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Abstract——The P2X7 receptor is a trimeric ATP-gated
cation channel found predominantly, but not exclusively,
on immune cells. P2X7 activation results in a number of
downstream events, including the release of proinflam-
matory mediators and cell death and proliferation. As
such, P2X7 plays important roles in various inflammatory,
immune, neurologic and musculoskeletal disorders. This
review focuses on the use of P2X7 antagonists in rodent
models of neurologic disease and injury, inflammation,
andmusculoskeletal and other disorders. The cloning and
characterization of human, rat, mouse, guinea pig, dog,
and Rhesusmacaque P2X7, as well as recent observations

regarding the gating and permeability of P2X7, are
discussed. Furthermore, this review discusses polymor-
phic and splice variants of P2X7, as well as the generation
and use of P2X7 knockout mice. Recent evidence for
emerging signaling pathways downstream of P2X7 acti-
vation and the growing list of negative and positive
modulators of P2X7 activation and expression are
also described. In addition, the use of P2X7 antago-
nists in numerous rodent models of disease is extensively
summarized. Finally, the use of P2X7 antagonists in clinical
trials in humans and future directions exploring P2X7 as
a therapeutic target are described.

I. The P2X7 Receptor

A. Structure and Function of the P2X7 Receptor

ATP and other nucleotides, as well as nucleosides, are
important extracellular signaling molecules that operate
through a complex purinergic signaling network
(Burnstock, 1972, 2006). This network is composed of a
number of membrane receptors and ectoenzymes, which
includes the P2X7 receptor (Yegutkin, 2008). The P2X7
receptor is encoded by the P2RX7 gene and belongs to the
P2X family of trimeric ligand-gated cation channels,
of which there are seven distinct members (P2X1–7)
(Coddou et al., 2011). Of the P2X family, the P2X7
monomeric subunit is the largest, with a length of 595
amino acids for the human, rat, mouse, dog, and Rhesus
macaque receptors (Surprenant et al., 1996; Rassendren
et al., 1997; Chessell et al., 1998; Roman et al., 2009;
Bradley et al., 2011b). Each subunit is characterized by
relatively short and long intracellular amino and carboxyl
(C) termini, respectively, as well as two hydrophobic
membrane-spanning segments (transmembrane domains)
separated by a long glycosylated extracellular ATP-binding
domain. The trimeric structures of the human and Rhesus
macaque P2X7 receptors are supported by atomic
computer modeling (Roger et al., 2010b; Bradley et al.,
2011b; Jiang et al., 2013), based on the crystal structure

of the related zebrafish P2X4 receptor (Gonzales et al.,
2009; Kawate et al., 2009). To the best of our knowledge,
similar modeling experiments have not been carried
out for rodent or canine P2X7 receptors. However, the
structures of rodent and canine P2X7 receptors are
likely to be similar to that of primate P2X7, as these
receptors share 77–85% sequence identity to human
P2X7 (Table 1). Furthermore, the study of native rat P2X7
complexes supports the trimeric arrangement of rodent
P2X7 (Nicke, 2008). More recently, the crystal structure of
the zebrafish P2X4 receptor in complex with ATP has
been reported (Hattori and Gouaux, 2012). This agonist-
bound structure provides new insights into the mecha-
nism of P2X receptor activation and may be useful for the
development of new pharmacological agents.

Activation of P2X7 by extracellular ATP allows for the
passage of small cations, including Ca2+, Na+, and K+,
across the plasma membrane (Surprenant et al., 1996;
Rassendren et al., 1997; Chessell et al., 1998). However,
prolonged ATP stimulation leads to the formation of a
larger reversible pore, which allows for the uptake of
organic ions (Steinberg and Silverstein, 1987; Surprenant
et al., 1996; Rassendren et al., 1997; Chessell et al.,
1998) (see section VI). Activation of P2X7 by ATP, or the
alternate, rodent-specific ligand nicotinamide adenine
dinucleotide (NAD), results in a number of cell-specific

ABBREVIATIONS: A438079, 3-[[5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl]methyl]pyridine; A740003, N-(1-([(cyanoimino)(5-quinolinylamino)
methyl] amino)-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide; A839977, 1-(2,3-dichlorophenyl)-N-[[2-(2-pyridinyloxy)phenyl]
methyl]-1H-tetrazol-5-amine; AACBA, N-(adamantan-1-ylmethyl)-5-[(3R-amino-pyrrolidin-1-yl)methyl]-2-chloro-benzamide; ART,
ADP-ribosyltransferase; ATPgS, adenosine-59-O-(3-thiotriphosphate); AZ10606120, N-[2-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-5-
quinolinyl]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide; AZ11645373, 3-[1-[[(39-nitro[1,1’-biphenyl]-4-yl)oxy]methyl]-3-(4-pyridinyl)propyl]-
2,4-thiazolidinedione; BBG, Brilliant Blue G; BzATP, 29(39)-O-4-benzoylbenzoyl)-ATP; CE-224,535, 2-(4-chloro-3-[3-(1-hydroxycycloheptyl)
propanoyl]phenyl)-4-[(2R)-2-hydroxy-3-methoxy-propyl]-1,2,4-triazine-3,5-dione; CFA, complete Freund’s adjuvant; GSK1370319A, N-
[(2,4-dichlorophenyl)methyl]-1-methyl-5-oxo-l-prolinamide; GSK, GlaxoSmithKline; HEK, human embryonic kidney; IL, interleukin; IFN-g,
interferon-g; JNJ-47965567, N-([4-(4-phenyl-piperazin-1-yl)tetrahydro-2H-pyran-4-yl]methyl)-2-(phenyl-thio) nicotinamide; KN-62, 1-[N,O-bis
(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine; KO, knockout; LPS, lipopolysaccharide; MED1011, 2-[1-(6-amminopurin-9-il)-2-
osso-etossi]prop-2-enale; 2MeSATP, 2-methylthio-ATP; NAD, nicotinamide adenine dinucleotide; NCBI, National Center for Biotechnology
Information; oATP, periodate-oxidized ATP; PGE2, prostaglandin E2; PPADS, pyridoxal phosphate-6-azophenyl-2-4-disulfonic acid; ROS, reactive
oxygen species; SNP, single nucleotide polymorphism; Sp1, specificity protein 1 transcription factor; TM2, second transmembrane domain; TNF-a,
tumor necrosis factor-a; WT, wild-type.
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downstream signaling events, many of which were
established or are supported by rodent models of disease
(see sections VII and X). These downstream signaling
events are dependent on a variety of factors, including
cell type, extracellular conditions, and the concentration
of extracellular ATP (Burnstock, 2007). The presence of
ectonucleotidases, which degrade ATP and other nucleo-
tides, regulate the concentration and duration of avail-
ability of P2 receptor agonists in the extracellular space
(Yegutkin, 2008). Thus, P2X7 receptors are possibly only
activated after injury, infection, or in tumor micro-
environments when the concentration of ATP increases
locally or when ectonucleotidases are downregulated
(Lenertz et al., 2011). Alternatively, it is possible that
currently unknown allosteric modulators might act on
P2X7 in vivo to decrease its Km for ATP, thus allowing
the activation of P2X7 at lower nucleotide concentrations.
There is also emerging evidence that P2X7 activation
stimulates ATP release, further complicating the study
of the ATP/P2X7 signaling axis. P2X7-mediated ATP
release has been observed from human embryonic kidney
(HEK)-293 cells transfected with rat or human P2X7
(Pellegatti et al., 2005), from astrocytes during Ca2+ signal
transmission (Suadicani et al., 2006), from osteoclasts
undergoing fusion (Pellegatti et al., 2011) and in culture
(Brandao-Burch et al., 2012), and from melanoma cells
after g-irradiation (Ohshima et al., 2010).

B. Distribution of the P2X7 Receptor

P2X7 is widely distributed throughout the mammalian
body (see Burnstock and Knight, 2004). This receptor
was originally thought to be restricted to cells of the
hematopoietic lineages; this includes macrophages, den-
dritic cells, monocytes, lymphocytes, and erythrocytes, as
well as osteoclasts, mast cells, and eosinophils. However,
it is now evident that P2X7 is present on cells from other
lineages, including osteoblasts, fibroblasts, endothelial
cells, and epithelial cells. Furthermore, P2X7 is present
on cells in the central and peripheral nervous systems,
including microglia, astrocytes, oligodendrocytes, and
Schwann cells (Sperlágh et al., 2006). In addition, there
are reports of the presence of P2X7 on some populations
of neurons, including those from the spinal cord, cerebel-
lum, hypothalamus, and substantia nigra (see Lenertz

et al., 2011; Wiley et al., 2011). Although P2X7 has been
identified on a number of cell types, less is known about
the relative distribution of P2X7 between different cell
types within whole tissues. Recently, transgenic P2X7
reporter mice expressing enhanced green fluorescent
protein downstream of the P2RX7 promoter have been
generated (Engel et al., 2012; Garcia-Huerta et al., 2012;
Jimenez-Pacheco et al., 2013), which is an important step
toward addressing the distribution of P2X7 in vivo. For
example, these mice have been used to localize P2X7
expression in the central nervous system after prolonged
seizures, with P2X7 identified to be upregulated on
neurons, but not upregulated on microglia or astrocytes,
in the hippocampus and neocortex (Engel et al., 2012;
Jimenez-Pacheco et al., 2013). Although the P2X7 ex-
pression on microglia and astrocytes was weak in these
studies, P2X7 expression in these cell types is well
established from immunohistochemical studies (see
Verkhratsky et al., 2012). In addition, transgenic P2X7
green fluorescent protein reporter mice have been used
to localize P2X7 on cells from the cerebral cortex and
pons of newborn mice (Engel et al., 2012; Garcia-Huerta
et al., 2012). P2X7 expression was also demonstrated in
peritoneal macrophages and the spleen, validating the
reliability of these mice (Garcia-Huerta et al., 2012).

C. The P2X7 Receptor in Health and Disease

P2X7 has been associated with a number of diseases
(see Miller et al., 2011; Sluyter and Stokes, 2011;
Volonté et al., 2012). In particular, a number of human
P2X7 single nucleotide polymorphisms (SNPs) or
haplotypes that decrease or increase receptor function
have been associated with various infectious, muscu-
loskeletal, psychiatric, inflammatory, and cardiovascu-
lar diseases (see section VIII). In addition to diseases
associated with SNPs, studies of human tissue or
mouse models suggest that P2X7 may play important
roles in a number of inflammatory, immune, neurologic,
or musculoskeletal disorders. Such disorders include
multiple sclerosis (Yiangou et al., 2006), amyotrophic
lateral sclerosis (Yiangou et al., 2006), Alzheimer’s
disease (Ryu and McLarnon, 2008; Diaz-Hernandez
et al., 2012), Huntington’s disease (Díaz-Hernández
et al., 2009), cancer (Ghiringhelli et al., 2009; Adinolfi

TABLE 1
Agonist profiles of mammalian P2X7

Species Sequence
Identity

EC50
References

ATP BzATP ATPgS

% mM

Human 100 96 5 .100 Bianchi et al., 1999
Rhesus macaque 96 800 58 N.D. Bradley et al., 2011b
Dog 85 1148 21 N.D. Roman et al., 2009
Rat 80 85 4 .1000 Surprenant et al., 1996
Mouse (BALB/c) 80 200 60 .1000 Donnelly-Roberts et al., 2009
Mouse (C57BL/6) 80 162 36 .1000 Donnelly-Roberts et al., 2009
Guinea pig 77 603 .200 N.D. Fonfria et al., 2008

N.D., not determined.
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et al., 2012), ischemia (Arbeloa et al., 2012; Chu et al.,
2012), neuropathic and inflammatory pain (Chessell
et al., 2005), rheumatoid arthritis (Portales-Cervantes
et al., 2010; Bhattacharya et al., 2011), glomerulonephritis
(Taylor et al., 2009b), pulmonary fibrosis (Riteau et al.,
2010), and graft-versus-host disease (Wilhelm et al., 2010).
Given the potential importance of P2X7 in health

and disease, considerable effort has gone into charac-
terizing the presence and function of mammalian P2X7
receptors, and into the generation of selective P2X7
antagonists and the investigation of the potential thera-
peutic efficacy of such compounds in rodent models of
disease. This paper aims to review recent developments
regarding mammalian P2X7 receptors, with an emphasis
on the use of P2X7 antagonists in rodent models of disease.

II. The Rodent P2X7 Receptor

Rodent P2X7 was first cloned from rat brain (Surprenant
et al., 1996), followed by the cloning of P2X7 from NTW8
murine microglia soon after (Chessell et al., 1998).
Compared with other P2X receptors, P2X7 requires at
least one log higher ATP concentrations for activation
(Table 1). Within this concentration range, ATP induces
channel and pore formation in cells transfected with
recombinant rat or mouse P2X7 (Surprenant et al.,
1996; Chessell et al., 1998). With recombinant rat P2X7,
the agonist order of potency was 29(39)-O-4-benzoylbenzoyl)-
ATP (BzATP).. ATP. 2-methylthio-ATP (2MeSATP).
adenosine-59-O-(3-thiotriphosphate) (ATPgS) .. ADP
(Surprenant et al., 1996). However, a more recent studied
failed to confirm 2MeSATP and ATPgS as agonists of rat
P2X7 (Donnelly-Roberts et al., 2009). Moreover, this
same study failed to establish these same two nucleotides
as agonists of murine P2X7 (Donnelly-Roberts et al.,
2009). Notably, there are reported differences in P2X7
agonist sensitivities between these two species, with rat
P2X7 being 10-fold more sensitive to BzATP and ATP
than mouse P2X7 (Young et al., 2007).
In rodents, P2X7 can also be activated via a unique

ATP-independent pathway involving the transfer of an
ADP-ribose group from NAD to P2X7 (Adriouch et al.,
2001; Seman et al., 2003). ADP-ribosylation, a post-
translational modification of proteins, is an important
regulatory mechanism. In prokaryotes, ADP-ribosylation
of target proteins is responsible for the adverse effects of
a number of bacterial toxins in host cells (Ludden, 1994;
Aktories, 2011). In eukaryotes, ADP-ribosylation has
been implicated in transcriptional regulation, cell di-
vision, intracellular energy metabolism, neuronal signal-
ing, and inflammation (Abd Elmageed et al., 2012;
Hassler and Ladurner, 2012). Similar to ATP-induced
P2X7 activation, NAD-induced activation of P2X7 results
in Ca2+ flux, pore formation, phosphatidylserine expo-
sure, shedding of CD62L, cell shrinkage, DNA fragmen-
tation, and apoptosis (Adriouch et al., 2001; Seman et al.,
2003). These NAD-induced P2X7 responses are observed

in T cells, but they are not observed in macrophages
(Adriouch et al., 2001; Hong et al., 2009). However,
although the majority of studies investigating NAD-
induced activation of P2X7 have been performed with
murine T cells, there is also evidence that this pathway
occurs in murine astrocytes (Wang et al., 2012) and rat
retinal microvessels (Liao and Puro, 2006). Although
NAD induces similar downstream events to that seen
after ATP-induced activation of P2X7, much lower NAD
concentrations are required for receptor activation com-
pared with ATP (EC50 for phosphatidylserine exposure 2
and 100 mM, respectively) (Seman et al., 2003). It is
noteworthy that NAD and ATP, released through the lysis
of erythrocytes, are able to activate P2X7, suggesting that
sufficient concentrations of these ligands can be released to
activate P2X7 within rodents (Scheuplein et al., 2009).

