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The p110δ crystal structure uncovers mechanisms for selectivity

and potency of novel PI3K inhibitors
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Abstract

Deregulation of the phosphoinositide 3-kinase (PI3K) pathway has been implicated in numerous

pathologies like cancer, diabetes, thrombosis, rheumatoid arthritis and asthma. Recently, small

molecule and ATP-competitive PI3K inhibitors with a wide range of selectivities have entered

clinical development. In order to understand mechanisms underlying isoform selectivity of these

inhibitors, we developed a novel expression strategy that enabled us to determine the first crystal

structure of the catalytic subunit of the class IA PI3K p110δ. Structures of this enzyme in complex

with a broad panel of isoform- and pan-selective class I PI3K inhibitors reveal that selectivity
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towards p110δ can be achieved by exploiting its conformational flexibility and the sequence

diversity of active-site residues that do not contact ATP. We have used these observations to

rationalize and synthesize highly selective inhibitors for p110δ with greatly improved potencies.

The phosphoinositide 3-kinases are structurally closely related lipid kinases, which catalyze

the ATP-dependent phosphorylation of phosphoinositide substrates1,2. Together with the

serine/threonine protein kinase B (PKB), PI3Ks constitute a central signalling hub that

mediates many diverse and crucial cell functions like cell growth, proliferation, metabolism

and survival1,3. The observation that PI3Ks acting downstream of receptor tyrosine kinases

(RTKs) are the most commonly mutated kinases in human cancers has spurred an immense

interest in understanding the structural mechanisms how these mutations upregulate PI3K

activity and in developing selective and drug-like PI3K inhibitors4,5.

PI3Ks can be grouped into three classes based on their domain organisation6. Class I PI3Ks

are heterodimers consisting of a p110 catalytic subunit and a regulatory subunit of either the

‘p85’-type (associated with class IA PI3Ks with the isoforms p110α/β/δ) or the ‘p101/p84/

p87’-type (associated with class IB PI3K p110γ). The p110 catalytic subunit consists of an

adaptor-binding domain (ABD), a Ras-binding domain (RBD), a C2 domain, a helical

domain and the kinase domain7-10.

Mutant mice and inhibitor studies have shown less functional redundancy for the various

class I PI3K isoforms than previously anticipated. While p110α and p110β are ubiquitously

expressed, p110γ and p110δ are predominantly found in haematopoietic cells11-13. Genetic

deregulation of PI3K activity (oncogenic gain-of-function mutations, overexpression) has

been implicated in cancer (all class I PI3K isoforms)14-17, diabetes (p110α)18, thrombosis

(p110β)19, rheumatoid arthritis (p110γ and p110δ)20 and asthma (p110γ and p110δ)21,22.

Consequently, the selective inhibition of individual PI3K isoforms using small molecule and

ATP-competitive inhibitors is a promising therapeutic strategy23. However, since all active-

site side chains in contact with ATP are completely conserved throughout all class I PI3K

family members (Supplementary Fig. 1), this is a challenging objective. Furthermore, in

order to minimize undesired and often poorly understood toxic side effects, such inhibitors

ideally would have to show no cross-reactivity towards off-pathway targets24.

The earliest generation of small molecule and ATP-competitive PI3K inhibitors including

the pan-selective LY29400425 and wortmannin26 were important tools to investigate PI3K-

mediated cellular responses in the laboratory but their low affinities (LY294002), instability

(wortmannin) as well as non-selectivity and toxicity limited their clinical use. However,

further chemical modifications of some of these early inhibitors significantly helped to

improve their drug-like properties. For example, PWT-458 (Wyeth) and PX-866

(Oncothyreon) are modified wortmannin-based PI3K inhibitors with improved

pharmacological properties that are currently in phase I clinical trials27,28.

The first crystal structures of p110γ in complexes with pan-selective PI3K inhibitors29

made it possible to begin to rationalize PI3K isoform-selective inhibitors like AS604850

(Merck-Serono) for p110γ30. However, many of these inhibitors retained off-target

activities and, partially due to the lack of crystal structures of other PI3K isoforms and PI3K

related protein kinases (PIKKS), these unwanted side effects were difficult to rationalize.

