THE PACKING AND COVERING OF THE COMPLETE GRAPH I: THE FORESTS OF ORDER FIVE

Y. RODITTY
School of Mathematical Sciences
Tel-Aviv University, Tel-Aviv, Israel
(Received September 15, 1984)

ABSTRACT. The maximum number of pairwise edge disjoint forests of order five in the complete graph K_{n}, and the minimum number of forests of order five whose union is K_{n}, are determined.

KEY WORDS AND PHRASES. Packing, Covering, Decomposition.
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. $05 C 05$.

1. INTROCUCTION

Graphs in this paper are finite with no multiple edges or loops. Beineke [1] defined the general covering (respectively, packing) problem as follows:

For a given graph G find the minimum (maximum) number of edge disjoint subgraphs of G such that each subgraph has a specified property P and the union of the subgraphs is G.

Solutions of these problems are known only for a few properties P, when G is arbitrary. In most cases G is taken to be the complete graph K_{n} or the complete bipartite graph $K_{m, n}$ (for particular references one may look at Roditty [2]).
OEFINITION: The complete graph K_{n} is said to have a G-decomposition if it is the union of edge disjoint subgraphs each isomorphic to G. We denote such a decomposition by $G \mid K_{n}$.

The G-decomposition problem is to determine the set $N(G)$ of natural numbers such that K_{n} has a G-decomposition if and only if $n \in N(G)$. Note that G-decomposition is actually an exact packing and covering. In the proof of our problems of packing and covering, we make great use of the results obtained for the G-decomposition problem in cases when G has five vertices. As usual $[x]$ will denote the largest integer not exceeding x and $\{x\}$ the least integer not less than x. We will let $e(G)$ denote the number of edges of the graph G and $H=\bigcup_{i=1}^{t} G_{i}$ will show that the graph H is the union of t edge disjoint graphs G_{i}, $i=1,2, \ldots, t$.

The Theorem of this paper solves variations of the covering and packing problems for the four graphs below:


```
denoted [(x,y,z)(u,v)]
```


denoted $[(x, y, z, u, v)]$
(iio) F_{3} :

denoted ($x, y, z ; u, v$)

(iv)

$$
\text { denoted }(z ; x, y, u, v)
$$

Cur theorem may now be states as THEOREM (Packing and Covering).
let F be F_{1}, F_{2} or F_{3} and $n \geq 5$ or F be F_{4} and $n \geq 7$ then
(i) The maximum number of edge disjoint graphs F which are subgraphs of the complete graph K_{n} is

$$
\left[e\left(K_{n}\right) / e(F)\right]
$$

(ii) The minimum number of graphs F whose union is the complete graph K_{n} is

$$
\left\{e\left(K_{n}\right) / e(F)\right\}
$$

2. PROOF OF THE THEOREM

We give a separate proof for each choice of F.
F_{1} : Froving the Theorem true for $n \geq 5$ is a straightforward exercise. Bermond et al. [3] show that

$$
\begin{equation*}
N\left(F_{1}\right)=\{n \mid n \equiv 0,1(\bmod 3), n \geq 6\} \tag{2.1}
\end{equation*}
$$

Thus we have to consider only $n=3 m+2, m \geq 2$. Observe that

$$
\begin{equation*}
k_{3 m+2}=k_{3 m} \cup K_{2,3 m} \cup K_{2}, m \geq 2 \tag{2.2}
\end{equation*}
$$

by (2.1) $K_{3 m}$ has an F_{1}-decomposition. Since $K_{2,3 m}=m K_{2,3}$ and $K_{2,3}$ can be decomposed easily into two graphs F_{1}, it follows that $K_{2,3 m}$ has an F_{1}-decomposition. Only K_{2} in (2.2) is left non-packed. Hence, the Theorem is proved in this case.
F_{2} : The proof will examine several cases depending on the value of n. The following table summarizes the cases $n=5,6,7,8 m$, and $8 m+1$ for $m \geq 1$.