The transfer of ADP-ribose from NAD to P2X7 is
catalyzed by the cell-surface ectoenzyme ADP-
ribosyltransferase (ART) 2 (Adriouch et al., 2001), the
crystal structure of which has been determined for rat
(Mueller-Dieckmann et al., 2002). Of note, this pathway
of P2X7 activation does not occur in humans because of
the absence of ART2 orthologs (Haag et al., 1994). In
rodents, there are two isoforms of ART2, termed ART2.1
and ART2.2. These isoforms are thought to play a role in
the reported differences in sensitivities to NAD-mediated
P2X7 activation between mouse strains and cell types.
First, NAD induces Ca2+ flux, but not apoptosis, in T cells
derived from C57BL/6 mice, whereas both these NAD-
mediated P2X7 responses are observed in T cells derived
from BALB/c mice (Adriouch et al., 2001; Hong
et al., 2009). C57BL/6 mice have deficient expression of
ART2.1 due to a premature stop codon in the Art2a
gene (Kanaitsuka et al., 1997), which may explain these
observations (Adriouch et al., 2001; Hong et al., 2009).
Alternatively, these differences may also be explained
by a known loss-of-function SNP present in C57BL/6, but
not BALB/c, P2X7 (see section VIII). Second, ART2.2 has
been reported on T cells, but not macrophages, from a
number of mouse strains (Okamoto et al., 1998;
Koch-Nolte et al., 1999; Hong et al., 2007). Moreover, bone
marrow-derived macrophages from BALB/c mice do not
constitutively express any ecto-ART subtypes; however,
ART2.1 is upregulated on these cells in response to
proinflammatory mediators (Hong et al., 2007). Despite
this, these macrophages remain unresponsive to NAD
when primed (Hong et al., 2009). Rather, NAD appears to
potentiate ATP-induced P2X7 activation in these cells
(Hong et al., 2009). Together, these results indicate that
ART2.2 is important for NAD-mediated P2X7 activation
and that different P2X7 signaling mechanisms operate in
lymphoid and myeloid leukocytes, at least in mice.

III. The Human P2X7 Receptor

Human P2X7 was first cloned from a human mono-
cytic cDNA library (Rassendren et al., 1997) using
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information from the cloned rat P2X7 sequence. Several
pharmacological differences exist between human and
rodent P2X7, including varying EC50 values for agonists
ATP and BzATP (10- to 25-fold higher for humans) and
sensitivity to other compounds. The agonist profile for
human P2X7 is BzATP .. ATP . 2MeSATP . ATPgS
. . ADP (Gargett et al., 1997; Donnelly-Roberts et al.,
2009). Differences are also apparent in the electrophys-
iological profile between human and rat P2X7, with
faster deactivation observed with human P2X7 ex-
pressed in HEK-293 cells activated by either ATP or
BzATP (Rassendren et al., 1997). The C terminus was
responsible for this effect because a chimeric receptor
with human ectodomain and rat C terminus displayed an
increased deactivation time, similar to rat P2X7
(Rassendren et al., 1997). More recently, Roger and
colleagues (2008, 2010a) identified differences in the
intracellular regulation of human and rat P2X7 by
calmodulin. Rat P2X7 displays a Ca2+-calmodulin de-
pendent facilitation of the ATP-induced inward current
via a C-terminal calmodulin binding site, whereas human
P2X7 only displays a smaller Ca2+-independent facilita-
tion (Roger et al., 2010a).

IV. P2X7 Receptors of Other Mammalian Species

The P2X7 receptor has also been cloned from the guinea
pig, dog, and Rhesus macaque. Details of recombinant and
native P2X7 from these mammalian species are limited, but
nevertheless highlight the potential of these species for the
future study of P2X7-related diseases and in the mandatory
testing and evaluation of preclinical drugs targeting P2X7.

A. The Guinea Pig P2X7 Receptor

Guinea pig P2X7 was first cloned from a guinea pig
brain cDNA library (Fonfria et al., 2008). Unlike the
other cloned mammalian P2X7 receptors, guinea pig
P2X7 is 594 amino acids in length because of the absence
of a glutamic acid at position 77 (Fonfria et al., 2008). The
EC50 value for ATP for guinea pig was similar to that of
human P2X7, but in contrast to human (and rat) P2X7,
BzATP was a weak partial agonist of guinea pig P2X7
(Fonfria et al., 2008). Notably, BzATP-induced responses
were observed only in sucrose medium (Fonfria et al.,
2008). The capacity of other nucleotides and NAD to
activate this rodent P2X7 has not been assessed. Moreover,
the electrophysiological characteristics of recombinant
guinea pig P2X7 are yet to be reported, although P2X7-
mediated currents have been detected in guinea pig
myenteric neurons (Valdez-Morales et al., 2011). Fur-
ther studies of native P2X7 within this species are
required before guinea pigs can serve as a model of
P2X7-related disorders and preclinical drug testing.

B. The Canine P2X7 Receptor

Canine P2X7 was first cloned from a dog heart cDNA
library from a nondisclosed breed (Roman et al., 2009).

EC50 values for both BzATP and ATP of canine P2X7
were similar to that of human P2X7; however, BzATP
was only a partial agonist of canine P2X7 (Roman
et al., 2009). In contrast, activation of P2X7 in canine
erythrocytes identified that ATP, relative to BzATP,
was a partial agonist of native canine P2X7 (Stevenson
et al., 2009). This finding is similar to that of native
human P2X7, in which ATP was also reported to be a
partial agonist relative to BzATP (Gargett et al., 1997).
The reasons for these differences between recombinant
and native canine P2X7 remain unknown but may
relate to the functional assays employed or the cell
types studied. The electrophysiological profile varies
between human and canine recombinant P2X7, with a
slower onset and decline in inward currents for canine
P2X7 than human P2X7 expressed in HEK-293 cells
activated by either ATP or BzATP (Roman et al., 2009).
The capacity of other nucleotides to activate recombi-
nant canine P2X7 has not been assessed. However,
study of native P2X7 in canine erythrocytes demon-
strates that 2MeSATP and ATPgS, but not ADP or
UTP, may also be (partial) agonists of canine P2X7
(Sluyter et al., 2007). NAD also failed to induce ethidium+

uptake into canine lymphocytes and monocytes (Stevenson
et al., 2009), suggesting that NAD is not an agonist of
canine P2X7.

Some attempts have been made to determine the
tissue distribution of P2X7 in dogs. Functional P2X7
has been reported in erythrocytes, T cells, B cells, and
monocytes (Sluyter et al., 2007; Stevenson et al., 2009;
Jalilian et al., 2012a), as well as in kidney epithelial
cells (Jalilian et al., 2012b). Of note, P2X7 activation
induces the release of interleukin (IL)-1b from canine
monocytes (Jalilian et al., 2012a) and whole blood
(Roman et al., 2009; Spildrejorde et al., 2014). Collec-
tively, these studies support the potential use of dogs in
future studies of P2X7. In this regard, laboratories of
GlaxoSmithKline (GSK) and Pfizer have already used
dogs to assess the pharmacokinetics and bioavailability
of P2X7 antagonists, including 2-oxo-N-(phenylmethyl)-4-
imidazolidinecarboxamide analogs (Abberley et al., 2010)
and 2-(4-chloro-3-[3-(1-hydroxycycloheptyl)propanoyl]
phenyl)-4-[(2R)-2-hydroxy-3-methoxy-propyl]-1,2,4-
triazine-3,5-dione (CE-224,535) (Duplantier et al.,
2011), respectively. The pharmacokinetics and bio-
availability of these compounds in dogs were similar
to that observed for monkeys (Abberley et al., 2010;
Duplantier et al., 2011) and thus potentially similar to
that of humans.

C. The Rhesus Macaque P2X7 Receptor

Rhesus macaque P2X7 was the first recombinant
P2X7 to be synthesized from a published sequence
rather than being generated via traditional cloning
techniques (Bradley et al., 2011b). Both BzATP and
ATP induce robust currents in cells transfected with
Rhesus macaque P2X7, with EC50 values similar to
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that of human P2X7 (Bradley et al., 2011b). The capacity
of other nucleotides or NAD to activate Rhesus macaque
P2X7 has not been assessed. In regard to the latter, it is
likely that NAD will also not activate Rhesus macaque
P2X7, because the ART2 ortholog appears to be absent in
primates (Haag et al., 1994). P2X7 protein is present in
the retinal neurons of the Rhesus macaque (Ishii et al.,
2003), but functional evidence and the tissue distribution
of native P2X7 within these animals are lacking. Collec-
tively, this limits the potential utility of these nonhuman
primates as a model of P2X7-related diseases and pre-
clinical testing of drugs targeting this receptor at this time.

V. Gating of the P2X7 Receptor Channel

The binding of agonist molecules to ligand-gated ion
channels transduces a signal to the channel gate, the
region of the protein involved in opening the channel
pore and allowing ionic flux to occur. Similar to other
P2X receptors, P2X7 receptors are trimeric in structure
(Nicke, 2008; Jiang et al., 2013) and contain three
intersubunit nucleotide binding sites with residues
from two individual monomers both contributing to the
binding site. Six helical transmembrane domains span
the membrane, and it is thought that the second
transmembrane domains (TM2) of each P2X7 monomer
form a physical gate to the flow of ions (reviewed in
Jiang et al., 2013). Structural data from P2X4 (Hattori
and Gouaux, 2012) suggest a rotation of the trans-
membrane domains after agonist binding opening the
channel pore. The external portion of TM2 has been
implicated as a channel gating domain; residues Ile332
to Val343 in P2X2 correspond to residues Val335 to
Leu346 in P2X7 (Li et al., 2008). Once the TM2
domains have moved, the channel pore is fully open
and conducts current, the directionality of this being
dictated by the membrane potential. After agonist
binding and gating rearrangements, monophasic or
biphasic currents can be measured by standard whole-
cell electrophysiology (Yan et al., 2008, 2011; Khadra
et al., 2013). Mono- and biphasic currents through
P2X7 channels are distinguished by the agonist con-
centration and whether the channel is “naive” to
agonist or not (Khadra et al., 2013). However, P2X7
gating is more complex than other ion channels
because of the secondary permeability pathway (see
section VI). Single channel recordings of P2X7 chan-
nels have also been used to investigate how this ion
channel operates. Markwardt and colleagues measured
a single channel conductance of 9–13 pS for P2X7 in
Xenopus laevis oocytes (Riedel et al., 2007a) and have
developed extensive kinetic models for the transitions
between open and closed states. These kinetic models
were recently extended to a 16-state Markov model,
taking into account both low-high affinity agonist binding
and sensitization/desensitization states (Khadra et al.,
2013).

VI. Permeability of the P2X7 Receptor

P2X7 was originally identified as the P2Z receptor,
capable of permeabilizing cells after ATP addition.
This defining feature of P2X7 activation was thought to
be unique to this receptor for many years. However it is
now apparent that activation of other purinergic
receptors (P2X2, P2X4, P2X5, and P2X2/5), and indeed
other ligand-gated ion channels (N-methyl-D-aspartate
receptor and the transient receptor potential cation channel
subfamily A member 1 and subfamily V member 1) can
also permeabilize cells (Virginio et al., 1999; Chaumont
and Khakh, 2008; Chung et al., 2008; Thompson et al.,
2008; Banke et al., 2010; Compan et al., 2012b). Despite
these observations, it should be noted that P2X7 is the
only P2X receptor where this process is consistently
observed. The secondary pore pathway permits the
entry of normally impermeant organic cations such as
N-methyl-D-glucamine+, ethidium+, and YO-PRO-12+. Or-
ganic anions such as lucifer yellow and carboxyfluorescein
can also enter cells, although whether this involves the
same permeation pathway as for cations is unclear. In
addition to ion channels, the marine toxin maitotoxin
(Schilling et al., 1999) and a sustained elevation of
intracellular Ca2+ using the ionophore ionomycin (Faria
et al., 2009) can also induce the opening of a pore path-
way permitting impermeant dye entry.

The search to understand the mechanism by which
P2X7 permits large cation/anion uptake is still ongoing, as
is the debate regarding whether this is an intrinsic
property of P2X7 or whether it requires at least one other
protein. Several studies have shown that the unique and
characteristic long C-terminal tail of P2X7 is crucial for
pore formation. Truncation of P2X7 abolishes dye uptake
without affecting ion channel currents (Surprenant et al.,
1996; Rassendren et al., 1997; Smart et al., 2003). Single
point mutations due to polymorphisms can also dramat-
ically affect the dye uptake response (Gu et al., 2001;
Adriouch et al., 2002; Wiley et al., 2003). In addition,
there is reported to be some dependence on second
messenger pathways, including a role for Ca2+ (Donnelly-
Roberts et al., 2004; Faria et al., 2005). These studies and
others (reviewed in Rokic and Stojilkovic, 2013) have
attempted to dissect out ion channel and secondary pore
pathways. A breakthrough in mechanistic understanding
came with the identification of pannexin-1 as a secondary
protein involved in dye uptake (Pelegrin and Surprenant,
2006). However, there is now growing evidence suggest-
ing that pannexin-1 cannot be the major pore pathway
used by P2X7. For example, no defect in ATP-mediated
YO-PRO-12+ uptake was observed in macrophages from
pannexin-1 knockout (KO) mice (Qu et al., 2011), siRNA
knockdown of pannexin-1 in mouse macrophages failed to
affect P2X7 responses (Alberto et al., 2013), and pharma-
cological blockade of pannexin-1 did not affect ATP-induced
dye uptake in transfected HEK-293 cells or human
monocytes (Bhaskaracharya et al., 2014).
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Electrophysiological recordings of P2X7 currents sug-
gest that biphasic currents reflect pore dilation (Yan
et al., 2008; Khadra et al., 2013), and therefore a large
proportion of the inward current is via the secondary
permeability pathway. However, biphasic currents have
not been recorded under single channel recording con-
ditions (Riedel et al., 2007b). Recently, Browne et al.
(2013) provided evidence for direct permeation of large
molecules through the P2X7 channel pore. By introducing
cysteine mutations into TM2, which lines the conductance
pathway of the P2X7 channel pore, the direct access of
methanethiosulfonate reagents to these residues after
ATP treatment was demonstrated. Inhibition of P2X7
ion channel currents using methanethiosulfonate
reagents also blocked fluorescent dye uptake (Browne
et al., 2013).
Given the importance of the secondary permeability

pathway in signaling events downstream of P2X7
activation (see section VII), it is necessary that a clear
understanding of this secondary pathway is estab-
lished. Moreover, we must also consider the physiologic
relevance of this additional pore pathway allowing
influx/efflux of large molecules. Is this a mechanism for
cells to take up ATP or other molecules required for an
increased metabolic demand to respond to tissue injury
or inflammation? Is this a mechanism for ATP release
to drive further purinergic signaling? Or does this
pathway provide a way of secreting chemical trans-
mitter molecules such as glutamate? Cervetto and
colleagues (2013a) recently demonstrated that gluta-
mate efflux from P2X7-transfected HEK-293 cells was
dependent on the long C terminus of rat P2X7 and the
Cys-rich domain of the proximal C terminus, implicat-
ing the secondary pore pathway in efflux events.