Noteworthy, the development of multi- and pan-selective PI3K inhibitors as well as dual

PI3K/mTOR or PI3K/tyrosine kinase31 rather than isoform-selective PI3K inhibitors

remains a valid therapeutic strategy. XL-147 (Exelixes), which is currently evaluated in

combination with other cancer therapeutics is in phase I/II clinical trials for the treatment of

non-small lung cancer and GDC-0941 (Roche)32, also in phase I trials for the treatment of
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breast cancer33, are examples of pan class I selective PI3K inhibitors. NVP-BEZ235

(Novartis), currently in phase I/II trials for breast cancer34 and SF1126 (Semaphore), a

RGDS peptide conjugated prodrug of LY294002 in phase I trials35 are examples of dual-

selectivity PI3K/mTOR inhibitors.

Recently, several new class I PI3K isoform-selective inhibitors showing improved

selectivities and potencies have been reported and some of them have entered clinical trials:

CAL-101 (Calistoga), a derivative of the highly p110δ-selective inhibitor IC8711436 with

increased potency, entered stage I clinical trials for the treatment of acute myeloid

leukaemia (AML) and B-cell chronic lymphoid leukaemia (CLL). The p110β-selective

AZD6482 (AstraZeneca) is in clinical phase I for the treatment of thrombosis. Strikingly

however, despite a growing list of such isoform-selective compounds, little is known about

what determines isoform-selectivity on a structural level.

Impaired PI3Kδ signalling results in severe defects of innate and adaptive immune

responses and suggested that targeting of this isoform would be a beneficial therapeutic

strategy20,24. To elucidate the molecular mechanisms of isoform-selectivity of PI3Kδ
inhibitors, we report the crystal structure of the catalytic core of p110δ, both free and in

complexes with a broad panel of novel and mostly p110δ-selective PI3K inhibitors. Our

study provides the first detailed structural insights into the active site of a class IA PI3K

occupied by non-covalently bound inhibitors. Furthermore, our structures suggest

mechanisms to achieve p110δ selectivity and to increase potency of inhibitors without

sacrificing isoform-selectivity. To obtain these structures, we developed a unique expression

and purification scheme that has now been extended to all class IA PI3K isoforms.

With our new set of p110δ crystal structures and better models of flexibility resulting from

molecular dynamics simulations we are now starting to understand why p110δ can be more

easily deformed to open an allosteric pocket in which p110δ-selective inhibitors can be

accommodated.

RESULTS

Expression, purification and catalytic activity of ΔABDp110δ
Our initial attempts to express either the full-length or the ABD-truncated p110δ catalytic

subunit in Sf9 cells produced only insoluble protein. However, we could readily express and

purify p110δ in complexes with only the iSH2 domain of p85α. We devised a novel

expression and purification strategy by introducing a TEV protease cleavage site in the

linker region between the ABD and the RBD of p110δ (Fig. 1a) with the objective of

generating an ABD-truncated version for crystallization trials. The ΔABDp110δ construct

showed significantly enhanced lipid kinase activity in vitro when compared with either the

holo p110δ/p85α or the p110δ/nicSH2 complex (Supplementary Fig. 2).

Overall structure of ΔABDp110δ
Crystallographic statistics for all p110δ datasets are given in Supplementary Table 1. The

overall fold of p110δ is very similar to the catalytic subunits of p110γ and p110α (Fig.

1b)8,37. The helical ABD-RBD linker packs tightly against the helical domain and bridges

the Ras-binding and the C2 domain. Helices kα1 and kα2/kα2′ form a hairpin in the N-lobe

that sits on top of a five-stranded β-sheet formed by kβ3-kβ7, and this hairpin structurally

distinguishes PI3Ks from protein kinases. These helices extend the antiparallel A/B pairs of

α-helices found in the helical domain. The kinase domain has an extensive, tightly packed

interface with the helical domain. All of the catalytically important motifs within this

domain are well ordered with the exception of residues 920-928 of a region known as the

“activation” or phosphoinositide-binding loop. Remarkably, the residues within the p110δ
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893-DRH-895 motif located in the “catalytic” loop, a motif conserved in all PI3Ks and

inverted (HRD) in protein kinases, adopt a different conformation from what was previously

observed in the structure of p110γ (Supplementary Fig. 3)8. This different conformation

might be critical for the correct positioning of the DFG aspartate at the beginning of the

“activation” loop.

