
The P4 Parallel Programming System~ the

Linda Environment~ and Some Experiences

with Parallel Computation

ALLAN R. LARRABEE

Advanced Systems Laboratory, Research and Technology, Boeing Computer Services, Seattle, WA 98124-0346

ABSTRACT

The first digital computers consisted of a single processor acting on a single stream of

data. In this so-called "von Neumann" architecture, computation speed is lim1ted

mainly by the time required to transfer data between the processor and memory. This

limiting factor has been referred to as the "von Neumann bottleneck." The concern that

the miniaturization of silicon-based integrated circuits will soon reach theoretical limits

of size and gate times has led to increased interest in parallel architectures and also

spurred research into alternatives to silicon-based implementations of processors.

Meanwhile, sequential processors continue to be produced that have increased clock

rates and an increase in memory locally available to a processor, and an increase in the

rate at which data can be transferred to and from memories, networks, and remote

storage. The efficiency of compilers and operating systems is also improving over time.

Although such characteristics limit maximum performance, a large improvement in the

speed of scientific computations can often be achieved by utilizing more efficient algo

rithms, particularly those that support parallel computation. This work discusses experi

ences with two tools for large grain (or "macro task") parallelism. © 1994 John Wiley &

Sons, Inc.

1 INTRODUCTION

Any computer that is not constrained to a single

stream of instructions on a single stream of data

can be characterized as a parallel computer.

However, there are several levels or "granulari

ties'' of parallelism that are usable in today' s par

allel computers:

assembly line of instructions. After the assembly

line or pipe is full, one result emerges from the

pipe for every new piece of data that starts down

the pipe.

1. Pipelining-a fine grained form of parallel

ism in which a stream of data is processed by an

Received March 1992
Revised June 1993

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2, pp. 23-35 (1993)

CCC 1058-9244/94/030023-13

2. Array processing-a collection of processing

units under one control, all execute the same in

struction in parallel on different elements of data

stored in separate memory.

3. MIMD (multiple instruction multiple datal

separate units operate independently on different

data sets and communicate via common memory,

message passing, or over a communication net

work.

Present day compilers can generate efficient

code for vector (Type 1) and array processor

(Type 2) machines. We are concerned here pri-

23

24 LARRABEE

marily with the problems facing a scientific pro

grammer who wishes to decrease a lengthy run

time by utilizing large grain MIMD-style

concurrency. Compilers for the automatic genera

tion of a code that takes advantage of multiple

processors of this type are currently in an imma

ture stage of development.

Whatever the resources available, a user can

always wait for faster hardware or, alternatively,

utilize existing machines (e.g., a cluster of individ

ual workstations or a machine with multiple pro

cessors) to decrease runtime. However, unless a

code is to be run repeatedly, it is probably not

worth the effort to produce a parallel version given

the current primitive state of tools to assist in this

process and burden of proving correctness.

One purpose of this paper is to give scientific

programmers some guidance to help them decide

whether the speedup that can be obtained is worth

the effort required to achieve that speedup. The

speedup of a parallel program that is obtainable is

related to the fraction of the program that is inher

ently scalar. This is formalized in Amdahl's Law

[1 J that states. . . .

Overall speedup = 1/[(1 - P) + (P/S)]

where P is the fraction of the original computation

time that can be enhanced by parallel execution

and S is the ratio of the time required for execu

tion of the P section of the code to the time re

quired for execution of the P section of the code

after parallelization. If 40% of a particular appli

cation requires scalar execution and it is possible

to achieve a speedup of 25 for execution of the

remaining 60%, then the overall speedup would

be 1/[(1 - .6) + (.6/25)] or an overall speedup of

"only" about 2.36. Amdahl's Law emphasizes

the fact that programmers desiring speedups via

parallelization can be severely limited for certain

algorithms.

Two approaches for parallelization will be dis

cussed. One is a supported, commercial product

[2] that involves a new way of thinking about pro

gramming (via so-called coordination languages).

The other is in the public domain [3] and sup

ports a message-passing style of parallel program

ming. Any programmer just entering the field of

parallel computation is faced with a myriad of

(mostly nonstandard) computation environments,

libraries, precompilers, languages, etc. The two

approaches discussed in this paper do not illus

trate all of the programming issues that are in-

volved. A recent workshop considered these two

and many others [4 J .

2 ALGORITHMS, LANGUAGES, AND
EXISTING CODES

An improved algorithm can result in a greater than

linear speedup, whereas a 10 processor machine

will be limited to a maximum speedup of "only"

10. An extreme example is the calculation of the

global minimum energy that a protein molecule

can achieve as a function of its bond angles in

three-dimensional space. The best current algo

rithms have runtimes that are of order n**2,

where n is the number of atoms in the protein. At

present it is possible to solve structures (i.e., cal

culate tertiary structure de novo, not molecular

dynamics) that have under 100 atoms if one is

willing to invest many hours of time on a very fast

computer. Although there are molecules of this

size whose solution is very useful, it is common for

a protein to have over 2,000 atoms and these mol

ecules could not be rigorously solved in a decade

of compute time on presently available machines.

