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In this paper we present an implementation of a three-dimensional p-version for structural problems of
solids with almost arbitrarily curved surfaces. Applying the blending function method, complex struc-
tures can often be modelled by a few p-elements, being the basis for a higher order approximation.
Numerical examples will demonstrate, that the p-version with anisotropic Ansatz spaces allows to pre-
dict the structural behaviour of three-dimensional plates and shells with approximately the same amount
of degrees of freedom as in the two-dimensional case, yet signi+cantly more accurate due to the three-
dimensional model. Furthermore, it is advantageous to compute complex structures exclusively with
three-dimensional discretizations as no special elements are needed to model the transition from dimen-
sionally reduced formulations like plates or shells to fully three-dimensional solid elements. Using the
p-version with anisotropic Ansatz spaces the whole structure can be e=ciently discretized with solid
e le me nts, e ve n if the aspe ct ratio of the e le me nts be come s ve ry large .
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1. INTRODUCTION

The p-version of the +nite element method has turned out to be an e=cient discretization
strategy for many linear elliptic problems. To name a few consider e.g. the Poisson equation,
the LamCe equations, the Reissner–Mindlin problem, etc. It was shown by many authors, that
for this class of problems the p-version is superior to the classical h-version approach [1–7].
Combined with a proper mesh design, the p-version shows an exponential rate of convergence
in energy norm in the preasymptotic range [8]. If a priori knowledge of the solution is used to
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Figure 1. Set of one-dimensional standard and hierarchic shape functions for p=1; 2; 3.

construct (geometrically) re+ned meshes towards points or lines of singularity or to resolve
boundary layers, an approximation with an—in an engineering sense—acceptable error is
easily obtained due to the preasymptotic range of exponential rate of convergence. In addition
to high accuracy the p-version includes some further advantages. It was theoretically and
numerically shown, that the p-version is free of locking eLects, if the polynomial degree is
chosen to be moderately high [6; 9]. This includes, e.g. shear locking eLects appearing when
Reissner–Mindlin problems are considered or Poisson locking, which plays an important role
in elastoplastic problems [10–12]. Using the blending function method, curved boundaries can
be easily considered without increasing the number of elements [13–15; 7]. Many structures
can therefore be discretized using a coarse mesh, as the basis for discretizations with higher
order Ansatz spaces.

In this paper an implementation of the p-version will be presented, which allows to con-
sider three-dimensional structural problems with almost arbitrarily curved surfaces. The im-
plementation is based on a hexahedral element formulation, being able to vary the polynomial
degree for the three local directions (�; �; �) as well as for the Ansatz of the three components
u(x)= (ux; uy; uz)T of the displacement +eld. The use of anisotropic Ansatz spaces leads to
very e=cient approximations especially for thin walled structures. It will be demonstrated,
that the considered implementation of the p-version allows to predict the three-dimensional
structural behaviour of plates and shells with approximately the same amount of degrees of
freedom as with dimensionally reduced implementations, yet signi+cantly more accurate due
to the three-dimensional model.

The outline of the paper is as follows: First we will present the implemented Ansatz spaces,
based on hexahedral elements. In Section 3 a short introduction to the blending function
method and the client–server concept in our software structure will be given. This approach
is similar to a geometry representation used by Dey et al. [16; 17] for the solution of Poisson’s
equation. The e=ciency of the p-version for thin walled structures will then be demonstrated
by several numerical examples in Section 4.

2. THE p-VERSION OF THE FINITE ELEMENT METHOD

2.1. The one-dimensional hierarchic basis

Following SzabCo and BabuPska [7] it will +rst be shown how hierarchic basic functions can be
implemented up to any desired polynomial degree. Let us start with the standard +nite element
basis (nodal basis) in one dimension on a standard element Qst = (−1; 1) (see Figure 1, left
part). Obviously, every function representable by the standard basis can also be represented
by the set of hierarchic basis functions (see Figure 1, right part). A principle diLerence
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between the two bases is that in the hierarchic case all lower order shape functions are
contained in the higher order basis.

Our two- and three-dimensional p-version implementation is based on the set of one-
dimensional hierarchic shape functions

N1(�) = 1
2(1− �) (1)

N2(�) = 1
2(1 + �) (2)

Ni(�) = �i−1(�); i=3; 4; : : : ; p+ 1 (3)

with

�j(�)=

√
2j − 1

2

∫ �

−1
Pj−1(t) dt=

1√
4j − 2

(Pj(�)− Pj−2(�)); j=2; 3; : : : (4)

where Pj(�) are the well-known Legendre polynomials

Pk(�)=
1

2kk!
dk

d�k
(�2 − 1)k ; k = 0; 1; : : : (5)

The linear functions N1(�); N2(�) are called nodal shape functions or nodal modes. Because

Ni(−1)=Ni(1)=0; i=3; 4; : : : (6)

the functions Ni(�); i=3; 4; : : : are called internal shape functions, internal modes or bubble
modes. The orthogonality property of Legendre polynomials implies

∫ 1

−1

dNi
d�

dNj
d�

d�= �ij; i; j¿3 (7)

In Reference [18] it was shown, that the condition number of the stiLness matrix for the
Navier equations of elasticity is improved by an order of magnitude if a hierarchic basis
of shape functions is applied. Furthermore, it is important to notice, that a hierarchic basis
has an immediate consequence on the structure of the resulting stiLness matrix. If equations
are ordered so that all linear modes get numbers 1 to n1, all quadratic modes get numbers
n1 + 1 to n2 and so on, stiLness matrices corresponding to polynomial order 1 to p − 1 are
submatrices of the stiLness matrix corresponding to polynomial order p.

Shape functions for two- and three-dimensional Ansatz spaces can now be easily con-
structed, by simply forming the tensor product of one-dimensional hierarchic shape functions.

2.2. Hierarchic shape functions for hexahedral elements

Our implementation of the p-version in three dimensions is based on a hexahedral element
formulation, using the Ansatz functions introduced by SzabCo and BabuPska [7]. Hexahedral
elements (see Figure 2) show some advantages, when being compared to tetrahedral and
pentahedral element formulations:

• Hexahedral element formulations lead to higher accuracy.
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Figure 2. Standard hexahedral element Qh
st: de+nition of nodes, edges, faces and polynomial degree.

• Hexahedral elements are especially well suited for thin walled structures. One local vari-
able can be identi+ed to correspond with the thickness direction. Therefore it is possible
to choose the polynomial degree in thickness direction diLerent from those in in-plane
direction.

• The numerical integration of hexahedral elements can be easily performed using a
Gaussian quadrature scheme.

The three-dimensional shape functions can be classi+ed into four groups:

1. Nodal modes:
NNi
1;1;1(�; �; �) = 1

8(1 + �i�)(1 + �i�)(1 + �i�), i = 1; : : : ; 8.
The nodal modes are the standard trilinear shape functions, well known from the isopara-
metric eight-noded brick element. (�i; �i; �i) are the local co-ordinates of the ith node of
the standard element (see Figure 2).

2. Edge modes:
These modes are de+ned for each individual edge separately. If we consider e.g. edge 1,
the corresponding edge modes read: N E1

i;1;1(�; �; �) = 1
4(1− �)(1− �)�i(�).

3. Face modes:
These modes are de+ned for each individual face separately. If we consider e.g. face 1,
the corresponding face modes read: N F1

i; j;1(�; �; �) = 1
2(1− �)�i(�)�j(�).

4. Internal modes:
N int
i; j; k(�; �; �) = �i(�)�j(�)�k(�).

The internal modes are purely local and vanish at the faces of the hexahedral element.

The indices i; j; k of the shape functions denote the polynomial degrees in the local directions
�; �; �.

Three diLerent types of Ansatz spaces have been implemented: the trunk space S
p�;p�;p�
ts

(Qh
st), the tensor product space S

p�;p�;p�
ps (Qh

st) and the anisotropic tensor product space Sp;p; q

(Qh
st). A detailed description of the three Ansatz spaces is given in Appendix A. For the

de+nition of the spaces S
p�;p�;p�
ts (Qh

st) and Sp;p; q(Qh
st) see also SzabCo and BabuPska [7].
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The polynomial degree for the Ansatz spaces S
p�;p�;p�
ts (Qh

st) and S
p�;p�;p�
ps (Qh

st) can be varied
in each local direction separately (see Figure 2). The diLerence between the trunk space and
the tensor product space is relevant for the face modes and the internal modes. For explanation
we +rst consider the face modes, e.g. the modes for face 1. Indices i; j denote the polynomial
degrees of the face modes in �- and �-direction, respectively.