All the domains of p110δ superimpose closely on previously reported structures

(Supplementary Fig. 4a-f). However, the most striking difference in the overall structure of

p110δrelative to p110αor p110γ is a change in the orientation of the N-lobe with respect to

the C-lobe of the kinase domain. This shift may reflect motions characteristic of the catalytic

cycle, analogous to the hinging and sliding motions of the N- and C-lobes have been

described for protein kinases38. Furthermore, the RBD shifts relative to the N-lobe of the

kinase domain (Supplementary Fig. 4g). The RBD mediates interaction with Ras in a GTP-

dependent manner for all three isoforms11,12,39,40. Despite the great sequence divergence

among the isoforms in the RBD, the overall RBD backbone conformation is very closely

preserved among the various class I isoforms (Supplementary Fig. 4f). However, differences

in the orientation of the RBD relative to the kinase domain suggest the possibility of

different mechanisms of activation by Ras. The conformation of the loop connecting kβ4
and kβ5 (Tyr763 to Val774 in p110δ) in the N-lobe is remarkably different in all the

isoforms (longest in p110α, shortest in p110δ) and this correlates with the orientation of the

RBD. Within the RBD of p110δ residues 231-234 are disordered. The equivalent region in

p110α is an ordered helix (Rα2), whereas in p110γ this region is ordered only in the Ras/

p110γ complex, although it has a completely different conformation than in p110α.

Co-crystallization of p110δ with inhibitors

We chose a set of chemically diverse inhibitors in order to understand structural mechanisms

that underlie p110δ-specific inhibition in contrast to broadly specific PI3K inhibitors. Even

though we obtained crystals grown in the presence of ATP, only a weak density somewhat

larger than what would be expected for an ordered water molecule was observed in the hinge

region. We will refer to this structure as the apo-form of p110δ.

ATP-binding pocket

All of the compounds presented here contact a core set of six residues in the ATP-binding

pocket (Supplementary Table 2), and - apart from the hinge residue Val827 in p110δ - these

residues are invariant in all of the class I PI3K isotypes. Based on our inhibitor-bound

structures of p110δ as well as previously described PI3K complexes18,29,30,32,41, we can

define four regions within the ATP-binding pocket that are important for inhibitor binding

(Fig. 2a): An “adenine” pocket (hinge), a “specificity” pocket, an “affinity” pocket and the

hydrophobic region II located at the mouth of the active-site18,42. Of the core active-site

residues, only two are in contact with inhibitors in all complexes: Val828 and Ile910.

Residues 825-828 line the “adenine” pocket and form a hinge between the N-lobe and C-

lobe of the catalytic domain. The backbone amide of the hinge Val828 makes a

characteristic hydrogen bond in all of the p110/inhibitor complexes. Additionally, the

backbone carbonyl of hinge Glu826 establishes hydrogen bonds to most of the inhibitors.

Our selection of inhibitors can be organized into three types: Firstly, inhibitors that adopt a

propeller-shaped conformation (two roughly orthogonal oriented aromatic ring systems)

when bound to the enzyme (Fig. 2a-e and Supplementary Fig. 5). These are mostly p110δ-
selective inhibitors, which stabilize a conformational change that opens a hydrophobic

“specificity” pocket in the active site that is not present in the apo-structure of the enzyme as

previously reported for the p110γ/PIK-39 crystal structure18. Secondly, we co-crystallized

the p110δ enzyme with a set of mostly flat and multi- to pan-selective class I PI3K
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inhibitors that do not provoke such a conformational rearrangement. AS15, which has a

distorted propeller-shape when bound to the enzyme, is the only member of a third type of

inhibitor, which is highly selective for the p110δ isoform, although it does not open the

“specificity” pocket.

The propeller-shaped p110δ-selective inhibitors IC87114 and PIK-39

The discovery of the p110δ-selective inhibitor IC87114 (ICOS) in 200336 was a proof-of-

principle that isoform-selectivity of PI3K inhibitors can be accomplished, and to date, it

remains one of the most selective p110δ inhibitors known.

The crystal structures of the p110δ/IC87114 (compound 1) (Fig. 2a) and the p110δ/PIK-39

(compound 2) (Fig. 2b) complexes show that the purine group of the compounds resides

within the “adenine” pocket and establishes hydrogen bonds to the hinge residues Glu826

and Val828. The quinazolinone moiety is sandwiched into the induced hydrophobic

“specificity” pocket between Trp760 and Ile777 on one side and two P-loop residues,

Met752 and Pro758 on the other side. The “specificity” pocket is not present in the apo

enzyme where the P-loop Met752 rests in its “in” position leaning against Trp760. The

toluene group (IC87114) and the methoxyphenyl group (PIK-39) attached to the

quinazolinone moiety project out of the ATP-binding pocket over a region that we will refer

to as hydrophobic region II.