VII. P2X7 Receptor-Dependent
Signaling Pathways

A number of cell type-specific signaling pathways
have been associated with P2X7 activation. These include
the activation of the caspase-1–containing inflammasome
NLRP3 and the subsequent processing and release of
proinflammatory interleukin-1 (IL-1) cytokines, as well as
the formation of reactive oxygen and nitrogen species and
the formation of phagolysosomes and subsequent killing of
intracellular pathogens (see Hewinson and Mackenzie,
2007; Miller et al., 2011; Di Virgilio, 2013). Here we will
review recent developments in established signaling
pathways and novel signaling pathways associated with
P2X7.

A. Cytokine Release

In addition to the secretion of leaderless cytokines
IL-1b (IL-1F2) and IL-18 (IL-1F4), P2X7 activation has
also been shown to induce release of IL-1a (IL-1F1)
(Pelegrin et al., 2008), IL-1 receptor antagonist (IL-1F3)
(Wilson et al., 2004, 2007; Glas et al., 2009) and IL-36a

(IL-1F6) (Martin et al., 2009). This places P2X7 as a
major physiologic regulator of secretion of the IL-1
family of cytokines. A recent comprehensive investiga-
tion into the mechanism underlying NLRP3 inflamma-
some activation and IL-1b secretion by diverse stimuli,
including P2X7, suggests K+ efflux is a common signal
activating the NLRP3 complex (Muñoz-Planillo et al.,
2013). Extracellular osmolarity and cell volume regulation
also plays a role in the activation of NLRP3 inflamma-
some (Compan et al., 2012a), highlighting that it is the
cellular microenvironment that is crucial for switching on
cytokine secretion.

B. Reactive Oxygen Species Formation

The generation of reactive oxygen species (ROS) after
ATP activation of P2X7 is now well established in
macrophages (Lenertz et al., 2009; Moore andMacKenzie,
2009), microglia (Apolloni et al., 2013; Bartlett et al.,
2013), submandibular gland cells (Seil et al., 2008),
and erythroid cells (Wang and Sluyter, 2013). Activa-
tion of NADPH oxidase 2 by P2X7 was a common
feature found in all cell types studied, although there is
evidence that ATP, possibly via P2X7 activation, can
also enhance mitochondrial reactive oxygen species
(Nakahira et al., 2011). One downstream consequence
of increased ROS generation in myeloid cells is the
activation of the NLRP3 inflammasome and IL-1b
secretion (reviewed in Gross et al., 2011; Tschopp, 2011).
However, in a more recent study, ROS were not found to
play a role in NLRP3 activation in bone marrow-derived
macrophages (Muñoz-Planillo et al., 2013). Rather, a re-
duction of the intracellular K+ concentration was required.
Despite this, there is evidence that K+ channel activity can
be positively modulated by ROS (Ichinari et al., 1996;
Avshalumov and Rice, 2003; Sesti et al., 2010), and it may
be that ROS are able to induce NLRP3 activation in some
cell types via this signaling process.

C. Protease Activation and Release

Activation of P2X7 receptors can also lead to a number
of membrane-related changes including membrane bleb-
bing, microparticle and exosome release, multinucleated
cell formation, reversible phosphatidylserine exposure,
and the activation of membrane metalloproteases result-
ing in the shedding of cell-surface molecules (see Qu and
Dubyak, 2009; Wiley et al., 2011). Recent work has
identified additional cell surface molecules shed from
the cell surface or released after activation of P2X7.
This includes the chemokine CXCL16 (Pupovac et al.,
2013a), the adhesion molecule CD44 (Lin et al., 2012),
soluble amyloid precursor protein (Delarasse et al.,
2011), and the IL-6 receptor (Garbers et al., 2011), in
addition to CD62L (L-selectin), CD23 (the low-affinity
IgE receptor) (Gu et al., 1998), and CD27 (Moon et al.,
2006). Two metalloproteinases, ADAM10 and ADAM17,
are the main effector molecules associated with these
P2X7-mediated shedding events (Garbers et al., 2011;
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Pupovac et al., 2013a). Many physiologically relevant
substrates are cleaved by these proteases, and it will be
interesting to determine if P2X7 can induce cleavage of
all ADAM10/17 substrates or only a subset.
P2X7 activation can also induce the release of various

enzymes. Andrei and colleagues (2004) first identified
that ATP could induce lysosome exocytosis from human
monocytes and measured cathepsin D secretion as a
readout. It is now clear that lysosome secretion of
cathepsins is a P2X7-mediated pathway likely regulated
by increased intracellular Ca2+ concentrations. Cathepsins
B, D, L, and S are also secreted in this manner from
monocytes and macrophages (Lopez-Castejon et al.,
2010). P2X7 activation can also stimulate the release
of metalloprotease-9 (Gu and Wiley, 2006); however, the
specific release mechanism is yet to be ascertained.
Therefore, P2X7 can regulate several families of proteases,
namely caspases (Ferrari et al., 1999), as well as
cathepsins and matrix metalloproteinases.

D. Prostaglandin Release

Prostaglandin E2 (PGE2), thromboxane B2, and leuko-
triene B4 are prostanoids induced by P2X7 signaling in
murine macrophages (Barberà-Cremades et al., 2012).
Phospholipases mediate the hydrolysis of arachidonic
acid from various phospholipids, and P2X7 is known to
activate cytosolic phospholipase A2 (Andrei et al., 2004)
and Ca2+-insensitive phospholipase A2 isoforms (El
Ouaaliti et al., 2012), in addition to phospholipase D
(el-Moatassim and Dubyak, 1992). Arachidonic acid is
then a substrate for cyclooxygenase and prostaglandin
E synthases in the biosynthesis of PGE2. PGE2 plays
an important role in inflammation, fever, and pain,
and therefore is likely to be an important downstream
signaling pathway from P2X7 in vivo. Given the activation
of P2X7 by ATP in areas of tissue damage, this may place
P2X7 as a potential alternative anti-inflammatory target
to cyclooxygenase (Barberà-Cremades et al., 2012).

E. Glutamate Efflux

Early reports exist showing that P2X7 induces non-
vesicular release of excitatory amino acids such as
glutamate and aspartate from murine astrocytes (Duan
et al., 2003; Fellin et al., 2006). This finding was recently
extended with the demonstration that P2X7 activation
could induce glutamate efflux from rat cortical nerve
terminals (Marcoli et al., 2008) and from HEK-293 cells
expressing recombinant rat P2X7 (Cervetto et al.,
2013a). Such contributions to extrasynaptic and/or
synaptic glutamate concentrations may alter neuro-
transmission and could contribute to changes in
neuroplasticity and behavior.

F. Transcription Activation

P2X7 can influence gene expression through activa-
tion of a variety of transcription factors. Several studies
have identified nuclear factor-kB p65 as a transcription

factor regulated by P2X7 in microglia (Ferrari et al.,
1997) and osteoclasts (Korcok et al., 2004). In mono-
cytes, P2X7 activation can also induce cAMP response
element-binding protein activation (Gavala et al., 2008)
and FosB/activating protein-1 (Gavala et al., 2010), and
in T cells, P2X7 activation can induce the translocation
of nuclear factor of activated T cells to the nucleus (Yip
et al., 2009). Therefore P2X7 may regulate gene ex-
pression in response to extracellular ATP, perhaps to
reprogram cellular metabolism in times of stress or to
switch on genes required for the inflammatory response.

G. Cell Proliferation

P2X7 is historically known for its ability of ATP to
induce cell death through apoptosis (Zanovello et al.,
1990; Chow et al., 1997; Ferrari et al., 1999). A role in
cell proliferation would seem to be at odds with this,
but evidence suggests that in certain cell types, activa-
tion of P2X7 is more likely involved with proliferation
than cell death. This may be due to expression of
particular splice variants (see section VIII), and this
aspect certainly warrants further investigation in T cells
and microglia. In T cells, release of autocrine ATP during
activation through the T-cell receptor activates P2X7 and
enhances secretion of the T-cell growth factor IL-2,
through stimulation of the nuclear factor of activated
T-cells transcription factor (Yip et al., 2009). Baricordi
and colleagues (1996) first suggested a role for P2X7
in mitogen-induced T-cell proliferation. This same group
subsequently went on to show that transfection of cell
lines with full-length P2X7 or a truncated splice variant of
this receptor increased cell proliferation, especially in the
absence of serum (Baricordi et al., 1999; Adinolfi et al.,
2005, 2010). In microglia, blocking P2X7 pharmacologi-
cally or overexpressing a pore-mutant (G345Y) to abolish
secondary permeability reduced the proliferative response
(Bianco et al., 2006; Monif et al., 2009). It will be in-
teresting to determine if the trophic effect in microglia is
also due to transcriptional regulation of a growth factor.

H. Phagocytosis

A novel cellular signaling process associated with
P2X7 is the regulation of phagocytosis (Wiley and Gu,
2012), a process by which foreign particles or organ-
isms are taken up into cells. Transfection of HEK-293
cells, which are not normally phagocytic cells, with
DNA encoding P2X7 introduces the ability to take up
1-mm latex beads or fluorescently labeled bacteria
(Gu et al., 2010). Gu and colleagues (2009, 2010, 2011,
2012) propose that P2X7 is acting as a scavenger receptor.
Typically, scavenger receptors, such as CD36, recognize
modified lipoproteins, such as low-density lipoproteins
(Endemann et al., 1993), and although it is noted that
P2X7 has a similar two transmembrane domain structure
to CD36 (Gu et al., 2011, 2012), whether P2X7 can
recognize such lipoproteins is not yet known. The ability of
P2X7-expressing cells to take up particles does not appear
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to require classic activation of the ion channel by
extracellular ATP. In fact, stimulation of the channel
with ATP switches off this phagocytic pathway (Gu et al.,
2010). This suggests that particle uptake does not require
classic signaling through the ion channel or the secondary
pore pathway, but may use a novel signaling pathway
due to association of P2X7 with the cytoskeleton (Gu
et al., 2009, 2010). This is an exciting development in
P2X7 cell biology, and further investigations may reveal
other ligands for this receptor.

I. Summary

In summary, P2X7 regulates ionic flux, protease activa-
tion,membrane events, and various secretion events. This is
a diverse series of signaling pathways commonly in-
volved in inflammation. Because these signaling path-
ways are cell type specific, it is highly likely that each
cell type expressing P2X7 has a different complement of
downstream effectors. This information is critical as we
try to understand the role of P2X7 in disease and the
potential for this receptor as a therapeutic target.

VIII. Variants of the P2X7 Receptor

In the last 10 years, particular attention has been
drawn to the importance and contributions of P2X7
variants to the diversity of P2X7 receptor–mediated
responses in health and disease, bringing the puriner-
gic field to a point where these variants can no longer
be ignored. In particular, these studies have high-
lighted the need for the consideration of variants in
current and future in vivo rodent studies and human
clinical trials. The two main causes of P2X7 variants,
P2X7 SNPs and splice isoforms, as well as their implica-
tions for rodent studies, will be discussed below. The
human P2X7 receptor will be discussed first because the
largest body of work has been done in this species.

A. P2X7 Single Nucleotide Polymorphisms

The human P2RX7 gene is highly polymorphic, with
over 1500 SNPs reported in the National Center for
Biotechnology Information (NCBI) SNP database (www.
ncbi.nlm.nih.gov/sites/entrez, accessed December 27,
2013). However, the majority of these SNPs are intronic,
with approximately 150 nonsynonymous (or missense)
SNPs reported in both this database and the Ensembl
Genome Browser (asia.ensembl.org/index.html, accessed
December 27, 2013). Of these nonsynonymous SNPs,
a small number have been investigated to date that lead
to altered human P2X7 function. A loss-of-function effect
has been reported for SNPs V76A, R117W, G150R,
E186K, L191P, R276H, R307Q, T357S, E496A, and
I568N (Gu et al., 2001, 2004; Wiley et al., 2003; Shemon
et al., 2006; Roger et al., 2010b; Stokes et al., 2010).
Because of the absence of frequency data it is not clear
whether R117W, E186K, or L191P represent SNPs or
mutations. Investigations into the underlying mechanisms

behind the loss-of-function effect of individual SNPs
have revealed differences depending on the site of the
mutations. Residue 307, originally thought to contribute
to ATP binding (Gu et al., 2004), may instead be in-
volved in hydrogen bonding and salt bridge structures
in the P2X7 ectodomain (Jiang et al., 2013). Residue 568
lies within a trafficking motif, and mutant 568N-P2X7
receptors do not efficiently traffic to the cell membrane
(Wiley et al., 2003). It is currently unclear how V76A,
R117W, G150R, L191P, R276H, and E496A mutations
cause a loss-of-function effect. SNPs in regulatory and
intronic regions have also been identified, including
the upstream promoter region (2762; rs2393799) (Li
et al., 2002), an intronic splicing site at the exon1/
intron1 boundary (rs35933842) (Skarratt et al., 2005),
and the 39-untranslated region affecting a microRNA
binding site (rs1653625) (Rahman et al., 2010). How-
ever, only rs35933842 has been associated with a loss-
of-function effect.

A gain-of-function effect has been reported for three
SNPs: H155Y, H270R, and A348T (Cabrini et al., 2005;
Stokes et al., 2010). The underlying mechanisms behind
these gain-of-function effects have not been established.
There is some evidence to suggest that the amino acid
variation at 155 increases cell surface expression of
P2X7 (Bradley et al., 2011a); however, this was not
observed in the initial report of this SNP (Cabrini et al.,
2005). One of the most interesting SNPs in human
P2RX7 is Q460R in the C terminus. In isolation this
mutation does little to the functional response, but our
investigations revealed coinheritance with gain-of-function
SNPs in a particular haplotype (Stokes et al., 2010),
perhaps explaining the association of this SNP with
various disorders, including bipolar disorder (Barden
et al., 2006), depression (Lucae et al., 2006), and Sjogren’s
syndrome (Lester et al., 2013).

In the last 5 years many studies have investigated
the association of SNPs in P2RX7 with a number of
different diseases. Some studies have used individual
key SNPs such as E496A or Q460R, whereas others
have used a more informative 12 SNP approach. Loss-
of-function haplotypes have been linked to susceptibil-
ity to extrapulmonary tuberculosis infection (Fernando
et al., 2007), enhanced bone mineral density loss in
postmenopausal women (Gartland et al., 2012; Jorgensen
et al., 2012), and an increased risk of age-related
macular degeneration due to reduced phagocytosis of
cellular debris (Gu et al., 2013). Inheritance of E496A
has been linked to a reduced risk of ischemic stroke
and ischemic heart disease (Gidlof et al., 2012). The
gain-of-function A348T SNP is protective for Toxo-
plasmosis gondii infection (Jamieson et al., 2010) and
is found at an increased frequency in Arabic patients
with rheumatoid arthritis (Al-Shukaili et al., 2011)
and patients with major depressive disorder (Lucae
et al., 2006). Q460R, which is in linkage disequilibrium
with A348T, was found to be increased in patients with
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Sjogren’s syndrome and was linked to increased seropos-
itive disease (Lester et al., 2013).
In summary, gain-of-function haplotypes of human

P2X7 may protect against infection and premature bone
loss, but may increase the risk of developing certain
inflammatory and psychiatric disorders. On the converse,
carrying loss-of-function haplotypes of P2X7 may protect
against inflammatory disorders, such as heart disease,
but may increase susceptibility to some infections.
A number of SNPs have similarly been reported in

the murine P2RX7 gene region, with a survey of the
NCBI SNP database revealing .1700 SNPs (accessed
December 27, 2013). The majority of these SNPs are
intronic. With the Ensembl Genome Browser (accessed
December 27, 2013), 34 SNPs were revealed to be present
in the coding region of the full-length murine P2RX7
gene, 10 of which are nonsynonymous (Fig. 1).
Of the nonsynonymous SNPs reported for murine

P2X7 in the NCBI SNP database and the Ensembl
Genome Browser, only the P451L SNP has been charac-
terized. This naturally occurring mutation leads to the
replacement of the proline residue at position 451 by a
leucine residue in the cytoplasmic tail of murine P2X7
(Adriouch et al., 2002). The distribution of the allelic
versions of this SNP in different mouse strains is outlined
in Fig. 2. The P451L SNP was originally identified based
on studies of P2X7 function in T cells from different strains
of mice, whereby T cells from BALB/c mice (451P) had
significantly higher sensitivity to ATP than those from

C57BL/6 mice (451L) (Adriouch et al., 2002). By trans-
fecting HEK-293 cells with either of the two variants (451P
or 451L), it was demonstrated that P2X7 channel and pore
function were markedly reduced in cells expressing the
mutated 451L allele. This was later confirmed in another
study, in which HEK-293 cells expressing 451L had
reduced cation dye uptake and Ca2+ flux compared with
cells expressing 451P (Young et al., 2006). However,
451L was not found to be associated with reduced surface
protein expression or maximum agonist-induced currents
in this latter study. In contrast, human astrocytoma
1321N1 cells expressing 451L are reported to have fully
functional P2X7, with a similar pharmacological profile
to those expressing 451P (Donnelly-Roberts et al., 2009).

Differences in murine P2X7 function encoded by the
451P and 451L alleles are further supported by two
additional studies with BALB/c and C57BL/6 mice,
respectively. First, thymocytes from C57BL/6 mice
display significantly impaired P2X7-induced cell death
compared with those from BALB/c thymocytes (Le
Stunff et al., 2004). In contrast, P2X7-induced phos-
pholipase D stimulation was similar in thymocytes
from both strains (Le Stunff et al., 2004). This suggests
that P2X7-induced cell death and phospholipase D
stimulation are controlled through distinct domains of
P2X7. Second, astrocytes from C57BL/6 mice have atten-
uated ATP-induced pannexin-1 currents, ATP release, and
intracellular Ca2+ waves compared with astrocytes from
BALB/c mice, all of which were thought to be mediated by
P2X7 (Suadicani et al., 2009). Of note, using a Src inhibitor
and electrophysiological, biochemical, and fluorescence
imaging techniques, this same study also provided
evidence that P451L is located within the SH3 domain, a
Src tyrosine kinase-binding site. This further supports the
potential influence of this SNP on domain structure and
function of the murine P2X7 receptor.

Fig. 1. Nonsynonymous SNPs reported in the coding region of the
murine P2RX7 gene. SNP, SNP ID, and alleles are as follows: S6N,
rs227977285, and G/A; V32I, rs229167308, and G/A; E70Q, rs238213067,
and G/C; G113D, rs37541158, and G/A; T117M, rs238065774, and C/T;
R270Q, rs220799687, and G/A; P396R, rs37237164, and C/G; P451L,
rs48804829, and C/T; R486H, rs37867325, and G/A; H514R, rs36331015,
and A/G. Yellow and red circles refer to functionally characterized and
noncharacterized SNPs, respectively. SNPs were identified using
Ensembl Genome Browser (asia.ensembl.org/index.html, accessed Decem-
ber 27, 2013).

Fig. 2. Allelic versions of the loss-of-function P2X7 P451L SNP in different
mouse strains (based on data from Adriouch et al., 2002; Sorge et al., 2012;
Syberg et al., 2012). The 451P allele is also observed in rats and humans.
Strains in italics are wild mouse strains. NZW, New Zealand White; NOD,
nonobese diabetic.
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The P451L SNP has been correlated with disease in
two studies. First, genome-wide linkage analysis studies
have found an association between the P451L SNP and
neuropathic pain in mice (Sorge et al., 2012). In this
study, mice from a number of different strains express-
ing the 451L allele showed less mechanical allodynia, a
symptom of neuropathic pain, after spared nerve injury
compared with those with the 451P allele. Second, an
association between the P451L SNP and bone pheno-
type has been reported (Syberg et al., 2012). Strains
with the 451L allele (C57BL/6 and DBA/2J) had weaker
femurs, lower amounts of the bone resorption marker
C-telopeptide collagen, and lower bone mineral densi-
ties compared with those strains with the 451P allele
(BALB/cJ and 129X1/SvJ). However, the cellular bases
for these differences were not established, whereas
other measured bone parameters were not associated
with the P451L SNP.
In addition to the naturally occurring P451L SNP,

nonsynonymous mutations have also been identified
in murine cell lines. For example, L11F, T221A, and
T283M mutations have been found in P2X7 cloned
from the NTW8 microglial cell line (Chessell et al.,
1998; Young et al., 2006). These mutations have been
associated with reduced function in this cloned re-
ceptor compared with the function of recombinant
P2X7 cloned from a C57BL/6 mouse (Adriouch et al.,
2002). By introducing point mutations, the T283M
SNP, but not L11F or T221A SNPs, was found to be
responsible for this low P2X7 function, with expression
of the 283M variant leading to both reduced channel
and pore activity (Young et al., 2006). In comparison,
the 283T allele is present in P2X7 sequences from other
mouse strains, as well as the rat and human sequences.
Thus, the T283M mutation may be specific to the NTW8
cell line or a result of cloning.
Further survey of the NCBI SNP database and

Ensembl Genome Browser (both accessed December 27,
2013) reveals few nonsynonymous SNPs in the coding
region of the other cloned mammalian P2X7 receptors.
Nonsynonymous SNPs in the rat or guinea pig P2RX7
gene have not been reported. Two nonsynonymous SNPs,
L103F and P452S, have been reported in the canine
P2RX7 gene. In the other cloned mammalian P2X7
receptors, a phenylalanine residue resides at amino acid
position 103. Thus, it is likely that 103F may also re-
present the more common variant in dogs and that the
SNP at this position may be more accurately defined as
F103L rather than the reported L103F. Nevertheless the
cloned canine P2X7, which contains a leucine residue at
amino acid position 103, forms a functional receptor
(Roman et al., 2009), although its relative effect compared
with canine P2X7 containing residue 103F remains un-
known. The P452S SNP in the canine P2RX7 gene is
located at the equivalent position as the partial loss of
function SNP, P451L, of the murine P2RX7 gene. The
functional effect of this canine SNP remains unknown.

Finally, one nonsynonymous SNP, I75M, has been
reported in the Rhesus macaque P2RX7 gene. An
isoleucine residue is found at this amino acid position in
each of the other cloned mammalian P2X7 receptors,
and the functional effect of a methionine at this position
remains to be determined.

B. P2X7 Splice Isoforms

Alternative splicing is a process that enables one gene
to produce multiple protein isoforms, with a number of
alternative P2X7 splice variants identified for the human
and rodent receptor to date. In humans, seven naturally
occurring splice variants were initially reported and
termed P2X7B to P2X7H (Cheewatrakoolpong et al.,
2005), with P2X7A referring to the original full-length
595 amino acid protein (Rassendren et al., 1997). These
include truncated variants that have an alternate short
C terminus (P2X7B, C, E, and G), variants that lack
exons responsible for coding parts of the extracellular
domain (P2X7C–F) and variants that have additional
exons, thought to result in P2X7 protein lacking the first
transmembrane domain (P2X7G and H) (see Sluyter and
Stokes, 2011). An additional two naturally occurring
splice variants have been identified in humans, termed
P2X7I and P2X7J (Feng et al., 2006). P2X7I codes for
a null allele and is a result of SNP rs35933842 (Skarratt
et al., 2005), whereas P2X7J is another truncated variant
(Feng et al., 2006). These ten variants of human P2X7
differ in distribution, functional characteristics, and
predicted physiologic roles. Of these, P2X7B is the best
studied and is able to form functional channels but not
the large pores that are often associated with inflamma-
tion and cell death (Adinolfi et al., 2010). P2X7J is
similarly unable to form pores and also displays reduced
ligand-binding ability and channel function and oligo-
merizes with P2X7A to form nonfunctional P2X7 hetero-
trimers (Feng et al., 2006).

Naturally occurring P2X7 splice variants have also
been identified in rodents. The first reported, originally
termed P2X7(K) (Nicke et al., 2009) or P2X7K by
others (Masin et al., 2012), results from a novel exon 1
in the rodent P2RX7 gene. This leads to a receptor with
an alternate amino-terminal and first transmembrane
domain (Nicke et al., 2009). In contrast to the human
P2X7 variants mentioned above, P2X7K is a fully
functional variant, with an 8-fold higher sensitivity
to P2X7 agonists, slower deactivation, and increased
propensity to form P2X7 pores compared with P2X7A.
Furthermore, it was recently reported that this variant is
sensitive to activation by extracellular NAD, whereas
P2X7A is not (Schwarz et al., 2012). This is the first
report suggesting that NAD is unable to activate P2X7A,
which complicates the interpretation of earlier NAD
studies. In this study, T cells were found to preferentially
express P2X7K, whereas macrophages preferentially
express P2X7A. This may account for differences in
P2X7 signaling between these cell types in rodents (Hong
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et al., 2009; Xu et al., 2012) and suggests that P2X7
variants may mediate the differential sensitivity of
macrophages and lymphocytes to NAD. However, the
relative contribution of different P2X7 splice variants
on NAD-mediated P2X7 activation in other cell types,
such as astrocytes, has not been investigated. To the
best of our knowledge, a similar variant to P2X7K has
not been described in humans.
C-terminal truncated P2X7 variants have also been

identified in mice (Masin et al., 2012). These variants,
termed P2X7 13B and P2X7 13C, are encoded by genes
with alternative exon 13s, resulting in truncated or
alternate short C termini, respectively. P2X7 13B was
detected in all tissues tested, with strongest expression
in the brain, salivary glands, and spleen, whereas
P2X7 13C was present in the brain, lungs, and salivary
glands. When expressed in HEK-293 cells, both variants
displayed low cell surface expression and channel func-
tion and no pore formation. This low cell surface ex-
pression of P2X7 13B was due to inefficient trafficking
to the cell surface and, similar to the human variant
P2X7J (Feng et al., 2006), appeared to inhibit the function
of full-length P2X7 through hetero-oligomerization (Masin
et al., 2012). However, equivalent variants of human
P2X7B-J are yet to be reported in rodents. Furthermore,
the influence of these variants on P2X7 in vivo or even
native P2X7 on primary cells has not been widely
examined, and this may be a confounder in preclinical
studies in rodents, particularly if the sensitivity of
these variants to P2X7 antagonists varies.

C. P2X7 Variants in P2X7 Knockout Mice

There are currently two strains of P2X7 KO mice
available: the GSK line generated by Chessell et al.
(2005) (see also Sim et al., 2004) and the Pfizer line
generated by Solle et al. (2001). The GSK KO strain
was generated by inserting a lacZ transgene and neo-
mycin cassette into exon 1, whereas the Pfizer KO was
generated by inserting a neomycin cassette into exon 13,
replacing part of the C terminus of the receptor. These
models have been extensively used for demonstrating
P2X7 involvement in inflammatory and neuropathic pain
(GSK KO), cytokine production, inflammation, bone
formation, and a number of disorders (Pfizer KO) (see
Volonté et al., 2012). However recent evidence, co-
inciding with the discovery of P2X7 splice variants,
indicates that these mice may not be true knockouts.
First, molecular and biochemical analyses indicated

that the widely expressed P2X7K splice variant dis-
cussed above escaped deletion in the GSK KO, with
highest expression in the spleen (Nicke et al., 2009).
This is likely because of the fact that exon 1 of the
P2RX7 gene was targeted in the generation of this KO
strain, whereas the P2X7K variant encodes a novel exon
1. Although P2X7 activity is absent in macrophages and
dendritic cells from this KO strain, T cells displayed
higher levels of P2X7 activity than that of control mice

(Taylor et al., 2009a). Second, molecular and biochem-
ical analyses indicated that P2X7 13B and 13C
C-terminal truncated variants, as well as a C-terminal
truncated hybrid variant containing a short sequence
of the targeting vector used to disrupt exon 13 of the
P2RX7 gene, escaped deletion in the Pfizer KO mouse
(Masin et al., 2012). However, unlike T cells from the
P2X7K-expressing GSK KO, those from the Pfizer KO
have reduced receptor function (Taylor et al., 2009a).

The tissue-specific expression of functional P2X7 in
these KO strains may explain the controversial stain-
ing of P2X7 in brain tissue from KO animals, which is
identical to that of wild-type (WT) littermates (Sim
et al., 2004; Sánchez-Nogueiro et al., 2005). In these
studies, P2X7 antibodies may be detecting splice variants,
which have escaped deletion, rather than P2X7-like
proteins with similar immunogenicity or other proteins
through nonspecific staining. In addition, these variants
may explain some of the phenotypic and functional
differences observed between these two KO strains (Fig.
3). Although P2X7 variants have escaped deletion in
both the GSK and Pfizer KOs, overall evidence indicates
that the P2X7A variant has been knocked out in both
strains. Despite this, caution needs to be undertaken
when interpreting results of in vivo studies that use
these KO mice.

IX. Modulators of P2X7 Receptor Activation

There are a number of P2X7 antagonists commer-
cially available, all of which vary in terms of chemical
structure, mode of antagonism, specificity, and species
selectivity. The first generation of compounds available
that was capable of antagonizing P2X7 were generally
nonspecific, with many also capable of inhibiting other
P2X and in some cases P2Y receptors or other molecules
(see Gever et al., 2006). These early antagonists include
Reactive Blue 2, which was first used in the 1970s (Kerr
and Krantis, 1979); suramin and Brilliant Blue G (BBG),
which were first used in the 1980s (Dunn and
Blakeley, 1988; Soltoff et al., 1989); and pyridoxal
phosphate-6-azophenyl-2-4-disulfonic acid (PPADS),
periodate-oxidized ATP (oATP), and 1-[N,O-bis(5-
isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
(KN-62), which were first used in the 1990s (Lambrecht
et al., 1992; Murgia et al., 1993; Gargett and Wiley,
1997). Following on from their identification as P2X7
antagonists, structural modifications of these com-
pounds were carried out in an attempt to improve their
properties and specificity (see Romagnoli et al., 2008;
Jiang, 2012). For example, MRS 2540 is based upon the
structure of KN-62, and exhibits enhanced potency at
both human and rodent P2X7 (Lee et al., 2008a; Hu
et al., 2010). Of the earlier compounds, BBG remains one
of the most useful. This compound is generally consid-
ered a specific P2X7 antagonist, blocking rat P2X7 in the
nanomolar compared with micromolar range or not at all

P2X7 Antagonists in Models of Disease 649



for other rat P2X receptors (P2X1, P2X2, P2X3, P2X2/3,
P2X4, and P2X1/5) (Jiang et al., 2000). More recent data
indicate that BBG also blocks pannexin 1 (Qiu and Dahl,
2009), complicating its use as a P2X7 antagonist. oATP
is also widely used to antagonize P2X7, but has also
been shown to inhibit other P2X receptors (including
P2X2 and P2X3) (Evans et al., 1995) and attenuate pro-
inflammatory signaling through P2 receptor–independent
mechanisms (Beigi et al., 2003). However, the ability of
oATP to bind irreversibly to P2X7 via covalent modifi-
cation of the receptor (Murgia et al., 1993) makes this
antagonist an attractive blocker of P2X7 in vivo. Likewise,
PPADS, which can also bind irreversibly to P2X receptors
(Nicke et al., 1998), also remains an attractive blocker of
P2X7 in vivo.
In the last two decades, a second generation of more

specific antagonists has been developed (see Friedle
et al., 2010; Bhattacharya et al., 2011; Jiang, 2012).
This has been aided by high-throughput screening of
large chemical libraries and has largely occurred alongside
reports indicating important roles for P2X7 in pain and
inflammation (Romagnoli et al., 2008). These newer drug-
like antagonists are particularly important for the
purinergic field, because the first generation of antag-
onists was generally designed for in vitro, rather than
therapeutic, use. Furthermore, many of the original
antagonists are subject to degradation when used in
vivo or are predicted to have poor pharmacokinetics
(Friedle et al., 2010; Jiang, 2012), problems avoided by
many of the second generation P2X7 antagonists. Second
generation P2X7 antagonists that have been characterized
include the tetrazole/triazole-based compounds 3-[[5-

(2,3-dichlorophenyl)-1H-tetrazol-1-yl]methyl]pyridine
(A438079) (Nelson et al., 2006) and 1-(2,3-dichloro-
phenyl)-N-[[2-(2-pyridinyloxy)phenyl]methyl]-1H-tetrazol-
5-amine (A839977) (Honore et al., 2009), the adamantane
amides N-[2-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-
5-quinolinyl]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide
(AZ10606120) (Michel et al., 2007), and N-(adamantan-
1-ylmethyl)-5-[(3R-amino-pyrrolidin-1-yl)methyl]-2-
chloro-benzamide (AACBA; also known as GSK314181)
(Broom et al., 2008), the cyanoguanidine derivative
N-(1-([(cyanoimino)(5-quinolinylamino) methyl] amino)-
2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide
(A740003) (Honore et al., 2006), the cyclic imide 3-[1-
[[(39-nitro[1,19-biphenyl]-4-yl)oxy]methyl]-3-(4-pyridinyl)
propyl]-2,4-thiazolidinedione (AZ11645373) (Stokes
et al., 2006), and the nicotinamide derivative N-([4-(4-
phenyl-piperazin-1-yl]tetrahydro-2H-pyran-4-yl)-methyl)-
2-(phenyl-thio) nicotinamide (JNJ-47965567) (Letavic
et al., 2013). The concentration responses of some of these
specific antagonists (including A438079 and AZ11645373)
have been determined at native murine P2X7 receptors
(Bartlett et al., 2013; Pupovac et al., 2013b), which is
useful for their in vivo application. However, despite the
availability of these newer P2X7 antagonists, many in vivo
studies still use first generation antagonists (see section
X). Moreover, there are a number of additional potential
antagonists identified that have yet to be fully character-
ized (Donnelly-Roberts and Jarvis, 2007).

One factor confounding pharmacological studies of
P2X7 is the differential activity of P2X7 antagonists at
receptors from different species (Table 2). For example,
KN-62 at nanomolar concentrations potently inhibits

Fig 3. Phenotypic and functional differences between GlaxoSmithKline (GSK) and Pfizer knockout (KO) mice compared with wild-type (WT)
counterparts. Differences in P2X7 isoforms expressed, bone phenotype (mineral density, volume, and thickness), P2X7-mediated responses in T cells
(pore formation, nucleotide-induced CD62L shedding, phosphatidylserine exposure, and cell death), and experimental autoimmune encephalomyelitis
(EAE) between P2X7 KO mice generated by GSK and Pfizer compared with WT. a(Solle et al., 2001; Sim et al., 2004; Nicke et al., 2009; Masin et al.,
2012); b(Gartland et al., 2003; Ke et al., 2003); c(Labasi et al., 2002; Taylor et al., 2008, 2009a); d(Chen and Brosnan, 2006; Sharp et al., 2008).
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all cloned mammalian P2X7 receptors, except rat,
when expressed in HEK-293 cells (Fonfria et al., 2008;
Donnelly-Roberts et al., 2009; Roman et al., 2009;
Bradley et al., 2011b). In comparison, the commonly
used in vivo P2X7 antagonist BBG is at least a 3-fold
more potent antagonist of rat, murine, canine, or guinea
pig P2X7 than human P2X7 (Fonfria et al., 2008;
Donnelly-Roberts et al., 2009; Roman et al., 2009).
Although these and similar studies reveal important
insights into the specificity and selectivity of P2X7
antagonists, many are limited to examining recombi-
nant P2X7 expressed in mammalian cells. It is unknown
if the functional characteristics of P2X7 in these studies
deviate from that of native P2X7 and, if so, to what
degree. In addition, in vitro pharmacological results,
and in particular IC50 values, are highly dependent on a
number of factors. These include the assay (e.g., whether
studying channel opening or pore formation), assay buffer
(e.g., presence of divalent cations and bovine serum
albumin can be inhibitory), host cell or cell type, agonist
concentration, assay temperature, and antagonist mech-
anism of action (e.g., competitive or noncompetitive, re-
versible or irreversible, orthosteric or allosteric) (Hibell
et al., 2001; Donnelly-Roberts and Jarvis, 2007). Of the
antagonists listed in Table 2, PPADS, BBG, Reactive
Blue, KN-62, and AZ10606120 are noncompetitive inhib-
itors of P2X7 (Jiang et al., 2000; Hibell et al., 2001; Honore
et al., 2006; Felix et al., 2012). In contrast, A438079,
A740003, and AZ11645373 are competitive inhibitors of
P2X7 (Alcaraz et al., 2003; Nelson et al., 2006; Yan et al.,
2011), whereas the mechanism of action of JNJ-47965567
remains to be determined. Collectively, all of the above
have implications for direct pharmacological comparisons
between in vitro studies but, more importantly, for the use
of these antagonists in vivo. In this regard, the in vivo

cellular environment may result in drastically different
outcomes of P2X7 antagonists to those outcomes observed
in vitro. In addition, an efficacious antagonist in an in vivo
rodent model may not translate to a human therapeutic
because of the differential activity of P2X7 antagonists at
receptors from different species. Furthermore, differences
between individuals may highly impact upon the efficacy
of these compounds. Thus a number of factors need to be
considered when using P2X7 antagonists in vivo.

In addition to the above experimental differences,
variations in amino acid homology in the ectodomain or
presumed antagonist binding site between species may
be one explanation for the differential activity of P2X7
agonists and antagonists at receptors from different
species (Young et al., 2007; Michel et al., 2008). For
example, one ectodomain residue (N284D) accounts
for the 10-fold difference in ATP sensitivity between
rat and mouse P2X7 (Young et al., 2007), whereas two
other ectodomain residues (F95L and R126G) are im-
portant for the different antagonist effects of KN-62
and PPADS, respectively, at the human and rat receptor
(Michel et al., 2008). Furthermore, P2X7 variants,
including SNPs and splice isoforms, are likely to play
a role in the differential activity of these compounds
both between and within species. For example, N-[(2,4-
dichlorophenyl)methyl]-1-methyl-5-oxo-l-prolinamide
(GSK1370319A) has an almost 7-fold higher IC50 value
for ATP-induced IL-1b in human blood cultures from
individuals with the A348T gain-of-function SNP than
those from individuals with the E496A loss-of-function
SNP (McHugh et al., 2012). Thus, given that human
P2X7 is highly polymorphic (see section VIII), this has
ramifications for the future use of P2X7 antagonists in
treating human disorders. In particular, a need for
prospective genotyping and tailor-made drug regimens

TABLE 2
Antagonist profiles of mammalian P2X7

Species

IC50

References
PPADS BBG Reactive

Blue
KN-
62 A438079 A740003 AZ10606120 AZ11645373 JNJ-

47965567

mM

Human 1.2 1.9 5.4 0.2 0.9 0.09 0.003 0.05 0.005 Donnelly-Roberts et al., 2009;
Michel et al., 2009; Roman et al.,
2009; Bhattacharya et al., 2013

Rhesus
macque

N.D. N.D. N.D. 0.1 0.3 N.D. 0.004 0.02 0.003 Bradley et al., 2011b; Bhattacharya
et al., 2013

Dog N.D. 0.05 N.D. 0.01 3.9 N.D. 0.06 0.04 0.005 Michel et al., 2009; Roman et al.,
2009; Bhattacharya et al., 2013

Rat 1.2 0.6 2.8 .100 0.1 0.1 0.03 .20 0.063 Donnelly-Roberts et al., 2009; Michel
et al., 2009; Bhattacharya et al.,
2013

Mouse
(BALB/c)

4.9 0.2 21 0.2 0.6 0.7 0.6a 1.6a 0.03a Donnelly-Roberts et al., 2009; Michel
et al., 2009; Bhattacharya et al.,
2013

Mouse
(C57BL/6)

40 0.5 18 0.6 0.6 1.7 0.6a 1.6a 0.03a Donnelly-Roberts et al., 2009;
Michel et al., 2009; Bhattacharya
et al., 2013

Guinea pig 0.2 0.02 N.D. 0.1 N.D. N.D. N.D. 1.2 N.D. Fonfria et al., 2008; Michel
et al., 2009

N.D., not determined.
aMouse strain not disclosed.
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is highlighted. Likewise, P2X7 variants also need to
be considered when investigating the pharmacological
blockade of P2X7 in rodents, with many studies to date
overlooking the existence of such variants.
In addition to the nonspecific and specific P2X7

antagonists listed above, a number of other compounds
have been shown to block P2X7 activation, many with
IC50 values in the micromolar range (Table 3). Naturally
derived compounds such as the traditional Chinese herb
emodin (Liu et al., 2010; Jelassi et al., 2013; Zhu et al.,
2014), the plant-derived alkaloids berberine and sanguinine
(Shemon et al., 2004), niphatoxin C, sytlissadine A and
sytlissadine B from the marine sponge (Buchanan et al.,
2007a,b), and the estrogen hormone 17b-estradiol (Cario-
Toumaniantz et al., 1998) can each block P2X7. The effects
of other naturally derived compounds on P2X7 such as
chelerythrine and colchicine are discussed below. Moreover,
a number of enzyme inhibitors can block P2X7. Inhibitors
of the Ca2+/calmodulin-dependent protein kinase (KN-62)
(Gargett and Wiley, 1997), protein kinase C [chelerythrine
and Ro 31-8220 (2-[1-(3-(amidinothio) propyl)-1H-indol-
3-yl]-3-(1-methylindol-3-yl) maleimide methanesulfo-
nate)] (Shemon et al., 2004, 2007), mitogen-activated
protein kinases [SB 203580 4-(4-fluorophenyl)-2-(4-
methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] and
SB 202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-
5-(4-pyridyl)-1H-imidazole]] (Michel et al., 2006), a vas-
cular endothelial growth factor receptor tyrosine kinase
(Compound P [N-[4-(1-methylethyl)phenyl]-4-[2-(3-pyridinyl)
ethyl]-1-phthala-zinamine]) (Shemon et al., 2008),
and phospholipase D (CAY10593 [N-[2-[4-(5-chloro-2,3-
dihydro-2-oxo-1H-benzimidazol-1-yl)-1-piperidinyl]-1-
methylethyl]-2-naphthalenecarboxamide], CAY10594

[N-[2-(4-oxo-1-phenyl-1, 3, 8-triazaspiro[4, 5]dec-8-yl)
ethyl]-2-naphthalenecarboxamide], and halopemide)
(Pupovac et al., 2013b) can each directly block P2X7.
In this regard, studies investigating signaling path-
ways downstream of P2X7 activation through the use
of enzyme inhibitors need to ensure that such com-
pounds do not directly impair P2X7. A number of
therapeutic drugs can also impair P2X7 activation.
The antipsychotic drugs, prochlorperazine and tri-
fluoperazine and to a lesser extent triflupromoazine
can each impair human, but not rodent, P2X7 channel
and pore activation (Hempel et al., 2013). Colchicine,
a drug used to treat gout and familial Mediterranean
fever, can inhibit P2X7 pore but not channel activa-
tion (Marques-da-Silva et al., 2011). More recently,
probenecid, which is used occasionally in the treat-
ment of gout, has been found to block both the human
P2X7 channel and pore (Bhaskaracharya et al., 2014).
Thus, again caution needs to be made when assigning
inhibitory actions of these drugs in both in vitro and
in vivo studies. Furthermore, the possibility remains
that the therapeutic action or unwanted side effects of
such drugs may be due, in part, to P2X7 blockade.

In addition to chemical compounds, P2X7 can be
blocked by various cations (Jiang, 2009). In particular,
the divalent cations Ca2+ and Mg2+, at concentrations
found in vivo, can inhibit P2X7 activation in vitro
(Surprenant et al., 1996; Chessell et al., 1998). The
ability of these divalent cations to impair P2X7 is
attributed to the ability of these cations to chelate the
free acid form of ATP (or ATP42), the presumed form of
ATP responsible for P2X7 activation (Cockcroft and
Gomperts, 1979; Li et al., 2013). However, evidence

TABLE 3
Natural and other pharmacological compounds that impair P2X7 activation

Compound Species IC50 References

mM

Natural compounds
Emodin Human, rat 3, 1 Liu et al., 2010; Jelassi et al., 2013; Zhu et al., 2014
Berberine Human N.D. Shemon et al., 2004
Sanginine Human N.D. Shemon et al., 2004
Niphatoxin C Human .10 Buchanan et al., 2007b
Sytlissadine A Human 1 Buchanan et al., 2007a
Sytlissadine B Human 2 Buchanan et al., 2007a
17b-Estradiol Human 3 Cario-Toumaniantz et al., 1998

Enzyme inhibitors
KN-62 Human, mouse 0.1, 1 Gargett and Wiley, 1997; Donnelly-Roberts et al., 2009
Chelerythrine Human 6 Shemon et al., 2004
Ro 31-8220 Human N.D. Shemon et al., 2007
Compound P Human, dog 5, N.D. Shemon et al., 2008
SB-203580 Human 0.4–4 Michel et al., 2006
SB-202190 Human 0.6–16 Michel et al., 2006
CAY10593 Human 2 Pupovac et al., 2013b
CAY10594 Human .10 Pupovac et al., 2013b
Halopemide Human .10 Pupovac et al., 2013b

Therapeutic drugs
Colchicine Human, mouse, rat N.D. Marques-da-Silva et al., 2011
Prochlorperazine Human 1 Hempel et al., 2013
Trifluoperazine Human 2 Hempel et al., 2013
Triflupromoazine Human .50 Hempel et al., 2013
Probenecid Human 200 Bhaskaracharya et al., 2014

N.D., not determined.
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suggests that these and other divalent cations can also
impair P2X7 by allosteric modulation (Acuna-Castillo
et al., 2007; Liu et al., 2008; Moore and Mackenzie,
2008; Yan et al., 2011).
Finally, it should be noted that a number of com-

pounds potentiate ATP-induced P2X7 activation. The
human antimicrobial peptide LL-37 can potentiate
both human and mouse P2X7 activation (Elssner et al.,
2004). In contrast, the murine antimicrobial peptide
CRAMP can enhance human but impair murine P2X7
activation (Seil et al., 2010). The antibiotic polymyxin
B can potentiate human P2X7 activation (Ferrari et al.,
2004), whereas the antiparasitic ivermectin can poten-
tiate human but not murine P2X7 (Norenberg et al.,
2012). A variety of lipids, including lysophostidylcholine
and sphingogosylphopshorylcholine, can also enhance
human and murine P2X7 (Michel and Fonfria, 2007).
The anesthetics ketamine, propofol, and thiopental have
all been shown to increase P2X7-mediated currents
(Nakanishi et al., 2007). Finally, a drug screen of 1040
approved low molecular weight drug compounds re-
cently identified that the antihistamine clemastine can
potentiate human P2X7 activation (Norenberg et al.,
2011). Collectively, the expanding list of compounds that
can either block or potentiate P2X7 activation highlights
the promiscuous nature of this receptor and its ability to
bind a large number of structurally diverse compounds.

X. Use of Modulators of P2X7 Receptor In Vivo

Pharmacological blockade of P2X7 has proved, by
and large, to be efficacious in a range of rodent models
of disease and injury. These studies have been com-
prehensively summarized in Tables 4–8. In these studies,
a number of P2X7 antagonists with varying specificities
have been used, at a range of concentrations, with
varying injection sites and regimens. However, the
efficacy of these compounds as presented in this
review is potentially skewed, because studies in which
P2X7 antagonists have had no effect may not have
been published. Furthermore, some studies may have
initially investigated the efficacy of multiple antago-
nists but only reported the outcomes of those that
appeared beneficial. Although the majority of rodent
studies report positive effects, there have been conflict-
ing outcomes between groups for some models of human
disease (e.g., status epilepticus, brain tumors, ischemia,
and spinal cord injury, Tables 4 and 5). In many of the
early studies listed in Tables 4–8, the antagonists used
were relatively nonspecific, being either general P2X or
P2 antagonists (e.g., PPADS, suramin, and oATP).
Thus, the outcomes of these studies cannot definitively
be associated with P2X7 but with P2 receptors in
general. Furthermore, it is likely that some studies that
used nonspecific P2 antagonists have been overlooked
because these reports did not specifically discuss P2X7
(or the former term P2Z).

Of the first generation antagonists, oATP was the
main compound used for inhibiting P2X7 in vivo, followed
by BBG and PPADS. In the last 6 years, a number of more
specific antagonists have been used in in vivo studies,
supporting the work done in earlier studies. Of these,
A438079 was most commonly used, with generally positive
outcomes reported. However, despite the availability of
these newer antagonists, many recent studies are still
using first generation antagonists, in particular BBG and
oATP. This is likely because of their relatively low cost,
effectiveness in earlier studies, and, in the case of BBG, its
ability to cross the blood-brain barrier (Peng et al., 2009).
Further studies with additional antagonists will be im-
portant for supporting a role for P2X7 in disease. This will
be particularly relevant before considering antagonizing
P2X7 in human clinical trials. The following sections
summarize and report the parameters and outcomes of
pharmacological blockade of P2X7 in rodent models of
disease and injury (Tables 4–8). The outcomes of in vivo
studies using P2X7 KO mice in similar models of
disease (which support antagonist studies) are also
discussed.

A. P2X7 Antagonists in Rodent Models of
Neurologic Disease

To the best of our knowledge, the first reported use of
a P2X7 antagonist in a rodent model of neurologic
disease was in 2007 (Matute et al., 2007). Since then,
there have been a number of in vivo studies investigat-
ing the effects of pharmacological blockade of P2X7 in
rodent models of neurologic disease (Table 4). These
have largely emerged alongside evidence suggesting
a role for P2X7 in central nervous system disorders (see
Takenouchi et al., 2010). Overall, P2X7 antagonists re-
duced disease scores and symptoms in rodent models of
multiple sclerosis (experimental autoimmune encepha-
lomyelitis), status epilepticus, brain tumors (glioma),
autism spectrum disorders, mania, depression, and a
range of protein folding diseases (including Alzheimer’s,
Huntington’s, Parkinson’s and prion disease, and amyo-
trophic lateral sclerosis).

Studies using P2X7 KO mice have supported the
outcomes of P2X7 antagonist studies in models of
neurologic disease. First, in an Alzheimer’s disease model,
injection of amyloid b resulted in an accumulation of IL-1b
in WT, but not P2X7 KO mice (Sanz et al., 2009). This
correlates with the positive outcomes reported in two
different Alzheimer’s disease models that used P2X7
antagonists (Ryu and McLarnon, 2008; Diaz-Hernandez
et al., 2012). Second, in models of depression, P2X7 KO
mice displayed antidepressant-like profiles in compar-
ison with WT controls (Basso et al., 2009; Boucher et al.,
2011; Csölle et al., 2013). Two different P2X7 antago-
nists (BBG and AZ10606120) also induced an antide-
pressant phenotype in WT mice (Csölle et al., 2013).
However, the antagonist JNJ-47965567 had no effect
on models of depression, although this antagonist was
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TABLE 4
Antagonism of P2X7 in rodent models of neurologic disease

Disease/Model Species and
Strain Sex Start Age

or Size
Injection

Site
Antagonist &

Dose
Injection
Regimen Outcomes References

Experimental
autoimmune
encephalomyelitis

C57BL/6
mice

N.S. N.S. i.p.
(oATP)
or p.o.
(BBG)

2.5 mg/kg oATP
or 10 mg/kg
BBG

oATP every
12 hours or
BBG daily
from 21 to
40 days post-
MOG/IFA
injection

Restored axonal
conductance,
reduced
demyelination,
and improved
neurologic score

Matute
et al., 2007

Experimental
autoimmune
encephalomyelitis

C57BL/6
mice

F 8–9
weeks

i.v. 1 mg of oATP Once 10 days
post-MOG/
CFA injection

Reduced
demyelinization
and disease score

Lang et al.,
2010

Alzheimer’s
disease

Sprague-
Dawley
rats

M 280–
300 g

i.p. 50 mg/kg BBG With amyloid-b
followed by daily
injections
for 7 days

Reduced P2X7
immunoreactivity,
microgliosis,
astrogliosis, and
albumin leakage
and improved
neuronal viability

Ryu and
McLarnon,
2008

Alzheimer’s disease J20
transgenic
mice

N.S. 3–4
months

i.p. 45.5 mg/kg BBG Every 48 hours
for 4 months

Reduced
hippocampal
amyloid plaques
and glycogen
synthase kinase
3 activity

Diaz-
Hernandez
et al., 2012

Huntington’s
disease

R6/1
transgenic
mice

N.S. 8 months i.p. 45.5 mg/kg BBG
or 34.2 mg/kg
A438079

BBG every
48 hours and
A438079 every
24 hours for
4 weeks

BBG and A438079
prevented weight
loss. BBG, but
not A438079,
improved motor
coordination and/
or prevented
neuronal
apoptosis

Díaz-
Hernández
et al., 2009

Parkinson’s
disease

Sprague-
Dawley
rats

M 8–12
weeks

i.p. 30 mg/kg
A438079

1 hour before and
1 hour after
6-OHDA
injection

Partially prevented
striatal
dopaminergic
depletion but not
associated with
a reduction of
dopaminergic
cell loss

Marcellino
et al., 2010

Prion disease C57BL/6
mice

N.S. N.S. i.p. 100 mg/kg BBG 3�/week for
3 weeks, then
2�/week for
4 weeks at 100
dpi (Fukuoka-
1 strain)

Prevented cerebral
protease-resistant
prion protein
formation but
did not prevent
disease
progression

Iwamaru
et al., 2012

Amyotrophic
lateral sclerosis

B6SJL-TgN
SOD1/
G93A1Gur
mice

M and
F

90 days i.p. 45.5 mg/kg BBG Every 48 hours Improved motor
function (rotarod
and grip-strength)
in both sexes but
had no effect on
survival, delayed
body weight loss
in males

Cervetto
et al.,
2013b

Pilocarpine-induced
seizures

C57BL/6J
mice

M 8–13
weeks

i.c.v. 5 mM oATP,
10 mM
A438079 or
10 mM
A740003

Infused over
1 week before
PILO injection
(rate N.S.)

Increased seizure
susceptibility and
induced
epileptiform
discharge

Kim and
Kang, 2011

Pilocarpine-induced
status epilepticus

Sprague-
Dawley
rats

M 9–11
weeks

i.c.v. 5 mM oATP 0.5 ml/h for 1 week
beginning 3 days
before PILO
injection

Reduced
neutrophilic and
monocytic
infiltrates in
frontoparietal
cortex but not in
piriform cortex

Kim et al.,
2010

Pilocarpine-induced
status epilepticus

Sprague-
Dawley
rats

M 9–11
weeks

i.c.v. 5 mM oATP, 10
mM A438079
or 10 mM
A740003

0.5 ml/h for 2 weeks
beginning 3 days
before PILO
injection

Reduced TNF-a in
dentate granule
cells and
increased
neuronal death

Kim et al.,
2011

(continued )
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efficacious and slightly effective, respectively, in models
of mania and neuropathic pain (Bhattacharya et al.,
2013). To the best of our knowledge, this is the only
documented use of JNJ-47965567, and it is possible that
the injection regimen used was not sufficient to see an
efficacious response in this disease model.
The role for P2X7 in neurologic disease in rodents,

however, is complicated by other varying results with

P2X7 antagonists or P2X7 KO mice. For example, in
a single study of experimental autoimmune encepha-
lomyelitis (Matute et al., 2007), two different P2X7
antagonists were efficacious. In support of this finding,
the incidence of experimental autoimmune encephalo-
myelitis was reduced 4-fold in GSK P2X7 KO mice
compared with WT mice (Sharp et al., 2008). However,
Pfizer P2X7 KOmice developed more severe experimental

TABLE 4—Continued

Disease/Model Species and
Strain Sex Start Age

or Size
Injection

Site
Antagonist &

Dose
Injection
Regimen Outcomes References

Kainic acid-induced
status epilepticus

C57BL/6
mice

M 20–25 g i.c.v. 1.75 nmol of
A438079, 1
pmol of BBG, or
1.75 and 3.5
nmol of PPADS

5 min before or 15
min or 1 hour
after kainic acid
injection

A438079 (pre- or
post-treatment)
and BBG
(pretreatment),
but not PPADS,
reduced seizure
time, seizure-
induced neuronal
death, and
reactive microglia

Engel et al.,
2012

Kainic acid-induced
status epilepticus

C57BL/6
mice

N.S. Adult i.c.v. 1.75 nmol of
A438079 or 1
pmol of BBG

2 ml 10 min before
and 60 min after
kainic acid
injection

A438079 reduced
electrographic
and clinical
seizure severity,
A438079 and BBG
reduced seizure-
induced neuronal
death

Jimenez-
Pacheco
et al., 2013

Glioma Sprague-
Dawley
rats

M 250–300 g i.p. 50 mg/kg BBG Immediately after
implantation of
C6 cells, then 2�/
day

Inhibited tumor
growth

Ryu et al.,
2011

Glioma Sprague-
Dawley
rats

F 200–300 g i.c. 10 mg of oATP Coinjected with C6
cells

Reduced activated
microglia,
macrophages, and
MIP-1a or MCP-1-
expressing cells at
tumor site and
reduced tumor
size 7 dpi

Fang et al.,
2011

Autism spectrum
disorders

C57BL/6J
mice

M and
F

6 weeks i.p. 10 or 20 mg/kg
suramin

Weekly Improved social
behavior and
sensorimotor
coordination
deficits, prevented
cerebellar
Purkinje cell loss,
and restored
normal body
temperature,
synaptosomal
structure, and
various metabolic/
signaling
parameters

Naviaux
et al., 2013

Amphetamine-
induced
hyperactivity
(mania)

Sprague-
Dawley
rats

M Adult s.c. 30 mg/kg JNJ-
47965567

1 hour before D-
amphetamine
sulfate injection

Reduced hyperactivity
but not basal
locomotor activity

Bhattacharya
et al., 2013

Depression Sprague-
Dawley
rats

M N.S. s.c. 3, 10, or 30 mg/kg
JNJ-47965567

24 hours and 30
min before forced
swim test

No effect on
immobility,
climbing, or
swimming
behavior

Bhattacharya
et al., 2013

Depression C57BL/6
mice

M 2–3
months

i.p. 2 mg/kg
AZ10606120 or
50 mg/kg BBG

1�/day for 4 days or
once before
testing/treatment

Resulted in an
antidepressant
phenotype

Csölle et al.,
2013

6-OHDA, 6-hydroxydopamine; BBG, Brilliant Blue G; CAMKII, calcium-calmodulin kinase II; CFA, complete Freund’s adjuvant; dpi, days postinfection/injection; EGFR,
epidermal growth factor receptor; ERK1/2, extracellular response kinase 1 and 2; HIF-1a, hypoxia induce factor-1; i.c., intracerebral; IFA, incomplete Freund’s adjuvant; MCP-
1, monocyte chemoattractant protein-1; MIP-1a, macrophage inflammatory protein-1a; MOG, myelin oligodendrocyte glycoprotein35–55; N.S., not stated; oATP, periodate-
oxidized ATP; PILO, pilocarpine; PPADS, pyridoxal phosphate-6-azophenyl-2-4-disulfonic acid; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
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autoimmune encephalomyelitis than WT mice (Chen and
Brosnan, 2006). In another example, Pfizer P2X7 KOmice
were more susceptible to seizures than WT littermates in
a model of status epilepticus (Kim and Kang, 2011). This
finding was supported by the use of three P2X7 antagonists
(oATP, A438079, and A740003), each of which enhanced
disease symptoms in status epilepticus (Kim and Kang,
2011; Kim et al., 2011). In contrast, opposite outcomes were
reported using two antagonists (BBG and A438079) in this
disorder (Engel et al., 2012; Jimenez-Pacheco et al., 2013).

B. P2X7 Antagonists in Rodent Models of
Neurologic Injury

In addition to neurologic diseases, there have been
a number of studies investigating the effects of phar-
macological blockade of P2X7 in rodent models of
neurologic injuries (Table 5) induced by both focal and
global ischemia/reperfusion, excitotoxicity, subarachnoid
hemorrhage, and mechanical trauma (e.g., corticectomy,
stab wound, and weight drop models). In addition, there
have been a number of pain models investigated, in-
cluding nerve ligation- and chemical-induced models of
neuropathic pain and acute pain induced by heat. Lastly,
P2X7 blockade in a model of morphine tolerance has
been investigated. P2X7 antagonists were largely effica-
cious in these models, reducing injury scores, symptoms,
and pain. In these studies, pain is often characterized by
an increased sensitivity to painful stimuli (hyperalgesia)
or a pain reaction in response to normally innocuous
stimuli (allodynia). Notable differences were observed
for models of ischemic and excitotoxic brain injury and
mechanical-induced spinal cord injury. In these studies,
P2X7 antagonists were reported to either exacerbate or
reduce symptoms, despite similar protocols. Further-
more, these conflicting outcomes were observed despite
the use of multiple antagonists in some studies (including
Le Feuvre et al., 2003; Wang et al., 2004; Chu et al.,
2012; Marcillo et al., 2012). Thus, notwithstanding given
differences between laboratories, the cause of these
opposing observations remains unknown.

The efficacy of P2X7 antagonists in models of ischemic
brain injury and neuropathic pain are supported by
similar studies using P2X7 KO mice. In one study,
neurologic deficits, neuronal death, and the overproduc-
tion of Fas ligand (CD95L), Fas-associated protein with
death domain and caspase-8 were reduced in P2X7 KO
mice compared with WT littermates after microsphere
embolism (Lu et al., 2012). Likewise, P2X7 antagonists
were efficacious in models of ischemia in three in-
dependent studies (Melani et al., 2006; Arbeloa et al.,
2012; Chu et al., 2012). These findings contrast with
another study in which P2X7 KO mice had similar
amounts of cell death induced by temporary cerebral
ischemia compared with WT mice (Le Feuvre et al.,
2003). In this same study, P2X7 antagonists (oATP,
PPADS, and KN-62) similarly had no effect on ischemic
cell death. However an IL-1 receptor antagonist reduced
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TABLE 6
Antagonism of P2X7 in rodent models of compound-induced inflammation

Disease/Model Species
and Strain Sex

Start
Age

or Size
Injection

Site Antagonist and Dose Injection Regimen Outcomes References

Formalin-
induced
pain

Sprague-
Dawley
rats

M 100–
200 g

s.c.,
hindpaw

50–500 nmol
of suramin or
5–500 nmol of
PPADS

Coadministered with
formalin or formalin/
ATP

Dose-dependently
inhibited
amplification of the
formalin response
(flinching) by ATP
but not to formalin
alone

Sawynok and
Reid, 1997

Formalin-
induced pain

Sprague-
Dawley
rats

M 250–
400 g

i.p. 30–300 mmol/kg
A438079

After injecting
formalin into hind
paw

Dose-dependently
attenuated
nocifensive
behaviors (paw
flinching, licking,
guarding)

McGaraughty
et al., 2007

Formalin-
induced pain

BALB/cJ
mice

N.S. 6–8
weeks

s.c. 300 mmol/kg A438079 30 min before
formalin injection

Attenuated
nocifensive
behaviors (licking,
biting)

Hansen et al.,
2011

Acetic acid-
induced
visceral pain

C57BL/6
mice

N.S. 8 weeks i.p. 4 mg/kg oATP 30 min before
inducing visceral
pain

Reduced writhing
responses

Fulgenzi
et al., 2008

LPS-induced
inflammation

Wistar
rats

M 280–
320 g

i.p. 5, 25, or 100 mg/kg
suramin; 5 or 25
mg/kg PPADS; or 40
or 100 mg/kg BBG

5 min before i.p. LPS
injection

Attenuated fever (all),
increased plasma
IL-1b and IL-6
(PPADS, BBG), and
increased plasma
TNF-a (BBG)

Gourine et al.,
2005

LPS-induced
inflammation

Wistar
rats

M 200–
300 g

s.c. 1–30 mg/kg AACBA 1 hour before i.p. LPS
injection

Dose-dependently
reduced plasma
IL-6 release

Broom et al.,
2008

LPS-induced
inflammation

Wistar
rats

M 200–
300 g

i.p. 25 mg/kg PPADS, 100
mg/kg BBG, or 0.9
mg/kg oATP

30 min (PPADS and
BBG) or 2 hours
(oATP) before i.p.
LPS injection

Reduced hippocampal
IL-1b release; BBG
also reduced basal
release

Csölle and
Sperlágh,
2010

LPS-induced
inflammation

C57Bl/6J
mice

M 2–3
months

i.p. 100 mg/kg BBG, 0.9
mg/kg oATP

30 min (BBG) or 2
hours (oATP) before
i.p. LPS injection

Reduced hippocampal
IL-1b release; also
reduced basal
release

Csölle and
Sperlágh,
2010

LPS-induced
inflammation

C57BL/6
mice

N.S. N.S.. i.p. 100 mmol/kg A438079 1 hour before i.p. LPS
injection

Impaired body
temperature
increase

Barberà-
C̀remades
et al., 2012

LPS-induced
CNS
inflammation

Sprague-
Dawley
rats

M 240–
260 g

i.c.v. 1 mM oATP 30 min before striatal
LPS injection

Reduced activated
microglia,
phosphorylation of
p38 MAPK, iNOS
production,
nitration of
proteins, lipid
peroxidation,
oxidative DNA
damage, and
caspase-3 activation
and increased
neuronal survival

Choi et al.,
2007

LPS-induced
CNS
inflammation

Wistar
rats

M N.S. i.t. 50 mg of oATP or 50 mg
of A438079

With or without LPS
24 h after 1st i.t.
LPS injection

Attenuated
mechanical
hyperalgesia and
prevented
phosphorylation of
p38 MAPK in
microglia

Clark et al.,
2010

Carrageenan-
induced
inflammation

Wistar
rats

M ;250 g i.p.l., p.o.,
or i.v.

50–200 mM oATP 3 hours after i.p.l.
carrageenan
injection

Reduced thermal
hyperalgesia (all
routes), expression
of chemokines and
P2X7, and
macrophage
infiltrates (i.p.l, i.v.)

Fulgenzi
et al., 2005

(continued )
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cell death, suggesting IL-1a and IL-1b can be secreted
via a P2X7-independent mechanism during cerebral
ischemia in mice. In models of neuropathic pain, P2X7
KO mice lacked hypersensitivity to thermal and me-
chanical stimuli compared with WT mice (Chessell et al.,
2005; Fulgenzi et al., 2008; Hansen et al., 2011). These
studies support those that used P2X7 antagonists, in
which a range of antagonists attenuated neuropathic
pain (Table 5).

C. P2X7 Antagonists in Rodent Models of
Compound-Induced Inflammation

Most laboratories studying the effects of P2X7 antag-
onists on inflammation in vivo have done so by relatively
simple rodent models involving the injection of com-
pounds such as formalin, acetic acid, lipopolysaccharide
(LPS), carrageenan, mustard oil, croton oil, or venom
(Table 6). In these models, inflammation has largely been
assessed at either a cellular level or by using measures of
pain, fever, or edema, three of the classic hallmarks of
inflammation. In the majority of studies, administration
of P2X7 antagonists reduced inflammatory processes. Of

particular note was the separate use of multiple
antagonists in some studies. These studies reported
an antagonist-dependent reduction in LPS- (Gourine
et al., 2005; Clark et al., 2010; Csölle and Sperlágh,
2010), carrageenan- (Teixeira et al., 2010b), and mustard
oil-induced inflammation (Itoh et al., 2011) and further
support the benefits of targeting P2X7 in inflammation.

In addition to the use of multiple antagonists, the
use of P2X7 KO mice, which demonstrate attenuated
compound-induced inflammatory responses compared
with WT counterparts, also supports the benefits of
targeting P2X7 in inflammation. The majority of P2X7
KO studies investigating the role of P2X7 on inflammation
in vivo have done so by injecting LPS. In these studies,
LPS induced mechanical hypersensitivity, fever, hypo-
reactivity in response to phenylephrine, increased p38 and
nuclear factor-kB phosphorylation, increased cytokines
[IL-1b, IL-10, and tumor necrosis factor-a (TNF-a)], and
decreased mean arterial pressure and pressor responses
to noradrenaline inWTmice, all of which were attenuated
or absent in P2X7 KO mice (Mingam et al., 2008; Clark
et al., 2010; Barberà-Cremades et al., 2012; Chiao et al.,

TABLE 6—Continued

Disease/Model Species
and Strain Sex

Start
Age

or Size
Injection

Site Antagonist and Dose Injection Regimen Outcomes References

Carrageenan-
induced
inflammation

Sprague-
Dawley
rats

M 200–
300 g

i.p. 14–142 mg/kg
A740003

90 min after i.p.l.
carrageenan
injection

Dose-dependently
reduced thermal
hyperalgesia and
paw edema

Honore et al.,
2006

Carrageenan-
induced
inflammation

Sprague-
Dawley
rats

M 200–
250 g

s.c. 3–100 mg/kg AACBA 30 min before
(prophylactic) or
1–1.5 hours after
(therapeutic) i.p.l.
carrageenan
injection

Prophylactically and
therapeutically
reduced mechanical
hypersensitivity,
and therapeutically
reduced paw
swelling

Broom et al.,
2008

Carrageenan-
induced
inflammation

Albino
Wistar
rats

M 200–
250 g

TMJ 100, 300, and 900 mg
of A438079

Coinjected with
carrageenan

Did not alter TMJ
hyperalgesia

Teixeira et al.,
2010a

Carrageenan-
induced
inflammation

Wistar
rats

M 200–
250 g

s.c.,
hindpaw

0.5, 2, or 6 mg/paw
oATP or 100 or 300
mg/paw A438079

Coinjected with
carrageenan

Reduced hyperalgesia
and the concentration
of TNF-a, IL-6, and
CINC, but not IL-1b,
in hindpaw

Teixeira et al.,
2010b

MO-induced
inflammation

Sprague-
Dawley
rats

M 275–
420 g

i.t. 1 mM BBG or 100 mM
oATP

Continuous
superfusion over
MDH for 2 hours

Attenuated MDH
central
sensitization

Itoh et al.,
2011

CO-induced
irritant
contact
dermatitis

Swiss
mice

M 6–8
weeks

i.p. 80 mmol/kg A438079 2 hours after CO
application

Reduced neutrophil
infiltration,
myeloperoxidase
levels, IL-1b, Gr1+

cell recruitment,
dendritic cells, and
macrophages and
decreased ear
edema

Da Silva et al.,
2013

Venom-induced
pain and
inflammation

Sprague-
Dawley
rats

M 250–
300 g

i.t. 0.1, 1, or 10 mg of
A438079

10 min before venom
injection

Dose-dependently
inhibited
spontaneous
flinching and
mechanical
allodynia but not
edema

Zhou et al.,
2012

CINC, cytokine-induced neutrophil chemoattractant 1; CNS, central nervous system; CO, croton oil; IL, interleukin; iNOS, inducible nitric-oxide synthase; i.p.l.,
intraplantar; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MDH, medullary dorsal horn; MO, mustard oil; N.S., not stated; TMJ, temporomandibular
joint; TNF, tumor necrosis factor.
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2013; Kim et al., 2013). These findings contrast with the
results of one study, which found that LPS induced
similar levels of IL-1b and TNF-a in the serum of WT and
P2X7 KO mice (He et al., 2013). In this study, these
cytokines were attenuated in NLRP3 KOmice, suggesting
that these cytokines can be secreted via a P2X7-independent
mechanism during LPS-induced inflammation in mice
or that compensatory mechanisms operate in P2X7 KO
mice. The role of P2X7 in visceral pain has also been
investigated in P2X7 KO mice. In one study, acetic acid-
induced visceral pain, as measured by writhing behav-
ior, was largely absent in P2X7 KO mice compared with
WT littermates (Fulgenzi et al., 2008). This same study
also observed greatly reduced acetic acid-induced visceral
pain in WT mice after pretreatment with the P2X7
antagonist oATP.

D. P2X7 Antagonists in Rodent Models of
Musculoskeletal Disorders

The efficacy of P2X7 antagonists has also been
examined in rodent models of musculoskeletal disorders
such as arthritis, bone cancer, and Duchenne muscular
dystrophy (Table 7). The majority of these studies ex-
amined inflammatory arthritis, for which there are two
main types of rodent models employed. In the first model,
intraplantar injection of Complete Freund’s adjuvant
(CFA) is used to induce inflammatory pain and swelling
of the paws. This model is also used to investigate
compound-induced inflammation, but is included here
because of its relevance to musculoskeletal disorders.
In the second model, collagen-induced or anti-collagen
antibody-induced arthritis results in an autoimmune
response against collagen and subsequent joint damage.
These are generally used as models of rheumatoid
arthritis, resulting in pathology similar to that of the
human disease (Williams, 2012). A range of P2X7 antago-
nists has resulted in improved experimental outcomes in
models of inflammatory arthritis (Table 7). In addition, GSK
P2X7 KO mice do not develop CFA-induced inflammatory
hypersensitivity (Chessell et al., 2005), whereas Pfizer P2X7
KO mice have reduced incidence and severity of anticolla-
gen antibody-induced arthritis compared with WT litter-
mates (Labasi et al., 2002; Fulgenzi et al., 2008). As a result
of these and other studies, the first approved drugs that
target P2X7 have undergone clinical trials in rheumatoid
arthritis patients (see section XI).

E. P2X7 Antagonists in Rodent Models of Disorders
Associated with Other Tissues

Although the majority of in vivo P2X7 antagonist
studies have focused on neurologic and musculoskele-
tal inflammation and inflammatory disorders, there
are a number of studies that have looked at the effects
of pharmacological blockade of P2X7 in disorders associ-
ated with other tissues (Table 8). P2X7 antagonists
reduced symptoms in rodent models of disorders affecting
the bladder (hemorrhagic cystitis), colon (carcinoma), eyes

(retinitis pigmentosa, photoreceptor degeneration, retinal
ganglion cell death, retinal pigmented epithelium de-
generation, subretinal hemorrhage, and optic nerve in-
jury), heart (transplantation, cardiac transplant rejection,
and myocardial ischemia), kidney (glomerulonephritis,
lupus nephritis, hypertension, and renal injury), liver
(obesity and hepatotoxicity), lung (chemical and allergic
inflammation or chronic obstructive pulmonary disease),
pancreas (autoimmune diabetes, islet allograft rejection,
and pancreatitis), and skin (dermatitis, graft-versus-host
disease, and melanoma). Altogether these studies used
a range of antagonists, demonstrating the widespread
effects of P2X7 in a number of tissues and expanding the
number of disorders that may benefit from P2X7 blockade.
Furthermore, a number of these studies also had support-
ing P2X7 KO mouse data alongside P2X7 antagonist data,
further implicating P2X7 in a number of disease processes.
These include models of hemorrhagic cystitis (Martins
et al., 2012), glomerulonephritis (Taylor et al., 2009b),
hypertension and renal injury (Ji et al., 2012), lung
inflammation (Lucattelli et al., 2011), allergic airway
inflammation (Müller et al., 2011), pancreatitis (Hoque
et al., 2011), and graft-versus-host disease (Wilhelm et al.,
2010).

XI. P2X7 Antagonists in Human Clinical Trials

Because of the potential benefits of P2X7 blockade
in rodent studies, the use of drugs targeting P2X7 in
humans has commenced for a number of disorders,
including arthritis, pain, and multiple sclerosis (Baas,
2012). Of these trials, only two have been published as
full-length reports, with both reporting the clinical
efficacy and safety of the P2X7 antagonists AZD9056 or
CE-224,535 in rheumatoid arthritis patients (Keystone
et al., 2012; Stock et al., 2012). However, both of the
trials failed to find any therapeutic benefit with these
compounds (Keystone et al., 2012; Stock et al., 2012).
The first of these trials were two phase II studies in
patients with rheumatoid arthritis treated with the
AstraZeneca compound, AZD9056 (Keystone et al.,
2012). Despite a significant reduction in swollen and
tender joint count in the phase IIa study, there was
no significant benefit on disease in the phase IIb study.
With the exception of one patient, who required hos-
pitalization for nausea and vomiting after treatment
with AZD9056, there were no significant side effects.
The second clinical trial reported was a phase IIa
study in patients with rheumatoid arthritis treated
with the Pfizer compound, CE-224,535 (Stock et al.,
2012). There was no significant benefit on disease
with this compound. Furthermore, treatment with
CE-224,535 resulted in a small but acceptable in-
crease in the rate of nausea and diarrhea. In both
clinical trials there were no serious infections or deaths
related to adverse events (Keystone et al., 2012; Stock
et al., 2012).
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As a result of these studies, both groups concluded that
P2X7 does not appear to be a useful target in rheumatoid
arthritis (Keystone et al., 2012; Stock et al., 2012).
However, the possibility remains that the efficacy of
these P2X7 antagonists is dependent on P2RX7 geno-
type, as indicated in other in vitro studies using
GSK1370319A (McHugh et al., 2012). Thus, it may be
essential to stratify clinical data by P2RX7 genotype
to detect therapeutic benefits of P2X7 blockade. The
possibility also remains that P2X7 blockade is of no
therapeutic benefit in patients who are refractory to
methotrexate or sulfasalazine, because both studies used
a patient cohort already nonresponsive to these thera-
pies. Thus, it may be of value to explore if the therapeutic
benefit of P2X7 blockade is influenced by methotrexate or
sulfasalazine resistance. In the meantime, the trial of
AZD9056 or CE-224,535 in other human disorders and
the trial of other compounds, such as those from
GSK (Abberley et al., 2010) and Johnson & Johnson
(Bhattacharya et al., 2013), await.

XII. Modulators of P2X7 Receptor Expression

P2X7 is widely distributed throughout the mamma-
lian body (see section I); however, the relative expres-
sion and distribution of this receptor between cell types
and tissues have not been fully elucidated. As also noted
above (section I), future studies of P2X7 reporter mice
expressing enhanced green fluorescent protein (Engel
et al., 2012; Garcia-Huerta et al., 2012; Jimenez-Pacheco
et al., 2013) will be useful for visualizing P2X7 expression
patterns in both healthy and diseased animals. However,
studies comparing the relative expression of P2X7 on
cell types between mice and humans are lacking, and the
possibility remains that this expression may not be
comparable. In humans, P2X7 is present in decreasing
amounts on monocytes, B cells and T cells (Gu et al.,
2000), whereas in dogs P2X7 is present in greatest
amounts on T cells and is present at lower amounts on
monocytes and B cells (Stevenson et al., 2009). Never-
theless, modulation of P2X7 expression may provide an
alternate therapeutic strategy in addition to pharmaco-
logical blockade.
A range of inflammatory mediators can modulate P2X7

expression and its subsequent function on various cell
types. Proinflammatory mediators such as interferon-g
(IFN-g), TNF-a, and LPS can upregulate P2X7 on macro-
phages (Humphreys and Dubyak, 1998), umbilical vein
endothelial cells (Wilson et al., 2007), and epithelial cells
(Welter-Stahl et al., 2009). Conversely, anti-inflammatory
mediators including transforming growth factor-b1, IL-4,
and IL-10 can downregulate P2X7 on macrophages
(Lemaire and Leduc, 2003; Gadeock et al., 2010). As a
result of these and other studies, the possibility remains
that such mediators may be used to regulate P2X7 ex-
pression and its subsequent function in a range of
disorders. Other compounds may also be of value in

modulating P2X7 expression. Recently, the dialdehydic
compound 2-[1-(6-amminopurin-9-il)-2-osso-etossi]prop-
2-enale (MED1011) was developed and shown to down-
regulate the expression and function of P2X7 in
macrophages by causing the internalization of P2X7
in these cells (Muzzachi et al., 2013). Moreover, the
medicinal extract from Aloe vera has been shown to
downregulate P2X7 expression in macrophages to atten-
uate IL-1b secretion (Budai et al., 2013). Alternatively,
P2X7 expression could potentially be down modulated by
use of RNA interference. Small interfering RNA has been
used to specifically downregulate P2X7 in mice and rats
to attenuate diseases such as brain injury (Chen et al.,
2013a) and nephritis (Zhao et al., 2013). Finally, P2X7
expression and its subsequent function could be down-
regulated by targeting the specificity protein 1 transcrip-
tion factor (Sp1), which plays an important role in the
transcriptional regulation of P2X7 (Garcia-Huerta et al.,
2012). Of note, targeting Sp1 by small hairpin RNA or the
antibiotic mithramycin, which blocks Sp1 activity, down-
regulates P2X7 in vitro (Garcia-Huerta et al., 2012).

XIII. Conclusions and Future Directions

Rodent models are valuable tools for investigating
the role of P2X7 in health and disease. However, there
are a number of factors that need to be considered
when interpreting the results of such studies in the
context of human disease. First, unlike human P2X7,
rodent P2X7 can be activated by the alternate ligand
NAD to induce similar downstream signaling events to
that of ATP activation. Second, P2X7 variants, such as
the murine P451L SNP and spice isoforms P2X7K,
P2X7 13B, and P2X7 13C, contribute to the diversity
of receptor-mediated responses, thus adding further
complexity to P2X7 studies in rodents. This is particu-
larly highlighted by the currently available P2X7 KO
mice, in which some of these variants have escaped
deletion. Identification of P2X7 in the guinea pig, dog,
and Rhesus macaque, in addition to the rat and mouse,
highlights the potential of these species for the future
study of P2X7-related diseases and in the mandatory
testing and evaluation of preclinical drugs targeting
P2X7.

In general, a variety of P2X7 antagonists have been
reported to be efficacious in rodent models of neurologic
disease and injury, compound-induced inflammation,
musculoskeletal disorders, and disorders associated
with other tissues. In these studies, there was no clear
consensus on the use of P2X7 antagonists in terms
of doses or injection sites, with a variety of regimens
successfully employed. Although nonspecific P2X7 antag-
onists were used in a number of these studies, the
outcomes of some have been confirmed in more recent
years through the use of more specific P2X7 antagonists.
This suggests that P2X7may play a role in a wide variety
of diseases, implicating this receptor as a potential
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therapeutic target in a broad range of settings. However,
differential activity of P2X7 antagonists is observed at
receptors between individuals and species, presumably
as a result of P2X7 variants and variations in amino acid
homology in antagonist binding sites. Thus, this may be
a limitation of translating preclinical studies of P2X7
antagonists in rodents to clinical trials in humans.
Although rodent models and P2X7 antagonists have

been valuable tools for investigating P2X7 in vivo, the
following considerations may prove useful in future
studies. First, the use of more selective P2X7 antago-
nists will support the current in vivo literature pro-
posing a role for P2X7 in disease and injury. However,
this may be limited for many laboratories because of the
lack of availability or high cost of such antagonists.
Second, although a number of commonly used antago-
nists are branded as P2X7 specific, there is still an
absence of comprehensive information on the specificity
of these compounds against other P2 receptor members,
especially for mouse P2X7. In addition, data are lacking
on the effects of many of these antagonists on recombi-
nant murine variants. It will be important to obtain more
complete pharmacological profiles for some of the widely
used P2X7 antagonists, as previously done at a number
of human and rat P2X subtypes (Bianchi et al., 1999;
Donnelly-Roberts et al., 2009). Third, the generation of a
complete P2X7 KO mouse, to negate the effect of escaped
P2X7 variants, will be of value for future investigations.
Fourth, the use of P2X7 antagonists in conjunction with
various KO mice may be useful for determining the
mechanisms of P2X7 action in vivo. For example, the use
of the P2X7 antagonist A839977 in IL-1ab KO mice,
which lack genes for both IL-1a and IL-1b, has suggested
that the positive effects of P2X7 inhibition in inflamma-
tory pain models are mediated by blocking IL-1b release
(Honore et al., 2009). Fifth, with the emergence of
biologics (therapeutic antibodies) (Hatcher et al., 2011),
anti-P2X7 antibodies represent promising tools for in-
vestigating the roles of P2X7 in disease and injury. In
this regard, an anti-P2X7 monoclonal antibody was
recently generated and demonstrated to inhibit mast
cell activation and prevent the resulting intestinal in-
flammation in mice (Kurashima et al., 2012). Moreover,
an anti-P2X7 monoclonal antibody has long been known
to impair human P2X7 (Buell et al., 1998). Of note, this
same antibody is capable of binding to rat and guinea pig
P2X7 in transfected HEK-293 and human osteosarcoma
U-2 OS cells (Smart et al., 2003; Fonfria et al., 2008), but
whether this antibody is capable of blocking the activation
of this receptor in these species remains unknown.
Furthermore, single-domain antibodies, or nanobodies,
have been shown to be promising tools for inhibiting
specific membrane proteins (Pardon et al., 2014). In one
pioneer study, an ART2.2-specific single-domain antibody
was generated and shown to completely block ART2.2
enzymatic activity and NAD-induced cytotoxicity in vivo
(Koch-Nolte et al., 2007). Thus, these antibodies could be

used indirectly and reversibly to block P2X7 activation
in mice. Likewise, this same technology is being ap-
plied to develop single-domain antibodies to P2X7 to
directly target or inhibit this receptor (Laeremans
et al., 2010). Finally, despite the development and
patenting of a number of P2X7 antagonists for the
treatment of human disease (Gunosewoyo and Kassiou,
2010), we are still awaiting results on the efficacy of
many of these antagonists in humans, as well as the
outcomes of current clinical trials, which will further
influence future attempts to target P2X7.
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