In nature, the largest proteins are able to find their

global energy minimum, starting from a com

pletely extended form, in a few seconds. Obvi

ously, the global search algorithm mentioned here

is not the best one possible. Thus, algorithm im

provements represent the area where the greatest

decreases in compute time can be realized.

Even an "inefficient" algorithm like the chem

istry example given above can be adapted to ben

efit from parallel execution. In other cases, imper

ative languages like Fortran and C seem

inadequate. The human computer, i.e. the hu

man brain, has a clock rate of ca. 200Hz (a neu

ron may send out 200 impulses per second with a

peak performance of ca. 500 per second in special

cases) yet can outperform the best traditional

computers extant in such areas as pattem recog

nition. The recent work on neural net algorithms

[5 J, which adapt readily to some parallel architec

tures, represents an attempt to more closely ap

proach the mechanism and speed of nature's par

allel "biocomputers" that have been under

development for millions of years.

Many of the production programs presently in

use represent algorithms that have been instan

tiated in Fortran over a period of years. These

programs have been modified and improved and

much effort has been expended on testing and

debugging the code, if not completing its docu-

mentation. For many applications, however, most

of the decrease in execution times achieved since

initial code development has been the result of

hardware improvements. Today the owners of

such codes frequently are reluctant to extensively

rewrite such "trusted" codes so as to take advan

tage of parallel execution, particularly if the gains

are relatively small or portability may be lost. An

other reason for this inertia is the lack of a clear

migration path for parallel codes-scientists feel,

with some justification, that if they were to convert

their codes for parallelism, that form of the code

would very likely have to be abandoned in the

near future in order to take advantage of a newer

parallel architecture or programming paradigm.

Before the advent of parallel architectures, the

development of parallel algorithms offered no ad

vantages. Fortran does allow code to be written in

a somewhat object-oriented style, which can ease

the allocation of work to different processors, but

most of todav's "dustv deck" Fortran codes were . .
not constructed in this manner. 1'\either were they

written using a message-passing paradigm, which

maps naturally for the distributed-style comput

ing discussed below. Cnfortunately, Fortran pos

sesses several features that create difficulties when

converting codes to take advantage of parallelizing

preprocessors, dependency analyzers, and com

pilers that search for structures to rewrite for con

currency. The use of GO TO, SAVE, EQCIV A

LENCE, ENTRY statements, Hollerith fields, and

certain mixed typing definitions are all permitted

in Fortran, and although they may be less utilized

today, when present can limit the effectiveness of

the evaluation by modern parallel analysis tools.

Although many UNIX programmers feel that the

language C may have fewer of such problems, cur

rent versions of C have their own difficulties [6].

These problems are part of the driving force for

the creation of new languages more suitable for

parallelization.

Parallel machines that require one specific lan

guage have already been offered commercially.

For example, the FPS T series parallel processor

[7] when first delivered supported only the Occam

language. Such offerings are at a disadvantage be

cause there are not a lot of preexisting codes and,

in addition, the possibility of porting to other ma

chines is severely limited.

3 COMPILER IMPROVEMENTS

Several compilers are available that can detect

parallelism at the loop level and distribute loop

P4 PARALLEL PROGRAMMI~G SYSTEM 25

iterations among a machine's multiple processors.

Compilers will not allow the distribution if a tem

poral or runtime dependency is detected, but usu

ally allow programmers to override, at their own

risk, and force the compiler to distribute the itera

tions of a particular loop. For example, a problem

arises when a subroutine is called from within a

loop. Ylost compilers at this time cannot guaran

tee that such calls would not violate a data depen

dency or result in several processes contending for

the same variable. In some cases, such determina

tions may only be possible at runtime.

Tools are emerging that can analyze codes to

determine the data dependency, such as

VecPar_77 [8] (a commercial product), Forge [9]

(a commercial product), and Toolpack [10] (non

supported), which interact with the programmer

to detect opportunities to vectorize and/ or paral

lelize Fortran. "Express" is a commercial pack

age that offers a complete analysis, programming,

performance monitoring, and debugging environ

ment [11]. The interactive capability allows the

added benefit of human input regarding variables

and dependencies. It also has the effect of shifting

responsibility for correctness to the user. 1\"o tool

currently available is able to modify the underly

ing algorithm, but rather renders the current code

more readable and clarifies dependencies.

The allocation of loop iterations and any new

process creation does incur a certain amount of

overhead and it is not rare for the compiler, using

default parameters, to produce parallel code that

executes more slowly than the scalar version. The

programmer is usually allowed the option of al

lowing or restricting the automatic parallelization

of any particular loop and can set criteria (e.g.,

which loops to parallelize, amount of unrolling,

roundoff restrictions, the maximum and mini

mum number of iterations assigned to each pro

cessor, local inlining of subroutines, etc.) for max

imum performance. A Fortran parallelizing

precompiler named "KAP" is available commer

cially [12] for the Sequent Symmetry, Digital VMS

and Ultrix machines, and Sun. Compilation time

is increased as a result of the additional analysis

these new compilers must accomplish. Most own

ers of scientific codes readily accept such in

creases as a requirement to obtain faster run

times. Optimizing loop iterations can improve

runtime performance, but it is not often that this

will even halve the runtime of large scientific pro

grams. This is about as far as programmers can

presently go if they do not wish to invest the time

to rewrite the entire code.