n	packing	remains for covering
5	$(0,1,2,3,4) ;(1,3,0,4,2)$	$(0,2) ;(1,4)$
6	$(0,1,2,3,4) ;(0,5,4,1,3) ;(0,4,2,5,3)$	$(0,3),(0,2),(1,5)$
7	$(0,1,2,3,4) ;(0,2,4,6,1) ;(1,3,5,0,4)$	$(0,3)$
$8 m, 8 m+1$	$(1,4,5,6,0) ;(1,5,2,6,3)$	
	$F_{2}-$ decomposition $[4]$	

We still have to prove the theorem for the cases:

$$
n=8 m+k \quad, \quad k=2, \ldots, 7
$$

$k=2$.
Let

$$
\begin{equation*}
k_{8 m+2}=k_{8 m} \cup k_{2,8 m} \cup k_{2} \tag{2.3}
\end{equation*}
$$

The graph $K_{8 m}$ has an F_{2}-decomposition. since $K_{2,8 m}=2 m K_{2,4}$ and $K_{2,4}$ can be decomposed easily into two graphs F_{2}, it follows that $K_{2,8 m}$ has an F_{2}-decomposition. Only K_{2} in (2.3) is left non-packed.
$K=3$.
Let

$$
\begin{equation*}
k_{8 m+3}=k_{8 m+1} \cup k_{2,8 m+1} \cup k_{2} \tag{2.4}
\end{equation*}
$$

The craph $K_{8 n+1}$ has an F_{2}-deconiposition $K_{2,8 m+1}=K_{2,8 m} \cup K_{2,1}$ and $K_{2,8 m}$ has an F_{2}-decomposition as we saw above. This decomposition of $K_{2,8 m}$ can be done in such a way that the edge $(8 m-1,8 m+2)$ is at one end of the F_{2} which includes it and the point $8 m-1$ is an end-point of that F_{2}. Thus we can replace the edge $(8 m-1,8 m+2)$ with the edge $(8 m, 8 m+2)$. Only the edges $(8 m, 8 m+1),(8 m+1,8 m+2)$, ($8 m-1,8 m+2$) now remain non-packed, and they can be included in one more F_{2}. $\mathrm{k}=4$.
Note that

$$
\begin{equation*}
K_{8 m+4}=K_{8 m} \cup K_{4,8 m} \cup K_{4} \tag{2.5}
\end{equation*}
$$

The graph $\mathrm{K}_{8 \mathrm{~m}}$ hias an F_{2}-decomposition. Now

$$
\begin{equation*}
\mathrm{K}_{4,8 \mathrm{~m}} \cup \mathrm{~K}_{4}=2(2 \mathrm{~m}-1) \mathrm{K}_{2,4} \cup 2 \mathrm{~K}_{2,4} \cup \mathrm{~K}_{4} \tag{2.6}
\end{equation*}
$$

and the $2 K_{2,4}$'s can be selected to be vertex disjoint. Since $K_{2,4}$ has an F_{2}-decomposition, so does $2(2 m-1) K_{2,4}$. We need only to show that $2 K_{2,4} \cup K_{4}$ can be packed by $5 \mathrm{~F}_{2}$ graphs, leaving two non-packed edges.
Let $V\left(2 K_{c}, 4\right)=\{1,2, \ldots 8, a, b, c, d\}, V\left(K_{4}\right)=\{a, b, c, d\}$. Ther, the 5 graphs of the packing of $2 K_{2,4} U K_{4}$ are:

$$
(a, 3, b, c, 8) ;(1, a, d, 7, c) ;(4, b, d, c, 5) ;(a, c, 6, d, 8) ;(1, b, 2, a, 4)
$$

The edges $(d, 5)$ and (a, b) are left non-packed.
$k=5$.
Let

$$
\begin{equation*}
K_{8 m+5}=K_{8 m+1} \cup K_{4,8 m} \cup K_{4,1} \cup K_{4} \tag{2.7}
\end{equation*}
$$