PIK-39 binding to both p110δ and p110γ induces a slight opening in the ATP-binding

pocket. The p110δ ATP-binding pocket accommodates the PIK-39-induced conformational

change by a local change in the conformation of the P-loop (residues 752-758 in p110δ)
whereas the equivalent opening of the p110γ pocket is accompanied by a conformational

change that involves much of the N-lobe moving with respect to the C-lobe. The loop

between kα1 and kα2 of p110γ (residues 752-760) sits on top of the P-loop (residues

803-811) and appears to rigidify it, so that the compound-induced opening of the pocket is

accompanied by a shift of the N-lobe as a unit (Supplementary Fig. 6, Supplementary
Movies 1 and 2). In contrast to p110γ, in p110δ the slightly shorter kα1-kα2 loop leaves

the P-loop largely free and able to move independently of the rest of the N-lobe. We

proposed that opening of the “specificity” pocket might be easier in p110δ compared to

p110γ.

Molecular dynamics simulations and free energy perturbation speak to the greater
flexibility of p110δ compared with p110γ

Perturbation analysis by molecular dynamics simulations suggests that the free energy of the

“specificity” pocket closure is more favourable in p110γ than p110δ (Supplementary Fig.

7). To quantify the higher degree of flexibility within the p110δ active site we performed

molecular dynamics simulations of the apo enzymes of both isoforms (see Supplementary

Methods and Supplementary Movies 3 and 4). The potential energy of the interaction of

PIK-39 with the enzyme is more favourable for p110δ than for p110γ (Supplementary Fig.

8). Our results further show that the distance between Trp760 (Trp812 in p110γ) and the P-

loop Met752 (Met804 in p110γ) does not change appreciably in p110δ over the course of

the simulation because the conformational changes observed for both residues are

synchronized with each other, i.e. the tryptophan smoothly follows the methionine and vice

versa. In contrast, in p110γ, as the Met804 transiently assumes alternate rotamers, it briefly

creates gaps between itself and Trp812. Trp812 of p110γ is sterically constrained by a

hydrogen bond to Glu814 (Met762 in p110δ) and is therefore unable to flex in synchrony

with Met804 as in p110δ. Additionally, in p110γ there is a more pronounced hydrophobic

interaction between the Trp812 and the hinge Ile881, which might further restrain the
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position of the tryptophan. The transient opening of the “specificity” pocket in p110γ would

allow water to become trapped, leading to an unfavourable entropy change.

Mechanisms to increase potencies of propeller-shaped p110δ-selective inhibitors

The SW series (compounds 3-5) (Williams O. & Shokat K. M. et al., submitted) and INK

series (compounds 6-7) of inhibitors take advantage of both the “specificity” pocket and the

“affinity” pocket (synthesis details for these compounds are given in the Supplementary
Methods section). This pocket is lined by a thin hydrophobic strip formed by Leu784,

Cys815 and Ile825 at the back of the ATP-binding pocket and flanked on the top by the side

chain of Pro758 and Lys779 and on the bottom by Asp787 (hydrophobic region I in protein

kinases). These mostly p110δ-selective compounds (SW14 is dual-selective for p110γ/δ)
are also propeller-shaped, but have additional decorations when compared to IC87114 and

PIK-39 in the form of an ortho-fluorophenol (SW14), a para-fluorophenol (SW13) or a

butynol group (SW30) attached to the central pyrazolopyrimidinineamine scaffold (Fig. 2c-

e). These groups explore the “affinity” pocket where they engage in hydrogen bonds with

Asp787 (SW13/14/30) and Lys779 (SW13/14). Additionally, the butynol OH group of

SW30 also serves as a hydrogen bond donor to the DFG Asp911 at the start of the

“activation” loop, and the phenolic OH group of SW13 engages in hydrogen bonding with

Tyr813. This set of novel inhibitor-enzyme interactions leads to a significant increase in the

inhibitors’ potencies towards p110δ, which is reflected in their greatly lowered IC50 values

(Supplementary Tables 2 and 3). The propeller-shape of a compound alone does not

guarantee p110δ specificity as shown by INK666 (Supplementary Fig. 5b).

Our structures of p110δ in complex with SW13/14/30 also speak to a conformational

flexibility for the catalytical DFG Asp911. This residue assumes two alternative

conformations in the p110δ/SW structures. One of these, the “in” conformation, coincides

with its putative ATP/Mg2+-binding position (based on the p110γ/ATP complex). The other

conformation has the DFG Asp911 swung away (“out” conformation). In the p110δ/SW14

and p110δ/SW30 structures, DFG Asp911 is found in the “out” conformation, while in the

p110δ/SW13 complex it is “in”. In protein kinases, a shift of the DFG aspartate from the in-

conformation (ATP-bound) to the out-conformation is characteristic of the catalytic cycle.