26 LARRABEE

1 #define

2

MAX_SLAVES 15

3 reaL_main ()

4 {

5

6

7

8

int

double

double

slaves = 0, nrecs = 0, section, me;

tpi = 0.0, total= 0.0, pi, h;

partiaLpi () ;

9 while (nrecs < MAX_SLAVES)

10 {

11

12

13

14 }

printf("\nNumber of rectangles is ... ");

scanf ("%d", &nrecs) ;

if (nrecs < 0) exit();

15 while ((slaves< 1) I I (slaves> MAX_SLAVES))

16 {

17

18

19 }

printf("\n\nNumber of processors wanted is ... ");

scanf ("%d", &slaves);

20 start_timer();

21 section nrecs/slaves;

22 h 1.0 I nrecs;

23

24 for (me 0; me <= slaves - 1; me++)

25 eval("results", partial_pi(me, h, section, slaves, nrecs));

26

27 for (me = 0; me <= slaves - 1; me++)

28 {

29 in("results", ?tpi);

/* ? is a wild card */

30 total = total + tpi;

31 }

32 timer_split();

33 printf("\nCalculated pi is

%27.25f\n", total);

34 print_times();

35 }

36
37 double partial_pi(me, h, section, slaves, nrecs)

38

39 int me, section, slaves, nrecs;

40 double h;

41 {

42 int lower, upper, j;

43 double x, sum= 0.0;

44

45 lower = (me * section) + 1;

46 upper = lower + section - 1;

47 if (me== (slaves- 1))

48 upper = nrecs;

49 for (j = lower; j <=upper; ++j)

50 {
51 X = (j - 0. 5) * h;

P4 PARALLEL PROGRAMMil\'G SYSTEM 27

52

53

sum sum+ (4.0/(1.0 + x * x));

}

54 return (h * sum) ;

55 }

4 TWO APPROACHES TO CONCURRENCY

A comprehensive review of all the tools available

for creating new parallel code is beyond the scope

of this work. Linda [2] is a programming environ

ment based on the C language (a Fortran-based

version is now available). P4 [3] is a programming

environment based on a message-passing para

digm with either C or Fortran. ~either tool makes

any attempt to maximize the throughput or load

balancing of the machine. buL rather, takes the

position that machine resources cannot be man

aged from the user language level. Linda is a com

mercial product. whereas P4 is freely available

public domain software. 1\"either example shown

here will show all the attributes available to the

user, but both examples can be executed on a

variety of distributed memory and shared memory

architectures without changing any of the code.

4.1 Linda

The Linda coordination language [13] is hard

ware independent and has been implemented on

a variety of architectures (InteL Encore, SequenL

Cray YMP, Sun,. and IBM RS6000). Linda can be

viewed as a precompiler that adds only six new

primitives to the C language. Only the command

line initiation differs between environments. Each

Linda program creates an associative shared

memory referred to as a "tuple space." Tuples are

ordered collections of fields (one tuple may have

mixed types) that can have any of the types asso

ciated with the underlying language and can be

any length. The tuple space is a collection of tu

ples that can be accessed by any process on any

machine in a distributed network.

The six new functions are operations on tuples

and the tuple space. The command "out" places

a named tuple in the tuple space and ·'in" re

moves it. The "rd" command tries to find a tuple

in the space that matches the query tuple. The

latter can have wildcard fields that match anv field

of the same type. Thus the command

rd(1, 2, "foo", ?x, ?y)

tries to find a tuple in the global tuple space where

the first field is a 1, the second is a 2, the third

field is the string "foo", and the fourth and fifth

fields are integers (assuming x andy were initially

types as integers). The matching tuple (or the first

match, if several tuples match) is copied to the

program and x and y are given the values of the

corresponding fields. The "in" and "rd" com

mands have variants that try to locate a matching

tuple and return a 0 if they fail, or a 1 if they

succeed. that is blocking and nonblocking varia

tions of in and rd.

The command "eva!" is similar to "out" but if

a field is a function, a new process is started im

mediately, on a separate processor. and the func

tion is evaluated before the tuple is made available

for access. Once created, a tuple exists even after

the process that created it has exited. Process ini

tiation and termination are invisible to the pro

grammer. Tuples can be accessed similar to those

in a data base. A simple but computationally in

tense program that calculates the value of pi will

serve to illustrate the use of Linda tuples to coor

dinate parallel processing. The program [14] pro

duces an approximation to the value of pi by using

the rectangle rule to compute successive approxi

mations to

(formula) integral from 0 to 1 of 4/(1 + (x * x))

The C-Linda code (interspersed with commen

tary) for this problem is given on page 26.

Because this code is intended to execute both

on a network of workstations and on shared mem

orv architectures. the constant MAX_SLAVES on

Line 1 could refer either to the maximum number

of processors or the number of workstations. All

Linda programs use real_main () rather than

main () and the file must end with a suffix of . c l

rather than . c. Line 5 defines an integer "me"

that will have a unique value for each spawned

process evaluating the function partial_pi ().

Thus, each process will calculate part of the inte

gration and all contributions will be summed by

real_main () .

28 LARRABEE

Lines 9 through 19 allow the user to input the

number of rectangles and the number of pro

cesses. Linda will initiate each new process on a

separate processor if enough are available, other

wise the processes are queued. MAX_SLAVES is

used in Line 9 to prevent the user from having a

value of "nrecs" less than the number of

"slaves". If it were less, a slave would have no

work to do and such an input is not expected. The

user provides a list of machines available (poten

tial slaves) in a separate file.

Linda provides a timing function that is initial

ized at Line 20. The variable "section" is the

number, or very close to the number, of rectangles

for each process. Each rectangle has a thickness

of "h".

Each iteration of the loop at Lines 24 and 25

spawns a new process and each new process (the

number of new processes will be equal to the value

of "slaves") will get a list of arguments. All of the

arguments are the same for each process, except

for the integer ''me'', the loop iteration, which will

be used to set the integration limits for each pro

cess. The partial_pi () function will return a

variable that has been typed as a ''double'' in

Line 7. At the completion of all the spawned pro

cesses, the tuple space will have "slaves" number

of tuples each one of the form

("results", instantiated variable of type

"double")

The string "results" is not required, but such

strings can be used for clarity and serve to de

crease the time required for searches of very large

numbers of tuples. The real_main () program

does not wait for the spawned process to com

plete, but rather immediately starts execution of

the next loop iteration.

There are "slaves" number of results to be col

lected. The function in () is blocking, so the pro

gram counter for real_ main() will remain at

Line 29 until one process exits and has created an

appropriate tuple (see Line 54 below). The ? in

Line 29 is a wild card, therefore, any tuple will be

removed (not just read) from the tuple space

where the first field is a string "results" and the

second field is a double precision number (no tu

ple would be input if the variable tpi has been

typed in Line 6 as an integer or a float). Each

successive contribution from each process is col

lected at Line 30 and after "slaves" number of

tuples are input (the order of collection is not im

portant) the internal time clock is terminated at

Line 32 and the elapsed time is printed at Line

34.

Lines 37 to 55 show the function that each of

the "slave" processes evaluates. Each process

has a different value for ·'me" from 0 to slaves -

1 and in Lines 45 to 48 .. the upper and lower

limits of integration are set. Lines 4 7 to 48 are

required for the case in which the division of

"nrecs'' by "slaves" leaves a remainder. If so,

then one process (the one with me equal to

slaves - 1) will do slightly more work than the

remaining ones. The contribution to the total inte

gration is in Lines 49 to 53.

Linda is a language where parallel processes

are easily initiated and synchronized. Early ver

sions of both runtime and postmortem debuggers

are available, and a trace facility exists that allows

tuple traffic to be monitored during execution,

along with deadlock detection. The resulting lan

guage is very powerful and the parallel computing

model is easily understood, but Linda does in

volve learning a new style of programming. One

company [15] offers a UNIX clone operating sys

tem (product name of HARNESS) for workstations

based on a simplified version of Linda.

One problem with the current implementation

of Linda arises when the tuple space is composed

of many large tuples. The network Linda runtime

system does not maintain a copy of all tuples on

every machine, rather it distributes the tuples

across the network in a manner not controllable

by the programmer. A large overhead can be in

curred when one workstation needs to access tu

ple(s) on a distant machine. The programmer

could possibly try to assign the various tuples to

particular machines in order to lessen this over

head, but at the present time Linda does not have

this capability. A language has been devised to

circumvent some of these problems [16]. How

ever, it is not generally available to the program

ming community for evaluation at this time.

4.2 Parallel Programming System (P4)

P4 is essentially a point-to-point message-passing

library in which the programmer need not be con

cemed with varying definitions of basic data types

across vendors (i.e., Alliant, Intel, Sun, Cray

XMP, NeXT, DEC, Silicon Graphics, Encore

Multimax, Sequent Symmetry, IBM RS6000,

Stardent, BBN). The message-passing functions

of P4 can utilize if necessary the xdr software

package [17] to perform data conversion (of basic

types and arrays, but not user-defined structures)

P4 PARALLEL PROGRA,\1Mil'\G SYSTEM 29

1 #include "p4.h"

2 #define MAX_SLAVES 15

3

4

5

6

7

8

9

10

11

12

13

14

15

main (argc, argv)

int argc;

char **argv;
{

int

int

double

struct

{

section, slaves, type, from,

start, stop;

*partial_pi, total 0.0, h;

slave_data

int nrecs;

int section;

float h;

16 } data;

17 p4_initenv(&argc,argv);

18 p4_create_procgroup();

19 while (nrecs < MAX_SLAVES)

20 {

size, nrecs

21

22

23

24

printf("\nNumber of rectangles is ... ");

scanf ("%d", &nrecs);

if (nrecs <= 0) goto end;

}

25 while ((slaves< 1) I I (slaves> MAX_SLAVES))

26 {

o, me, i;

27

28

29

printf("\n\nNumber of processors wanted is ... ");

scanf ("%d", &slaves);

}

30 start = p4_clock();

31 data.nrecs nrecs;

32 data.section = nrecs/slaves;

33 data.h = 1.0/nrecs;

34 for (i = 1; i <= slaves; i++)

35 p4_send(100, i, &data, sizeof(data));

36 type 200;

37 partial_pi = NULL;

38 for (i = 1;i <=slaves; i++)

39 {

40 from = -1;
41 p4_recv(&type, &from, &partial_pi, &size);

42 total = total + *partial_pi;

43 }

44 end:

45 stop = p4_clock();

46 printf (" \nCalculated pi is . . . %27. 25f \n", total) ;

47 printf ("Time is %d msecs\n", stop - start);

48 p4_wait_for_end();

49 }

if the machines involved in a network have differ

ent data representations. In addition, P4 has

functions for shared memory architectures.

Above is the same program as before imple

mented utilizing the P4 library.

The structure "slave_data" defines those pa-

30 LARRABEE

rameters that will be sent to the slave nodes. Line

9 defines two variables that are used by a timing

routine. The identifier "partiaLpi" refers to a

pointer to a type double, rather than a function as

before. Each slave is sent a program (shown be

low) that is compiled separately from the main ()

program. The other variables have the same

meaning as before.

The p4 functions initialize the p4 system and

provide for the passage of command line argu

ments. P4 allows for command line arguments

setting a "debug level" for both host and node

programs. Print statements will be output or

passed over depending on their user-defined de

bug level, a variable accompanying each p4 print

function (not shown here). The master process is

assigned a process id of "0" and the slaves have

their own unique id numbers starting with '' 1 ''.

Lines 19-29 as before allow the user to request

the number of ''nrecs'' and the number of

"slaves".

Line 30 initiates the timing and Lines 31 to 33

define the variables to be sent to the slave nodes.

As with Linda a separate file (named on the com

mand line) lists the names of the slave machines

and the path of the executable to be utilized.

1 #include "p4.h"

2

3 slave()

{

Thus, the user can send the appropriate compiled

program to the proper architecture.

The for loop sends nonblocking messages of

type 100 to the slaves whose id numbers are

1. .. slaves. If the function p4_sendr () had

been utilized instead, it would wait for an ac

knowledgment before proceeding. If the second

argument in Line 34 is -1, the message is broad

cast.

The slaves will return the results in a message of

type 200. The variable that will be instantiated

must be initialized to "l\liLL".

The loop collects results from each slave and

adds it to the total. The variable "from" must be

initialized to each loop iteration (-1 receives mes

sages from anyone) because upon receipt of the

message "from" is set to the id of the sender.

The timer is stopped in Line 45 and the resul

tant value calculated for pi and the elapsed time is

output. Line 48 exits the p4 environment after the

slave processes have ended.

Each slave process is sent to a separate rna

chine listed in the command line file. As before, if

not enough machines are available, the jobs will

be queued up. The slave code is shown below.

4

5

6

7

8

9

int

double

struct

section, slaves, lower, upper,

partial_pi, h, x, sum= 0.0;

slave_data;

nrecs, type, from, size, me, j;

10

11

{

int

int

float

12 } *data;

13

nrecs;

section;

h· ,

14 me = p4_get_my_id() - 1;

15 slaves= p4_num_total_slaves();

16 type 100;

17 from = 0;

18 data = NULL;

19 p4_recv(&type, &from, &data, &size);

20 nrecs data -> nrecs;

21 section = data -> section;

22 h = data -> h;

23 lower = (me * section) + 1;

24 upper = lower + section - 1;

25 if (me== (slaves- 1))

26 upper = nrecs;

27 for (j = lower; j <= upper; j++)

P4 PARALLEL PROGRAMMING SYSTEM 31

28 {

29 X= (j - 0.5) * h;

30 sum= sum+ (4.0/(1.0 + x * x));

28 }

29 partial_pi = h * sum;

30 p4_sendr(200, 0, &partial_pi, sizeof(paFtial_pi));

31 }

Line 14 defines a local variable "me", which is

the slave id number minus one.

The slave process can ask how many slaves

there are (Line 15) and each slave anticipates a

message of type 100 coming from the master

(whose id is 0).

Lines 20-29 perform the same compute inten

sive calculations as Lines 37 to 55 of the Linda

code.

The individual contribution of each slave is

sent with a type of 200 (cf. Line 41 of the host

code) to the specified instance of the spawning

process.

It is possible to use P4 with the dbxtool accom

panying the Sun View window environment in ad

dition to the P4 provided debug levels mentioned

above.

5 LINDA, P4, AND AN LU
FACTORIZATION ALGORITHM

In order to study a larger, nontoy application frag

ment, an LC factorization code [18] was imple

mented in Linda and P4 utilizing a right-looking

submatrix algorithm [19, 20:. The resulting codes

were about 3, 700 and 4,800 lines of code, respec

tivelv.

6 PERFORMANCE COMPARISON

Performance results (rounded off to nearest sec

ond) for six SPARC 1 workstations for the pi pro

gram are shown in Table 1. 1\"ot surprisingly, there

is no significant difference between timings for the

two tools for this low communication program. If
eight or more slaves are utilized for execution with

an input of only 1.0E6, the time required is

slightly greater than it is for the case of six slaves.

The overhead of starting up eight processes is

greater than the gain of compute power for such a

small data set. With large input data, the pi pro

gram is essentially linear in processors.

The results of the LC factorization program

(Table 2) for P4 show that if the number of pro

cesses is doubled, the execution time does not ap

proach half until the size of the matrix is in

creased. The efficiency (peak/ actual) of Linda

execution (640 size) was 50%. In addition, as the

matrix size increases, the machine resources re

quired increase more than linearly. For larger ma

trices than the ones shown, greater than eight ma

chines were required to keep in bounds the

resources required on any one slave. The six ma

chines utilized for the calculations shown in Ta

bles 1 and 2 were all under the control of one

super user and all were diskless nodes connected

to a single server. At the time of the experiments

reported here, the machines were idle, i.e .. no

other users were running jobs. The net connecting

the machines is part of a larger net and had an

unknown amount of traffic. Repetitive runs af

forded similar results. \Ve have begun a series of

experiments with much larger networks that in

volve the use of workstations where we do not have

root privileges and that are separated by gateways

from our original group of six. yforeover, if some

of the machines are not in use, our remote pro

cesses compete with the screenlock programs in

voked bv absent owners. It is also harder to restore

allocated resources or kill "broken" processes

created by coding errors or by the fact that the

machines in our pool had different amounts of

Table 1. A Calculation of Pi by the Rectangle

Rule with a Network of SPARC (Sun 4)

Workstations (in Seconds)

Rectangles Slaves P4 Linda

1.0E6 2 4 4

4 3 2

6 2 1

1.0E7 2 45 41

4 21 21

6 14 14

2.0E7 2 80 84

4 43 42

6 28 29

32 LARRABEE

Table 2. LU Factorization with SPARC (Sun 4)

Workstations (in Seconds)

Four Slaves Eight Slaves

Matrix Size Linda P4 P4

640 46 57 40
1,280 321 373 245
1,600 444 767 433
1,920 864 1,317 711

such system resources as swap space. Load bal

ancing is also more difficult to achieve with larger

groups of machines where the demands of users

and the resources available are harder to ascer

tain.

The numbers reported here are not absolutes,

and there are continual upgrades to both the tools

utilized. The numbers should serve to illustrate

the tradeoffs and speedups that can be obtained.

The fact that the Linda implementation was

somewhat faster than the P4 one does not imply

the same will hold for other algorithms. The pref

erence between any two paradigms will also be

dependent on the architectures supported, ease of

learning, debug tools, and programmer's prefer

ences. Two other approaches to point to point

message-passing paradigms are PICL [21] and

PVM [22]. Isis [23] is yet another package for dis

tributed computation. If one machine in a network

should become inoperable or not respond, the net

reconfigures itself so as to continue to function.

The allocation of tasks could assess the current

workload of the nodes in the net in order to assign

work efficiently. Toward this goal, network Linda,

if given a list of machines greater than the number

of "eval" functions, will utilize the least loaded

machines first, based on the response to a Ul\IX

"uptime" command.

7 RELATED WORK

Because the message-passing paradigm is unfa

miliar to many programmers and is relatively low

level, attempts have been made to devise lan

guages at higher levels of abstraction that better

match the way programmers tend to view their al

gorithms. Several languages have been developed

for distributed MIMD multiprocessors in which the

message passing is invisible to the programmer.

The user defines a virtual machine and then maps

distributed data structures to that virtual ma

chine. An example is the DIKO (Distributed Ku-

merically Oriented) language [24] package, which

is in an early stage of development. It supports

only C and is available for the Intel i860 machine.

There are presently no debugging tools available,

but there are some provisions for functional paral

lelism.

Recently, a public domain software package

named Distributed Queuing System (DQS) [25]

has become available for a number of UNIX

based machines. DQS is not a parallel tool, per se,

in that its function is to distribute batch workloads

to various available idle machines. If the idle rna

chine subsequently receives any input (e.g., key

board), the DQS job is suspended (but still resides

on the machine) and restarts after the machine in

question is idle for a predetermined length of time.

The DQS software has the capacity of launch par

allel PVM programs and it can be adapted to

launch Linda and P4 programs as well. Thus,

DQS along with parallel packages can be utilized

with a goal to harnessing the combined compute

power of scattered machines. Presently, DQS

merely consults a list of available machines. Fu

ture implementations of this and similar packages

(commercial products are appearing) could con

sider relative compute power of a heterogeneous

network, availability times, process migration to

another machine, and even the relative need to

"idle" a process as opposed to "migrating" it.

A compendium comparing 12 different parallel

Fortran implementations of the pi program exam

ple discussed above has been published [26].

This was based on earlier work that also discusses

the parallel hardware on which the programs were

executed [14]. A compendium that gives a brief

classification and summary of parallel program

ming tools can be found in Chang and Smith [27]

and is a source of further references.

8 SCIENTIFIC PARALLEL PROCESSING

The commercial success of a particular computer

or of a particular software package is dependent

on the timing of its release. its utility, and the

quality of its documentation. Regarding this last

point, whereas the ratio of programmers to man

ual readers is likely much greater than one, many

vendors do not seem to appreciate the value of

complete, clearly written, and carefully indexed

documentation-with examples. This situation is

made worse by the lack of agreement among ven

dors and users for standardizing parallel language

extensions or naming conventions. Linda and P4

are sufficiently easy to learn that the accompany

ing documentation is at least satisfactory.

A great deal of attention has been dedicated to

"load balancing" issues for expensive multipro

cessors. With today's trend toward cheap parallel

capable workstations, an idle central processing

unit (CPU), per se, is less of a worry. Surrendering

the use of a processor must be balanced with the

overhead incurred if the use of that processor

must be requested later on. In the case of early

hypercube architectures, the large overhead of

sending messages had a great effect on the algo

rithms that could be effectively utilized. Later ver

sions of hypercubes have greatly reduced this

problem, thus allowing the overhead of message

passing to become a major consideration rather

than an overwhelming characteristic.

Tools that profile runtime performance (e.g.,

percent breakdown of time for each task, sub task,

etc.) are a great aid in determining whether paral

lelization should even be considered for a particu

lar module. Surprisingly, portability of parallel

code does not seem to be a high priority issue for

many scientific programmers. It seems sufficient

for some installations (e.g., academic installa

tions) that programs produced in their environ

ments be executable only on the hardware they

possess or are likely to possess in the foreseeable

future. For other environments (e.g., corpora

tions) portability is a high priority issue (e.g.,

building portable libraries).

Debugging parallel codes has all of the problem

of verifying correctness as scalar ones, along with

some additional features. Language extensions

built on older compilers may not place restrictions

on how the parallelization is achieved and cannot

enforce correct usage. As a result, it is common for

an improperly constructed program not to exit

with an error message, core dump, or bus error.

The program may be in memory but there is no

indication of normal execution. It may be waiting

for a message that is not forthcoming. Sending

interrupts to such programs can leave "broken"

processes and resources scattered throughout a

net.

Even the output of correct answers does not

necessarily guarantee that the program is correct.

It is quite possible to write a parallel code that

executes correctly 99 successive times and fails on

run number 100 due to a race condition or vari

able contention. A race condition could cause

code to fail ONLY when not in debug mode (or

vice versa). Actually, very little progress has been

made developing tools for debugging distributed

P4 PARALLEL PROGRAMMING SYSTEM 33

computation. The postmortem analyzers and

graphic displays presently available (e.g., HeNCE

[22]) are far more useful for performance analy

sis, for example, showing bottlenecks.

9SUMMARY

For the foreseeable future, Fortran will likely con

tinue to be the workhorse language for parallel

scientific computing. Neither Fortran nor C sup

ports parallelization directly without at least one

extension. An international committee has de

cided what features Fortran ought to include (For

tran 90 standard). However, in the United States,

Fortran 77 is also being retained as a standard.

For example, Fortran 90 has recursion and in

dudes files, whereas Fortran 77 supports neither.

Each commercial Fortran compiler adds its own

set of extensions. Recently, the Parallel Comput

ing Forum (PCF) [28] finished a draft standard

for shared memory parallel processing in Fortran

and C to support portability of parallel programs

between vendors. The last meeting occurred in

April 1990 and the results of the PCF efforts are

undergoing further standardization activities by a

committee (X3H5) of the American 1\"ational

Standards Institute (A]'.;SI). Presently, that com

mittee has not yet produced a set of standards for

Fortran or C. The X3J3 committee of ANSI is also

reviewing the recommendations of the High Per

formance Fortran Forum [29] for writing SIMD

style data parallel programs.

Distributed memory architectures offer a solu

tion to avoiding memory and variable contention,

are perhaps more easily scalable, but have the

disadvantage that the speed of implementing mes

sage passing is growing more slowly than the

speed of the processors that perform the node

computations and send the messages. Most of the

early research on parallelization has been for

shared memorv architectures that are suitable for

a wide range of granularities, are usually consid

ered easier to debug, but suffer from limited scala

bilitv due to bus bottlenecks.

Current parallel machines range from designs

with a small number of very fast processors with a

large available memory (e.g., Cray) suitable for

large grained parallelization, to machines with a

very large number of slower processors (massively

parallel) with a small amount of memory per pro

cessor (e.g., connection machine [30]). The con

nection machine attempts to use order (1\") proces

sors to process problems of size 1\" [31]. Recently,

34 LARRABEE

another possibility has surfaced: A machine has

been announced that can contain up to 16,000

RISC chips. A model with L024 CPLs would cost

about 25 million dollars [32; ~ We have already

seen the commercial appearance and disappear

ance of several parallel machines (e.g., Denelcor

HEP, FPS T series, .VIultiflow, Loral LDF. and the

BBJ'I Butterfly), which for one reason or another

are no longer available.

What level of abstraction will enjoy the greatest

success for scientific programming? As the pro

grammer is partially removed from the program

ming "loop", that is as programmers rely more on

tools and code generators, they may lose sight of

the fundamentals of parallel code implementa

tion. This has already happened in the area of

graphics, where many users of graphics tools do

not know, or care about, the operation of these

tools at a fundamental level.

The need for speedup must be balanced

against program development time, the debug

tools and maintenance available, and the ex

pected lifetime of the parallel tools employed and

the parallel architectures they target.

The help and contributions of James Patterson, Robert

G. Babb II, and Cleve Ashcraft to this work are grate

fully acknowledged.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer

Architecture, A Quantitative Approach. San .\fa

teo, CA: .\forgan Kaufmann Publishers, 1990.

[2] Linda, Scientific Computing Assoc., Inc., 246

Church St., Suite 307, New Haven, CT 06510 (It

is not the intention here to rigorously define the

differences between language extensions, pre

compilers, and programming environments. The

last phrase is this vendor's description of Linda).

