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THE Π3-THEORY OF THE COMPUTABLY ENUMERABLE

TURING DEGREES IS UNDECIDABLE

STEFFEN LEMPP, ANDRÉ NIES, AND THEODORE A. SLAMAN

Abstract. We show the undecidability of the Π3-theory of the partial order
of computably enumerable Turing degrees.

0. Introduction

Recursively enumerable (henceforth called computably enumerable) sets arise nat-
urally in many areas of mathematics, for instance in the study of elementary the-
ories, as solution sets of polynomials or as the word problems of finitely generated
subgroups of finitely presented groups. Putting the computably enumerable sets
into context with each other in various ways yields structures whose study has for
long been a mainstay of computability theory. If the sets are related in the most
elementary way, namely by inclusion, one obtains a distributive lattice E with very
complex algebraic properties. Another way to compare sets is to look at the infor-
mation content. Turing reducibility is a very general, but the most widely accepted
concept of relative computability: a set X of natural numbers is Turing-reducible
to Y iff the answer to “n ∈ X?” can be determined by a Turing machine computa-
tion which can use answers to oracle questions “y ∈ Y ?” during the computation.
(For more restricted notions of relative computability one would for instance place
a priori bounds on the lengths of computations or would limit the access to the
oracle.) The Turing degree of a set, i.e. its equivalence class under the equivalence
relation given by this preordering, measures the information content of a set while
stripping away the features of the set inessential from a computational point of
view (for this general concept of computation).

Here we are concerned with the partial order of Turing degrees of computably
enumerable sets. This structure has been closely investigated for over fifty years,
starting with Post’s seminal paper [Po44] and even before. Results of the 1950’s
and early 1960’s, in particular the ground-breaking Sacks Density Theorem [Sa64],
led Shoenfield [Sh65] to conjecture a strong homogeneity property (namely, that
any extension of embeddings of finite posets consistent with the theory of upper
semilattices is always possible). This conjecture would have implied the decidabil-
ity of the full first-order theory of the computably enumerable degrees. However,
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Shoenfield’s conjecture was refuted by the minimal pair theorem of Lachlan [La66]
and Yates [Ya66]. Further work in the 1970’s and 1980’s revealed more and more
of the complexity of the poset of the computably enumerable degrees and led to a
proof of the undecidability of its first-order theory by Harrington and Shelah, as
announced in [HS82].

Once undecidability of a theory has been established, one reasonable next ques-
tion is at which exact level of quantifier alternations (in brief: quantifier level), if at
any, undecidability first occurs. The coding methods traditionally used for show-
ing undecidability of structures arising from computability theory (or elsewhere)
establish undecidability at some quantifier level. However, the more indirect the
coding is, the higher this level. Sentences actually proved in mathematical inves-
tigations of the structures usually have a low quantifier level: for instance, for the
partial ordering of computably enumerable degrees, the statement that there is a
minimal pair (Σ2), there is a nonzero degree bounding no minimal pair (Σ3) and
that meet-reducible degrees exist in any open interval (Π3). So the meaning of the
question above is to determine which fragments of the theory experience has shown
to be mathematically relevant are undecidable.

By an early result of Sacks [Sa63], the universal, or Π1-, fragment of the theory
of the poset of the computably enumerable degrees is decidable since any existential
statement consistent with the theory of partial orderings holds. The Π2-theory is
conjectured by many to be decidable, but, despite many efforts, this still remains
an open problem. Two interesting fragments of the Π2-theory have been consid-
ered. The extension of embeddings (of partial orderings) problem was shown to
be decidable by Slaman and Soare [SSta]; the lattice embeddings problem, how-
ever, remains open (see Lerman [Le96] and Lempp and Lerman [LLta] for recent
updates).

On the undecidability side, by work of Harrington and Slaman, [HS82], the
Π4-theory of the poset of the computably enumerable degrees was known to be
undecidable. (A much easier proof by Ambos-Spies and Shore [AS93] gave the
undecidability of the Π5-theory.) The present paper establishes undecidability for
the Π3-theory by a very delicate coding so as to minimize quantifier alternations,
using the undecidability of the Σ2-theory of the class of finite bipartite graphs
(in the language of just one binary relation, without equality) and Nies’s Transfer
Lemma [Ni96].

Our paper is organized as follows: In the next section, we present the statement
of our theorem establishing our undecidability result and explain the algebraic part
of the proof, i.e., the coding. The later sections give the requirements, the intu-
ition, the full construction, and the verification, respectively, for the computability-
theoretic part of our result.

For the computability-theoretic argument, we assume the reader to be familiar
with 0′′′-priority arguments. (Chapter XIV of Soare [So87] provides an introduc-
tion.)

Our notation generally follows Soare [So87] with some exceptions: The names
for the partial computable functionals used follow the “Chicago convention”, i.e.,
those built by us are denoted by upper-case Greek letters near the beginning of
the alphabet, those built by the opponent by letters near the end of the alphabet;
the use of each functional is denoted by the corresponding lower-case Greek letter.
Partial computable functions are denoted by lower-case Greek letters also. Note
that we take the use of a functional to be the largest number actually used in
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Π3-THEORY OF THE COMPUTABLY ENUMERABLE TURING DEGREES 2721

the computation (so that changing X at ϕ(x) will destroy a current computation
ΦX(x)). If the oracle of a functional is given as the join of at least two sets, we let
the use be the largest number used in one of the sets of this join (so ΦX0⊕···⊕Xn(x)
is defined iff ΦX0�(ϕ(x)+1)⊕···⊕Xn�(ϕ(x)+1) is).

1. The theorems and the algebraic component of the proof

Our main result is

Theorem 1. The Π3-theory of the computably enumerable Turing degrees in the
language of partial orderings is undecidable.

Recall that a set of first-order sentences S is hereditarily undecidable if there is
no computable set of sentences separating S and S ∩ V , where V is the set of all
valid sentences in the language of S. Our proof of Theorem 1 uses the following
undecidability result for finite bipartite graphs.

Theorem 2 (see Nies [Ni96]). The Σ2- (and hence the Π3-) theory of the finite
bipartite graphs with nonempty left and right domains in the language of one binary
relation, but without equality, is hereditarily undecidable.

Theorem 2 will be used to prove Theorem 1 via Nies’s Transfer Lemma. We first
recall a definition.

Definition 3. Let LC and LD be finite relational languages not necessarily contain-
ing equality.

(i) A Σk-scheme s for LC and LD consists of a Σk-formula ϕU (x; y) (in the
language LD), and, for each m-ary relation symbol R ∈ LC , two Σk-formulas
ϕR(x0, . . . , xm−1; y) and ϕ¬R(x0, . . . , xm−1; y) (again in LD).

(ii) For a Σk-scheme s, we define a correctness condition α(p) for a list of pa-
rameters p as the conjunction of the following formulas:

(a) (coding the universe) {x | ϕU (x; p)} 6= ∅, and
(b) (coding the relations) for each m-ary relation symbol R in the language

LC , the set {(x0, . . . , xm−1) | ∀i < m(ϕU (xi; p)} is the disjoint union of
the two sets {(x0, . . . , xm−1) | ϕR(x0, . . . , xm−1; p)} and {(x0, . . . , xm−1) |
ϕ¬R(x0, . . . , xm−1; p)}.

α(p) is then a Πk+1-formula.
(iii) Define a formula ϕeq(C)(x, y) as the conjunction of all formulas ∀z(R(x, z) ↔

R(y, z)) where R ranges over all relations R ∈ LC and over all permutations of the
arguments of R. (This formula will just redefine equality if the language contains
equality.) For an LC-structure C, define the induced quotient structure C/eq(C) in
the obvious way. Similarly define a formula ϕeq(D)(x, y) and a quotient structure
D/eq(D), using the relations R ∈ LD.

(iv) A class C of relational structures in LC is Σk-elementarily definable with
parameters in a class of relational structures D in LD if there is a Σk-scheme s
such that for each structure C ∈ C, there are a structure D ∈ D and a finite set of
parameters p ∈ D satisfying the following:

(a) (correctness condition) D |= α(p), and

(b) (coding the structure) C/eq(C) ∼= C̃/eq(C̃) where C̃ is the LC-structure de-

fined by C̃ = {x | ϕU (x; p)}, and for each m-ary relation symbol R ∈ LC , the

relation R̃ on C̃ is defined by R̃ = {(x0, . . . , xm−1) | ϕR(x0, . . . , xm−1; p)}.
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2722 S. LEMPP, A. NIES, AND T. A. SLAMAN

Note here that we treat equality just like any other relation symbol in the lan-
guage LC . The following theorem now lets us transfer (hereditary) undecidability.

Theorem 4 (Nies’s Transfer Lemma [Ni96]). Fix k ≥ 1 and r ≥ 2. Suppose a
class of structures C is Σk-elementarily definable with parameters in a class of
structures D (in finite relational languages LC and LD, respectively). Then the
hereditary undecidability of the Πr+1-theory of C implies the hereditary undecidabil-
ity of the Πr+k-theory of D.

The heart of our argument is then the following:

Theorem 5. The class of finite bipartite graphs with nonempty left and right do-
mains in the language without equality is Σ1-elementarily definable in the partial
ordering R of the computably enumerable Turing degrees (i.e. in the class {R}).

Proof of Theorem 1. Apply Nies’s Transfer Lemma (Theorem 4, setting k = 1 and
r = 2) to Theorem 2 in order to obtain the hereditary undecidability of the Π3-
theory of the computably enumerable degrees.

A coding of finite bipartite graphs was first used in [LNi95] to establish the
undecidability of the Π4-theory of the computably enumerable wtt–degrees. Here,
we also use an ambiguous representation of vertices (as explained below) to ensure
the coding is by Σ1–formulas.

The remaining sections are devoted to the proof of Theorem 5.

2. The requirements for Theorem 5

In this section, we present the computability-theoretic requirements for our con-
struction and show how their satisfaction implies Theorem 5.

Fix a finite bipartite graph G with left domain L = {0, 1, . . . , n}, right domain

R = {0̂, 1̂, . . . , n̂}, and edge relation E ⊆ L×R.
We begin by coding the left domain, using a Σ1-formula ψ(x; a, b, c). Each node

i ∈ L is represented ambiguously by each degree in a half-open interval (0, ai] of
computably enumerable degrees, where the degrees have the following properties:

(6.1) ai and aj form a minimal pair for i 6= j;
(6.2) there are computably enumerable degrees b and c such that

∀x ≤ a(x ∪ b � c ↔ ∃i ≤ n(x ≤ ai)),

where a is the join of a0, . . . , an. See Figure 1.
A Σ1-formula ψ(x; a, b, c) to code the left domain can now be chosen as

0 < x ≤ a& x ∨ b � c,

i.e., as

∃y(y < x)& x ≤ a& ∃y(y ≥ x& y ≥ b& y � c).

The above translates into the following requirements: We build computably enu-
merable sets A0, . . . , An, B, and C, and we set A =

⊕
i≤n

Ai. We ensure (6.2) by

requiring, for all partial computable functionals Φ and Ψ, all computably enumer-
able sets X , and all i ≤ n:

NX,Φ : X = ΦA → C = ΓX⊕B or ∃i ≤ n∃∆(X = ∆Ai)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Π3-THEORY OF THE COMPUTABLY ENUMERABLE TURING DEGREES 2723

A1

A0
A2 A0

A1

D20

00

ˆ

ˆ

Figure 1

(where Γ and ∆ are computable functionals built by us and depending on X and
Φ), and

P i
Ψ : C 6= ΨAi⊕B.

In order to ensure (6.1), we require furthermore (using “Posner’s trick”) for
all partial computable functionals Ξ, all partial computable functions ν, and all
distinct i, j ≤ n:

Mi,j
Ξ : ΞAi = ΞAj total → ΞAi = ϑ

(where ϑ is a computable function built by us depending on i, j, and Ξ), and

Qi
ν : Ai 6= ν.

The right domain is coded similarly using computably enumerable sets Â0̂, . . . ,

Ân̂, Â, B̂, and Ĉ, requirements N̂X̂,Φ̂, P̂ ı̂
Ψ̂
, etc., and functionals Γ̂, ∆̂, etc. The Σ1-

formula ϕU (x; a, b, c) required by Definition 3 can now be chosen as ψ(x; a, b, c) ∨
ψ(x; â, b̂, ĉ).

The point of using an ambiguous representation of the vertices is that the formula
ϕU has to be Σ1. Of course we can define e.g. the set {a0, . . . , an} as the maximal
degrees x satisfying ψ(x; a,b, c), but this is only a Σ1&Π1-definition. Property
(6.1) enables us to recover the vertex from a representing degree.

Now, in defining a copy of the edge relation with parameters, we have to make
sure the formula does not depend on the particular representing degrees chosen.

We build two additional computably enumerable degrees d and d̃ satisfying for
all i ≤ n and ı̂ ≤ n̂:

(6.3) E(i, ı̂) iff not ai ∩ âı̂ ∩ d = 0 iff ai ∩ âı̂ ∩ d̃ = 0.
The Σ1-formula ϕE(x, x̂; d) required by Definition 3 can now be chosen as

∃y > 0 ∃x1 ≥ x∃x̂1 ≥ x̂ (ψ(x1; a, b, c)&ψ(x̂1; â, b̂, ĉ)& (y ≤ x1 & y ≤ x̂1 & y ≤ d)),

i.e., as ∃y∃z (z < y& . . . ).

The Σ1-formula ϕ¬E(x, x̂; d̃) is chosen similarly using d̃ in place of d.
In order to ensure the first equivalence of (6.3), we build, for each (i, ı̂), a com-

putably enumerable set Di,ı̂, define Fi,ı̂ =
⊕

(j,̂) 6=(i,ı̂)

Dj,̂, and require (again using
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Posner’s trick) for all partial computable functionals Ω, all partial computable func-
tions χ, and all (i, ı̂) ∈ L×R:

Ri,ı̂
Ω : ΩAi = ΩÂı̂ = ΩFi,ı̂ total → ΩFi,ı̂ = λ

(where λ is a computable function built by us depending on i, ı̂, and Ω), as well as

Sj,̂ : Dj,̂ ≤T Aj , Â̂,

T j,̂
χ : Dj,̂ 6= χ.

We then simply let d and d̃ be the degrees of the sets D =
⊕

E(j,̂)

Dj,̂ and D̃ =⊕
¬E(j,̂)

Dj,̂, respectively.

To verify, e.g., that the first equivalence in (6.3) is satisfied, note that the direc-
tion from left to right holds by the definition of D, and the other direction since, if
not E(i, ı̂), then D ≤T Fi,ı̂. Also note that the requirements T j,̂

χ and Sj,̂ together

imply that the requirements Qi
ν are satisfied, so we can omit the latter ones from

now on.
We now see that the above requirements ensure (6.1)–(6.3), and that the latter

establish Theorem 5 via the formulas ϕU , ϕE , and ϕ¬E given above. So we are
reduced to showing the satisfaction of our requirements.

3. The intuition for Theorem 5

The crucial part of the construction, and the part which makes this a 0′′′-priority
argument, is the interplay between the N - and the P-strategies. (This interaction
was first considered by Harrington and Slaman [HSta] in their work on the unde-
cidability of the theory of the computably enumerable degrees.) So we will explain
this part first and then gradually add the rest of the requirements. Since we will
add the (fairly easy) R-, S-, and T -requirements last (which constitute the only
connection between the unhatted and the hatted side), we will concentrate on the
unhatted side first, the hatted side being entirely analogous.

3.1. P-strategies below one N -strategy. An N -strategy α starts out by build-
ing ΓX⊕B = C as long as the length of agreement between X and ΦA keeps increas-
ing. The basic P-strategy β is merely a Friedberg-Muchnik strategy and is thus
only dangerous to the N -strategy α if α is of higher priority than β. In that case,
β typically enumerates a witness x into C while restraining B�(ψ(x) + 1), where
typically ψ(x) was defined much later than γ(x), and thus possibly ψ(x) > γ(x),
whence α cannot correct ΓX⊕B(x) via B. But note that an X�(γ(x) + 1)-change
after ΨAi⊕B(x) is defined would allow α to reset γ(x) > ψ(x) without changing B,
and then β can later enumerate x into C and the new γ(x) into B without injuring
ΨAi⊕B(x) or making ΓX⊕B(x) incorrect. Alternatively, if X�(γ(x) + 1) does not
change, then β will enumerate γ(x) into B (but not x into C so as to retain this
witness), and so destroy ΨAi⊕B(x) while defining ∆Ai�(γ(x) + 1) = X�(γ(x) + 1).
Intuitively, X has two choices: to change and allow γ(x) > ψ(x) at some point, or
not to change and risk ∆Ai = X (while ΓX⊕B(x) is undefined since γ(x) tends to
infinity).
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To be more precise, we distinguish three phases in the action of β, depending on
which of the three sets

⊕
j 6=i
Aj , B, and Ai is unrestrained. The P i

Ψ-strategy proceeds

as follows:

1. Pick a fresh witness x (for C(x) 6= ΨAi⊕B(x)).
2. Wait for ΨAi⊕B(x) ↓= 0.
3. (

⊕
j 6=i
Aj-phase) Restrain (Ai ⊕ B)�(ψ(x) + 1) and request that γ(x) be set

> ψ(x) if X�(γ(x) + 1) changes. Wait for this until the next β-stage (which
we assume to be α-expansionary).

4. If now γ(x) > ψ(x), then enumerate x into C and γ(x) into B and stop.
Otherwise:

5. (B-phase) Enumerate γ(x) into B (so γ(x) will increase), define

∆Ai�(γ(x) + 1) = X�(γ(x) + 1),

and restrain A�(ϕγ(x)+1) (to prevent X�(γ(x)+1) from changing now when
this X-change is useless to us). Wait for the next β-stage (which we again
assume to be α-expansionary).

6. (Ai-phase) Allow Ai to change and correct ∆Ai via Ai (if an X-change makes
this necessary). Go back to Step 2. (The role of the Ai-phase will become
clearer later when we add more requirements.)

The possible outcomes and effects of the P i
Ψ-strategy β are as follows:

A. β eventually waits at Step 2 forever or stops at Step 4: Then ΨAi⊕B(x) 6=
C(x), and β’s effect is finitary.

B. β goes from Step 6 to Step 2 infinitely often: Then β enumerates an increas-
ing (and thus computable) sequence of values γ(x) into B (and thus destroys
ΓX⊕B); alternately drops the restraint on

⊕
j 6=i
Aj , B, and Ai, and achieves

∆Ai = X since X�(γ(x)+1) does not change during
⊕
j 6=i
Aj-phases by hypoth-

esis, cannot change during B-phases by the A�(ϕγ(x)+1)-restraint; and may
change during Ai-phases but then ∆Ai is corrected by Ai-enumeration.

Note that a P-strategy below the finite outcome A of β is in the same situation
as β once β stops acting, while a P-strategy below the infinite outcome B of β is
completely finitary since it does not have to deal with ΓX⊕B-correction.

3.2. P-strategies below several N -strategies. The situation for a P-strategy
β below several N -strategies (we will restrict ourselves here to two of them, α0

and α1, say) is more complicated since now one of X0 and X1 may change while
the other does not. We proceed in the usual 0′′′-priority fashion by “blaming” the
lowest-priority N -strategy without X-change.

More formally, the P-strategy β proceeds as follows:

1. Pick a fresh witness x (for C(x) 6= ΨAi⊕B(x)).
2. Wait for ΨAi⊕B(x) ↓= 0.
3. (

⊕
j 6=i
Aj-phase) Restrain (Ai ⊕ B)�(ψ(x) + 1) and request that γk(x) be set

> ψ(x) if Xk�(γ(x) + 1) changes (for k ≤ 1). Wait until the next β-stage
(which, as usual, we assume to be α0- and α1-expansionary).
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4. If now γ1(x) > ψ(x), then proceed to Step 6. Otherwise: (B-phase) Enumer-
ate γ1(x) into B (but neither γ0(x) into B nor x into C), define

∆Ai
1 �(γ1(x) + 1) = X1�(γ1(x) + 1),

and restrain A�(ϕγ1(x) + 1). Wait for the next β-stage.

5. (Ai-phase) Allow Ai to change and correct ∆Ai
1 via Ai if necessary. Go back

to Step 2.
6. (still

⊕
j 6=i
Aj -phase) If now (also) γ0(x) > ψ(x), then enumerate x into C and

both γ0(x) and γ1(x) into B and stop. Otherwise:

7. (B-phase) Enumerate both γ0(x) and γ1(x) into B (killing both ΓX0⊕B
0 (x) and

ΓAi⊕B
1 (x)), discard (the current version of) ∆Ai⊕B

1 (since it existed on the
assumption that X1 never changes during a

⊕
j 6=i
Aj -phase), define

∆Ai
0 �(γ0(x) + 1) = X0�(γ0(x) + 1),

and restrain A�(ϕγ0(x) + 1). Wait for the next β-stage.

8. Allow Ai to change and correct ∆Ai
0 via Ai if necessary. Go back to Step 2.

The possible outcomes and effects of the P i
Ψ-strategy β are as follows:

A. β eventually waits at Step 2 forever or stops at Step 6: Then ΨAi⊕B(x) 6=
C(x), and β’s effect is finitary.

B. β goes from Step 5 to Step 2 infinitely often but only finitely often from
Step 8 to Step 2: Then β enumerates an increasing sequence of values γ1(x)

and a finite sequence of values γ0(x) into B (and thus destroys ΓX1⊕B
1 (x)

but not ΓX0⊕B
0 (x)); alternately drops the restraints on

⊕
j 6=i
Aj , B, and Ai

(imposed in Steps 3–4) while those of Step 7 are finite; achieves ∆Ai

1 = X1

since X1�(γ1(x)+ 1) does not change after the last time Step 8 is visited; and

ΓX0⊕B
0 is not affected.

C. β goes from Step 8 to Step 2 infinitely often: Then β enumerates two increas-
ing sequences of values γ0(x) and γ1(x) (and thus destroys both ΓX0⊕B

0 (x)

and ΓX1⊕B
1 (x)); alternately drops the restraints on

⊕
j 6=i
Aj , B, and Ai; achieves

∆Ai
0 = X0 since X0�(γ0(x) + 1) does not change unless ∆Ai

0 -correction via Ai

is allowed by Step 8; and both ΓX1⊕B
1 and ∆Ai

1 are destroyed.

P-strategies below the finite outcome A of β are in the same position as β itself
once β stops acting. Below the infinite outcomes B and C of β, the situation is
more complicated.

Below outcome B, a P-strategy β′ is only faced with one Γ, namely ΓX0⊕B
0 ,

which is handled as in Section 3.1. Furthermore, β′ also has to deal with the
Ai-enumeration of β during the latter’s Ai-phase; but β′ can then simply re-
strain A�(ϕ1γ1(x

′) + 1) to prevent dangerous X�(γ1(x
′) + 1)-changes causing ∆Ai

1 -
correction via Ai. And finally, the different phases of β and β′ have to be coor-
dinated by occasional finite delays for either of them so that either of β and β′

enumerates into a set Z only when the other is also in a Z-phase. (In the formal
construction, we will use Z-stages to ensure this.)

On the other hand, below the infinite outcome C of β, we must first introduce
a new N1-strategy α̂1 (trying to build a functional Γ̂Xi⊕B

1 = C) since ΓX1⊕B
1 has

been destroyed by β without building a ∆1 to replace it. A P-strategy β′ below α̂1
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now acts as in Section 3.1 with respect to Γ̂X1⊕B
1 while preventing Ai-injury (for

∆Ai
0 -correction) as explained in the previous paragraph.

3.3. Adding the M-requirements. For the M-strategies (trying to make each
pair (degAi, degAj) a minimal pair), observe that each strategy discussed so far
(or to be discussed later, as will be seen) which enumerates numbers into sets
only enumerates numbers (or the uses of such numbers) chosen by itself and thus
“large” with respect to higher-priority restraint. (This fails in many other 0′′′-
priority arguments.)

This special feature of our construction implies that the usual minimal pair
strategy can be used to ensure the M-requirements: At each M-expansionary
stage, numbers may be enumerated into either Ai or Aj but not both, and no
“small” numbers may enter either set between M-expansionary stages.

3.4. Adding the R-, S-, and T -requirements. The T -strategies are the only
strategies enumerating into the sets Dj,̂. The S-requirements (for which there will
be no separate strategies) are ensured by direct coding, i.e., any number entering

Dj,̂ also enters Aj and Â̂ at the same time, so that the T -strategies may only

enumerate into Dj,̂ at stages at which enumeration into both Aj and Â̂ is allowed.
The T -strategies pick a fresh witness x, wait for χ(x) ↓= 0, and then enumerate x
at the next such stage.

The R-requirements are ensured by modified minimal pair strategies. Note that
an R-strategy has three possibilities to preserve the common computation, namely,
restraining Ai, Âı̂, or Fi,ı̂ =

⊕
(i,ı̂) 6=(j,̂)

Dj,̂. There is no strategy (it would have to be

a T -strategy) wanting to enumerate into all of Ai, Âı̂, and Fi,ı̂ simultaneously. So
we can proceed as for the M-strategies in Section 3.3, allowing at R-expansionary
stages enumeration into at most two of Ai, Âı̂, and Fi,ı̂.

3.5. The (Z, Ẑ)-stage mechanism. There is one detail that we have glossed over
so far, namely, the coordination of stages at which numbers may be enumerated
into the various sets. We use the feature of (Ai, Aı̂)-stages (i.e., stages at which

numbers may enter only the sets Ai, Aı̂, and Di,ı̂), and (B, B̂)-stages (i.e., stages

at which numbers may enter only the sets B and B̂). (These “(Z, Ẑ)-stages”, as we

will call them, impose no restrictions on C or Ĉ, i.e., numbers may enter these sets
at any time.) It should be clear that requiring that any stage be a (Z, Ẑ)-stage (for

Z = (B, B̂) or (Ai, Âı̂) for some (i, ı̂) ∈ L×R), combined with usual restraint during
nonexpansionary stages, ensures the satisfaction of the M- and R-requirements as
explained in Sections 3.3 and 3.4.

The only thing we have to ensure for the strategies that enumerate numbers
(i.e., the P-, and T -strategies) is that each has infinitely many chances to enumerate
a number into whatever set it wants. For this, we require:

(7) Any strategy along the true path can act at infinitely many (Z, Ẑ)-stages for

any (Z, Ẑ) = (B, B̂) or (Ai, Âı̂) for any (i, ı̂) ∈ L×R,

where the true path (to be defined precisely later) roughly corresponds to the set of
strategies whose guess about the outcomes of all higher-priority strategies is correct.

We ensure (7) by induction roughly as follows: Let T ⊆ Λ<ω be the tree of
strategies, where Λ is the set of possible outcomes of the strategies. Now the
strategy ∅ (the empty node) can act at any stage, so (7) can easily be ensured for
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∅ by effectively declaring each stage a (Z, Ẑ)-stage for some (Z, Ẑ) such that each
occurs infinitely often. Given a strategy ξˆ〈o〉 ∈ T , we distinguish two cases: If
outcome o must occur cofinitely often as the true outcome (because o is the only
possible or is the finite outcome of ξ) then (7) for ξ clearly implies (7) for ξˆ〈o〉.
On the other hand, if o is an infinite outcome of ξ, then we must slow down the
construction by ending the stage for ξ rather than going on to a new substage
whenever ξ has outcome o but at a (Z, Ẑ)-stage when it is not “(Z, Ẑ)’s turn for
ξˆ〈o〉” so as to ensure (7).

4. The full construction for Theorem 5

Fix an arbitrary effective priority ordering of all requirements of order type ω,
and let {Nl}l∈ω be the priority ordering of all N -requirements under this ordering.

4.1. The tree of strategies. Let Λ = {∞, f}∪ω be the set of possible outcomes
of strategies. (Intuitively, ∞ and f denote the infinite and finite outcome of a
strategy, while the outcome l ∈ ω of a P-strategy denotes that an Nl-strategy’s
functional Γ was destroyed by the P-strategy.)

We now define satisfaction of requirements (along a node) and the tree of strate-
gies T ⊆ Λ<ω in the next two definitions by simultaneous induction.

Definition 8. Fix a node ξ ∈ T .

(i) If ξ = ∅ then no requirement is active or satisfied along ξ.

Now assume ξ 6= ∅ and let η = ξ−. Assume that satisfaction of requirements
along any node ⊂ ξ and the assignment of any node ⊂ ξ to a requirement have
already been defined.

(ii) Any requirement that is not an N -requirement and that is satisfied along η
is also satisfied along ξ (via the same strategy).

(iii) If ηˆ〈∞〉 = ξ or ηˆ〈f〉 = ξ, then any requirement satisfied or active along η
is also satisfied or active along ξ (via the same strategy), respectively.

(iv) If ηˆ〈l〉 = ξ for some l ∈ ω and Nl is active along η via α, then Nl is satisfied
along ξ via α, and any N -requirement active or satisfied along α is also active
or satisfied along ξ (via the same strategy), respectively.

(v) If ηˆ〈∞〉 = ξ or ηˆ〈f〉 = ξ, then the requirement assigned to η is active along
ξ via η (if it is an N -requirement and ηˆ〈∞〉 = ξ) or satisfied along ξ via η
(otherwise).

(vi) Any requirement not satisfied or active along ξ by (ii)-(v) is not satisfied or
active along ξ.

Definition 9. The tree of strategies T ⊆ Λ<ω is defined as follows. Fix a node
ξ ∈ T and assume that satisfaction of requirements along any node ⊆ ξ and the
assignment of any node ⊂ ξ to a requirement have already been defined.

(i) The strategy ξ is assigned to the requirement of highest priority that is neither
active nor satisfied along ξ.

(ii) The set of possible outcomes of ξ is {∞, f} if ξ is assigned to an N -, M-, or
R-requirement; {f} if ξ is assigned to a T -requirement; and {l ∈ ω | Nl is
active along ξ} ∪ {f} if ξ is assigned to a P-requirement.

(iii) The immediate successors of ξ on T are ξˆ〈o〉, where o ranges over the possible
outcomes of ξ.
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Informally, we call a node ξ ∈ T an X -strategy if it is assigned to requirement
X .

Summarizing the above intuitively, we see the following possibilities: An N -,
M-,R-, or T -strategy merely satisfies its own requirement and can have the infinite
outcome (in addition to the finite outcome) iff it is an N -strategy or a minimal pair
strategy. An N -strategy merely introduces a functional Γ (which may be destroyed
later, at which point N switches from “active” to “satisfied” by a functional ∆). A
P-strategy β can either satisfy its own requirement and thus have finite outcome;
or destroy the Nl-strategy αl’s functional Γ (where Nl is active along β via αl) and
satisfy the Nl-requirement by building a functional ∆ while injuring allN -strategies
and all infinite P-strategies between αl and β.

We summarize the static properties of the tree of strategies in the following:

Lemma 10 (Assignment Lemma). Along any path p ∈ [T ], each requirement is
assigned at most finitely often and is eventually active, or satisfied, along all suffi-
ciently long nodes ⊂ p via a fixed strategy.

Proof. An easy but tedious induction on the priority of requirements.

4.2. (Z, Ẑ)-stages. Set m = (n+ 1) · (n̂+ 1) + 1, and fix an arbitrary indexing of

{(Ai, Âı̂) | (i, ı̂) ∈ L×R} ∪ {(B, B̂)}, denoted as {(Zj , Ẑj) | j < m}.

Definition 11. A stage s ∈ ω is a (Zj , Ẑj)-stage if j < m and s ≡ j mod m.

As remarked in Section 3.5, this ensures (7) for the node ∅ ∈ T ; for all other
ξ ∈ T , (7) has to be ensured dynamically by the construction using the following:

Definition 12. Fix a nonempty subset S ⊆ {(Zj, Ẑj) | j < m}, a strategy ξ ∈ T ,
a possible outcome o of ξ, and a stage s ∈ ω. Fix the maximal stage t < s (if it

exists) such that t is a (Zj , Ẑj)-stage for some (Zj , Ẑj) ∈ S and ξˆ〈o〉 was eligible

to act at t. Then the next type of stage for the quadruple (S, ξ, o, s) is a (Zk, Ẑk)-

stage, where k > j is minimal such that (Zk, Ẑk) ∈ S (if t and such k exist) or k is

minimal such that (Zk, Ẑk) ∈ S (otherwise).

Intuitively, we have the following situation: We need to ensure (7) for a strat-
egy ξ 〈̂o〉 (which can act infinitely often) and for a set of types of stages S (e.g.,
depending on whether a P i-strategy is in its B-phase,

⊕
j 6=i

Aj-phase, or Ai-phase).

In that case, we will delay the next time ξˆ〈o〉 can act until the current stage s is
of the next type of stage for the quadruple (S, ξ, o, s).

4.3. The construction, stage by stage. A strategy is initialized by making
all its parameters undefined and by making totally undefined all its functions and
functionals (i.e., Γ for an N -strategy, various ∆’s for a P-strategy, ϑ for an M-
strategy, and λ for an R-strategy). A number is picked big by choosing it larger
than any number mentioned so far in the construction.

The construction now proceeds in stages. All parameters are measured at the
current (sub)stage and remain unchanged unless explicitly specified otherwise. At
the beginning, all strategies are initialized. A stage s consists of substages t ≤ s
(possibly not all t ≤ s). At each substage t, a strategy ξ ∈ T of length t is eligible to
act and, after completing its action, decides which strategy ξˆ〈o〉 should be eligible
to act at substage t+ 1 or whether to end the stage (because t = s or s is not the
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next type of stage for ξˆ〈o〉). So fix a stage s, a substage t, and a strategy ξ ∈ T
eligible to act at substage t of stage s. Distinguishing cases depending on the type
of requirement to which ξ is assigned, we describe ξ’s action and the choice of the
next strategy eligible to act.

Case N : ξ is an NX,Φ-strategy: Define ξ’s length of agreement by

`(ξ) = max{x | ∀y < x(ΦA(y) ↓= X(y))},

and say s is ξ-expansionary if ξ is eligible to act at s and

∀s′ < s(ξˆ〈∞〉 eligible to act at s′ → `s′(ξ) < `(ξ)).

(Note that this definition is nonstandard, due to the delay feature of Section 3.5.)
If s is not ξ-expansionary then simply let ξˆ〈f〉 be eligible to act next. Otherwise:
Step 1: For each y < `(ξ) for which ΓX⊕B(y) is currently undefined, define

ΓX⊕B(y) = C(y) with the previous use (if ΓX⊕B(y) was previously defined and
no P-strategy ⊇ ξˆ〈∞〉 has requested that γ(y′) be lifted for some y′ ≤ y at the
previous ξ-expansionary stage) or with big use (otherwise).

Step 2: If s is of the next type of stage for the quadruple ({(Zj , Ẑj) | j <
m}, ξ,∞, s), then let ξˆ〈∞〉 be eligible to act at the next substage; otherwise, end
the stage.

Case N̂ : Analogous to Case N , using hatted parameters.
Case P: ξ is a P i

Ψ-strategy: Follow the first subcase which applies. (When
checking for computations ΨAi⊕B(x), only accept computations that have existed
at the previous stage at which α was eligible to act.)

Subcase 1: ξ’s witness is currently undefined: Pick a big witness x and let ξˆ〈f〉
be eligible to act next.

Subcase 2: ξ’s witness x is already in C: Let ξˆ〈f〉 be eligible to act next.
Remaining subcases: Let α0 ⊂ . . . ⊂ αk−1 ⊂ ξ be all the N -strategies αl such

that their requirement Nil , say, is active along ξ via αl, and let ΓXl⊕B
l be the

functional built by each αl. (This indexing of α, Γ, and X saves a bit on notation.)
Let s′ be the most recent stage (if any) at which ξˆ〈o〉 was eligible to act for some
outcome o ∈ Λ, which we also fix.

Subcase 3: ΨAi⊕B(x) ↓= 0 and for all l < k, γl(x) > ψ(x). Enumerate x into
C and γl(x) into B for all such αl, initialize all strategies ≥L ξˆ〈f〉, and end the
stage. (This corresponds to stopping in Step 6 of the module of Section 3.2.)

Subcase 4: o = f and ΨAi(x) ↓= 0: If s is of the next type of stage for the

quadruple ({Aj , Âı̂) | j 6= i ∧ ı̂ ≤ n̂}, ξ, ik−1, s), then request that γk−1(x) be lifted
and let ξˆ〈ik−1〉 be eligible to act next; otherwise, end the stage. (This corresponds
to Step 3 of the module of Section 3.2 with the delay of Section 3.5.)

Subcase 5: o = f (and so ΨAi(x) ↓= 0 fails): Let ξˆ〈f〉 be eligible to act next.
(This corresponds to Step 2 of the module of Section 3.2.)

Subcase 6: o = il (for some l < k), s′ is an (Aj , Aı̂)-stage (for some j 6= i and
ı̂ ≤ n̂), and γl(x) > ψ(x) (so l > 0, else Subcase 3 would have applied): If s is

of the next type of stage for the quadruple ({Aj , Âı̂) | j 6= i ∧ ı̂ ≤ n̂}, ξ, il−1, s),

then make ∆Ai

l totally undefined, request that γl−1(x) be lifted, and let ξˆ〈il−1〉
be eligible to act next; otherwise, end the stage. (This corresponds to proceeding
to Step 6 in the module of Section 3.2 with the delay of Section 3.5.)

Subcase 7: o = il (for some l < k), s′ is an (Aj , Âı̂)-stage (for some j 6= i and

ı̂ ≤ n̂), and γl(x) ≤ ψ(x): If s is not a (B, B̂)-stage, then end the stage; otherwise,
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enumerate γl′(x) into B (for all l′ ∈ [l, k)), define ∆Ai

l (y) = Xl(y) (for all y ≤ γl(x)

for which ∆Ai

l (y) is currently undefined) with the previous use (if ∆Ai

l (y) was
defined before and δl(y

′) 6∈ Ai for all y′ ≤ y) or with big use (otherwise), and let
ξˆ〈il〉 be eligible to act next. (This corresponds to Step 4 or 7 of the module of
Section 3.2 with the usual delay.)

Subcase 8: o = il (for some l < k) and s′ is a (B, B̂)-stage: If s is of the next type

of stage for the quadruple ({(Ai, Âı̂) | ı̂ ≤ n}, ξ, il, s), then let ξˆ〈il〉 be eligible to
act next; otherwise, end the stage. (This corresponds to Step 5 or 8 of the module
of Section 3.2 with the usual delay.)

Subcase 9: o = il (for some l < k), s′ is an (Ai, Âı̂)-stage (for some ı̂ ≤ n̂), and

for some (least) y, ∆Ai

l (y) ↓6= Xl(y): If s is an (Ai, Âı̂)-stage for some ı̂ ≤ n̂, then
enumerate δl(y) into Ai. In either case, end the stage.

Subcase 10: o = il (for some l < k), s′ is an (Ai, Âı̂)-stage (for some ı̂ ≤ n̂), and

for all y, ∆Ai

l (y) is undefined or equals Xl(y): Let ξˆ〈f〉 be eligible to act next.
(This corresponds to going back to Step 2 of the module of Section 3.2.)

Subcase 11: Otherwise: End the stage.
Case P̂: Analogous to Case P , interchanging the roles of unhatted and hatted

parameters.
Case M: ξ is an Mi,j

Ξ -strategy: Define ξ’s length of agreement by

`(ξ) = max{x | ∀y < x(ΞAi(y) = ΞAj (y))},
and define ξ-expansionary stages as in Case N .

If s is not ξ-expansionary, then simply let ξˆ〈f〉 be eligible to act next.
Otherwise, for each y < `(ξ) for which ϑ(y) is currently undefined, define

ϑ(y) = ΞAi(y). If s is of the next type of stage for the quadruple ({Zj, Ẑj) |
j < m}, ξ,∞, s), then let ξˆ〈∞〉 be eligible to act at the next substage; otherwise,
end the stage.

Case M̂: Analogous to Case M, interchanging the roles of unhatted and hatted
parameters.

Case R: ξ is an Ri,ı̂
Ω -strategy: Define ξ’s length of agreement by

`(ξ) = max{x | ∀y < x(ΩAi(y) = ΩÂı̂(y) = ΩFi,ı̂(y))}.
Now proceed as in Case M, replacing Ξ and ϑ by Ω and λ.

Case T : ξ is a T j,̂
χ -strategy: Follow the first subcase which applies:

Subcase 1: ξ’s witness is currently undefined: Pick a big witness x and let αˆ〈f〉
be eligible to act next.

Subcase 2: ξ’s witness x is currently not in Dj,̂, χ(x) ↓= 0, and s is an (Aj , Â̂)-

stage: Enumerate x into Dj,̂, Aj , and Â̂, and end the stage.
Subcase 3: Otherwise: Let αˆ〈f〉 be eligible to act next.

Case T̂ : Analogous to Case T , interchanging the roles of unhatted and hatted
parameters.

At the end of the stage, initialize all strategies >L the strategy eligible to act at
the last substage of stage s.

5. The verification of Theorem 5

We first analyze the possible injury in the construction. We begin by defining the
computations relevant to a strategy, i.e., the computations that a strategy might
want to protect.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2732 S. LEMPP, A. NIES, AND T. A. SLAMAN

Definition 13. For an N -, P-, M-, or R-strategy α and a stage s at which α is
eligible to act (at substage t = |α|), we call a computation relevant to α at stage s
if

(i) α is an NX,Φ-strategy and the computation is of the form ΦA(x) for some
x < `(α); or

(ii) α is a P i
Ψ-strategy and the computation is of the form ΨAi⊕B(x) (for α’s

witness x) which also existed at a previous stage at which α was eligible to
act; or

(iii) α is an Mi,j
Ξ -strategy and the computation is of the form ΞAi(x) or ΞAj (x)

for some x < `(α); or

(iv) α is an Ri,ı̂
Ω -strategy and the computation is of the form ΩAi(x), ΩÂı̂(x), or

ΩFi,ı̂(x) for some x < `(α).

(We analogously define computations relevant to N̂ -, P̂- and M̂-strategies.)

Lemma 14 (Non-Injury Lemma). Suppose α is an N -, P-, M-, or R-strategy
eligible to act at stages s0 and s1 > s0 but not between these stages. Also assume
that α is not initialized between substage t = |α| of stage s0 and substage t of stage
s1.

(i) If α ends the stage at stage s0, or if αˆ〈f〉 is eligible to act at stage s0, then
no computation relevant to α at stage s0 existing at the beginning of substage
t of stage s0 is destroyed between the beginning of substage t of stage s0 and
the beginning of substage t of stage s1.

(ii) If α is an M- or R-strategy and αˆ〈∞〉 is eligible to act at stage s0, then for
each x < `(α), at least one of the computations at x relevant to α at stage
s0 is not destroyed between the beginning of substage t of stage s0 and the
beginning of substage t of stage s1.

(iii) If α is a P i-strategy, αˆ〈il〉 is eligible to act for some l < kα, and s0 is an

(Aj , Âı̂)-stage for some j 6= i and ı̂ ≤ n̂, then the computation relevant to α
at stage s0 is not destroyed between the beginning of substage t of stage s0 and
the beginning of substage t of stage s1.

(An analogous statement applies to strategies for hatted requirements.)

Proof. We distinguish cases for the strategy ξ which might destroy a computation
relevant to α during the “critical interval” (i.e., between the beginning of substage
t of stage s0 and the beginning of substage t of stage s1).

Case 1: ξ <L α: No such ξ can be eligible to act without α being initialized at
the same stage.

Case 2: ξ >L α: Every such ξ is initialized at stage s0 and thus cannot destroy
a computation existing at stage s0.

Case 3: ξ = α: Only a P-strategy may destroy a computation relevant to itself,

and then only at a (B, B̂)-stage when αˆ〈il〉 is eligible to act for some l < kα. But,
during the critical interval, α is eligible to act only at stage s0, yielding the desired
contradiction to our hypotheses.

Case 4: ξ ⊇ αˆ〈f〉: During the critical interval, ξ can only be eligible to act at
stage s0, so αˆ〈f〉 must be eligible to act at stage s0. We distinguish two subcases.

Subcase 4.1: α is an N -, M-, or R-strategy: Then s0 is not α-expansionary,
so let s be the greatest (α-expansionary) stage at which αˆ〈∞〉 was eligible to
act (set s = 0 if no such stage exists). By induction on s and part (i) of this
lemma, `(α)[s] ≥ `(α)[s0], and for each x < `(α)[s0] = `(α), at least one relevant
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computation for x cannot be destroyed between the beginning of substage t of stage
s and the beginning of substage t of stage s0. But, by initialization at stage s, all of
ξ’s parameters were chosen after stage s and thus cannot destroy this computation.

Subcase 4.2: α is a P-strategy: Suppose that ΨAi⊕B(x) = 0 at the beginning of
substage t of stage s0 and that this computation also existed at a previous stage at
which α was eligible to act. Then, at stage s0, Subcase 2, 3, or 4 of Case P must
apply to α. If Subcase 4 applies then s0 is an (Aj , Âı̂)-stage for some j 6= i and
ı̂ ≤ n̂, so ξ cannot destroy ΨAi⊕B(x) at stage s0. Otherwise, let s ≤ s0 be the stage
at which x is enumerated into C. Then ξ is initialized at stage s, and so, when it is
eligible to act at stage s0, cannot destroy ΨAi⊕B(x) which already existed at stage
s (by induction on s and part (i) of this lemma).

Case 5: ξ ⊇ αˆ〈∞〉: Then α is an Mi,j- or Ri,ı̂-strategy (since the lemma was
not claimed for an N -strategy in this case), and s0 is α-expansionary. But numbers
cannot enter Ai and Aj at the same stage for i 6= j; and numbers cannot enter all

of Ai, Âı̂, and ΩF
i,ı̂ at the same stage. So (ii) has been established in this case.

Case 6: ξ ⊇ αˆ〈l〉 for some l ∈ ω: Then α is a P i
Ψ-strategy, and, by the

hypothesis of (iii), s0 must be an (Aj , Âı̂)-stage for some j 6= i and ı̂ ≤ n̂, so ξ
cannot destroy ΨAi⊕B(x) at stage s0.

Case 7: ξ ⊂ α: Then ξ is eligible to act at stage s0 only before substage t, i.e.,
before the critical interval. If a T -strategy ξ ⊂ α destroys a computation (relevant
to α at s0) during the critical interval, then α is initialized during the critical
interval, contrary to hypothesis. N -, M-, and R-strategies do not enumerate any
numbers. So assume that ξ is a Pj

Ψ-strategy. Then ξ may enumerate into B (in
Subcase 3 or 7 of Case P) or into Aj (in Subcase 9 of Case P), as well as into C
(which is irrelevant here).

So, assume, for the sake of a contradiction, that ξ enumerates into B or Aj

at a stage s ∈ (s0, s1], destroying a computation relevant to α at stage s0. We
distinguish two subcases.

Subcase 7.1: ξ enumerates into B at stage s: Then ξ destroys ΓX⊕B(x) for
some N -strategy ⊂ ξ (where x is ξ’s current witness). Since we assume that the
computation relevant to α at stage s0 has existed at a previous stage at which α
was eligible to act, the use of this computation must be less than γ(x) (which was
lifted since then), a contradiction.

Subcase 7.2: ξ enumerates into Aj at stage s0: Then, at stage s, ξ0 = ξ corrects
its computation ∆Aj (y0) for some y0 and ends the stage. This happens because y0
has entered the corresponding set X0, made possible by a change in A�(ϕ(y0) + 1).
If this A-change is due to enumeration by some P-strategy ξ1 ⊂ α (possibly but
not necessarily ξ1 = ξ0), then we trace this back to a previous A-change, etc.
Eventually, we find some strategy ξp (which is either not a P-strategy or 6⊂ α)
which triggers these ∆-corrections by an A-change at z, say, at a stage s′.

We now distinguish subcases by the relative location of ξp:
Subcase 7.2.1: ξp < α: Then α is initialized when ξp enumerates z into A. (For

ξp ⊂ α, we use the fact that ξp must be a T -strategy by our hypotheses.) But then
α cannot be eligible to act between stages s′ and s, since each ξq ends the stage for
q < p. (For ξp ⊂ α, this also holds for q = p.) Thus α must be initialized during
the critical interval, a contradiction.

Subcase 7.2.2: ξp ⊇ αˆ〈∞〉 or ⊇ αˆ〈l〉 for some l ∈ ω: By the same argument
as in the previous subcase, we must then have s′ = s0. Since all ξq (for q ≤ p)
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are comparable and assume an infinitary outcome of each other, they must all
enumerate into the same set Ak (for some fixed k ≤ n); otherwise, some ξq (for
q < p) would use the Xq-change to lift a Γ-use instead of enumerating into A. If α is

a P-strategy, then by the same argument k = j, so s0 is an (Aj , Âı̂)-stage, contrary
to the hypothesis of part (iii). Otherwise, α must be an M- or R-strategy; but
then enumeration into one fixed set Ak cannot destroy all computations relevant to
α at s0, establishing part (ii) in this case.

Subcase 7.2.3: ξp ≥ αˆ〈f〉: By an argument as in Subcase 7.2.1, we have s0 < s′.
Let η ⊆ ξp be the least strategy which is not ⊆ α. Let s∗ be the least stage ≤ s′

at which η is eligible to act and such that η is not initialized between stages s∗

and s0. Then clearly s0 < s∗. But then, by initialization, no strategy can enumer-
ate, during the interval [s∗, s], any number into any set that was picked before stage
s∗, so the above sequence of enumerations by the ξq cannot lead to the destruction
of a computation relevant to α at stage s0.

We now define the true path of the construction.

Definition 15. (i) The true path f of the construction is the leftmost path through
T such that every node along it is eligible to act infinitely often.

(ii) For any requirement X , we say X is active, or satisfied, along f via a strategy
ξ ⊂ f if X is active, or satisfied, via ξ along all sufficiently long η ⊂ f .

The following lemma shows that the true path is well-defined (and in particular

infinite) and that the (Zj, Ẑj)-stages mechanism works correctly.

Lemma 16 (True Path Lemma). Let ξ ⊂ f . Then:

(i) ξ is initialized at most finitely often;

(ii) ξ is eligible to act at infinitely many (Zj , Ẑj)-stages for all j < m; and
(iii) ξ declares one of its successors to be eligible to act next (instead of ending the

stage) infinitely often.

Proof. We proceed by induction on the length of ξ.
(i) is clear, since only strategies to the right of strategies currently eligible to act

are initialized.
(ii) is clear if ξ = ∅ (since ξ is eligible to act at any stage) or if ξ = ηˆ〈f〉 for

some η (since then at all but finitely many stages, ξ is eligible to act iff η is). If
ξ = ηˆ〈∞〉 or ηˆ〈i〉 for some η and i ∈ ω, then (ii) follows by (i) for ξ− = ξ�|ξ| and
by the way the next type of stage is determined in the construction.

(iii) is clear if ξ is a T - or T̂ -strategy; if ξ an N -, M-, or R-strategy (or its
hatted equivalent) and there are only finitely many ξ-expansionary stages; and if ξ

is a P or P̂-strategy and eventually only Subcases 2 or 5 are invoked (since in all
these cases ξ ends the stage at most finitely often and ξˆ〈f〉 ⊂ f).

Now suppose ξ is an N -, M-, or R-strategy (or its hatted equivalent) and there
are infinitely many ξ-expansionary stages. We want to show ξˆ〈∞〉 ⊂ f . Assume,
for the sake of a contradiction, that at any stage ≥ some fixed ξ-expansionary stage
s0, ξ is not initialized and does not declare ξˆ〈∞〉 eligible to act. By Lemma 14,
no computation for any y < `(ξ) involved in the definition of `(ξ) can be injured
at any stage ≥ s0; so, by our nonstandard definition of ξ-expansionary stages, all
stages ≥ s0 at which ξ is eligible to act are also ξ-expansionary, so that ξˆ〈∞〉
must eventually be eligible to act by (ii) for ξ.
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Finally, assume that ξ is a P- or P̂-strategy which is not eventually stuck at
Step 2 or 5. Then, again by Lemma 14, ξ’s computation ΨAi(x) = 0 cannot be
destroyed by any η 6= ξ; so for some least l < k, ξ invokes Subcases 7, 8, and 10 (in

this order) infinitely often, slowed down by the (Zj , Ẑj)-stages mechanism.

The satisfaction of each requirement is now established fairly easily.

Lemma 17 (Noncomputability Lemma). The T -requirements are satisfied.

Proof. By Lemma 10, we may fix a strategy ξ ⊂ f such that some fixed such
requirement is satisfied along f via ξ. The rest is now routine, using Lemma 16 (i)
and (ii).

Lemma 18 (Minimal Pair/Triple Lemma). The M-, M̂- and R-requirements are
satisfied.

Proof. By Lemma 10, we may fix a strategy ξ ⊂ f such that some fixed such
requirement is satisfied along f via ξ. (By symmetry, assume this requirement is
unhatted.) For an Mi,j-requirement, we now observe that numbers cannot enter
both Ai and Aj at the same stage. For an Ri,ı̂-requirement, we observe that

numbers cannot enter all of Ai, Âı̂, and Fi,ı̂ at the same stage. The rest is now a
routine minimal pair argument, using Lemmas 14 and 16.

Lemma 19 (P/P̂ Lemma). The P- and P̂-requirements are satisfied.

Proof. By Lemma 10, we may fix a strategy ξ ⊂ f such that some fixed such
requirement is satisfied along f via ξ. By Definition 8(v), we have ξˆ〈f〉 ⊂ f .
Thus, by Lemma 16 (i) and (ii), ξ is eventually stuck waiting at Step 2 or 5 (and,

at Step 2, cannot be injured, by Lemma 14), ensuring the P- or P̂-requirements.

Lemma 20 (N/N̂ Lemma). The N - and N̂ -requirements are satisfied.

Proof. By Lemma 10, we may fix a strategy ξ ⊂ f such that some fixed such
requirement (by symmetry, say, an N -requirement) is active or satisfied along f
via ξ. We distinguish three cases.

Case 1: The N -requirement is active along f via ξ: Then ξ builds a functional
ΓX⊕B. For fixed y, γ(y) is lifted by P-strategies η ⊃ ξ at most finitely often; so
ΓX⊕B is total. And by the way the P-strategies enumerate numbers into C, ΓX⊕B

must also correctly compute C.
Case 2: The N -requirement is satisfied along f via an N -strategy ξ. Then, by

Definition 8(v), ξˆ〈f〉 ⊂ f ; so, by Lemma 14 (i), ΦA 6= X .
Case 3: The N -requirement is satisfied along f via a P i-strategy ξ: Then, by

Definition 8(iv), ξˆ〈l〉 ⊂ f , and ξ kills a functional ΓX⊕B built by an N - (i.e., an
Nl-) strategy η ⊂ ξ. In ΓX⊕B’s stead, ξ builds a functional ∆Ai . Then ∆Ai is total,
and by the way the P i-strategy ξ corrects ∆Ai , this functional correctly computes
X .

Lemmas 17–20 now establish the satisfaction of all requirements and, by Section
2, also Theorem 5.
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