By analogy, it may be that these inhibitors are inducing conformations characteristic of the

PI3K catalytic cycle.

p110δ in complex with flat and multi-selective class I PI3K inhibitors

ZSTK47443 (compound 8), DL06 (compound 9), DL07 (compound 10), AS5 (compound
11) and GDC-094132 (compound 12) are fairly flat compounds that do not open the

“specificity” pocket and achieve relatively little isotype selectivity. Their binding provokes

some motions of the P-loop side chains of p110δ, and these conformational changes are

coordinated with changes in conformation of the DFG Asp 911 in the C-lobe.

The DL06/07 inhibitors represent a minimalistic approach to achieve PI3K inhibition

The DL06/07 series of PI3K inhibitors (Williams O. & Shokat K. M. et al., submitted) can

best be described as pan-selective p110 inhibitors, which represent a minimalistic approach

to achieve PI3K inhibition (see Supplementary Methods for synthesis details). They are flat

and small compounds with a minimal design just sufficient enough to span the “adenine”

pocket via their pyrazolopyrimidine moiety and project into the “affinity” pocket by means

of a phenol (DL07) or a pyridine (DL06) group attached to a propyne “stick” (Fig. 3a,b).

The DL07 phenol group interacts with the DFG Asp911, forcing it to its “in” conformation.

It also induces rotations in the side chain of P-loop Met 752, but not to its “out”

conformation. Similar interactions are formed by DL06.
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p110δ/ZSTK474

Yaguchi et al. discovered and characterized the novel pan-selective triazine PI3K inhibitor

ZSTK474, which strongly inhibits the growth of tumor cells in human cancer xenografts and

therefore is a potential candidate for further clinical development43. Its crystal structure in

complex with p110δshows it flipped over relative to what was predicted in a computational

p110γ/ZSTK474 model43 (Fig. 3c). The oxygen of one of the morpholino groups is

positioned as the hinge hydrogen bond acceptor and the morpholino ring adopts a chair

conformation. The benzimidazole group extends into the “affinity” pocket where its nitrogen

acts as a hydrogen bond acceptor for the primary amine of Lys779. The difluoromethyl

group points towards Pro758 in the upper wall of the hydrophobic “affinity” pocket. The

second morpholino group adopts a somewhat twisted chair conformation and projects out of

the ATP binding pocket in a same manner as the phenyl group of LY294002 where it

occupies the hydrophobic region II.

AS5 reveals the potential of phosphate-mimetics as kinase inhibitors

AS5 is a relatively flat p110α/p110δ dual-selectivity inhibitor with only modest affinities

for these two isoforms. Its dimethoxyaniline group occupies the “adenine” pocket, where it

interacts with the hinge Val828, but does not project deeply into the “affinity” pocket (Fig.

3d). It is conceivable that modifications on this scaffold that target polar moieties within the

“affinity” pocket could increase potencies of AS5 derivatives. Coupled to the quinoxaline

group is a p-fluorobenzenesulfonamide, and when superimposed on the p110γ/ATP crystal

structure it becomes apparent that the sulfonyl group of AS5 co-localizes with the α-

phosphate group of ATP. This compound reveals two strategies to mimic the ATP

phosphates to achieve inhibition of p110α and p110δ. Firstly, one of the sulfonyl oxygens of

AS5 is a hydrogen bond acceptor for P-loop Ser754. Secondly, the fluorophenyl group exits

the active site close to the DFG Asp911, in the proximity of the space occupied by the β/γ-

phosphates in the p110γ/ATP structure.

GDC-0941 shows use of the space above hydrophobic region II for moieties that confer
better drug-like properties

The identification characterization and development of the tricyclic pyridofuropyrimidine

lead PI-10344-46, a very potent dual-selective PI3K/mTOR inhibitor, has led to the pan-

selective class I PI3K thienopyrimidine inhibitor GDC-0941, which has no off-target

activity against mTOR32. GDC-0941 is orally bioavailable and currently in phase I trials for

the treatment of solid tumors33.

Its structure in complex with p110δ (Fig. 3e) confirms the previously described binding

mode to p110γ32 but also reveals interesting new features. Whereas the piperazine ring

adopts a twisted chair conformation in the p110γ structure, it is present in a distorted boat

conformation in the structure of p110δ. The terminal methanesulfonylpiperazine group is

also oriented differently in both structures. In p110δ, this group is marginally tilted with

respect to the central thienopyrimidine scaffold and thereby comes closer to the P-loop.