The graph $K_{8 m+1}$ has an F_{2}-decomposition. In the case $K=4$ we saw that $K_{4,8 m} U$ K_{4} has an F_{2}-packing leaving two non-packed edges. Let $V\left(K_{4}\right)=\{a, b, c, d\}$ and $V\left(K_{8 m+1}\right)=Z_{8 m+1}$. Denote the non-packed edges by (a, b) and $(8 m-1, d)$. We show that $G=K_{4,1} \cup\{(a, b),(8 m-1, d)\}$ has an F_{2}-packing leaving two non-packed edges. The F_{2} of this packing is $(8 m-1, d, 8 m, a, b)$. The non-packed edges are: $(c, 8 m)$ and $(8 m, b)$.
$k=6$.
Write

$$
k_{8 m+6}=K_{8 m} \cup K_{6,8 m} \cup K_{6} .
$$

The graph $K_{8 n,}$ has and F_{2}-decomposition. Observe that $K_{6,8 m}=3 K_{2,8 m}$. In the case $k=2$ we saw that $F_{2} \mid K_{2,8 m}$. Tatile 1 shows that K_{6} has F_{2} - packing leaving three non-packed edges as required, and these three can be included in one more F_{2}. $k=7$.
Let

$$
k_{8 m+7}=k_{8 m+1} \cup k_{6,8 \pi 1} \cup k_{7}
$$

The graph $i_{8 m+1}$ has an F_{2}-decomposition, and $F_{2} \mid K_{6,8 m}$, as was shown above. By Table 1 we know that the graph K_{7} has an F_{2}-packing leaving one non-packed edge. The Theorem has now been proved for F_{2} since all cases have been considered. F_{3} : The proof will consider the same cases as the proof for F_{2}.

n	packing	renains for covering
5	$(0,1,2 ; 3,4) ;(1,4,0 ; 2,3)$	$(1,3),(3,4)$
6	$(0,1,2 ; 3,4) ;(3,4,5 ; 0,2) ;(0,3,1 ; 4,5)$	$(0,2),(0,4),(3,5)$
7	$(3,2,0 ; 1,6) ;(5,4,1 ; 2,3) ;(1,6,3 ; 4,5)$	$(2,5)$
$8 m, 8 m+1$	$F_{3}-$ decomposition $[4]$	

Table 2

We now have to prove the theorem for the cases:

$$
n=8 m+k, k=2, \ldots, 7, m \geq 1
$$

$k=2$.
Let $k_{8 m+2}$ be as in (2.3). The graph $K_{8 m}$ has an F_{3}-decomposition. Since $K_{2,8 m}=$ $2 m K_{2,4}$ and $K_{2,4}$ can be decomposed easily into two F_{3} graphs, it follows that $K_{2,8 n}$ has an F_{3}-decomposition. Only K_{2} in (2.3) is left non-packed. Hence, the Theorem is proved in this case.
$k=3$.
Let $K_{8 m+3}$ be as in (2.4). $K_{8 m+1}$ has an F_{3}-decomposition. $K_{2,8 m+1}=K_{2,8 m} \cup K_{2,1}$. The graph $k_{2,8 m}$ has an F_{3}-decomposition as was shown above. Replace the edge $(8 m-4,8 m+2)$ which appears in some F_{3} in the decomposition of $K_{2,8 m}$, with the edge $(8 m, 8 m+2)$. Then the edges $(3 m-4,8 m+2),(8 m+2,8 m+1),(8 m+1,8 m)$ remain non-packed, but could be included in one additional F_{3}.
$k=4$.
Let $k_{8 m+4}$ be as in (2.5). The graph $K_{8 m}$ has an F_{3}-decomposition. Let, $K_{4,8 m} U$ K_{4} be as in (2.6). Since $K_{2,4}$ has an F_{3}-decomposition, so does $2(2 m-1) K_{2,4}$. We show that $2 \mathrm{~K}_{2,4} \cup \mathrm{~K}_{4}$ can be packed by five F_{3} graphs, leaving two non-packed edges.