Face modes (face 1): N F1
i; j;1(�; �; �) = 1

2(1− �)�i(�)�j(�)

Trunk space Tensor product space
i = 2; : : : ; p� − 2 i = 2; : : : ; p�
j = 2; : : : ; p� − 2 j = 2; : : : ; p�

i + j = 4; : : : ;max{p�; p�}

The de+nition of the set of internal modes is very similar. Indices i; j; k denote now the
polynomial degrees in the three local directions �; �; �.

Internal modes: N int
i; j; k(�; �; �)=�i(�)�j(�)�k(�)

Trunk space Tensor product space
i=2; : : : ; p� − 4 i=2; : : : ; p�
j=2; : : : ; p� − 4 j=2; : : : ; p�
k=2; : : : ; p� − 4 k=2; : : : ; p�

i + j + k=6; : : : ;max{p�; p�; p�}

The Ansatz space Sp;p; q(Qh
st) de+nes an anisotropic set of shape functions being determined

by two polynomial degrees p and q (see Figure 2). All shape functions being of higher order
in � and �-direction are associated with the polynomial degree p. These shape functions
correspond to the edges 1,2,3,4,9,10,11,12, to the faces 1 and 6 and to all internal modes.
Shape functions for faces 1 and 6 are equal to the ones of the trunk space S

p�;p�;p�
ts (Qh

st) with
p=p�=p�. q de+nes the degree of all shape functions being of higher order in �-direction,
which are associated with the edges 5,6,7,8, with the faces 2,3,4,5 and with all internal
modes. The modes corresponding to the faces 2,3,4,5 are equal to the ones of the tensor
product space S

p�;p�;p�
ps (Qh

st) with p=p�=p� and q=p�. Considering a polynomial degree
p= q=p�=p�=p� one observes, that the number of internal modes of Sp;p; q(Qh

st) is higher
than the one of the trunk space S

p�;p�;p�
ts (Qh

st) and less than the one of the tensor product
space S

p�;p�;p�
ps (Qh

st) (see Appendix A). Furthermore, it can be noted, that the internal modes
of the space Sp;p; q(Qh

st) are polynomials in which the direction � is preferred.
Due to the built-in anisotropic behaviour of the Ansatz space Sp;p; q(Qh

st) it is important
to consider the orientation of the local co-ordinates of a hexahedral element. In Figure 3 it
is shown, how hexahedral elements should be orientated, when three-dimensional thin walled
structures are to be discretized. The local co-ordinate � of the hexahedral element corresponds
with the thickness direction z. If the orientation of all elements is equal, then it is possi-
ble to construct discretizations where the Ansatz for the in-plane and thickness direction of
thin walled structures can be treated diLerently. The numerical examples in Section 4 will
demonstrate that anistropic Ansatz spaces lead to e=cient discretizations.
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Figure 3. Modelling plate-like structures with hexahedral elements.

Our implementation of the p-version allows not only to vary the polynomial degree for the
three diLerent local directions but also to choose a diLerent degree for each primary variable.
The following two examples illustrate how to de+ne a polynomial degree template p for a
structural problem with three primary variables u=(ux; uy; uz)T:
• Let

p= ��
�

ux uy uz
1 4 7
2 5 8
3 6 9




Considering the trunk space S
p�;p�;p�
ts (Qh

st) the polynomial degree template de+nes the
Ansatz for the displacement +eld

ux ∈S1;2;3
ts (Qh

st); uy ∈S4;5;6
ts (Qh

st) and uz ∈S7;8;9
ts (Qh

st)

In case of the tensor product space S
p�;p�;p�
ps (Qh

st) the de+nition is to be understood analo-
gously.
• Setting

p= ��
�

ux uy uz
1 3 5
1 3 5
2 4 6




will lead in case of the Ansatz space Sp;p; q(Qh
st) to the Ansatz:

ux ∈S1;1;2(Qh
st); uy ∈S3;3;4(Qh

st) and uz ∈S5;5;6(Qh
st)

This polynomial degree template p can be de+ned for each individual element or for a group
of elements. Our +nite element code automatically takes care of interelement continuity of the
Ansatz. If adjacent elements have diLerent de+nitions of p, then always the highest degree
for the common edge and face modes is chosen.
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Figure 4. Number of degrees of freedom for 3D LamCe problems for
one hexahedral element and uniform p.

In Figure 4 (left part) the number of degrees of freedom of one hexahedral element with
isotropic polynomial degree, i.e. for

p= ��
�

ux uy uz
p p p
p p p
p p p




for a three-dimensional LamCe problem is plotted. As expected, the tensor product space sup-
plies the highest number of degrees of freedom. In Figure 4 (right part) the ratio of internal
modes to degrees of freedom is pictured. Sp�;p�;p�

ps (Qh
st) is the Ansatz space with the highest

number of internal modes. As the internal degrees of freedom are purely local to the element,
they can be eliminated by static condensation. This results in an increase of computation
time on element level but drastic decrease of solution time because the condition number
of the global stiLness matrix is strongly reduced. Several authors [19–21] have investigated
these observations in detail, interpreting the internal mode condensation as a preconditioning
procedure for iterative solvers.

3. THE BLENDING FUNCTION METHOD

One important diLerence between h- and p-version +nite element methods lies in mapping
requirements. Because in the p-version the element size is not reduced as the polynomial
degree is increased, the description of the geometry has to be independent of the number of
elements. This results in the necessity to construct elements with an exact representation of
the boundary. The isoparametric mapping, used in standard +nite element formulations, can be
seen as a special case of mapping using the blending function method [14–17; 7]. Following
these ideas, element boundaries can be implemented as (almost) arbitrarily curved edges and
faces.

Before describing an algorithm coupling a geometric model to the +nite element analysis
and taking advantage of the blending function method, some basic concepts of element matrix
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Figure 5. Mapping by the blending function method.

computation should be reviewed in the light of this mapping technique. The de+nition of an
element stiLness matrix and an element volume load vector

Ke =
∫ 1

−1

∫ 1

−1

∫ 1

−1
MK(N;C;Q;J−1; |J|) d� d� d� (8)

be =
∫ 1

−1

∫ 1

−1

∫ 1

−1
Mb(N; b;Q;J−1; |J|) d� d� d� (9)

is given by an integral of matrix functions MK ; Mb, depending on:

• shape functions, N,
• material properties, C,
• body force, b,
• mapping function, Q,
• Jacobian matrix, with its inverse and determinant, J;J−1; |J|.
Let now M be a generic matrix function corresponding to MK or Mb. In general integration
(8) and (9) is performed numerically in the local co-ordinate system (�; �; �) of a standard
hexahedral element domain Qh

st = [(−1; 1)×(−1; 1)×(−1; 1)]. Using e.g. a Gaussian quadrature
the integral is replaced by a weighted sum∫ 1

−1

∫ 1

−1

∫ 1

−1
M(N;C; b;Q;J−1; |J|) d� d� d�

≈ ∑
l

∑
m

∑
n
M(N;C; b;Q;J−1; |J|) |(�l; �m; �n)w�lw�mw�n (10)

Therefore, the terms N;C; b;Q;J−1; |J| have to be computed only at integration points
(�l; �m; �n). In the following, we will consider the blending function method and show, that
Q and J can be evaluated at any interior point only from the knowledge of its local
co-ordinates and information on the surface of the element. Our formulation of the blending
function method follows closely the work of KirCalyfalvi and SzabCo [15]. Consider a hexahedral
element, as pictured in Figure 5. Xi=(Xi; Yi; Zi); i=1; : : : ; 8 denote the global co-ordinates of
the nodes. Ei=(Eix; Eiy; Eiz); i=1; : : : ; 12 are functions which depend on local co-ordinates
(�; �; �) and describe the shape of each edge. Fi=(Fix; Fiy; Fiz); i=1; : : : ; 6 denote the functions
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describing the shape of each face. The mapping function Qe(�; �; �) from local ^=(�; �; �)T

to global co-ordinates x=(x; y; z)T is obtained by

x=Qe(�; �; �)=
8∑
i=1
NNi

1;1;1(�; �; �)Xi +
6∑
i=1
fi(�; �; �)−

12∑
i=1
ei(�; �; �) (11)

The +rst term is the standard mapping of isoparametric eight-noded hexahedral elements. The
second term is referred to as face blending (see Appendix B). Consider e.g. face 6 of the
hexahedral element shown in Figure 5, where F6(�; �) describes the parametric mapping of
the local (�; �)-plane to the surface of the element:

f6(�; �; �) :=
(
F6(�; �)− 1

4
((1− �)(1− �)X5 + (1 + �)(1− �)X6

+ (1 + �)(1 + �)X7 + (1− �)(1 + �)X8)
)(

1 + �
2

)
(12)

At face 6, where �=1 the blending term (1 + �)=2 equals 1 and therefore f6(�; �; �=1)
describes the diLerence between the curved and the bilinear face co-ordinates (�; �). Due to
the blending term it is guaranteed, on the other hand, that this diLerence (i.e. the function
f6(�; �; �)) decreases linearly to the opposite face 1, where �= −1 such that f6(�; �;−1)=0.

The third term in Equation (11) corresponds to the edge blending. Considering e.g. edge 1
we have

e1(�; �; �) :=
(
E1(�)− (1− �)X1 + (1 + �)X2

2

)(
1− �
2

)(
1− �
2

)
(13)

ei(�; �; �); i=1; : : : ; 12 denote the diLerence between the curved edge and the linear connection
of the two end points, multiplied by a blending term (see Appendix B). The structure of the
edge blending is similar to the face mapping, now with a blending term being linear in two
variables. Because each edge belongs to two faces of a hexahedral element, a correction with
respect to a straight line edge appears twice in the surface blending term (second sum) in
Equation (11). Therefore, the corresponding edge blending term has to be subtracted.

Substituting fi(�; �; �); i=1; : : : ; 6 and ei(�; �; �); i=1; : : : ; 12 in Equation (11) by inserting
Equations (B2), (B1) of Appendix B and rearranging terms we +nally obtain

x = Qe(�; �; �)

= 1
2((1− �)F1(�; �) + (1− �)F2(�; �) + (1 + �)F3(�; �)

+ (1 + �)F4(�; �) + (1− �)F5(�; �) + (1 + �)F6(�; �))

− 1
4 ((1− �)(1− �)E1(�) + (1− �)(1 + �)E2(�) + (1− �)(1 + �)E3(�)

+ (1− �)(1− �)E4(�) + (1− �)(1− �)E5(�) + (1 + �)(1− �)E6(�)

+ (1 + �)(1 + �)E7(�) + (1− �)(1 + �)E8(�) + (1 + �)(1− �)E9(�)
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+(1 + �)(1 + �)E10(�) + (1 + �)(1 + �)E11(�) + (1 + �)(1− �)E12(�))

+NN1
1;1;1(�; �; �)X1 + NN2

1;1;1(�; �; �)X2 + NN3
1;1;1(�; �; �)X3

+NN4
1;1;1(�; �; �)X4 + NN5

1;1;1(�; �; �)X5 + NN6
1;1;1(�; �; �)X6

+NN7
1;1;1(�; �; �)X7 + NN8

1;1;1(�; �; �)X8 (14)

Consider now the Jacobian matrix

J(�; �; �)=




@x
@�
@y
@�
@z
@�

@x
@�
@y
@�
@z
@�

@x
@�
@y
@�
@z
@�




(15)

It contains the derivatives of the mapping function Qe with respect to the local co-ordinates
�; � and �. From (14) it can be readily seen, that all coe=cients of J depend linearly on the
following three groups of geometric information:

• the co-ordinates of the nodes Xi for i=1; : : : ; 8,
• the 12 tangent vectors

@Ei
@r

where r= � for i=1; 3; 9; 11

r= � for i=2; 4; 10; 12

r= � for i=5; 6; 7; 8 (16)

• the six tangential planes(
@Fi
@r
;
@Fi
@s

)
where r = �; s= � for i=1; 6

r = �; s= � for i=2; 4

r = �; s= � for i=3; 5 (17)

Therefore, the Jacobian matrix at any interior point x(�; �; �) of the element can be computed
only from nodal, edge and surface data and from the local co-ordinates (�; �; �) themselves.
For given (�; �; �), edge and surface derivatives have to be sampled at points corresponding to
the local co-ordinates as indicated in Figure 6, showing schematically the essential information
on the edges and surfaces of a hexahedral element for computing the Jacobian matrix J.

Assuming now a tensor product integration scheme in (10) with k3 integration points, 6k2

corresponding sampling points on the surfaces and another 12k sampling points on the edges
of a hexahedron can be collected. To compute tangential planes (17) and tangent vectors (16)
in these points, one has to consider that the corresponding functions Fi and Ei are de+ned as
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Figure 6. Geometric information of edges and faces with inUuence
on the Jacobian at an integration point.

Figure 7. Parameter values of the objects.

composed mappings in general. Figure 7 sketches these mappings for the upper face F6 of
the hexahedron (see also Figure 5). De+ning u := (u; v)T = (u(�; �; �=1); v(�; �; �=1))T and
x := (x; y; z)T = (x(u; v); y(u; v); z(u; v))T F6 is given by

F6 =x(u(�; �; �=1)) (18)

Assuming that the mapping x is bijective, we denote by x−1(Ei) the set of all points in
the (u; v)-plane being the image of points on the edge Ei under the mapping x−1. As
in general edges Ei of a hexahedron are obtained by arbitrary geometric operations, their
image x−1(Ei) is not available in closed form and must be approximated by a pointwise
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Figure 8. Client–Server structure for computing element stiLness matrices and load vectors.

iterative backtransformation. Once this approximation is constructed, the mapping u from
(�; �)- to (u; v)-plane can be de+ned by (two dimensional) blending [7]. The derivatives (16)
and (17) of edges and surfaces at the surface and edge sampling points with respect to the local
co-ordinates can then be obtained by application of the chain rule to (18) and the correspond-
ing expression for element edges.

Observing now this special structure of the mapping x, an implementation of the compu-
tation of element matrices in a distributed software system, strictly separating the geometric
description from the de+nition of shape functions is possible. Figure 8 sketches a client–server
structure of this computation. At each integration point (�el ; �

e
m; �

e
n) the mapped co-ordinates

Qe(�el ; �
e
m; �

e
n) and the Jacobian matrix J(�el ; �

e
m; �

e
n) are computed from the boundary represen-

tation data of the geometric model. We are using AutoCAD with its ACIS-kernel [31] and the
ARX-interface to provide all geometric information. Surface co-ordinates and derivatives can
be obtained either directly from the geometric modeller or from an intermediate interpolation
surface, like the ‘quasi-regional mapping’ as described in Reference [15]. Details of these
implementations are described in Reference [22].

For reasons of computational e=ciency we do not envoke the interprocess communication
shown in Figure 8 for each integration point individually, but collect all local co-ordinates,
send them at once and receive computed data again by one message, only. The additional
eLort due to the computation of the mapping function Qe, the Jacobian matrices J and the
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Figure 9. Two- and three-dimensional discretizations of a clamped plate under constant load.

interprocess communication is very small. Considering e.g. the numerical example presented
in Section 4.4, the additional time is only about 2 per cent.

Summarizing, this blending function technique for mapping the geometry of p-elements
oLers the possibility to completely separate all geometric computations involved in a +nite
element analysis from the non-geometric part. This separation allows to design a distributed
software system, where the geometric model of a CAD-program, although running as a dif-
ferent process or even on a diLerent computer, is directly linked to a +nite element kernel.
Using this software interface, the evaluation of the Jacobian matrix J at each integration point
and thus the numerical integration of element matrices and load vectors is possible without
any explicit knowledge on the types of surfaces or edges of the solid model. This software
structure oLers the advantage of using all state-of-the-art CAD-techniques like geometric edit-
ing or parametric design in a +nite element analysis, immediately. The increase of e=ciency
for practical work may be dramatic, as such a system for computer integrated engineering
relieves a user from the necessity to transfer geometric data from CAD to FEA, which is
usually very time-consuming, even if only some geometric parameters of the model change.

4. NUMERICAL EXAMPLES

4.1. Clamped plate under uniform load
In this +rst simple example of a clamped plate under uniform load we compare a Reissner–
Mindlin model with three-dimensional h- and p-approximations and derive guidelines for an
a priori de+nition of the polynomial degree template p for plate-like structures.

The length of the quadratic plate is L=12 and the thickness equals t=0:35. The plate
is loaded by a uniform pressure Tz =−100 acting on the upper surface of the plate. Lin-
ear elastic material behaviour is assumed with E=30000 000 being Young’s modulus and
)=0:2 denoting Poisson’s ratio. Considering the two-dimensional discretization based on
the Reissner–Mindlin plate theory the warping coe=cient accounting for non-uniform shear
distributions is chosen to be *=5=6.

Several discretizations for this problem will be investigated (see Figure 9). The
two-dimensional discretization is based on a Reissner–Mindlin plate formulation with 25
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Figure 10. Comparison of the two- and three-dimensional solution for a
clamped plate under constant load.

quadrilateral p-elements utilizing the tensor product space S
p;p
ps (Qq

st), see References [2; 3].
The three-dimensional discretizations for the p-version are based on the mesh consisting of
25 hexahedral elements with one element layer over the plate thickness. In order to resolve
boundary layers the meshes for the p-version are re+ned towards the boundary. To draw
a comparison to the h-version with trilinear hexahedral elements, discretizations with up to
22496 elements will be applied. The number of elements over the plate thickness varies in
this case between one and six.

The reference value for the strain energy W =53:09895558 of the three-dimensional problem
is based on a Richardson extrapolation of values being obtained with a mesh consisting of 48
hexahedral elements in conjunction with the trunk space S

p;p;p
ts (Qh

st) where p=10; 11; 12. It
may be interesting to note, that the two-dimensional Reissner–Mindlin converges to a strain
energy of W =53:18817430.

In order to get an impression of the diLerence between the two- and three-dimensional
discretizations, consider the stress distribution over plate thickness e.g. at x=y=9:0; z of
both models in Figure 10. The solutions are based on converged approximations, so that
the inUuence of the numerical error is negligible. The stress components ,xx; ,yy and ,xy of
the Reissner–Mindlin model coincide with the three-dimensional solution. Deviations of the
Reissner–Mindlin model from the three-dimensional solution can be observed for ,zz and
,yz; ,zx. These deviations are due to the kinematic and constitutive assumptions made in the
formulation of this model. Further deviations of the Reissner–Mindlin approximation from the
exact three-dimensional solution could be observed, if we would investigate the solution of
both models close to the boundary. For a detailed discussion of boundary layer eLects, we
refer to Reference [6].

Considering a comparison of the three-dimensional discretizations the strain energy is plotted
in Figure 11. It can be seen, that the p-version with an Ansatz space S

p�;p�;p�
ts (Qh

st) (p=p�
=p� = p� is chosen in this example uniformly for all components) supplies with p=4 and
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Figure 11. Comparison of the h- and p-version for a clamped plate under constant load.

1230 degrees of freedom an accuracy which is not reached by the h-version, even with 98913
unknowns.

Furthermore it is obvious, that signi+cant eLort can be saved, if anisotropic Ansatz spaces
are used in the p-version. To get an indication for an economic p-distribution for plate-
like structures, we will +rst investigate the dependence of strain energy upon the polyno-
mial degree template p using all three Ansatz spaces Sp;p; q(Qh

st); S
p�;p�;p�
ts (Qh

st);S
p�;p�;p�
ps (Qh

st).
To test the sensitivity of the strain energy upon the discretization, p will be varied such
that either the polynomial degree for the Ansatz ux and uy or for uz will be one order
higher, i.e.

ux uy uz
�
�
�


p+ 1 p+ 1 p
p+ 1 p+ 1 p
p+ 1 p+ 1 p


 vs

ux uy uz
�
�
�


p p p+ 1
p p p+ 1
p p p+ 1




We will also investigate the diLerence between a raise of the polynomial degree in in-plane
(�; �) and in transversal (�) direction, i.e.

ux uy uz
�
�
�


p+ 1 p+ 1 p+ 1
p+ 1 p+ 1 p+ 1
p p p


 vs

ux uy uz
�
�
�


 p p p

p p p
p+ 1 p+ 1 p+ 1




From the upper parts of Figures 12–14, it is evident, that a discretization supplies less error,
if the polynomial degree is raised rather for the deUection uz than for the displacement com-
ponents ux; uy. This is of course not surprising, because this example is a bending dominated
problem where most of the strain energy is due to the deUection uz. Therefore, an accurate
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Figure 12. Ansatz space S
p�;p�; p�
ts (Qh

st)
with p=1; : : : ; 8.

Figure 13. Ansatz space S
p�;p�; p�
ps (Qh

st)
with p=1; : : : ; 6.

approximation of the displacement component uz is more important than for the displacement
components ux and uy.

Concerning the variation of the polynomial degree in �; � or �-direction, it has to be men-
tioned, that the p-version mesh is constructed such that the local coordinates �; � and � cor-
respond with the global co-ordinates, i.e. � coincides with the z-direction. Regarding the lower
parts of Figures 12–14 it becomes obvious that—concerning the Ansatz spaces S

p�;p�;p�
ts (Qh

st)
and S

p�;p�;p�
ps (Qh

st)—for a wide range of p an increase of polynomial degree with respect to
local co-ordinates � and � leads to more e=cient discretizations than the ones, where the order
for the local co-ordinate � is raised. This eLect is even more evident, if we regard the Ansatz
space Sp;p; q(Qh

st) (see lower part of Figure 14). This diLerence between the behaviour of
the three Ansatz spaces can be explained by the anisotropic nature of the set of shape func-
tions of Sp;p; q(Qh

st). While the Ansatz spaces S
p�;p�;p�
ts (Qh

st) and S
p�;p�;p�
ps (Qh

st) supply in each
direction the same type of approximation, Sp;p; q(Qh

st) leads even for a uniform polynomial
degree template p in �-direction to a higher accuracy than in the other local directions (see
Appendix A). For a wide range of p an increase of order in � and �-direction supports for
S

p�;p�;p�
ts (Qh

st) and S
p�;p�;p�
ps (Qh

st) a higher accuracy than an increase in �-direction does. Fur-
ther raise of p shows, that an increase of polynomial order in � becomes more important for
the Ansatz spaces S

p�;p�;p�
ts (Qh

st) and S
p�;p�;p�
ps (Qh

st) becausenow theerror in in-plane dire ction 
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Figure 14. Ansatz space Sp;p; q(Qh
st) with p=1; : : : ; 6.

is less than that in thickness direction. Due to the built-in anisotropy, this is not the case for
Sp;p; q(Qh

st), where the �-direction is a priori preferred.
Summarizing, it is important to handle the polynomial degree for the Ansatz of ux; uy and

uz diLerently and to choose for uz a higher order approximation, e.g.:

ux uy uz
�
�
�


p p p+ 1
p p p+ 1
p p p+ 1




Furthermore the numerical investigation has shown, that it is also advantageous to choose the
polynomial degree in �; �-direction one order higher than in �-direction:

ux uy uz
�
�
�


p+ 1 p+ 1 p+ 1
p+ 1 p+ 1 p+ 1
p p p



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Figure 15. Comparison of the two- and
three-dimensional discretizations for a clamped
plate under constant load with isotropic and
uniform distribution of the polynomial degree.

Figure 16. Comparison of the two-
and three-dimensional discretizations for a
clamped plate under constant load, poly-

nomial degrees as in Table I.

Combining these observations, we suggest a polynomial degree template for plate-like
structures being of the form

p=

ux uy uz
�
�
�


p1 p1 p2

p1 p1 p2

p3 p3 p4




where p2¿p1, p4¿p3 and p1¿p3, p2¿p4.
Convergence towards the exact solution of the (three-dimensional) structural problem will of

course only be obtained, if the lowest polynomial degree, i.e. pmin = min{p1; p2; p3; p4} tends
to in+nity. Considering yet plate-like structures, it is possible to gain an—in a engineering
sense—acceptable error, where pmin is limited to a certain value. This corresponds to accepting
a modelling error inherent e.g. in all plate or shell theories, yet with the major diLerence,
that an increase of the polynomial degree guarantees a more and more accurate modelling of
the three-dimensional structure. It should also be noted, that an optimal distribution of the
polynomial degree can be obtained using anisotropic a posteriori error estimators outlined by
Stein et al. [23].

In the following, the strain energies for computations with Ansatz spaces S
p�;p�;p�
ts (Qh

st),
Sp;p; q(Qh

st), S
p�;p�;p�
ps (Qh

st) are compared to the two-dimensional approximation of the
Reissner–Mindlin problem. Figure 15 shows results of an isotropic and uniform distribution
of the polynomial degree for the three-dimensional solution, whereas anisotropic Ansatz spaces
were used in the computations depicted in Figure 16.

In Table I the polynomial degree templates for the anisotropic Ansatz spaces S
p�;p�;p�
ts (Qh

st)
and S

p�;p�;p�
ps (Qh

st), S
p;p; q(Qh

st) are listed, each row corresponding to a sequence of approxi-
mation in Figure 16. In in-plane direction (�–�-plane) the polynomial degree is raised for ux
and uy up to p=7 and for uz up to p=8. Concerning the Ansatz spaces S

p�;p�;p�
ts (Qh

st) and
Sp;p; q(Qh

st) the polynomial degree in plate thickness direction (�) is limited for ux and uy to
p=3 and for uz to p=4. Only for the Ansatz space S

p�;p�;p�
ts (Qh

st) the polynomial degree
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Table I. Polynomial degree matrix for the clamped plate under uniform pressure.

run 1 2 3 4 5 6 7 8

1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8
S

p�; p�; p�
ts (Qh

st) 1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8
1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6

1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8
S

p�; p�; p�
ps (Qh

st); 1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8
Sp;p; q(Qh

st) 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 3 3 4 3 3 4

Figure 17. Plate with nine columns.

in �-direction is raised for ux and uy up to p=5 and for uz up to p=6. A reason for this
choice of p in �-direction is the fact, that the Ansatz space S

p�;p�;p�
ts (Qh

st) is not as rich as
S

p�;p�;p�
ps (Qh

st) and Sp;p; q(Qh
st) are. Therefore, Sp�;p�;p�

ts (Qh
st) supplies less shape functions in

�-direction and a higher polynomial degree is required to achieve approximately the same
accuracy as with the Ansatz spaces S

p�;p�;p�
ps (Qh

st) and Sp;p; q(Qh
st).

Comparing the results of the three-dimensional discretizations and the two-dimensional so-
lution it becomes evident, that the use of anisotropic Ansatz spaces reduces the numerical
eLort dramatically and that anisotropic S

p�;p�;p�
ts (Qh

st) as well as Sp;p; q(Qh
st) yields a strain

energy being comparable to that of the Reissner–Mindlin model with a similar number of
degrees of freedom.

4.2. Plate with columns

As a second example we consider a plate under uniform load supported by 9 columns, where
signi+cant three-dimensional eLects are to be expected near the intersections of plate and
columns (see Figure 17). The thickness is set to t=L=0:2=12 with L being the dimension of
the plate. Each column has a cross-sectional area of 0:3× 0:3 and a height of 3.0.

The structure is loaded by a uniform pressure Tz = − 100 acting on the upper surface
of the plate. Again, linear elastic material behaviour is assumed with E=30000 000 being
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Figure 18. p-version mesh with re+nement at the boundary and at reentrant corners.

Figure 19. Initial mesh and adapted meshes with MITC4 elements.

Young’s modulus and )=0:2 denoting Poisson’s ratio. In the two-dimensional case a shear
correction factor *=5=6 is chosen. Due to the geometric complexity of this structure and
the large number of singularities in the exact solution this example is representative for
engineering problems. DiLerent discretizations in two as well as in three dimensions will be
investigated. First we will consider the two-dimensional case, using the Reissner–Mindlin plate
theory. We will apply the p-version as well as an adaptive h-version based on MITC4 ele-
ments. In both cases the columns will be modelled as elastic foundations with cw =10000 000
being the spring constant with respect to the deUection w (for a detailed description see
Reference [4]).

In Figure 18 the discretization of the plate problem with 176 p-elements is sketched. At
the boundary and reentrant corners the mesh is re+ned, allowing to resolve singularities and
boundary layers of the exact solution. The adaptive h-version is based on the MITC4-element
formulation [24] and an a posteriori error estimation of residual type [25; 4]. Figure 19 shows
the initial mesh and a sequence of three adapted meshes. As expected, the error indicators lead
to meshes being re+ned at reentrant corners and at columns modelled by elastic foundations.

In Figure 20 the relative error in energy norm for both the p-version and the adaptive
h-version is plotted. For the adaptive h-version the estimated error is also shown, emphasizing
the quality of the a posteriori error estimation. The reference value W =12:16864134 for the
strain energy of the two-dimensional Reissner–Mindlin model is obtained by a Richardson
extrapolation based on the results of discretizations with 1963 quadrilaterals utilizing the
tensor product space S

p;p
ps (Qq

st) with p=9; 10; 11.
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Figure 20. Relative error in energy norm
for the two-dimensional discretizations of

a plate with columns.

Figure 21. Discretization of a three-dimensional
plate with 194 hexahedral elements.

Figure 22. Relative error in energy norm obtained with (ux; uy)∈S
p;p;p
ts (Qh

st); uz ∈S
p+1; p+1; p+1
ts (Qh

st).

From Figure 20 it becomes obvious, that the p-version is by far superior to the h-version.
Applying a polynomial degree p=10 with a resulting number of 52950 degrees of freedom
a relative error in energy norm of 0.9% is obtained, while the +nest adapted MITC4 mesh
supplies an error of 4.4 per cent with 51519 unknowns.

Next, we will consider the three-dimensional discretization of the plate with its columns. The
mesh consisting of 194 hexahedral elements is constructed by sweeping the two-dimensional
p-version mesh shown in Figure 21 into the third direction. The plate is discretized with one
element in thickness direction, whereas each column is meshed with two elements. A series
of computations using the trunk space S

p�;p�;p�
ts (Qh

st) is performed. The polynomial degree for
the deUection uz is chosen to be one order higher than the degree for the displacements ux
and uy.

The relative error in energy norm vs. the number of degrees of freedom is plotted in
Figure 22. With a polynomial degree p=7 and a corresponding number of 51393 unknowns
the error in energy norm is reduced to 5.1 per cent, now with respect to the exact three-
dimensional solution being estimated from a Richardson extrapolation of the strain energies
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Table II. Computational costs of diLerent discretizations.

Number Rel. CPU
of error time

Run Model Element type elements dof (%) (s)

1 R-M MITC4 16978 51519 4.4 128=134

2 R-M (.x; .y; w)∈S10; 10
ps (Qq

st) 176 52950 0.9 107

3 3D LamCe (ux; uy)∈S7; 7; 7
ts (Qh

st), 194 51393 5.1 1260

uz ∈S8; 8; 8
ts (Qh

st)

obtained with a mesh consisting of 202 hexahedral elements and an Ansatz space S
p;p;p
ts (Qh

st)
with polynomial degrees p=7; 8; 9 resulting in W =13:39080971. Note that the p-version for
the three-dimensional problem yields an accuracy in the same range as that of an adaptive
h-version (5.1 per cent vs 4.4 per cent) and a similar number of degrees of freedom. The
signi+cance of a three-dimensional computation is proven in Plate 1, where the deformed
structure (scaling factor =100) is plotted. The results are evaluated on a +ne post-processing
mesh being obtained from a subdivision of each p-element. It is obvious that the deformation
of the structure exhibit a three-dimensional state which can of course not be captured by a
two-dimensional model like the Reissner–Mindlin plate problem.

In Table II the computational cost and the error in energy norm of the two- and three-
dimensional discretizations are listed, all simulations being performed on a COMPAQ XP1000
machine (alpha processor ev6 21264 with 500 Mhz). To solve the overall equation system a
PCG-solver either with SSOR (run 1,3) or incomplete Cholesky preconditioning (run 2) was
applied. The computational time of the approximation based on the +nest mesh with MITC4-
elements amounts to 134 s with and to 128 s without the process of error estimation. The
accuracy supplied by this discretization is about 4.4 per cent error in energy norm. With
approximately the same number of unknowns and an accuracy of 0.9 per cent error in energy
norm the p-version with (.x; .y; w)∈S10;10

ps (Qq
st) results in a computational time of only 107s.

From Table II it is evident, that the p-version supplies for given number of degrees of freedom
not only a higher accuracy but also a lower computational time, when being compared to an
adaptive h-version based on MITC4-element formulation.

A three-dimensional discretization with 194 elements of Ansatz (ux; uy)∈S7;7;7
ts (Qh

st); uz ∈
S8;8;8

ts (Qh
st) results in approximately the same number of unknowns as in the cases of the

Reissner–Mindlin approximations. Although one observes that the computational time of 1260s
is signi+cantly higher than in the two-dimensional case, it is only a small fraction of the eLort
which would be necessary using low-order three-dimensional elements. To e=ciently integrate
the (large) element stiLness matrices being the most expensive part in p-version computations
we have further developed the vector-integration method +rst presented by Hinnant [26].
Our adaptive scheme [27; 28] results in an overall speed-up of 1.6 for this example, when
being compared to the classical Gaussian integration. Further reduction of computational time
could be achieved by applying more sophisticated preconditioners as being described e.g. in
Reference [29].
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Figure 23. Discretization of the Scordelis–Lo shell with 3 and 84 hexahedral elements.

Figure 24. Numerical solution of
the Scordelis–Lo shell with isotropic

Ansatz spaces.

Figure 25. Numerical solution of the
Scordelis–Lo shell with anisotropic

Ansatz spaces.

4.3. Scordelis–Lo shell

Figure 23 shows the classical Scordelis–Lo shell having been used as a benchmark problem
for shell structures by many authors [30].

The thickness of the shell is t=0:25, the radius is R=25 and the length equals to L=50.
The structure is loaded by a vertical shell weight 0=360. At both ends the shell is supported
such that uy = uz =0. A linear elastic material law is assumed with E=4:32× 108 being
Young’s modulus and )=0 Poisson’s ratio. The results of interest are the displacement uy at
point B and the stress distribution along the cutline A–B at the middle surface of the shell.
Due to symmetry only a quarter of the shell has to be discretized. Computations are performed
on a mesh consisting of three hexahedral elements, being re+ned towards the free edge to
resolve boundary layers (see Figure 23). In order to obtain a reference solution, a mesh with
84 hexahedral elements and a polynomial degree p=8 in conjunction with the trunk space
S

p;p;p
ts (Qh

st) was used. This mesh contains two hexahedral elements in radial direction. The
reference value of the strain energy based on this discretization is W =1209:009850.
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Figure 26. Displacement uy of point B. Figure 27. Cutline A–B: von Mises stress.

In Figure 24 the relative error of computations with isotropic Ansatz spaces S
p�;p�;p�
ts (Qh

st);
S

p�;p�;p�
ps (Qh

st) and space Sp;p; q(Qh
st) with p= q=p�=p�=p�=1; : : : ; 8 is pictured. Again, it

turns out that the trunk space is the most e=cient one. Further improvement of e=ciency can
be obtained, if anisotropic Ansatz spaces are constructed, e.g. the polynomial degree in shell
thickness direction is limited to p�= q=3 (see Figure 25). If we consider e.g. the solution
obtained with the trunk space S

p�;p�;p�
ts (Qh

st) where p�=p�=8; p�=3 we observe, that only
594 degrees of freedom are necessary to achieve an accuracy with approximately 1.4 per cent
relative error in energy norm.

Figure 26 shows the displacement uy of point B vs degrees of freedom for a discretization
with S

p�;p�;p�
ts (Qh

st); p�=p�=1; : : : ; 8; p�=1; : : : ; 3. In Figure 27 the von Mises stress at the
cutline A–B at the middle surface of the shell is plotted. The solution, obtained with three
elements and S

p�;p�;p�
ts (Qh

st); p�=p�=8; p�=3 with a resulting number of 594 degrees of
freedom shows no deviation from the reference solution.

4.4. A complex shell model

Finally, we consider a more complex construction (see Figure 28), loaded by vertical weight
0=100. The material behaviour is assumed to be linear elastic with E=29000 000 being
Young’s modulus and )=0:22 Poisson’s ratio. It is composed of a spherical shell-like structure
and a cylindrical solid. The radius of the spherical shell is R=8 and the thickness equals
t=0:04, while the thickness of the cylindrical part is t=R=0:18=6:9111. Displacements at the
bottom of the construction are suppressed such that ux = uy = uz =0. A mesh consisting of
45 hexahedral elements, taking advantage of symmetry is chosen to discretize the structure.
The classical approach to this problem would demand for special elements in order to model
the transition from shell- to solid elements (see right part of Figure 28). Due to the use of
three-dimensional continuum p-elements the whole structure can be modelled with the same
type of discretization and no transition elements are needed.

The relative error for a series of computations with an isotropic Ansatz space S
p�;p�;p�
ts (Qh

st)
where p=p�=p�=p�=1; : : : ; 8 is plotted in Figure 29.

Using a polynomial degree of p=8 and a corresponding number of 13 408 degrees of free-
dom an accuracy with approximately 3.1 per cent error in energy norm is achieved. This error
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Figure 28. System and mesh of a complex shell model.

Figure 29. Relative error in energy norm of a complex shell model.

is estimated from an extrapolation of the strain energies obtained with Ansatz space S
p;p;p
ts (Qh

st)
and polynomial degrees p=6; 7; 8 (see Reference [7]) resulting in W =0:7051882141.

The deformed structure (scaling factor =500) and the von Mises stress is plotted in Plate 2,
where the results are evaluated on a +ne post-processing mesh again, being obtained by a
subdivision of each p-element.

5. CONCLUSIONS

In this paper an implementation of a three-dimensional p-version FEM for curved thin as
well as thick walled structures is presented. It is demonstrated numerically, that the use
of anisotropic Ansatz spaces in combination with the blending function method allows to
e=ciently compute the structural behaviour of plate and shell-like structures. Three diLerent
Ansatz spaces are investigated and it is shown that a Uexible implementation of the p-version
enables to switch consistently from solid to shell-like structures, without using dimensionally
reduced models. Future work will include the implementation of an anisotropic error estimation
in order to automatically construct optimal anisotropic Ansatz spaces.
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A. ANSATZ SPACES FOR A HEXAHEDRAL ELEMENT FORMULATION

A.1. The trunk space S
p�;p�;p�
ts (Qh

st)

Eight nodal modes

NNi
1;1;1(�; �; �)=

1
8(1 + �i�)(1 + �i�)(1 + �i�); i=1; : : : ; 8 (A1)

4((p� − 1) + (p� − 1) + (p� − 1)) edge modes
4(p� − 1) edge modes in �-direction

N E1
i;1;1(�; �; �)=

1
4(1− �)(1− �)�i(�); i=2; : : : ; p�

N E3
i;1;1(�; �; �)=

1
4(1 + �)(1− �)�i(�); i=2; : : : ; p�

N E9
i;1;1(�; �; �)=

1
4(1− �)(1 + �)�i(�); i=2; : : : ; p�

N E11
i;1;1(�; �; �)=

1
4(1 + �)(1 + �)�i(�); i=2; : : : ; p�

(A2)

4(p� − 1) edge modes in �-direction

N E2
1; j;1(�; �; �)=

1
4(1 + �)(1− �)�j(�); j=2; : : : ; p�

N E4
1; j;1(�; �; �)=

1
4(1− �)(1− �)�j(�); j=2; : : : ; p�

N E10
1; j;1(�; �; �)=

1
4(1 + �)(1 + �)�j(�); j=2; : : : ; p�

N E12
1; j;1(�; �; �)=

1
4(1− �)(1 + �)�j(�); j=2; : : : ; p�

(A3)

4(p� − 1) edge modes in �-direction

N E5
1;1; k(�; �; �)=

1
4(1− �)(1− �)�k(�); k=2; : : : ; p�

N E6
1;1; k(�; �; �)=

1
4(1 + �)(1− �)�k(�); k=2; : : : ; p�

N E7
1;1; k(�; �; �)=

1
4(1 + �)(1 + �)�k(�); k=2; : : : ; p�

N E8
1;1; k(�; �; �)=

1
4(1− �)(1 + �)�k(�); k=2; : : : ; p�

(A4)
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Face modes

N F1
i; j;1(�; �; �)=

1
2 (1− �)�i(�)�j(�); i=2; : : : ; p� − 2; j=2; : : : ; p� − 2; i + j=4; : : : ;max{p�; p�}

N F2
i;1; k(�; �; �)=

1
2 (1− �)�i(�)�k(�); i=2; : : : ; p� − 2; k =2; : : : ; p� − 2; i + k =4; : : : ;max{p�; p�}

N F3
1; j; k(�; �; �)=

1
2 (1 + �)�j(�)�k(�); j=2; : : : ; p� − 2; k =2; : : : ; p� − 2; j + k =4; : : : ;max{p�; p�}

N F4
i;1; k(�; �; �)=

1
2 (1 + �)�i(�)�k(�); i=2; : : : ; p� − 2; k =2; : : : ; p� − 2; i + k =4; : : : ;max{p�; p�}

N F5
1; j; k(�; �; �)=

1
2 (1− �)�j(�)�k(�); j=2; : : : ; p� − 2; k =2; : : : ; p� − 2; j + k =4; : : : ;max{p�; p�}

N F6
i; j;1(�; �; �)=

1
2 (1 + �)�i(�)�j(�); i=2; : : : ; p� − 2; j=2; : : : ; p� − 2; i + j=4; : : : ;max{p�; p�}

(A5)

Internal modes

N int
i; j; k(�; �; �) = �i(�)�j(�)�k(�) i=2; : : : ; p� − 4; j=2; : : : ; p� − 4; k=2; : : : ; p� − 4;

i + j + k=6; : : : ;max{p�; p�; p�} (A6)

A.2. The tensor product space S
p�;p�;p�
ps (Qh

st)

Nodal and edge modes as in Equations (19)–(22)
2[(p� − 1)(p� − 1) + (p� − 1)(p� − 1) + (p� − 1)(p� − 1)] face modes

N F1
i; j;1(�; �; �)=

1
2(1− �)�i(�)�j(�); i=2; : : : ; p�; j=2; : : : ; p�

N F2
i;1; k(�; �; �)=

1
2(1− �)�i(�)�k(�); i=2; : : : ; p�; k=2; : : : ; p�

N F3
1; j; k(�; �; �)=

1
2(1 + �)�j(�)�k(�); j=2; : : : ; p�; k=2; : : : ; p�

N F4
i;1; k(�; �; �)=

1
2(1 + �)�i(�)�k(�); i=2; : : : ; p�; k=2; : : : ; p�

N F5
1; j; k(�; �; �)=

1
2(1− �)�j(�)�k(�); j=2; : : : ; p�; k=2; : : : ; p�

N F6
i; j;1(�; �; �)=

1
2(1 + �)�i(�)�j(�); i=2; : : : ; p�; j=2; : : : ; p�

(A7)
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(p� − 1)(p� − 1)(p� − 1) internal modes

N int
i; j; k(�; �; �)=�i(�)�j(�)�k(�); i=2; : : : ; p�; j=2; : : : ; p�; k=2; : : : ; p� (A8)

A.3. The anisotropic tensor product space Sp;p; q(Qh
st)

Nodal modes as in (19)
8(p− 1) + 4(q− 1) edge modes

8(p− 1) edge modes in �–� plane

N E1
i;1;1(�; �; �)=

1
4(1− �)(1− �)�i(�) i=2; : : : ; p

N E2
1; j;1(�; �; �)=

1
4(1 + �)(1− �)�j(�) j=2; : : : ; p

N E3
i;1;1(�; �; �)=

1
4(1 + �)(1− �)�i(�) i=2; : : : ; p

N E4
1; j;1(�; �; �)=

1
4(1− �)(1− �)�j(�) j=2; : : : ; p

N E9
i;1;1(�; �; �)=

1
4(1− �)(1 + �)�i(�) i=2; : : : ; p

N E10
1; j;1(�; �; �)=

1
4(1 + �)(1 + �)�j(�) j=2; : : : ; p

N E11
i;1;1(�; �; �)=

1
4(1 + �)(1 + �)�i(�) i=2; : : : ; p

N E12
1; j;1(�; �; �)=

1
4(1− �)(1 + �)�j(�) j=2; : : : ; p

(A9)

4(q− 1) edge modes in �-direction

N E5
1;1; k(�; �; �)=

1
4(1− �)(1− �)�k(�) k=2; : : : ; q

N E6
1;1; k(�; �; �)=

1
4(1 + �)(1− �)�k(�) k=2; : : : ; q

N E7
1;1; k(�; �; �)=

1
4(1 + �)(1 + �)�k(�) k=2; : : : ; q

N E8
1;1; k(�; �; �)=

1
4(1− �)(1 + �)�k(�) k=2; : : : ; q

(A10)

4(p− 1)(q− 1) + (p− 2)(p− 3) face modes
face modes in �–� plane

N F1
i; j;1(�; �; �)=

1
2(1− �)�i(�)�j(�); i; j=2; : : : ; p− 2; i + j=4; : : : ; p

N F6
i; j;1(�; �; �)=

1
2(1 + �)�i(�)�j(�); i; j=2; : : : ; p− 2; i + j=4; : : : ; p

(A11)
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Plate 1. Deformation (scaling factor = 100) of a three-dimensional plate with columns.

Plate 2. Deformation (scaling factor = 500) and von Mises stress of a complex shell
model with a zoomed detail.
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face modes in �–� and �–� plane

N F2
i;1; k(�; �; �)=

1
2(1− �)�i(�)�k(�); i=2; : : : ; p; k=2; : : : ; q

N F3
1; j; k(�; �; �)=

1
2(1 + �)�j(�)�k(�); j=2; : : : ; p; k=2; : : : ; q

N F4
i;1; k(�; �; �)=

1
2(1 + �)�i(�)�k(�); i=2; : : : ; p; k=2; : : : ; q

N F5
1; j; k(�; �; �)=

1
2(1− �)�j(�)�k(�); j=2; : : : ; p; k=2; : : : ; q

(A12)

(p− 3)(p− 2)(q− 1)=2 internal modes

N int
i; j; k(�; �; �)=�i(�)�j(�)�k(�); i; j=2; : : : ; p− 2; i + j=4; : : : ; p; k=2; : : : ; q (A13)

B. THE BLENDING FUNCTION METHOD FOR HEXAHEDRAL ELEMENTS

B.1. Edge blending ( from Reference [15])

Edge 1: e1(�; �; �) :=
(
E1(�)− (1− �)X1 + (1 + �)X2

2

)(
1− �
2

)(
1− �
2

)

Edge 2: e2(�; �; �) :=
(
E2(�)− (1− �)X2 + (1 + �)X3

2

)(
1 + �
2

)(
1− �
2

)

Edge 3: e3(�; �; �) :=
(
E3(�)− (1− �)X4 + (1 + �)X3

2

)(
1 + �
2

)(
1− �
2

)

Edge 4: e4(�; �; �) :=
(
E4(�)− (1− �)X1 + (1 + �)X4

2

)(
1− �
2

)(
1− �
2

)

Edge 5: e5(�; �; �) :=
(
E5(�)− (1− �)X1 + (1 + �)X5

2

)(
1− �
2

)(
1− �
2

)

Edge 6: e6(�; �; �) :=
(
E6(�)− (1− �)X2 + (1 + �)X6

2

)(
1 + �
2

)(
1− �
2

)

Edge 7: e7(�; �; �) :=
(
E7(�)− (1− �)X3 + (1 + �)X7

2

)(
1 + �
2

)(
1 + �
2

)

Edge 8: e8(�; �; �) :=
(
E8(�)− (1− �)X4 + (1 + �)X8

2

)(
1− �
2

)(
1 + �
2

)