Instead of the Lys802-p110γ (Arg770-p110α), the Thr750 at the equivalent position in

p110δ is unable to establish a hydrogen bond to the inhibitor’s sulfonyl oxygen. However, a

different lysine residue (kα2 Lys708) interacts with the sulfonyl group of GDC-0941,

thereby indicating why this compound does not lose affinity for p110δ.

AS15 is a non-propeller-shaped and highly p110δ–selective inhibitor that exploits non-
conserved residues outside of the active-site

Although AS15 (compound 13) is chemically related to the quinazolinone purine inhibitor

PIK-39, its co- crystal structure with p110δ reveals an unexpected mode of binding (Fig. 4).

Berndt et al. Page 7

Nat Chem Biol. Author manuscript; available in PMC 2010 August 01.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Instead of wedging in between the Met752 and Trp760, the tetrahydroquinazolinone group

presses tightly against Met752 (in its ‘in’ position) and Trp760. By comparing the binding

modes of PIK-39 and AS15 to p110δ, three reasons can be deduced why PIK-39, but not

AS15, is able to induce the “specificity” pocket. Firstly, whereas the purine group of PIK-39

acts as a hydrogen bond donor and acceptor, the AS15 quinoxaline group interacts only with

the backbone amide of hinge Val828. Secondly, the non-planar nature of the

hexahydroquinazolinone may exceed the capacity of the “specificity” pocket. In its alternate

location, the hexahydroquinazolinone packs into a shallow dimple formed between Met752,

the small side chain of Thr750 and Trp760. In other p110 isotypes, the residue equivalent to

Thr750 is a lysine or arginine. This interaction may account for the extraordinary isotype

selectivity of this compound. Thirdly, compared with the shorter thiomethyl linker of

PIK-39, the longer methylthioacetamide linker of AS15 might be more conformationally

restrained due to the planar nature of the linker’s peptide bond. This planarity might prevent

the tetrahydroquinazolinone from being positioned in a way that would allow for the

induction of the “specificity” pocket.

A number of additional p110δ-specific interactions are formed in a manner whereby the

ketone oxygen from the tetrahydroquinazolinone group acts as a hydrogen bond acceptor for

the backbone amide of the P-loop Asp753 and for the primary amine of Lys708. The P-loop

Asp753 is specific to p110δ (the corresponding residue is Ser773 in p110α and Ala805 in

p110γ), and Lys708, which is located outside of the active site, has an equivalent only in

p110α (Lys729) but not in p110γ (Ser 760). Since AS15 does not occupy the “affinity”

pocket, modifications of the compound exploring this pocket should result in an increased

potency for p110δ.

DISCUSSION

The p110δ/inhibitor crystal structures presented here show that selectivity can be achieved

by exploiting both differences in flexibilities among the isoforms and isotype-specific

contacts beyond the first-shell of residues that interact with ATP. Flexibility-based inhibitors

are generally able to utilize the inherently greater pliability of the p110δ P-loop. All

propeller-shaped inhibitors create a new “specificity” pocket not present in the apo-form of

the enzyme. Small modifications of this framework (as found in AS15) can result in

inhibitors that are highly selective by establishing unique p110δ-specific interactions

without the formation of the “specificity” pocket. The plasticity of p110δ may enable this

isoform to more readily accommodate even very rigid compounds. Our structures also

suggest that introducing moieties interacting with the hydrophobic region II at the mouth of

the active site might help to improve pharmacokinetic properties of drug-like PI3K

inhibitors such as GDC-0941.

Initial molecular dynamic simulations suggest that allosteric pockets, such as the

“specificity” pocket can be identified with computational approaches. A similar method that

imposes stress on the ATP-binding pocket may identify new strain-prone regions that could

be exploited by inhibitors.

