ring of integers $O(K)$. Let $\mathfrak{M}(I)$ denote the absolute norm $|O(K) / I|$ of the ideal I in $O(K)$.

Lemma 2.1. Let p be an odd prime number and r a positive integer. There exist infinitely many prime ideals P of $O(K)$ such that $\boldsymbol{M}(P)=q$ is a prime number whose residue class has order $\phi_{K}\left(p^{r}\right)$ in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$.

Proof. The Galois group $\operatorname{Gal}\left(K\left(\zeta_{p r}\right) / K\right)$ is cyclic of order $\phi_{K}\left(p^{r}\right)$; let σ be a generator, i.e. $\sigma\left(\zeta_{p^{r}}\right)=\zeta_{p^{r}}^{s}$ where the order of the residue class of s in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$ is $\phi_{K}\left(p^{r}\right)$.

We shall use results and notations of [11], Chapters IV and V. We consider the following "modulus" m. Let m_{∞} be the product of all real places of K, and $m_{0}=p^{r} O(K)$, and $m=m_{0} m_{\infty}$. Let $K_{m, 1}$ be defined by
$K_{m, 1}=\{x / y ; x, y \in O(K)$ with $x O(K)$ and $y O(K)$
relatively prime to m_{0} and $\left.x / y \equiv 1 \bmod m\right\} ;$
and I_{K}^{m} the subgroup of the ideal group of K generated by all prime ideals not dividing m_{0}. The Artin map

$$
\phi: I_{K}^{m} \rightarrow \operatorname{Gal}\left(K\left(\zeta_{p^{*}}\right) / K\right)
$$

is surjective, and its kernel contains the image $i\left(K_{m, 1}\right)$ of the embedding of $K_{m .1}$ in the ideal group by the reciprocity law for $\left(K\left(\zeta_{p_{r}}\right), K, m\right)$. Take $J \in I_{K}^{m}$ such that $\phi(J)=\sigma$. Then $\phi^{-1}(\sigma)=J \operatorname{ker} \phi \supset J i\left(K_{m, 1}\right)$. By the generalized Dirichlet theorem
there are in $\phi^{-1}(\sigma)$ infinitely many prime ideals, even if we require them to be of relative degree 1 (over \mathbb{Z}).

Let P be such a prime ideal of $O(K)$. The Frobenius automorphism

$$
\left(\frac{K\left(\zeta_{p^{p}}\right) / K}{P}\right)
$$

is equal to $\sigma \in \operatorname{Gal}\left(K\left(\zeta_{p}\right) / K\right)$. Since the relative degree of P is 1 , we have $O(K) / P \cong \mathbb{Z} / q \mathbb{Z}$ where q is the rational prime over which P lies ($P \cap \mathbb{Z}=q \mathbb{Z}$). The Frobenius automorphism

$$
\left(\frac{\mathbb{Q}\left(\zeta_{p^{r}}\right) / \mathbb{Q}}{q}\right)
$$

is the restriction of σ to $\mathbb{Q}\left(\zeta_{p}\right)$; i.e.,

$$
\zeta_{p^{\prime}}^{q}=\sigma\left(\zeta_{p^{\prime}}\right)=\zeta_{p^{r}}^{s},
$$

whence $q \equiv s \bmod p^{r}$. Thus q has order $\phi_{\kappa}\left(p^{r}\right)$ in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$.
2.2. We now consider the ring of S-integers $O_{S}(K)$ in K. Let Σ be the set of all places of K and S a subset of Σ containing Σ^{∞}, the set of infinite places. Then

$$
O_{S}(K)=\bigcap_{Q \in \Sigma-S} O_{Q}
$$

where O_{Q} is the valuation ring of Q. Hence $O_{S}(K)$ is a Dedekind ring with quotient field K.

If S above is a finite set then (cf. [12] or [13]) GL $\left(n, O_{S}(K)\right)$ is virtually of finite dimension.

Lemma 2.2. Let S be a finite set of places including Σ^{∞}. Then the assertion of Lemma 2.1 also holds for $O_{S}(K)$.

Indeed, all the prime ideals P occurring in Lemma 2.1, except for finitely many of them, generate prime ideals $P^{\prime}=P O_{S}(K)$ of $O_{S}(K)$, and $\mathfrak{M}\left(P^{\prime}\right)=\left|O_{S}(K) / P^{\prime}\right|=|O(K) / P|=\mathfrak{M}(P)$.
§3. Finite subgroups. 3.1. Notation. R is an integrally closed domain of characteristic zero, K its field of quotients, ζ_{m} a primitive m-th root of unity in an algebraic closure of $K, \quad \phi_{K}(m)=\left[K\left(\zeta_{m}\right): K\right], \quad Z_{m}=\left\langle\zeta_{m}\right\rangle$ the group of all m-th roots of unity, $C_{k}=\langle t\rangle$ any multiplicative cyclic group of order k with generator t (m, k are arbitrary natural numbers).

Let p be a rational prime, and let $C_{\phi_{K}(p)}$ operate on Z_{p} through the isomorphism $C_{\phi K(p)} \cong \operatorname{Gal}\left(K\left(\zeta_{p}\right) / K\right)$ which maps t to a generator σ of the Galois group.

Proposition 3.1. The semi-direct product $Z_{p} \rtimes C_{\phi_{K}(p)}$ is p-periodic with p-period $2 \phi_{\kappa}(p)$.

Proof. Obviously Z_{p} is a p-Sylow subgroup of $G=Z_{p}>C_{\phi K(p)}$. Since it is cyclic, G is p-periodic ($c f$. [8, Chap. XII]). The p-period is given (cf. [14]) by $2\left|N_{G}\left(Z_{p}\right) / C_{G}\left(Z_{p}\right)\right|$ where N_{G} denotes the normalizer, C_{G} the centralizer in G. Now $N_{G}\left(Z_{p}\right)=G$ and $C_{G}\left(Z_{p}\right)=Z_{p}$, and hence the p-period is $2 \phi_{K}(p)$.
3.2. The group in Proposition 3.1 can be embedded in $\operatorname{GL}\left(\phi_{K}(p), R\right)$, as follows. Since the irreducible polynomial in $K[x]$ of ζ_{p} is of degree $\phi_{K}(p)$ and has coefficients in R, the R-module $R\left[\zeta_{p}\right]$ is free with basis $1, \zeta_{p}, \ldots, \zeta_{p}^{\phi_{K}(p)-1}$. We can thus identify $\operatorname{GL}\left(\phi_{K}(p), R\right)$ with the group of R-module automorphisms Aut ${ }_{R} R\left[\zeta_{p}\right]$. Multiplication $\mu_{\zeta_{p}}$ with ζ_{p} is an element of that group, and so is any element σ^{s} of $\operatorname{Gal}\left(K\left(\zeta_{p}\right) / K\right)$ if restricted to $R\left[\zeta_{p}\right]$.

We consider the subgroup $S=\left\{\mu_{\zeta_{p}}^{r} \sigma^{s} ; \quad 0 \leqslant r<p, \quad 0 \leqslant s<\phi_{\kappa}(p)\right\} \quad$ of $\mathrm{Aut}_{R} R\left[\zeta_{p}\right]$. The map $Z_{p} \rtimes C_{\phi_{K}(p)} \rightarrow S$ given by $\zeta_{p} \mapsto \mu_{\zeta, p}, t \mapsto \sigma$ is easily seen to be an isomorphism. Thus $Z_{p} \rtimes C_{\phi_{K}(p)}$ is realized as a subgroup of $\operatorname{GL}\left(\phi_{K}(p), R\right)$, and therefore also of $\operatorname{GL}(n, R)$ for all $n \geqslant \phi_{K}(p)$.

Theorem 3.2. For a rational prime p with $\phi_{K}(p) \leqslant n$ the group $\operatorname{GL}(n, R)$ contains a finite subgroup which is p-periodic with p-period $2 \phi_{\kappa}(p)$.
3.3. We now turn to the special linear groups over R. Since $\operatorname{SL}(n, R)$ contains $\mathrm{GL}(n-1, R)$ as a subgroup $(n>1)$ there is, for all p with $\phi_{K}(p)<n$, a finite subgroup in $\operatorname{SL}(n, R)$ which is p-periodic with p-period $2 \phi_{K}(p)$. Some special arguments are needed in the case where $\phi_{K}(p)=n(>1)$.

We can identify $\operatorname{SL}\left(\phi_{K}(p), R\right)$ with the subgroup $\mathrm{Aut}_{R} R\left[\zeta_{p}\right]_{1}$ of $\mathrm{Aut}_{R} R\left[\zeta_{p}\right]$ consisting of all automorphisms with determinant 1 . The determinant of $\mu_{\zeta \rho}$ is a p-th root of 1 in K and hence $=1$ since $\phi_{K}(p)>1$. As for the generator σ of $\operatorname{Gal}\left(K\left(\zeta_{p}\right) / K\right)$, it has determinant $(-1)^{\phi K(p)-1}$, indeed σ can be viewed as a cyclic permutation of a suitable basis of $K\left(\zeta_{p}\right)$ over K. Thus for odd $\phi_{K}(p)>1$ the group S above actually lies in Aut ${ }_{R} R\left[\zeta_{p}\right]_{1}$. If $\phi_{K}(p)$ is even, $S_{1}=S \cap \mathrm{Aut}_{R} R\left[\zeta_{p}\right]_{1}$ has index 2 in S; this group S_{1} is p-periodic with p-period $\phi_{K}(p)$.

If $\phi_{K}(p)$ is even there are, however, also cases where one can have in Aut ${ }_{R} R\left[\zeta_{p}\right]_{1}$ a finite p-periodic subgroup S_{2} with p-period $2 \phi_{\kappa}(p)$. This is so if there exists in $R\left[\zeta_{p}\right]$ a unit u with relative norm $\mathfrak{n}_{K\left(\zeta_{p}, K\right.}(u)=-1$. Indeed let again μ_{u} be multiplication in $R\left[\zeta_{p}\right]$ by u. This automorphism has determinant -1 ; thus $\mu_{u} \sigma$ has determinant 1 and generates in $\operatorname{Aut}_{R} R\left[\zeta_{p}\right]_{1}$ a cyclic subgroup of order $2 \phi_{K}(p)$ (since $\left(\mu_{u} \sigma\right)^{\phi_{K}(p)}=-$ identity). We put

$$
S_{2}=\left\{\mu_{2}^{r}\left(\mu_{u} \sigma\right)^{s}, \quad 0 \leqslant r<p, \quad 0 \leqslant s<2 \phi_{K}(p)\right\} .
$$

This subgroup of $\mathrm{Aut}_{R} R\left[\zeta_{p}\right]_{1}$ is isomorphic to $Z_{p} \rtimes C_{2 \phi \kappa^{K}(p)}$ where the generator t of $C_{2 \phi_{K}(p)}$ acts on Z_{p} through $t \mapsto \sigma$. The computation analogous to that in the proof of Proposition 3.1 shows that S_{2} is p-periodic with p-period $2 \phi_{K}(p)$.

In summary we have
Theorem 3.3. (a) For all p with $\phi_{K}(p)<n$, and for $\phi_{K}(p)=n$ if $\phi_{K}(p)$ is odd >1, the group $\operatorname{SL}(n, R)$ contains a finite subgroup which is p-periodic with p-period $2 \phi_{K}(p)$.
(b) If $\phi_{K}(p)$ is even, then $\operatorname{SL}\left(\phi_{K}(p), R\right)$ contains a finite subgroup which is p-periodic with p-period $\phi_{K}(p)$. If there is in $R\left[\zeta_{p}\right]$ a unit u with $\boldsymbol{i}_{\kappa\left(\zeta_{p}\right) / K}(u)=-1$, there exists even a finite subgroup with p-period $2 \phi_{K}(p)$.
§4. The p-periodicity of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ and $\operatorname{SL}\left(n, \mathbb{F}_{q}\right)$. 4.1. As usual $\mathbb{F}_{q^{n}}$ denotes the field of q^{n} elements; we recall that

$$
\left|\operatorname{GL}\left(n, \mathbb{F}_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)=(q-1)\left|\operatorname{SL}\left(n, \mathbb{F}_{q}\right)\right|
$$

Let p and q be different rational primes. We denote by $h_{p}(q)$ the order of the residue class of q in $(\mathbb{Z} / p \mathbb{Z})^{*}$. If $h=h_{p}(q)$ then p divides $q^{h}-1$ but none of the other factors in $\left|\mathrm{GL}\left(h, \mathbb{F}_{q}\right)\right|$. Let p^{a} be the highest power of p dividing $q^{h}-1$, i.e., dividing $\left|G L\left(h, \mathbb{F}_{q}\right)\right|$, and let S_{p} be a p-Sylow subgroup of $G L\left(h, \mathbb{F}_{q}\right)$.

Proposition 4.1. The group S_{p} is cyclic; the centralizer of S_{p} in $\operatorname{GL}\left(h, \mathbb{F}_{q}\right)$ has index h in the normalizer.

Proof. We write G for $\operatorname{GL}\left(h, \mathbb{F}_{q}\right)$ and identify G with the group of \mathbb{F}_{q}-vector space automorphisms of $\mathbb{F}_{q^{t^{\prime}}}$. For $x \in \mathbb{F}_{q^{n}}^{*}$ let μ_{x} be multiplication with x in $\mathbb{F}_{q^{h}}$, it is an element of $G=$ Aut $_{\mathbb{T}_{4}}\left(\mathbb{F}_{q^{h}}\right)$. Let g be a generator of the cyclic group $\mathbb{F}_{q^{h}}^{*}$ and $f=g^{1 q^{n} \cdot} \cdot 1 / p^{*}$. Then $\mu_{j} \in G$ is of order p^{a} and generates a p-Sylow subgroup S_{p} of G.

To prove the second part we show that $N_{G}\left(S_{p}\right) / C_{G}\left(S_{p}\right)$ is isomorphic to $\operatorname{Gal}\left(\mathbb{F}_{q^{(/ 2 /}} \mathbb{F}_{q}\right)$ and hence of order h. Indeed $\operatorname{Gal}\left(\mathbb{F}_{q^{q}} / \mathbb{F}_{q}\right)$ is contained in G and one easily checks (cf. [6], Lemma 3.2 or [10], Chap. II, §7) that

$$
N_{G^{\prime}}\left(S_{p}\right)=\left\{\mu_{x} \gamma ; \quad x \in \mathbb{F}_{q^{\prime \prime}}^{*}, \quad \gamma \in \operatorname{Gal}\left(\mathbb{F}_{q^{\prime}} \mathbb{F}_{q}\right)\right\},
$$

and

$$
C_{G}\left(S_{p}\right)=\left\{\mu_{x} ; \quad x \in \mathbb{F}_{q^{n}}^{*}\right\} .
$$

Thus $C_{G}\left(S_{p}\right)$ is the kernel of the obvious map $N_{G}\left(S_{p}\right) \rightarrow \operatorname{Gal}\left(\mathbb{F}_{q^{\prime}} / \mathbb{F}_{q}\right)$ and the assertion follows.
4.2. From Proposition 4.1 it follows that $\operatorname{GL}\left(h, \mathbb{F}_{q}\right), \quad h=h_{p}(q)$, is p-periodic with p-period $2 h$. We shall show that the same holds for $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ if $\frac{1}{2} n<h \leqslant n$.

Let $B \in \operatorname{GL}\left(h, \mathbb{F}_{q}\right)$ be a matrix of order p^{a}, generating S_{p}. Then

$$
B^{\prime}=\left(\begin{array}{ll}
B & 0 \\
0 & E
\end{array}\right),
$$

where E is the $(n-h) \times(n-h)$ unit matrix, has order p^{a} in $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$. The assumption $n<2 h$ guarantees that p^{a} is the highest power of p dividing $\left|\operatorname{GL}\left(n, \mathbb{F}_{q}\right)\right|$. Thus B^{\prime} generates a cyclic p-Sylow subgroup S_{p}^{\prime} of $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$. The normalizer of S_{p}^{\prime} is given by the matrices

$$
\left\{\left(\begin{array}{cc}
N & 0 \\
0 & D
\end{array}\right) ; \quad N \in N_{\mathrm{GL}\left(h, \mathbb{F}_{4}\right)}\left(S_{p}\right), \quad D \in \operatorname{GL}\left(n-h, \mathbb{F}_{q}\right)\right\},
$$

and similarly for the centralizer of S_{p}^{\prime}. It immediately follows that the index of the centralizer of S_{p}^{\prime} in the normalizer is again h; thus the p-period of $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ is $2 h$.
4.3. The remaining cases $n<h$ and $n \geqslant 2 h$ are easy.

If $n<h=h_{p}(q)$ then p does not divide $\left|\operatorname{GL}\left(n, \mathbb{F}_{q}\right)\right|$; i.e., $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ has no p-torsion.

If $n \geqslant 2 h$ we take an embedding

$$
\operatorname{GL}\left(h, \mathbb{F}_{q}\right) \times \operatorname{GL}\left(h, \mathbb{F}_{q}\right) \subset \operatorname{GL}\left(2 h, \mathbb{F}_{q}\right) \subset \operatorname{GL}\left(n, \mathbb{F}_{q}\right) .
$$

Since p divides $\left|\operatorname{GL}\left(h, \mathbb{F}_{q}\right)\right|$ there is a cyclic subgroup C_{p} in $\operatorname{GL}\left(h, \mathbb{F}_{q}\right)$. Thus $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ contains a subgroup $C_{p} \times C_{p}$ and can therefore not be p-periodic.
4.4. We now turn to the group $\operatorname{SL}\left(n, \mathbb{F}_{q}\right)$, first for $n \geqslant 3$, and show that all the p-periodicity statements for $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ above also hold for $\operatorname{SL}\left(n, \mathbb{F}_{q}\right), n \geqslant 3$.

We may, of course, assume q odd. So $\operatorname{SL}\left(n, \mathbb{F}_{q}\right)$, being a subgroup of $G=G L\left(n, \mathbb{F}_{q}\right)$, is p-periodic for $\frac{1}{2} n<h \leqslant n, h=h_{p}(q)$, with p-period dividing $2 h$. The crucial case is again $\operatorname{SL}\left(h, \mathbb{F}_{q}\right)$; by assumption $h>\frac{1}{2} n>1$.

We write G_{1} for $\operatorname{SL}\left(h, \mathbb{F}_{q}\right)$ and identify G_{1} with Aut $_{0_{q}}\left(\mathbb{F}_{q^{h}}\right)_{1}$ where the index 1 refers to determinant 1. With notations as in 4.1 the automorphism μ_{f} has determinant 1 since p does not divide $q-1=\left|\mathbb{F}_{q}^{*}\right|$. Thus the cyclic group S_{p} generated by μ_{f} lies in G_{1}. Its normalizer is $N_{G}\left(S_{p}\right) \cap G_{1}$ and its centralizer is $C_{G}\left(S_{p}\right) \cap G_{1}$.

For the generator g of $\mathbb{F}_{q^{h}}^{*}$ the determinant $\operatorname{det} \mu_{g}$ is $g^{\left(q^{h}-1\right) /(q \cdot 1)} \in \mathbb{F}_{q}^{*}$; and for the generator $\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q^{h}} / \mathbb{F}_{q}\right)$, $\operatorname{det} \sigma=(-1)^{h-1} \in \mathbb{F}_{q}^{*}$ since σ may be viewed as a cyclic permutation of order h. Thus the elements $\mu_{x} \gamma, x \in \mathbb{F}_{q^{h}}^{*}, \gamma \in \operatorname{Gal}\left(\mathbb{F}_{q^{p}} / \mathbb{F}_{q}\right)$, of $N_{G}\left(S_{p}\right)$ have determinant 1 in the following cases.

If h is odd: $x=g^{r(q-1)}, \quad 0 \leqslant r<\left(q^{h}-1\right) /(q-1) ; \quad \gamma=\sigma^{s}, \quad 0 \leqslant s<h$.
If h is even: $x=g^{r(q-1)}, \quad 0 \leqslant r<\left(q^{h}-1\right) /(q-1) ; \quad \gamma=\sigma^{2 s}, \quad 0 \leqslant s<\frac{1}{2} h$,
and $\quad x=g^{r(q-1)+\frac{1}{2}(q-1)}, \quad 0 \leqslant r<\left(q^{h}-1\right) /(q-1) ; \quad \gamma=\sigma^{2 s+1}, 0 \leqslant s<\frac{1}{2} h$.
The elements $\mu_{x}, x \in \mathbb{F}_{q}^{*}$, of $C_{G}\left(S_{p}\right)$ have determinant 1 , if, and only if, $x=g^{r(q-1)}, 0 \leqslant r<\left(q^{h}-1\right) /(q-1)$. A simple count shows that the index of the centralizer in the normalizer is h; hence the p-period of $\operatorname{SL}\left(n, \mathbb{F}_{q}\right), n \geqslant 3$, is $2 h$.
4.5. We summarize as follows.

Theorem 4.2. Let p and q be different prime numbers, and $h=h_{p}(q)$ the order of q in $(\mathbb{Z} / p \mathbb{Z})^{*}$. If $\frac{1}{2} n<h \leqslant n$, then the groups $\operatorname{GL}\left(n, \mathbb{F}_{q}\right), \quad n \geqslant 1$, and $\operatorname{SL}\left(n, \mathbb{F}_{q}\right)$, $n \geqslant 3$, are p-periodic with p-period $2 h$.

Remark 4.3. (a) For $\frac{1}{2} n \geqslant h=h_{p}(q)$ the groups in Theorem 4.2 are not p-periodic.
(b) For $n<h$ they have no p-torsion.

Indeed, (a) is proved in 4.3 for $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$. If $h \geqslant 2(n \geqslant 4)$, then p does not divide $q-1=\left|\mathbb{F}_{q}^{*}\right|$, and the subgroup $C_{p} \times C_{p}$ mentioned in 4.3 actually lies in $\operatorname{SL}\left(n, \mathbb{F}_{q}\right)$. If $h=1$ a special argument is needed for $\operatorname{SL}\left(n, \mathbb{F}_{q}\right), n \geqslant 3$. In that case p divides $q-1$; let $x \in \mathbb{F}_{q-1}^{*}$ be of order p. The matrices

$$
\left(\begin{array}{ccc}
x^{r} & 0 & 0 \\
0 & x^{s} & 0 \\
0 & 0 & x^{-r-s}
\end{array}\right)
$$

with $0 \leqslant r, s<p$ constitute a subgroup of $\operatorname{SL}\left(3, \mathbb{F}_{q}\right)$ isomorphic to $C_{p} \times C_{p}$. Thus $\operatorname{SL}\left(n, \mathbb{F}_{q}\right), n \geqslant 3$, is not p-periodic in that case. The result (b) is proved in $\$ 4.3$.

Remark 4.4. $\operatorname{SL}\left(2, \mathbb{F}_{q}\right)$ is well known to be p-periodic for all p. The q-period is $q-1$ for odd q, and 2 for $q=2$. For p dividing $q^{2}-1$ the p-period is 4 .
§5. Finite quotients. Main results. 5.1. We now turn to the groups $G=\operatorname{GL}\left(n, O_{s}(K)\right)$ and $G_{1}=\operatorname{SL}\left(n, O_{s}(K)\right)$ described in Section $1 . K$ is a number field, S a finite set of places including the infinite places, $O_{S}(K)$ the ring of S-integers of K.

We choose, by virtue of Lemma 2.2, a prime ideal P of $O_{s}(K)$ such that $\mathfrak{M}(P)$ is a prime number $q>2^{[K: Q]}$, and that $h_{p}(q)=\phi_{K}(p) ; p$ is a given prime number and $h_{p}(q)$ is the order of q in $(\mathbb{Z} / p \mathbb{Z})^{*}$. Then $O_{s}(K) / P \cong \mathbb{F}_{q}$, and reducing all matrix entries modulo P yields canonical maps $\psi: G \rightarrow \operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ and $\psi_{1}: G_{1} \rightarrow \operatorname{SL}\left(n, \mathbb{F}_{q}\right)$. Their kernels are the respective congruence subgroups modulo $P, N \subset G$ and $N_{1} \subset G_{1}$. Due to the choice of P they are torsion-free ($c f$. [2], for example). The map ψ_{1} is known to be surjective ([1], p. 267), i.e., we have

$$
G_{1} / N \cong \operatorname{SL}\left(n, \mathbb{F}_{q}\right) \subset \operatorname{Im} \psi \subset \operatorname{GL}\left(n, \mathbb{F}_{q}\right) .
$$

As shown in Section 4 both $\operatorname{SL}\left(n, \mathbb{F}_{q}\right)$ and $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ are p-periodic with p-period $2 h_{p}(q)=2 \phi_{\kappa}(p)$ for all prime numbers p with $\frac{1}{2} n<\phi_{\kappa}(p) \leqslant n$; thus the same holds for G / N and G_{1} / N_{1}.