Edge 9: e9(�; �; �) :=
(
E9(�)− (1− �)X5 + (1 + �)X6

2

)(
1− �
2

)(
1 + �
2

)

(B1)
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Edge 10: e10(�; �; �) :=
(
E10(�)− (1− �)X6 + (1 + �)X7

2

)(
1 + �
2

)(
1 + �
2

)

Edge 11: e11(�; �; �) :=
(
E11(�)− (1− �)X8 + (1 + �)X7

2

)(
1 + �
2

)(
1 + �
2

)

Edge 12: e12(�; �; �) :=
(
E12(�)− (1− �)X5 + (1 + �)X8

2

)(
1− �
2

)(
1 + �
2

)

B.2. Face blending ( from Reference [15])

Face 1: f1(�; �; �) := (F1(�; �)− 1
4 ((1− �)(1− �)X1 + (1 + �)(1− �)X2

+ (1 + �)(1 + �)X3 + (1− �)(1 + �)X4))
(
1− �
2

)

Face 2: f2(�; �; �) := (F2(�; �)− 1
4 ((1− �)(1− �)X1 + (1 + �)(1− �)X2

+ (1 + �)(1 + �)X6 + (1− �)(1 + �)X5))
(
1− �
2

)

Face 3: f3(�; �; �) := (F3(�; �)− 1
4 ((1− �)(1− �)X2 + (1 + �)(1− �)X3

+ (1 + �)(1 + �)X7 + (1− �)(1 + �)X6))
(
1 + �
2

)

Face 4: f4(�; �; �) := (F4(�; �)− 1
4 ((1− �)(1− �)X4 + (1 + �)(1− �)X3

+ (1 + �)(1 + �)X7 + (1− �)(1 + �)X8))
(
1 + �
2

)

Face 5: f5(�; �; �) := (F5(�; �)− 1
4 ((1− �)(1− �)X1 + (1 + �)(1− �)X4

+ (1 + �)(1 + �)X8 + (1− �)(1 + �)X5))
(
1− �
2

)

Face 6: f6(�; �; �) := (F6(�; �)− 1
4 ((1− �)(1− �)X5 + (1 + �)(1− �)X6

+ (1 + �)(1 + �)X7 + (1− �)(1 + �)X8))
(
1 + �
2

)

(B2)

REFERENCES

1. Babu[ska I, SzabCo B. On the rates of convergence of the +nite element method. International Journal for
Numerical Methods in Engineering 1982; 18:323–341.

2. Holzer S, Rank E, Werner H. An implementation of the hp-version of the +nite element method for Reissner–
Mindlin plate problems. International Journal for Numerical Methods in Engineering 1990; 30:459–471.

3. Rank E, Krause R, Preusch K. On the accuracy of p-version elements for the Reissner–Mindlin plate problem.
International Journal for Numerical Methods in Engineering 1998; 43:51–67.

4. Rank E, D2uster A, Krafczyk M, R2ucker M. Some aspects of coupling structural models and p-version
+nite element models. Proceedings of the 4th World Congress on Computational Mechanics, Buenos Aires,
Argentina, 1998.

31



5. Rank E, R2ucker M, D2uster A, Br2oker H. The e=ciency of the p-version +nite element method. Proceedings
of ECCM ’99, European Conference on Computational Mechanics, M2unchen, Germany, CD-ROM, 1999.

6. Schwab C. p- and hp-8nite element methods, theory and applications in solid and 9uid mechanics. Oxford
University Press: Oxford, 1998.

7. SzabCo B, Babu[ska I. Finite element analysis. Wiley: New York, 1991.
8. SzabCo B. Mesh design for the p-version of the +nite element method. Computer Methods in Applied Mechanics

and Engineering 1986; 55:181–197.
9. Suri M. Analytical and computational assessment of locking in the hp +nite element method. Computer Methods

in Applied Mechanics and Engineering 1996; 133:347–371.
10. D2uster A, Rank E. The p-version of the +nite element method compared to an adaptive h-version for the

deformation theory of plasticity. Computer Methods in Applied Mechanics and Engineering 2001; 190:
1925–1935.

11. Holzer S, Yosibash Z. The p-version of the +nite element method in incremental elasto-plastic analysis.
International Journal for Numerical Methods in Engineering 1996; 39:1859–1878.

12. SzabCo B, Actis R, Holzer S. Solution of elastic-plastic stress analysis problems by the p-version of the +nite
element method. In Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Di:erential
Equations, IMA Volumes in Mathematics and its Applications, Babu[ska I, Flaherty J et al. (eds). vol. 75.
Springer: New York, 1995; 395–416.

13. Actis RL, SzabCo B, Schwab C. Hierarchic models for laminated plates and shells. Computer Methods in Applied
Mechanics and Engineering 1999; 172:79–107.

14. Gordon WJ, Hall CA. Construction of curvilinear co-ordinate systems and applications to mesh generation.
International Journal for Numerical Methods in Engineering 1973; 7:461–477.

15. KirCalyfalvi G, SzabCo B. Quasi-regional mapping for the p-version of the +nite element method. Finite elements
in analysis and design 1997; 27:85–97.

16. Dey S. Geometry-based three-dimensional hp-+nite element modelling and computations. Ph.D. Thesis,
Rensselaer Polytechnic Institute Troy, New York, 1997.

17. Dey S, Shephard MS, Flaherty JE. Geometry representation issues associated with p-version +nite element
computations. Computer Methods in Applied Mechanics and Engineering 1997; 150:39–55.

18. Zienkiewicz OC, Craig A. Adaptive re+nement, error estimates, multigrid solution, and hierarchic +nite element
method concepts. In Accuracy Estimates and Adaptive Re8nements in Finite Element Computations, Babu[ska I,
Zienkiewicz OC, Gago J, Olivera ER de A (eds). Wiley: New York, 1986.

19. Ainsworth M. A preconditioner based on domain decomposition for hp-fe approximation on quasi-uniform
meshes. SIAM Journal on Numerical Analysis 1996; 33(4):1358–1376.

20. Mandel J. Iterative Solvers by substructuring for the p-version +nite element method. Computer Methods in
Applied Mechanics and Engineering 1990; 80:117–128.

21. Papadrakakis M, Babilis GB. Solution techniques for the p-version of the adaptive fe method. International
Journal for Numerical Methods in Engineering 1994; 37:1413–1431.

22. Br2oker H. Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM. Ph.D.
Thesis, Technische Universit2at M2unchen, 2001.

23. Stein E, Barthold F-J, Ohnimus S, Schmidt M. Adaptive Finite Elements in Elastoplasticity with mechanical
Error Indicators and Neumann-type Estimators. Proceedings of the Workshop on New Advances in Adaptive
Computational Mechanics, Cachan, September 1997.

24. Bathe K-J, Dvorkin EN. Short communication: a four-node plate bending element based on Mindlin=Reissner
plate theory and a mixed interpolation. International Journal for Numerical Methods in Engineering 1985;
21:367–383.

25. D2uster A. Die hp-d Methode f2ur Reissner–Mindlin Plattenprobleme. Forum Bauinformatik, Dresden ’97,
Fortschritt–Berichte, Reihe 4, No. 140. VDI-Verlag: D2usseldorf, 1997.

26. Hinnant HE. A fast method of numerical quadrature for p-version +nite element matrices. International Journal
for Numerical Methods in Engineering 1994; 37:3723–3750.

27. N2ubel V, D2uster A, Rank E. Die Methode Vektorintegration bei der p-Version der Finite-Elemente-Methode.
Technical Report, Lehrstuhl f2ur Bauinformatik, Technische Universit2at M2unchen, 2000.

28. N2ubel V, D2uster A, Rank E. Adaptive vector integration as an e=cient quadrature scheme for p-version +nite
element matrices. European Conference on Computational Mechanics, Cracow, Poland, 2001, submitted for
publication.

29. Mandel J. Iterative methods for p-version +nite element method: preconditioning thin solids. Computer Methods
in Applied Mechanics and Engineering 1996; 133:247–257.

30. Scordelis AC, Lo KS. Computer analysis of cylindrical shells. Journal of American Concrete Institute 1969;
61:539–561.

31. Corney J. 3D Modeling with the ACIS Kernel and Toolkit. Wiley: Chister, 1997.

32