The strategy to explore the “affinity” pocket is a very powerful approach to augment

potency of inhibitors while maintaining selectivity. Further development of selective

inhibitors for other isotypes and for overcoming potential resistance mutations that

frequently accompany treatment with inhibitors will require a broader range of PI3K and

PIKK structures.
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METHODS

Construct design, expression and purification of ΔABDp110δ
Briefly, the TEV-insertion construct was generated using the overlapping PCR method,

digested with BglII and XhoI at sites encoded by the primers and ligated into pFastBac-HTa

(Invitrogen) cut with the BamHI and XhoI restriction enzymes (NEB). The correct insertion

of the TEV-site was confirmed by DNA-sequencing (amino acid sequence: 101-LVARE-

(105)-ENLYFQG-(106)-GDRVKK-111). The construct has an N-terminal extension

encoded by the vector (MSYHHHHHHDYDIPTTENLYFQGAMDL) preceding the first

residue of p110δ. This extension has a His6-tag and an additional vector-encoded TEV-

cleavage site. Recombinant baculovirus was generated and propagated according to standard

protocols. For expression, Sf9 insect cells at a density of 1×106/ml were co-infected with an

optimised ratio of viruses encoding the catalytic and regulatory subunit. As a regulatory

subunit, we used the iSH2 fragment of the human p85α (residues 431-600), tagged with an

N-terminal, non-cleavable His6-tag. The culture was incubated for 48 h after infection, cells

harvested and washed with ice-cold PBS, flash-frozen in liquid N2 and stored at −20°C. For

purification, cell pellets corresponding to typically 8 litres of culture were defrosted and

resuspended in 250 ml of buffer A (20 mM Tris pH 8, 100 mM NaCl, 5% (v/v) glycerol and

2 mM β-ME). After addition of 2 tablets of Complete EDTA-free Proteinase Inhibitors

(Boehringer) the suspension was sonicated and the lysate spun at 42000 rpm for 45 min. The

supernatant was filtered through 0.45 μm filter units (Sartorius) and loaded onto a 5 ml

HisTrap column (GE Healthcare). After a wash step with buffer A the column was eluted

using a gradient from 0-100% buffer B (buffer A + 500 mM imidazole). The p110δ/
iSH2fractions were pooled and loaded onto a 5 ml heparin column equilibrated with heparin

A buffer (20 mM Tris pH 8, 100 mM NaCl, 2 mM β-ME). The column was washed and

eluted with a gradient from 0-100% heparin B buffer (heparin A + 1 M NaCl). This

chromatography step resulted in a separation of excess His6-tagged iSH2 (earlier peak) from

the p110δ/iSH2 complex (later peak). The p110δ/iSH2fractions were pooled and adjusted to

5 mM β-ME. TEV proteinase at a w/w ratio of 1:10 was added and the mixture was

incubated overnight at 4°C. After verifying that the cleavage reaction was complete, the

solution was adjusted to 30 mM imidazole, passed over a second 5 ml HisTrap column to

remove the ABD/His6-iSH2, and ΔABDp110δ was collected in the flow-through. Following

a concentration step using Vivaspin 20 concentrators with a 50 kDa MWCO (Vivascience),

the protein was subjected to gel filtration on an S200 16/60 HiLoad column (GE Healthcare)

and eluted in 20 mM Tris pH 7.2, 50 mM (NH4)2SO4, 1% (v/v) ethylene glycol, 1% (w/v)

betaine, 0.02% (w/v) CHAPS and 5 mM DTT. Finally, fractions were pooled and

concentrated to 4.5-5 mg/ml as determined spectrophotometrically using the extinction

coefficient 129,810 M−1cm−1 at 280 nm, flash frozen in liquid N2 and stored at −80 °C. We

have applied this strategy to all other class IA isoforms (not shown).

Synthesis and characterization of SW13/14/30 and DL06/07

A detailed description for the synthesis and characterization of these compounds can be

found in the Supplementary Methods section.

X-ray crystallography

High-quality diffraction data of ΔABDp100δ crystals grown in the presence of inhibitors

were obtained using a microseeding protocol implemented on our robotic setup. All crystal

structures were solved by molecular replacement. See Supplementary Methods for

additional details.
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Lipid Kinase Activity Assay

To compare of the PI3K lipid kinase activity of the crystallized murine ΔABDp110δ
construct with the full-length murine p110δ/murine p85α complex and the murine p110δ/
human p85α nicSH2 construct, a Transcreener ADP Assay (Bellbrook Labs) was performed

according to the manufacturer’s instruction. Briefly, for the generation of the ADP/ATP

standard curve, 10 μl of a 60 μM ADP/ATP (2x) mixture of various ADP:ATP

concentrations were mixed with 5 μl of anti-ADP antibody at 80 μg/ml (4x) and 5 μl of