[3] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk,

R. Overbeck, J. Patterson, and R. Stevens, Porta

ble Programs for Parallel Processors. New York,

NY: Holt, Rinehart, and Winston, 1987.

[4] Workshop on Cluster Computing. Florida State

University, Tallahassee, FL, Abstracts available

via anonymous ftp from ftp.scri.fsu.edu., 1992.

[5] B. Forrest, D. Roweth, N. Stroud, D. J. Wallace,

and G. V. Wilson, "Neural network models,"

Parallel Comput., vol. 8, pp. 71-83, 1988.

[6] T. MacDonald, "C versus Fortran-77 for scien

tific programming," Sci. Pro g., vol. 1, pp. 99-

114, 1992.

[7] FPS Computing, P.O. Box 23489 Portland, OR

97223.

rs- W. R. Cowell. "An Introduction of YecPar_ T?."'

:'\umerical Algorithms Croup. Inc.. 1400 Opus

Place, Suite 200. Downers Grow. IL 60.') 1.5.

1990.

[9] Forge, Pacific-Sierra Research Corp. 12cl40

Santa ~1onica Blvd .. Los Angeles. CA 9002;S.

[1 0] W. R. CowelL User's Guide to Too/pack/ 1- Tools

for Data Dependency Arw(1·sis and Program

Transformation. Argonne. IL: Argonne :\ational

Laboratory A:\L-88-17, 1988.

[11] Parasoft Corp .. 27415 Trabuco Circle. ~lission

Viejo, CA 92692.

[121 Kuck and Assoc .. Inc. 1906 Fox DrivP. Cham

paign, IL 61820.

[13] D. Gclcrntcr and :"J. CarriPro. '·Coordination lan

guages and their significance."· Communications

AC.VL vol. 35. pp. 96-107. 1992.

[141 R. G. Babb IL Programming Parallel Processors.

Reading, MA: Addison-Wesley, 1987.

[15] Superconcurrency System Solutions. Inc. 1100

:"JW Compton Drive, Suite 309. Beaverton. OR

97006.

[16] S. E. Zenith. Programming with Ease; Semiotic

Definition of the Language. :\ew Haven, CT:

Yale Cniversitv RR 809. 1990.

[17] Sun .\1icrosystems, Inc. Sun :\ctwork Program

ming .\1anual, Part Two. Protocol Specification,

1988.

[18] G. H. Golub and C. F. Van Loan. J1atrix Compu

tation. Baltimore, .\1D: The Johns Hopkins Lni

versity Press, 1989.

[19] C. Ashcraft, The Distributed Solution of Linear

Systems Using the Torus Wrap Data .\1apping.

Bellevue, W"A: Boeing Computer Services ECA

TR-147, 1990.

[20] C. Ashcraft, A Taxonom_y of Distributed Dense

LU Factorization Methods. Bellevue, WA. Boeing

Computer Services ECA-TR-161. 1991.

[21] G. Geist, M. Heath, B. Peyton, and P. Worley.

PICL: A Users' Guide to PIL'L. A Portable Instru

mented Communication Library. Oak Ridge. TJ\:

Oak Ridge National Laboratory T.\1-11616,

1990.

[22] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Man

chek, and V. S. Sunderam, The PV.\1 and HeNCE

Projects. PVM and HeNCE may be obtained by

sending the email message "send index from

pvm" to netlib@ornl. gov.

[23] K. Birman and R. Cooper, The ISIS Project: Real

Experience with a Fault Tolerant Programming

S_ystem. Ithaca, NY: Cornell Cniversity 90-1138,

1990.

[24] T. M. Derby, E. Eskow, R. K. Neves, M. Rosing,

R. B. Schnabel, and R. P. Weaver, The DINO

User's Manual. Boulder, CO: Cniversity of Colo

rado CU-C5-501-90, 1990.

[25] DQS, Distributed Queuing System. Tallahassee,

FL: Supercomputer Computations Research In

stitute, Florida State University, 1992.

[26] A. H. Karp and R. G. Babb II ... A comparison of

12 parallel Fortran dialects.·· IEEE Software. vol.

3. pp .. S2-67 .. 1988.

[27: L. Chan;r and B. T. Smith. Classification ancl

E1·aluation of Parallel Programming Tools. Albu

querque. :\M: Cniversity of :\ew :\lexico CS90-

22. 1990.

:28] B. Leasure. The chairman of the X:3I LS commit

tee can be reached at 1906 Fox Drive. Cham

paif!n. IL 61820.

P"l: PARALLEL PROGRA:\1:\lll'\G SYSTE:\1 35

[29] .. High Performance Fortran Lanf'uage Specifica

tion··. Houston. TX: Rice Cniversitv. \'ersion 0.4,

1992.

[.'30: W. D. Hillis. The Connection .Hachine. Cam

bridge. MA: The :\JIT Press. 1985.

[:31] \\ . D. Hillis and G. L. Steele. ·'Data parallel al

gorithms.'' Communications ACH. vol. 29. pp.

1170-118:3, 1986.

·:~2: Parallelogram InternationaL December 1991-

January 1992. p. "1:.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