Let $V\left(2 K_{2,4}\right)=\{1,2, \ldots 8, a, b, c, d\}$ and $V\left(K_{4}\right)=\{a, b, c, d\}$.
Then the five graphs F_{3} are:

$$
(c, 6, d ; 7,8),(d, 5, c ; 7,8),(4, a, c ; d, b),(1, a, b ; 4, d),(a, 3, b ; 1,2)
$$

The edges $(a, 2)$ and (a,d) are left non-packed.
$k=5$.
Let $K_{8 m+5}$ be as in (2.7). The craph $K_{8 m+1}$ has an F_{3}-decomposition. In the case $k=\therefore$ we saw that $K_{4,8 m} \cup K_{4}$ has an F_{3}-packing leaving two non-packed edges. Let $V\left(K_{f}\right)=\{a, b, c, d\}$ and $V\left(K_{8 m+1}\right)=\bar{L}_{8 m+1}$. Denote the non-packed edges by (a,d) and $\left(a, \varepsilon_{1},-1\right)$. The F_{3} graph in $K_{4,1} \cup\{(a, d),,(a, 8 m-1)\}$ is $(b, 8 m, a ; d, 8 m-1)$. The edges ($\mathrm{d}, 8 \mathrm{~m}$) anc ($\mathrm{c}, 8 \mathrm{~m}$) renain non-packed.

The froofs for $k=6,7$ are acconplished in the same ways as for F_{2}.
Once again all casfs have been considered and the proof is complete for F_{3}. F_{4} : it is easy to see that the theorem does not hold for $n=5$ and $n=6$. For K_{7} the graphs F_{4} of the packing are: $(0 ; 1,2,3,4),(1 ; 2,3,4,5),(2 ; 3,4,5,6)$, $(5 ; 4,3,0,6),(6 ; 0,1,3,4)$. The edige (3,4) is left non-packed. Hence, the theorem is proved for $n=7$. For $n=8 m, \varepsilon n+1$ we have an F_{4}-decomposition $[5,6]$. Hence, we again have to prove the theorem for the cases:

$$
n=8 m+k, \quad k=2, \ldots, 7, \quad m \geq 1
$$

$k=2$.
Let $k_{8 m+2}=K_{8 m+1} \cup K_{1,8 m+1}$. The graph $K_{8 m+1}$ has an F_{4}-decomposition. $K_{1,8 m+1}$ is a star that can easily be packed by $2 m$ stars F_{4}, leaving one non-packed edged. $k=3$.
Let $K_{8 m+?}=K_{8 m} \cup K_{3,8 m} \cup K_{3}$. The graph $K_{8 m}$ has an F_{4}-decomposition. Let $K_{3,8 m}=$ $3 K_{1,8 m^{*}}$. Since the graph $K_{1,8 m}$ can be decomposed into $2 m$ stars F_{4}, it follows that $K_{3,8 m}$ also has an F_{4}-decomposition. Let $V\left(K_{3}\right)=\{a, b, c\}$, and create a decomposition of $K_{3,8 m}$ which includes the three stars ($\left.a ; x, y, z, u\right),(b ; x, y, z, u)$, ($c ; x, y, z, b)$. Replace the edge (a, u) by (a, b), the edge (b, u) by (b, c), and the edge (c, u) by (c, a). We did not spoil any star of the decomposition of $k_{3,8 m}$ and the star ($u ; a, b, c$) of three branches is left non-packed.
$k=4$.
Let $K_{8 m+4}=K_{8 m} \cup K_{4,8 m} \cup K_{4}$. The graph $K_{8 m}$ has an F_{4}-decomposition. Let $K_{4,8 m}=4 K_{1,8 m}$. The graph $K_{1,8 m}$ can be decomposed into $2 m$ stars F_{4} so $K_{4,8 m}$ has an F_{4}-decomposition. Let $V\left(k_{4}\right)=\{a, b, c, d\}$, and consider the subgraph $K_{4,4}$ of $K_{4,8 m}$ whose vertices are given by $V\left(K_{4,4}\right)=\{a, b, c, d\} U\{8 m-1,8 m-2,8 m-3,8 m-4\}$. The F_{4} decomposition of $K_{4,8 m}$ can be arranged in such a way that our $K_{4,4}$ is made up of the four F_{4} graphs ($a ; 8 m-1,8 m-2,8 m-3,8 m-4$), (b;8m-1,8m-2,8m-3,8m-4), ($c ; 8 m-1,8 m-2,8 m-3,8 m-4$) and ($d ; 8 m-1,8 m-2,8 m-3,8 m-4$). Replace the edges $(a, 8 m-1)$, ($b, 8 m-1$), ($c, 8 m-1$), ($d, 8 m-1$) with the edges $(a, c),(a, b),(b, c),(c, d)$, respectively we now have a new F_{4} graph, namely ($8 m-1 ; a, b, c, d$). The edges (a, d) and (b, d) are the only one which remain ron-packed.
$k=5$.
Let $K_{8 m+5}=K_{8 m} \cup K_{5,8 m} \cup K_{5}$. As before $K_{8 m}$ and $K_{5,8 m}$ have F_{4}-decompositions. Now $K_{5}=K_{4} \cup K_{1,4}$ so we can complete the proof in the same way as in the case $k=$ 4.
$k=6$.
Let $K_{8 m+6}=K_{8 m} \cup K_{6,8 m} \cup K_{6}$. The graphs $K_{8 m}$ and $K_{6,8 m}$ have F_{4}-decompositions. Let $V\left(K_{6}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. Graph K_{6} can be packed with the two F_{4} $\left\{v_{1} ; v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $\left\{v_{2} ; v_{3}, v_{4}, v_{5}, v_{6}\right\}$. The induced graph on $\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is k_{4}. Hence, we can complete the proof here as in the case $k=4$, leaving the edges $\left(v_{5}, v_{6}\right),\left(v_{4}, v_{6}\right)$ non-packed. Those edges together with the non-packed edge $\left(v_{1}, v_{6}\right)$ accomplish the proof of the theorem in this case.
$k=7$.
Let $K_{8 m+7}=K_{8 m} \cup K_{7,8 m} \cup K_{7}$. The graphs $K_{8 m}$ and $K_{7,8 m}$ have F_{4}-decompositions ard we apply the F_{4}-packing shown for K_{7} at the beginning of this case.
This completes the proof of the theorem for F_{4}.

REFERENCES

1. BEINEKE, L. W. A Survey of Packing and Covering of Graphs. The Many Faces of Graph Theory. Ed G. Chartrand and S. F. Kapoor. Berlin, Heidelberg, New York 1969, P. 45.
2. RODITTY, Y. Packing and Covering of the Complete Graph with a Graph G of Four Vertices or Less. J. Combin. Theory Ser. A, 34 (1983) No. 2, 231-243.
3. BERMOND, J. C., HUANG, C., ROSA, A. and SOTTEAU, D. Decomposition of Complete Graphs into Isomorphic Subgraphs with Five Vertices, ARS Combin., 10 (1980) p. 211-254
4. RAY-CHAUDHURI, D. K., and WILSON, R. M. The Existence of Resolvable Designs, A Survey of Combinatorial Theory, (Ed. J. N. Srivastava et al.), North-Holland, Amsterdam 1973, p. 361-376.
5. TARSI, M. Decomposition of Complete Multigraphs into Stars, Discrete Math. 26 (1979) p. 273-278.
6. YAMOMCTO, Sumiyasu et al. On Claw-Decomposition of Complete Graphs and Complete Digraphs. Hiroshima Math. J. 5 (1975) 33-42.