ADP Alexa633 tracer at 40 nM (4x) in a low-volume, black and round bottom Corning 384-

well plate (Corning). The plate was protected from light and shaken at 500 rpm for one hour

prior to polarization measurements using a PHERAstar (BMG Labtech) fluorescence

polarization microplate reader (λexc=612 nm, λem=670 nm). For the kinase reaction, 10 nM

of enzymes were incubated for 1 hour at 25°C in a buffer consisting of 50 mM HEPES (pH

7.5), 4 mM MgCl2, 2mM EGTA, 30 μM diC8-PIP2 (Echelon) and started by the addition of

30 μM ATP (Sigma-Aldrich, neutralized). The control included the same components with

the exception of the diC8PIP2 substrate. The reaction was stopped by mixing 10 μl of the

kinase reaction with 10 μl of the Stop & Detect buffer (20 mM HEPES pH 7.5, 40 mM

EDTA, 0.2% Brij-35) containing 20 nM ADP Alexa633 tracer (2x) and 40 μg/ml ADP

antibody (2x). To allow for signal stabilization, the plate was shaken at 500 rpm for 1 hr

prior to fluorescence polarization measurements. The data were plotted and fitted in

Kaleidagraph (Synergy Software) using an exponential decay function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Domain organization, construct design and overall crystal structure of p110δ. A) A TEV

protease cleavage site was introduced between residues 105 and 106 of the p110δ ABD-

RBD linker. The numbers below the boxes correspond to the indicated domain boundaries.

After purification of the p110δ/iSH2 complex, the catalytic core is released by cleavage with

TEV protease. B) Cartoon representation of the overall co-crystal structure of the

ΔABDp110δ/PIK-39 complex. Linker regions are colored in white, the RBD in salmon, the

C2 domain in cyan, the helical domain in green, the kinase domain N-lobe in red and the

kinase domain C-lobe in yellow. PIK-39 is shown in light blue as a ball and stick

representation. Selected secondary structure elements of the kinase domain are labeled.
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Figure 2.
The propeller-shaped p110δ-selective inhibitors induce the formation of the “specificity”

pocket. Shown are the active sites of p110δ in complex with the inhibitors IC87114 (a),

PIK-39 (b), SW13 (c), SW14 (d) and SW30 (e). Key residues that outline the active site and

interact with the compounds and the 2mFo-DFc electron densities (contouring level 1σ) are

presented. Selected water molecules in the active sites are shown as gray spheres. Note, that

IC87114 and PIK-39 do not fill the “affinity” pocket, whereas SW13, SW14 and SW30 do.

Dashed black lines represent hydrogen bonds.
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Figure 3.
The flat inhibitors DL06, DL07, ZSTK474, AS5 and GDC-0941 are multi- to pan-selective

class I PI3K inhibitors that do not induce the opening of the “specificity” pocket. Shown are

the binding modes of DL06 (a), DL07 (b), ZSTK474 (c), AS5 (d) and GDC-0941 (e) in the

active site of p110δ. Met752 is in its “in” position for all these compounds. For panel (d),

the structure of the p110γ/ATP complex (PDB entry 1e8x) was superimposed on the Cα-

backbone of p110δ to show the proximity of the sulfonyl group of AS5 to the alpha

phosphate group of ATP (purple). This sulfonyl group is a hydrogen bond acceptor to

Ser754 located in the P-loop of p110δ. (e) GDC-0941 is a pan-class IA PI3K inhibitor that

(like AS15) interacts with residues outside the active site. GDC-0941 occupies the “adenine”

pocket and the “affinity” pocket within the active site of p110δ and engages there in

hydrogen bonds with Val828, Tyr813 and Asp787. Additionally, the substituted piperazine

group of GDC-0941 extends out of the ATP-binding site where its methylsulfonyl moiety

acts as a hydrogen bond acceptor for Asp753 of the P-loop and Lys708 at the beginning of

kα2. The contouring level of the 2mFo-DFc electron densities is 1σ for each compound.
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Figure 4.
Binding mode of the p110δ-selective PI3K inhibitor AS15 and comparison of AS15 with the

propeller-shaped inhibitor PIK-39 (2mFo-DFc contouring level 1σ). (a) The highly p110δ-
selective compound AS15 does not open the “specificity” pocket and makes extensive use of

a hydrophobic patch between Trp760, Thr750 and Met752 adjacent to the adenine-binding

pocket. (b) Chemical structures of the highly p110δ-selective inhibitors AS15 and PIK-39.

(d) Superposition of the AS15 and PIK-39 to demonstrate their different mode of binding

within the active site of p110δ.

Berndt et al. Page 16

Nat Chem Biol. Author manuscript; available in PMC 2010 August 01.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts


