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ABSTRACT 

The first digital computers consisted of a single processor acting on a single stream of 

data. In this so-called "von Neumann" architecture, computation speed is lim1ted 

mainly by the time required to transfer data between the processor and memory. This 

limiting factor has been referred to as the "von Neumann bottleneck." The concern that 

the miniaturization of silicon-based integrated circuits will soon reach theoretical limits 

of size and gate times has led to increased interest in parallel architectures and also 

spurred research into alternatives to silicon-based implementations of processors. 

Meanwhile, sequential processors continue to be produced that have increased clock 

rates and an increase in memory locally available to a processor, and an increase in the 

rate at which data can be transferred to and from memories, networks, and remote 

storage. The efficiency of compilers and operating systems is also improving over time. 

Although such characteristics limit maximum performance, a large improvement in the 

speed of scientific computations can often be achieved by utilizing more efficient algo

rithms, particularly those that support parallel computation. This work discusses experi

ences with two tools for large grain (or "macro task") parallelism. © 1994 John Wiley & 

Sons, Inc. 

1 INTRODUCTION 

Any computer that is not constrained to a single 

stream of instructions on a single stream of data 

can be characterized as a parallel computer. 

However, there are several levels or "granulari

ties'' of parallelism that are usable in today' s par

allel computers: 

assembly line of instructions. After the assembly 

line or pipe is full, one result emerges from the 

pipe for every new piece of data that starts down 

the pipe. 

1. Pipelining-a fine grained form of parallel

ism in which a stream of data is processed by an 
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2. Array processing-a collection of processing 

units under one control, all execute the same in

struction in parallel on different elements of data 

stored in separate memory. 

3. MIMD (multiple instruction multiple datal

separate units operate independently on different 

data sets and communicate via common memory, 

message passing, or over a communication net

work. 

Present day compilers can generate efficient 

code for vector (Type 1) and array processor 

(Type 2) machines. We are concerned here pri-
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marily with the problems facing a scientific pro

grammer who wishes to decrease a lengthy run

time by utilizing large grain MIMD-style 

concurrency. Compilers for the automatic genera

tion of a code that takes advantage of multiple 

processors of this type are currently in an imma

ture stage of development. 

Whatever the resources available, a user can 

always wait for faster hardware or, alternatively, 

utilize existing machines (e.g., a cluster of individ

ual workstations or a machine with multiple pro

cessors) to decrease runtime. However, unless a 

code is to be run repeatedly, it is probably not 

worth the effort to produce a parallel version given 

the current primitive state of tools to assist in this 

process and burden of proving correctness. 

One purpose of this paper is to give scientific 

programmers some guidance to help them decide 

whether the speedup that can be obtained is worth 

the effort required to achieve that speedup. The 

speedup of a parallel program that is obtainable is 

related to the fraction of the program that is inher

ently scalar. This is formalized in Amdahl's Law 

[ 1 J that states. . . . 

Overall speedup = 1/[(1 - P) + (P/S)] 

where P is the fraction of the original computation 

time that can be enhanced by parallel execution 

and S is the ratio of the time required for execu

tion of the P section of the code to the time re

quired for execution of the P section of the code 

after parallelization. If 40% of a particular appli

cation requires scalar execution and it is possible 

to achieve a speedup of 25 for execution of the 

remaining 60%, then the overall speedup would 

be 1/[(1 - .6) + (.6/25)] or an overall speedup of 

"only" about 2.36. Amdahl's Law emphasizes 

the fact that programmers desiring speedups via 

parallelization can be severely limited for certain 

algorithms. 

Two approaches for parallelization will be dis

cussed. One is a supported, commercial product 

[2] that involves a new way of thinking about pro

gramming (via so-called coordination languages). 

The other is in the public domain [3] and sup

ports a message-passing style of parallel program

ming. Any programmer just entering the field of 

parallel computation is faced with a myriad of 

(mostly nonstandard) computation environments, 

libraries, precompilers, languages, etc. The two 

approaches discussed in this paper do not illus

trate all of the programming issues that are in-

volved. A recent workshop considered these two 

and many others [ 4 J . 

2 ALGORITHMS, LANGUAGES, AND 
EXISTING CODES 

An improved algorithm can result in a greater than 

linear speedup, whereas a 10 processor machine 

will be limited to a maximum speedup of "only" 

10. An extreme example is the calculation of the 

global minimum energy that a protein molecule 

can achieve as a function of its bond angles in 

three-dimensional space. The best current algo

rithms have runtimes that are of order n**2, 

where n is the number of atoms in the protein. At 

present it is possible to solve structures (i.e., cal

culate tertiary structure de novo, not molecular 

dynamics) that have under 100 atoms if one is 

willing to invest many hours of time on a very fast 

computer. Although there are molecules of this 

size whose solution is very useful, it is common for 

a protein to have over 2,000 atoms and these mol

ecules could not be rigorously solved in a decade 

of compute time on presently available machines. 

In nature, the largest proteins are able to find their 

global energy minimum, starting from a com

pletely extended form, in a few seconds. Obvi

ously, the global search algorithm mentioned here 

is not the best one possible. Thus, algorithm im

provements represent the area where the greatest 

decreases in compute time can be realized. 

Even an "inefficient" algorithm like the chem

istry example given above can be adapted to ben

efit from parallel execution. In other cases, imper

ative languages like Fortran and C seem 

inadequate. The human computer, i.e. the hu

man brain, has a clock rate of ca. 200Hz (a neu

ron may send out 200 impulses per second with a 

peak performance of ca. 500 per second in special 

cases) yet can outperform the best traditional 

computers extant in such areas as pattem recog

nition. The recent work on neural net algorithms 

[5 J, which adapt readily to some parallel architec

tures, represents an attempt to more closely ap

proach the mechanism and speed of nature's par

allel "biocomputers" that have been under 

development for millions of years. 

Many of the production programs presently in 

use represent algorithms that have been instan

tiated in Fortran over a period of years. These 

programs have been modified and improved and 

much effort has been expended on testing and 

debugging the code, if not completing its docu-



mentation. For many applications, however, most 

of the decrease in execution times achieved since 

initial code development has been the result of 

hardware improvements. Today the owners of 

such codes frequently are reluctant to extensively 

rewrite such "trusted" codes so as to take advan

tage of parallel execution, particularly if the gains 

are relatively small or portability may be lost. An

other reason for this inertia is the lack of a clear 

migration path for parallel codes-scientists feel, 

with some justification, that if they were to convert 

their codes for parallelism, that form of the code 

would very likely have to be abandoned in the 

near future in order to take advantage of a newer 

parallel architecture or programming paradigm. 

Before the advent of parallel architectures, the 

development of parallel algorithms offered no ad

vantages. Fortran does allow code to be written in 

a somewhat object-oriented style, which can ease 

the allocation of work to different processors, but 

most of todav's "dustv deck" Fortran codes were . . 
not constructed in this manner. 1'\either were they 

written using a message-passing paradigm, which 

maps naturally for the distributed-style comput

ing discussed below. Cnfortunately, Fortran pos

sesses several features that create difficulties when 

converting codes to take advantage of parallelizing 

preprocessors, dependency analyzers, and com

pilers that search for structures to rewrite for con

currency. The use of GO TO, SAVE, EQCIV A

LENCE, ENTRY statements, Hollerith fields, and 

certain mixed typing definitions are all permitted 

in Fortran, and although they may be less utilized 

today, when present can limit the effectiveness of 

the evaluation by modern parallel analysis tools. 

Although many UNIX programmers feel that the 

language C may have fewer of such problems, cur

rent versions of C have their own difficulties [ 6]. 

These problems are part of the driving force for 

the creation of new languages more suitable for 

parallelization. 

Parallel machines that require one specific lan

guage have already been offered commercially. 

For example, the FPS T series parallel processor 

[7] when first delivered supported only the Occam 

language. Such offerings are at a disadvantage be

cause there are not a lot of preexisting codes and, 

in addition, the possibility of porting to other ma

chines is severely limited. 

3 COMPILER IMPROVEMENTS 

Several compilers are available that can detect 

parallelism at the loop level and distribute loop 
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iterations among a machine's multiple processors. 

Compilers will not allow the distribution if a tem

poral or runtime dependency is detected, but usu

ally allow programmers to override, at their own 

risk, and force the compiler to distribute the itera

tions of a particular loop. For example, a problem 

arises when a subroutine is called from within a 

loop. Ylost compilers at this time cannot guaran

tee that such calls would not violate a data depen

dency or result in several processes contending for 

the same variable. In some cases, such determina

tions may only be possible at runtime. 

Tools are emerging that can analyze codes to 

determine the data dependency, such as 

VecPar_77 [8] (a commercial product), Forge [9] 

(a commercial product), and Toolpack [10] (non

supported), which interact with the programmer 

to detect opportunities to vectorize and/ or paral

lelize Fortran. "Express" is a commercial pack

age that offers a complete analysis, programming, 

performance monitoring, and debugging environ

ment [ 11]. The interactive capability allows the 

added benefit of human input regarding variables 

and dependencies. It also has the effect of shifting 

responsibility for correctness to the user. 1\"o tool 

currently available is able to modify the underly

ing algorithm, but rather renders the current code 

more readable and clarifies dependencies. 

The allocation of loop iterations and any new 

process creation does incur a certain amount of 

overhead and it is not rare for the compiler, using 

default parameters, to produce parallel code that 

executes more slowly than the scalar version. The 

programmer is usually allowed the option of al

lowing or restricting the automatic parallelization 

of any particular loop and can set criteria (e.g., 

which loops to parallelize, amount of unrolling, 

roundoff restrictions, the maximum and mini

mum number of iterations assigned to each pro

cessor, local inlining of subroutines, etc.) for max

imum performance. A Fortran parallelizing 

precompiler named "KAP" is available commer

cially [12] for the Sequent Symmetry, Digital VMS 

and Ultrix machines, and Sun. Compilation time 

is increased as a result of the additional analysis 

these new compilers must accomplish. Most own

ers of scientific codes readily accept such in

creases as a requirement to obtain faster run

times. Optimizing loop iterations can improve 

runtime performance, but it is not often that this 

will even halve the runtime of large scientific pro

grams. This is about as far as programmers can 

presently go if they do not wish to invest the time 

to rewrite the entire code. 
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1 #define 

2 

MAX_SLAVES 15 

3 reaL_main () 

4 { 

5 

6 

7 

8 

int 

double 

double 

slaves = 0, nrecs = 0, section, me; 

tpi = 0.0, total= 0.0, pi, h; 

partiaLpi () ; 

9 while (nrecs < MAX_SLAVES) 

10 { 

11 

12 

13 

14 } 

printf("\nNumber of rectangles is ... "); 

scanf ( "%d", &nrecs) ; 

if (nrecs < 0) exit(); 

15 while ((slaves< 1) I I (slaves> MAX_SLAVES)) 

16 { 

17 

18 

19 } 

printf("\n\nNumber of processors wanted is ... "); 

scanf ( "%d", &slaves); 

20 start_timer(); 

21 section nrecs/slaves; 

22 h 1.0 I nrecs; 

23 

24 for (me 0; me <= slaves - 1; me++) 

25 eval("results", partial_pi(me, h, section, slaves, nrecs)); 

26 

27 for (me = 0; me <= slaves - 1; me++) 

28 { 

29 in("results", ?tpi); 

/* ? is a wild card */ 

30 total = total + tpi; 

31 } 

32 timer_split(); 

33 printf("\nCalculated pi is 

%27.25f\n", total); 

34 print_times(); 

35 } 

36 
37 double partial_pi(me, h, section, slaves, nrecs) 

38 

39 int me, section, slaves, nrecs; 

40 double h; 

41 { 

42 int lower, upper, j; 

43 double x, sum= 0.0; 

44 

45 lower = (me * section) + 1; 

46 upper = lower + section - 1; 

47 if (me== (slaves- 1)) 

48 upper = nrecs; 

49 for (j = lower; j <=upper; ++j) 

50 { 
51 X = (j - 0. 5) * h; 
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52 

53 

sum sum+ (4.0/(1.0 + x * x)); 

} 

54 return (h * sum) ; 

55 } 

4 TWO APPROACHES TO CONCURRENCY 

A comprehensive review of all the tools available 

for creating new parallel code is beyond the scope 

of this work. Linda [2] is a programming environ

ment based on the C language (a Fortran-based 

version is now available). P4 [3] is a programming 

environment based on a message-passing para

digm with either C or Fortran. ~either tool makes 

any attempt to maximize the throughput or load 

balancing of the machine. buL rather, takes the 

position that machine resources cannot be man

aged from the user language level. Linda is a com

mercial product. whereas P4 is freely available 

public domain software. 1\"either example shown 

here will show all the attributes available to the 

user, but both examples can be executed on a 

variety of distributed memory and shared memory 

architectures without changing any of the code. 

4.1 Linda 

The Linda coordination language [13] is hard

ware independent and has been implemented on 

a variety of architectures (InteL Encore, SequenL 

Cray YMP, Sun,. and IBM RS6000). Linda can be 

viewed as a precompiler that adds only six new 

primitives to the C language. Only the command 

line initiation differs between environments. Each 

Linda program creates an associative shared 

memory referred to as a "tuple space." Tuples are 

ordered collections of fields (one tuple may have 

mixed types) that can have any of the types asso

ciated with the underlying language and can be 

any length. The tuple space is a collection of tu

ples that can be accessed by any process on any 

machine in a distributed network. 

The six new functions are operations on tuples 

and the tuple space. The command "out" places 

a named tuple in the tuple space and ·'in" re

moves it. The "rd" command tries to find a tuple 

in the space that matches the query tuple. The 

latter can have wildcard fields that match anv field 

of the same type. Thus the command 

rd(1, 2, "foo", ?x, ?y) 

tries to find a tuple in the global tuple space where 

the first field is a 1, the second is a 2, the third 

field is the string "foo", and the fourth and fifth 

fields are integers (assuming x andy were initially 

types as integers). The matching tuple (or the first 

match, if several tuples match) is copied to the 

program and x and y are given the values of the 

corresponding fields. The "in" and "rd" com

mands have variants that try to locate a matching 

tuple and return a 0 if they fail, or a 1 if they 

succeed. that is blocking and nonblocking varia

tions of in and rd. 

The command "eva!" is similar to "out" but if 

a field is a function, a new process is started im

mediately, on a separate processor. and the func

tion is evaluated before the tuple is made available 

for access. Once created, a tuple exists even after 

the process that created it has exited. Process ini

tiation and termination are invisible to the pro

grammer. Tuples can be accessed similar to those 

in a data base. A simple but computationally in

tense program that calculates the value of pi will 

serve to illustrate the use of Linda tuples to coor

dinate parallel processing. The program [14] pro

duces an approximation to the value of pi by using 

the rectangle rule to compute successive approxi

mations to 

(formula) integral from 0 to 1 of 4/(1 + (x * x)) 

The C-Linda code (interspersed with commen

tary) for this problem is given on page 26. 

Because this code is intended to execute both 

on a network of workstations and on shared mem

orv architectures. the constant MAX_SLAVES on 

Line 1 could refer either to the maximum number 

of processors or the number of workstations. All 

Linda programs use real_main () rather than 

main () and the file must end with a suffix of . c l 

rather than . c. Line 5 defines an integer "me" 

that will have a unique value for each spawned 

process evaluating the function partial_pi (). 

Thus, each process will calculate part of the inte

gration and all contributions will be summed by 

real_main () . 
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Lines 9 through 19 allow the user to input the 

number of rectangles and the number of pro

cesses. Linda will initiate each new process on a 

separate processor if enough are available, other

wise the processes are queued. MAX_SLAVES is 

used in Line 9 to prevent the user from having a 

value of "nrecs" less than the number of 

"slaves". If it were less, a slave would have no 

work to do and such an input is not expected. The 

user provides a list of machines available (poten

tial slaves) in a separate file. 

Linda provides a timing function that is initial

ized at Line 20. The variable "section" is the 

number, or very close to the number, of rectangles 

for each process. Each rectangle has a thickness 

of "h". 

Each iteration of the loop at Lines 24 and 25 

spawns a new process and each new process (the 

number of new processes will be equal to the value 

of "slaves") will get a list of arguments. All of the 

arguments are the same for each process, except 

for the integer ''me'', the loop iteration, which will 

be used to set the integration limits for each pro

cess. The partial_pi () function will return a 

variable that has been typed as a ''double'' in 

Line 7. At the completion of all the spawned pro

cesses, the tuple space will have "slaves" number 

of tuples each one of the form 

("results", instantiated variable of type 

"double") 

The string "results" is not required, but such 

strings can be used for clarity and serve to de

crease the time required for searches of very large 

numbers of tuples. The real_main () program 

does not wait for the spawned process to com

plete, but rather immediately starts execution of 

the next loop iteration. 

There are "slaves" number of results to be col

lected. The function in () is blocking, so the pro

gram counter for real_ main() will remain at 

Line 29 until one process exits and has created an 

appropriate tuple (see Line 54 below). The ? in 

Line 29 is a wild card, therefore, any tuple will be 

removed (not just read) from the tuple space 

where the first field is a string "results" and the 

second field is a double precision number (no tu

ple would be input if the variable tpi has been 

typed in Line 6 as an integer or a float). Each 

successive contribution from each process is col

lected at Line 30 and after "slaves" number of 

tuples are input (the order of collection is not im

portant) the internal time clock is terminated at 

Line 32 and the elapsed time is printed at Line 

34. 

Lines 37 to 55 show the function that each of 

the "slave" processes evaluates. Each process 

has a different value for ·'me" from 0 to slaves -

1 and in Lines 45 to 48 .. the upper and lower 

limits of integration are set. Lines 4 7 to 48 are 

required for the case in which the division of 

"nrecs'' by "slaves" leaves a remainder. If so, 

then one process (the one with me equal to 

slaves - 1) will do slightly more work than the 

remaining ones. The contribution to the total inte

gration is in Lines 49 to 53. 

Linda is a language where parallel processes 

are easily initiated and synchronized. Early ver

sions of both runtime and postmortem debuggers 

are available, and a trace facility exists that allows 

tuple traffic to be monitored during execution, 

along with deadlock detection. The resulting lan

guage is very powerful and the parallel computing 

model is easily understood, but Linda does in

volve learning a new style of programming. One 

company [15] offers a UNIX clone operating sys

tem (product name of HARNESS) for workstations 

based on a simplified version of Linda. 

One problem with the current implementation 

of Linda arises when the tuple space is composed 

of many large tuples. The network Linda runtime 

system does not maintain a copy of all tuples on 

every machine, rather it distributes the tuples 

across the network in a manner not controllable 

by the programmer. A large overhead can be in

curred when one workstation needs to access tu

ple(s) on a distant machine. The programmer 

could possibly try to assign the various tuples to 

particular machines in order to lessen this over

head, but at the present time Linda does not have 

this capability. A language has been devised to 

circumvent some of these problems [ 16]. How

ever, it is not generally available to the program

ming community for evaluation at this time. 

4.2 Parallel Programming System (P4) 

P4 is essentially a point-to-point message-passing 

library in which the programmer need not be con

cemed with varying definitions of basic data types 

across vendors (i.e., Alliant, Intel, Sun, Cray 

XMP, NeXT, DEC, Silicon Graphics, Encore 

Multimax, Sequent Symmetry, IBM RS6000, 

Stardent, BBN). The message-passing functions 

of P4 can utilize if necessary the xdr software 

package [17] to perform data conversion (of basic 

types and arrays, but not user-defined structures) 
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1 #include "p4.h" 

2 #define MAX_SLAVES 15 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

main (argc, argv) 

int argc; 

char **argv; 
{ 

int 

int 

double 

struct 

{ 

section, slaves, type, from, 

start, stop; 

*partial_pi, total 0.0, h; 

slave_data 

int nrecs; 

int section; 

float h; 

16 } data; 

17 p4_initenv(&argc,argv); 

18 p4_create_procgroup(); 

19 while (nrecs < MAX_SLAVES) 

20 { 

size, nrecs 

21 

22 

23 

24 

printf("\nNumber of rectangles is ... "); 

scanf ("%d", &nrecs); 

if (nrecs <= 0) goto end; 

} 

25 while ((slaves< 1) I I (slaves> MAX_SLAVES)) 

26 { 

o, me, i; 

27 

28 

29 

printf("\n\nNumber of processors wanted is ... "); 

scanf ( "%d", &slaves); 

} 

30 start = p4_clock(); 

31 data.nrecs nrecs; 

32 data.section = nrecs/slaves; 

33 data.h = 1.0/nrecs; 

34 for (i = 1; i <= slaves; i++) 

35 p4_send(100, i, &data, sizeof(data)); 

36 type 200; 

37 partial_pi = NULL; 

38 for (i = 1;i <=slaves; i++) 

39 { 

40 from = -1; 
41 p4_recv(&type, &from, &partial_pi, &size); 

42 total = total + *partial_pi; 

43 } 

44 end: 

45 stop = p4_clock(); 

46 printf (" \nCalculated pi is . . . %27. 25f \n", total) ; 

47 printf ("Time is %d msecs\n", stop - start); 

48 p4_wait_for_end(); 

49 } 

if the machines involved in a network have differ

ent data representations. In addition, P4 has 

functions for shared memory architectures. 

Above is the same program as before imple

mented utilizing the P4 library. 

The structure "slave_data" defines those pa-
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rameters that will be sent to the slave nodes. Line 

9 defines two variables that are used by a timing 

routine. The identifier "partiaLpi" refers to a 

pointer to a type double, rather than a function as 

before. Each slave is sent a program (shown be

low) that is compiled separately from the main () 

program. The other variables have the same 

meaning as before. 

The p4 functions initialize the p4 system and 

provide for the passage of command line argu

ments. P4 allows for command line arguments 

setting a "debug level" for both host and node 

programs. Print statements will be output or 

passed over depending on their user-defined de

bug level, a variable accompanying each p4 print 

function (not shown here). The master process is 

assigned a process id of "0" and the slaves have 

their own unique id numbers starting with '' 1 ''. 

Lines 19-29 as before allow the user to request 

the number of ''nrecs'' and the number of 

"slaves". 

Line 30 initiates the timing and Lines 31 to 33 

define the variables to be sent to the slave nodes. 

As with Linda a separate file (named on the com

mand line) lists the names of the slave machines 

and the path of the executable to be utilized. 

1 #include "p4.h" 

2 

3 slave() 

{ 

Thus, the user can send the appropriate compiled 

program to the proper architecture. 

The for loop sends nonblocking messages of 

type 100 to the slaves whose id numbers are 

1. .. slaves. If the function p4_sendr () had 

been utilized instead, it would wait for an ac

knowledgment before proceeding. If the second 

argument in Line 34 is -1, the message is broad

cast. 

The slaves will return the results in a message of 

type 200. The variable that will be instantiated 

must be initialized to "l\liLL". 

The loop collects results from each slave and 

adds it to the total. The variable "from" must be 

initialized to each loop iteration ( -1 receives mes

sages from anyone) because upon receipt of the 

message "from" is set to the id of the sender. 

The timer is stopped in Line 45 and the resul

tant value calculated for pi and the elapsed time is 

output. Line 48 exits the p4 environment after the 

slave processes have ended. 

Each slave process is sent to a separate rna

chine listed in the command line file. As before, if 

not enough machines are available, the jobs will 

be queued up. The slave code is shown below. 

4 

5 

6 

7 

8 

9 

int 

double 

struct 

section, slaves, lower, upper, 

partial_pi, h, x, sum= 0.0; 

slave_data; 

nrecs, type, from, size, me, j; 

10 

11 

{ 

int 

int 

float 

12 } *data; 

13 

nrecs; 

section; 

h· , 

14 me = p4_get_my_id() - 1; 

15 slaves= p4_num_total_slaves(); 

16 type 100; 

17 from = 0; 

18 data = NULL; 

19 p4_recv(&type, &from, &data, &size); 

20 nrecs data -> nrecs; 

21 section = data -> section; 

22 h = data -> h; 

23 lower = (me * section) + 1; 

24 upper = lower + section - 1; 

25 if (me== (slaves- 1)) 

26 upper = nrecs; 

27 for (j = lower; j <= upper; j++) 
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28 { 

29 X= (j - 0.5) * h; 

30 sum= sum+ (4.0/(1.0 + x * x)); 

28 } 

29 partial_pi = h * sum; 

30 p4_sendr(200, 0, &partial_pi, sizeof(paFtial_pi)); 

31 } 

Line 14 defines a local variable "me", which is 

the slave id number minus one. 

The slave process can ask how many slaves 

there are (Line 15) and each slave anticipates a 

message of type 100 coming from the master 

(whose id is 0). 

Lines 20-29 perform the same compute inten

sive calculations as Lines 37 to 55 of the Linda 

code. 

The individual contribution of each slave is 

sent with a type of 200 ( cf. Line 41 of the host 

code) to the specified instance of the spawning 

process. 

It is possible to use P4 with the dbxtool accom

panying the Sun View window environment in ad

dition to the P4 provided debug levels mentioned 

above. 

5 LINDA, P4, AND AN LU 
FACTORIZATION ALGORITHM 

In order to study a larger, nontoy application frag

ment, an LC factorization code [18] was imple

mented in Linda and P4 utilizing a right-looking 

submatrix algorithm [19, 20:. The resulting codes 

were about 3, 700 and 4,800 lines of code, respec

tivelv. 

6 PERFORMANCE COMPARISON 

Performance results (rounded off to nearest sec

ond) for six SPARC 1 workstations for the pi pro

gram are shown in Table 1. 1\"ot surprisingly, there 

is no significant difference between timings for the 

two tools for this low communication program. If 
eight or more slaves are utilized for execution with 

an input of only 1.0E6, the time required is 

slightly greater than it is for the case of six slaves. 

The overhead of starting up eight processes is 

greater than the gain of compute power for such a 

small data set. With large input data, the pi pro

gram is essentially linear in processors. 

The results of the LC factorization program 

(Table 2) for P4 show that if the number of pro

cesses is doubled, the execution time does not ap

proach half until the size of the matrix is in

creased. The efficiency (peak/ actual) of Linda 

execution ( 640 size) was 50%. In addition, as the 

matrix size increases, the machine resources re

quired increase more than linearly. For larger ma

trices than the ones shown, greater than eight ma

chines were required to keep in bounds the 

resources required on any one slave. The six ma

chines utilized for the calculations shown in Ta

bles 1 and 2 were all under the control of one 

super user and all were diskless nodes connected 

to a single server. At the time of the experiments 

reported here, the machines were idle, i.e .. no 

other users were running jobs. The net connecting 

the machines is part of a larger net and had an 

unknown amount of traffic. Repetitive runs af

forded similar results. \Ve have begun a series of 

experiments with much larger networks that in

volve the use of workstations where we do not have 

root privileges and that are separated by gateways 

from our original group of six. yforeover, if some 

of the machines are not in use, our remote pro

cesses compete with the screenlock programs in

voked bv absent owners. It is also harder to restore 

allocated resources or kill "broken" processes 

created by coding errors or by the fact that the 

machines in our pool had different amounts of 

Table 1. A Calculation of Pi by the Rectangle 

Rule with a Network of SPARC (Sun 4) 

Workstations (in Seconds) 

Rectangles Slaves P4 Linda 

1.0E6 2 4 4 

4 3 2 

6 2 1 

1.0E7 2 45 41 

4 21 21 

6 14 14 

2.0E7 2 80 84 

4 43 42 

6 28 29 
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Table 2. LU Factorization with SPARC (Sun 4) 

Workstations (in Seconds) 

Four Slaves Eight Slaves 

Matrix Size Linda P4 P4 

640 46 57 40 
1,280 321 373 245 
1,600 444 767 433 
1,920 864 1,317 711 

such system resources as swap space. Load bal

ancing is also more difficult to achieve with larger 

groups of machines where the demands of users 

and the resources available are harder to ascer

tain. 

The numbers reported here are not absolutes, 

and there are continual upgrades to both the tools 

utilized. The numbers should serve to illustrate 

the tradeoffs and speedups that can be obtained. 

The fact that the Linda implementation was 

somewhat faster than the P4 one does not imply 

the same will hold for other algorithms. The pref

erence between any two paradigms will also be 

dependent on the architectures supported, ease of 

learning, debug tools, and programmer's prefer

ences. Two other approaches to point to point 

message-passing paradigms are PICL [21] and 

PVM [22]. Isis [23] is yet another package for dis

tributed computation. If one machine in a network 

should become inoperable or not respond, the net 

reconfigures itself so as to continue to function. 

The allocation of tasks could assess the current 

workload of the nodes in the net in order to assign 

work efficiently. Toward this goal, network Linda, 

if given a list of machines greater than the number 

of "eval" functions, will utilize the least loaded 

machines first, based on the response to a Ul\IX 

"uptime" command. 

7 RELATED WORK 

Because the message-passing paradigm is unfa

miliar to many programmers and is relatively low 

level, attempts have been made to devise lan

guages at higher levels of abstraction that better 

match the way programmers tend to view their al

gorithms. Several languages have been developed 

for distributed MIMD multiprocessors in which the 

message passing is invisible to the programmer. 

The user defines a virtual machine and then maps 

distributed data structures to that virtual ma

chine. An example is the DIKO (Distributed Ku-

merically Oriented) language [24] package, which 

is in an early stage of development. It supports 

only C and is available for the Intel i860 machine. 

There are presently no debugging tools available, 

but there are some provisions for functional paral

lelism. 

Recently, a public domain software package 

named Distributed Queuing System (DQS) [25] 

has become available for a number of UNIX

based machines. DQS is not a parallel tool, per se, 

in that its function is to distribute batch workloads 

to various available idle machines. If the idle rna

chine subsequently receives any input (e.g., key

board), the DQS job is suspended (but still resides 

on the machine) and restarts after the machine in 

question is idle for a predetermined length of time. 

The DQS software has the capacity of launch par

allel PVM programs and it can be adapted to 

launch Linda and P4 programs as well. Thus, 

DQS along with parallel packages can be utilized 

with a goal to harnessing the combined compute 

power of scattered machines. Presently, DQS 

merely consults a list of available machines. Fu

ture implementations of this and similar packages 

(commercial products are appearing) could con

sider relative compute power of a heterogeneous 

network, availability times, process migration to 

another machine, and even the relative need to 

"idle" a process as opposed to "migrating" it. 

A compendium comparing 12 different parallel 

Fortran implementations of the pi program exam

ple discussed above has been published [26]. 

This was based on earlier work that also discusses 

the parallel hardware on which the programs were 

executed [ 14]. A compendium that gives a brief 

classification and summary of parallel program

ming tools can be found in Chang and Smith [27] 

and is a source of further references. 

8 SCIENTIFIC PARALLEL PROCESSING 

The commercial success of a particular computer 

or of a particular software package is dependent 

on the timing of its release. its utility, and the 

quality of its documentation. Regarding this last 

point, whereas the ratio of programmers to man

ual readers is likely much greater than one, many 

vendors do not seem to appreciate the value of 

complete, clearly written, and carefully indexed 

documentation-with examples. This situation is 

made worse by the lack of agreement among ven

dors and users for standardizing parallel language 

extensions or naming conventions. Linda and P4 



are sufficiently easy to learn that the accompany

ing documentation is at least satisfactory. 

A great deal of attention has been dedicated to 

"load balancing" issues for expensive multipro

cessors. With today's trend toward cheap parallel 

capable workstations, an idle central processing 

unit (CPU), per se, is less of a worry. Surrendering 

the use of a processor must be balanced with the 

overhead incurred if the use of that processor 

must be requested later on. In the case of early 

hypercube architectures, the large overhead of 

sending messages had a great effect on the algo

rithms that could be effectively utilized. Later ver

sions of hypercubes have greatly reduced this 

problem, thus allowing the overhead of message 

passing to become a major consideration rather 

than an overwhelming characteristic. 

Tools that profile runtime performance (e.g., 

percent breakdown of time for each task, sub task, 

etc.) are a great aid in determining whether paral

lelization should even be considered for a particu

lar module. Surprisingly, portability of parallel 

code does not seem to be a high priority issue for 

many scientific programmers. It seems sufficient 

for some installations (e.g., academic installa

tions) that programs produced in their environ

ments be executable only on the hardware they 

possess or are likely to possess in the foreseeable 

future. For other environments (e.g., corpora

tions) portability is a high priority issue (e.g., 

building portable libraries). 

Debugging parallel codes has all of the problem 

of verifying correctness as scalar ones, along with 

some additional features. Language extensions 

built on older compilers may not place restrictions 

on how the parallelization is achieved and cannot 

enforce correct usage. As a result, it is common for 

an improperly constructed program not to exit 

with an error message, core dump, or bus error. 

The program may be in memory but there is no 

indication of normal execution. It may be waiting 

for a message that is not forthcoming. Sending 

interrupts to such programs can leave "broken" 

processes and resources scattered throughout a 

net. 

Even the output of correct answers does not 

necessarily guarantee that the program is correct. 

It is quite possible to write a parallel code that 

executes correctly 99 successive times and fails on 

run number 100 due to a race condition or vari

able contention. A race condition could cause 

code to fail ONLY when not in debug mode (or 

vice versa). Actually, very little progress has been 

made developing tools for debugging distributed 
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computation. The postmortem analyzers and 

graphic displays presently available (e.g., HeNCE 

[22]) are far more useful for performance analy

sis, for example, showing bottlenecks. 

9SUMMARY 

For the foreseeable future, Fortran will likely con

tinue to be the workhorse language for parallel 

scientific computing. Neither Fortran nor C sup

ports parallelization directly without at least one 

extension. An international committee has de

cided what features Fortran ought to include (For

tran 90 standard). However, in the United States, 

Fortran 77 is also being retained as a standard. 

For example, Fortran 90 has recursion and in

dudes files, whereas Fortran 77 supports neither. 

Each commercial Fortran compiler adds its own 

set of extensions. Recently, the Parallel Comput

ing Forum (PCF) [28] finished a draft standard 

for shared memory parallel processing in Fortran 

and C to support portability of parallel programs 

between vendors. The last meeting occurred in 

April 1990 and the results of the PCF efforts are 

undergoing further standardization activities by a 

committee (X3H5) of the American 1\"ational 

Standards Institute (A]'.;SI). Presently, that com

mittee has not yet produced a set of standards for 

Fortran or C. The X3J3 committee of ANSI is also 

reviewing the recommendations of the High Per

formance Fortran Forum [29] for writing SIMD

style data parallel programs. 

Distributed memory architectures offer a solu

tion to avoiding memory and variable contention, 

are perhaps more easily scalable, but have the 

disadvantage that the speed of implementing mes

sage passing is growing more slowly than the 

speed of the processors that perform the node 

computations and send the messages. Most of the 

early research on parallelization has been for 

shared memorv architectures that are suitable for 

a wide range of granularities, are usually consid

ered easier to debug, but suffer from limited scala

bilitv due to bus bottlenecks. 

Current parallel machines range from designs 

with a small number of very fast processors with a 

large available memory (e.g., Cray) suitable for 

large grained parallelization, to machines with a 

very large number of slower processors (massively 

parallel) with a small amount of memory per pro

cessor (e.g., connection machine [30]). The con

nection machine attempts to use order (1\") proces

sors to process problems of size 1\" [31]. Recently, 
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another possibility has surfaced: A machine has 

been announced that can contain up to 16,000 

RISC chips. A model with L024 CPLs would cost 

about 25 million dollars [32; ~ We have already 

seen the commercial appearance and disappear

ance of several parallel machines (e.g., Denelcor 

HEP, FPS T series, .VIultiflow, Loral LDF. and the 

BBJ'I Butterfly), which for one reason or another 

are no longer available. 

What level of abstraction will enjoy the greatest 

success for scientific programming? As the pro

grammer is partially removed from the program

ming "loop", that is as programmers rely more on 

tools and code generators, they may lose sight of 

the fundamentals of parallel code implementa

tion. This has already happened in the area of 

graphics, where many users of graphics tools do 

not know, or care about, the operation of these 

tools at a fundamental level. 

The need for speedup must be balanced 

against program development time, the debug 

tools and maintenance available, and the ex

pected lifetime of the parallel tools employed and 

the parallel architectures they target. 

The help and contributions of James Patterson, Robert 

G. Babb II, and Cleve Ashcraft to this work are grate

fully acknowledged. 
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