Proposimion 5.1. There exists a prime ideal P in $O_{s}(K)$ such that the congruence subyroups modulo $P, N \subset G$ and $N_{1} \subset G_{1}$, are torsion-free and such that the finite quotients G / N and G_{1} / N_{1} are p-periodic with p-period $2 \phi_{\kappa}(p)$ for all p with $\frac{1}{2} n<\phi_{\kappa}(p) \leqslant n$.
5.2. We now invoke a general result concerning the Farrell Tate cohomology of a group G of virtually finite dimension. Let N be a torsion-free normal subgroup of finite index in G such that G / N is p-periodic with p-period m_{p}; then G itself is p-periodic with p-period dividing m_{p}. In the case, where G admits a projective resolution which is finitely generated in all dimensions, this result is proved in [2] using the construction of a complete resolution for G from a complete resolution for G/N, of. [2] or [9]. Actually the result holds without any finiteness condition (see [5]); in the present context this generality is not needed since the above finiteness condition holds for $\mathrm{GL}\left(n, O_{s}(K)\right)$ and $\mathrm{SL}\left(n, O_{s}(K)\right)$ according to Borel-Serre (see [13], e.g.).

It thus follows that our groups G and G_{1} are p-periodic for the appropriate prime numbers p, and that the p-period divides $2 \phi_{K}(p)$.
5.3. To obtain the precise value of the p-period we use the finite subgroups constructed in Section 3. By Theorems 3.2 and 3.3 the groups $G=\operatorname{GL}\left(n, O_{s}(K)\right)$, $n \geqslant \phi_{K}(p)$, and $G_{1}=\operatorname{SL}\left(n, O_{S}(K)\right), n>\phi_{K}(p)$ contain a finite subgroup which has p-period $2 \phi_{\kappa}(p)$. Thus, for $\frac{1}{2} n<\phi_{\kappa}(p) \leqslant n$ (or $<n$ respectively) the p-period of $\operatorname{GL}\left(n, O_{S}(K)\right)$ and $\operatorname{SL}\left(n, O_{S}(K)\right)$ respectively is equal to $2 \phi_{K}(p)$. The case $\operatorname{SL}\left(\phi_{K}(p), O_{S}(K)\right)$ is discussed in 5.4 below.

Theorem 5.2. The groups $\operatorname{GL}\left(n, O_{s}(K)\right), \frac{1}{2} n<\phi_{K}(p) \leqslant n$, and $\operatorname{SL}\left(n, O_{s}(K)\right)$, $\frac{1}{2} n<\phi_{K}(p)<n$, are p-periodic with p-period $2 \phi_{K}(p)$.

Remark 5.3. The groups $\operatorname{GL}\left(n, O_{S}(K)\right)$ and $\operatorname{SL}\left(n, O_{S}(K)\right)$ have p-torsion, if, and only if, $\phi_{K}(p) \leqslant n$, see [3]. Using this fact one can, if $n \geqslant 2 \phi_{\kappa}(p)$, easily find a subgroup of these groups (for $\operatorname{SL}\left(n, O_{S}(K)\right)$ assuming $n \geqslant 3$) isomorphic to $C_{p} \times C_{p}$. Therefore they are not p-periodic if $\frac{1}{2} n \geqslant \phi_{k}(p)$.
5.4. In the special case $\operatorname{SL}\left(\phi_{K}(p), O_{s}(K)\right)$ all the above arguments remain valid except that Theorem 3.3 yields, in general, the two possibilities $\phi_{K}(p)$ or $2 \phi_{K}(p)$ for the p-period. If $\phi_{\kappa}(p)$ is odd and greater than one, the p-period is $2 \phi_{\kappa}(p)$, by Theorem 3.3(a). If $\phi_{K}(p)$ is even, the precise value depends on the norm map $\mathfrak{N}_{K\left(l_{p, p}\right)}$. By Theorem 3.3(b) the period is again $2 \phi_{K}(p)$, if there exists in $O_{s}(K)\left[\zeta_{p}\right]$ a unit u with $\mathfrak{n}_{\kappa\left(p_{p}\right) K}(u)=-1$.

Theorem 5.4. The group $\operatorname{SL}\left(\phi_{K}(p), O_{s}(K)\right), \quad \phi_{K}(p)>1$, is p-periodic with p-period $\phi_{K}(p)$ or $2 \phi_{K}(p)$. If $\phi_{K}(p)$ is odd or, more generally, if there is in $O_{S}(K)\left[\zeta_{p}\right]$ a unit with norm -1 over K, then the p-period is $2 \phi_{K}(p)$.

Remark 5.5. If there is no element in $K\left(\zeta_{p}\right)$ with norm -1 over K, then the p-period of $\operatorname{SL}\left(\phi_{K}(p), O_{S}(K)\right)$ is $\phi_{K}(p)$. This follows from the computations in [6], Section 8. The condition is fulfilled, in particular, if K has an embedding in \mathbb{R}. Thus $\operatorname{SL}(p-1, \mathbb{Z})$, for example, is p-periodic with p-period $p-1$ (this case appears in [3] and is obtained by an entirely different method).

References

1. H. Bass. Algebraic K-theory (Benjamin, New York-Amsterdam, 1968).
2. B. Bürgisser. Gruppen virtuell endlicher Dimension und Periodizität der Cohomologic. Diss. ETH, Nr. 6425 (Zürich, 1979).
3. B. Bürgisser. On the p-periodicity of arithmetic subgroups of general linear groups. Commem. Math. Helv., 55 (1980), $499-509$.
4. B. Bürgisser. Finite p-periodic quotients of general linear groups. Math. Ann., 256 (1981), 121132.
5. B. Bürgisser. Yoneda product in Farrell Tate cohomology and periodicity. Preprint FIM, ETH Zürich (1981).
6. B. Bürgisser. The p-torsion of the Farrell Tate cohomology of GL($\left.\phi_{K}(p), O(K)\right)$ and $\operatorname{SL}\left(\phi_{K}(p), O(K)\right)$. Preprint FIM, ETH Zürich (1981).
7. B. Bürgisser. On the projective class group of arithmetic groups. Math. Zeitschrift, 184 (1983), 339 357.
8. H. Cartan and S. Eilenberg. Homological algebra (Princeton University Press, 1956).
9. F. T. Farrell. An extension of Tate cohomology to a class of infinite groups. J. Pure Appl. Algebra, 10 (1977), 153161.
10. B. Huppert. Endliche Gruppen 1. Die Grundlehren der mathematischen Wissenschaffen in Einzeldarstellung, 134 (Springer, Berlin-Heidelberg-New York, 1967).
11. G. J. Janusz. Algebraic number fields. Pure and Appl. Math., 55 (Academic Press, New York, 1973).
12. J.-P. Serre. Cohomologie des groupes discrets. Prospects in Math., Ann. Math. Study, 70 (1971), 77-169.
13. J.-P. Serre. Arithmetic groups. Proc. of the Sept. 1977 Durham conference on homological and combinatorial techniques in group theory. Edited by C. T. C. Wall. (Cambridge University Press, 1979).
14. R. G. Swan. The p-period of a finite group. Illinois J. Math., 4 (1960), 341346.
15. R. G. Swan and E. G. Evans. K-theory of finite groups and orders. Lecture Notes in Math.. 149 (Springer, Berlin Heidelberg New York, 1970).

Dr. B. Bürgisser,
Eidgenössische Technische Hochschule, Mathematik, ETH-Zentrum,
CH-8092 Zürich,
Switzerland.
Prof. B. Eckmann,
Eidgenössische Technische Hochschule, Mathematik,
ETH-Zentrum,
CH-8092 Zürich.
Switzerland.

20G10: GROUP THEORY AND GENERALIZATIONS; Linear algebraic groups: Cohomology theory.

Received on the 4th of August, 1983.

