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until it coincides with the position of our (x', y', z') 

frame at t = 0, i.e. with its origin at (r0, ~00, z0) in 

our basic frame and with its x axis perpendicular to 

our basic z axis and pointing directly away from it. 

I t  can be shown that  we should put 

r I : r s 

~OM = 2~M(zdc) cos a ,  

~ = ~+{(N~-~C0)/M}~. 

I t  should be remembered that  (rs, ~ ,  z~) should refer 

to a left-handed helix in a right-handed frame. 

I should like to thank Mr G. Kreisel for a number of 

interesting discussions and in particular for suggesting 

the use of Parseval's theorem at a crucial point. 
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It is shown that when a-helices of the Same sense pack together they will probably do so about 20 ° 
away from parallel. For very long chains this may lead to a coiled-coil. The two simplest models 
-- the two-strand rope and the three-strand rope--are described, and used to illustrate the ,diffrac- 
tion theory already developed. It is shown that they would give a diffuse a-pattern. Possible 
examples of these models are briefly discussed. 

• I n t r o d u c t i o n  

I t  is now firmly established that  the structure of the 

synthetic polypeptide polymethylglutamate is based 

on the a-helix of Pauling, Corey & Branson (1951). 

The general similarity of the X-ray diffraction pattern 

of all synthetic polypeptides in the a form so far exam- 

ined makes it very probable that  they are all based 

on this helix. 

Pauling & Corey (1951) suggested that  the a-helix 

could also explain the 'a-keratin'  diffraction pattern, 

which the pioneer work of Astbury and his school has 

shown to be given in various degrees of perfection by 

porcupine quill, hair, horn, muscle, epidermin, fibrin- 

ogen and related proteins. (The k -m-e- f  group). 

The main characteristics of this diffraction pattern 

are meridional arcs at spacings of about 5.15 and 1.5 A, 

and a group of reflexions on and near the equator at 

spacings around 10 A (McArthur, 1943; Perutz, 1951). 

The two main difficulties in fitting the a-helix to this 

structure are: 

(1) The 5.15 J~ reflexion on or very close to the 

meridian of the reciprocal lattice. A straight perfect 

a-helix, parallel to the fibre axis, gives a strong layer- 

line at a spacing of 5.4 /~, but the intensity on the 

actual axis of the reciprocal lattice should be zero. 

This argument is less precise if the arrangement of the 

side-chains is not strictly helical. 

(2) The density. If the centre of the broad equatorial 

reflexion at 9.8 A is taken as the (10.0) reflexion of a 

simple hexagonal lattice the calculated density for 

a-keratin is too low. (It is not clear that  all members 

of Astbury's k -m-e- f  group have a high density.) 

To explain the 5.15 reflexion on the meridian Crick 

(1952) suggested that  the s-helix might be deformed 

into a coiled-coil. I t  was shown that  the energy in- 

volved in this deformation was likely to be small. 

The reason suggested for the deformation was that  the 

non-integer nature of the a-helix made it more likely 

that  two helices having the same sense of twist would 

pack together at an angle rather than exactly parallel, 

and that  this would lead to a coiled-coil. 

Simultaneously Pauling & Corey (1953) put forward 

a detailed model for a-keratin based on coiled-coils. 

They suggested that  the origin of the deformation 

was a repeating sequence of animo acids, a repeat every 

seventh residue being required for two-thirds of the 

a-helices in the structure, and a repeat every fourth 

residue for two-ninths of them. 

This model can explain the simultaneous existence 

of both the 5.15 and the 1-5 /~ reflexions on the me- 

ridian. I t  also broadly explains the equatorial re- 

flexions, and probably the near equatorial reflexions 

of African porcupine quill. The density calculated for 

this model is nearer the observed value, but it is still 
on the low side. 

A C 6  4 4  
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Although the fibrous ~-proteins all give the ~- 

keratin pattern in the loose sense, they give it to 

varying degrees of perfection, African porcupine quill 

having sharp spots (McArthur, 1943) whereas films 

of tropomyosin (Astbury, Reed & Spark, 1948) give 

only a diffuse pattern. The more diffuse the ~-keratin 

pattern becomes, the more it resembles a very diffuse 

pattern from a synthetic polypeptide, that  is, a diffuse 

~-helix pattern. I t  seems unlikely to me that  the diffuse 

~-keratin patterns are all disordered versions of exactly 

the same structure. I t  is more probable that  their 

similarity reflects a general type of structure, which 

I believe to be ~-helices arranged in a non-parallel 

manner for reasons of packing. I t  is unlikely that  

tropomyosin for example, which may well be only two 

c~-helices wide, has the detailed structure proposed by 

Pauling & Corey, which has been based on data from 

African porcupine quill. 

In a previous paper (Crick, 1953) the general formula 

for the X-ray scattering from a set of atoms arranged 

on a coiled-coil has been derived. In the present paper 

the simple packing argument already put forward 

(Crick, 1952) is explained more fully. I t  is based in the 

first instance on a model in which the side-chains are 

idealized into uniform knobs which are then made to 

pack into the holes (the spaces between knobs) of the 

adjacent helix. 

The two simplest coiled-coil structures--the two- 

strand rope and the three-strand rope--are described, 

and used to illustrate the diffraction theory. I t  is 

shown that  these simple structures will give a diffuse 

'~-keratin' pattern, and may be the basis of long thin 

molecules like tropomyosin. 

Types of a-hel ices  

Although the amino acids making up the polypeptide 

chain are all L-amino acids it is possible to build models 
of the re-helix in two different ways, depending upon 

whether the polypeptide chain follows a right-handed 

or a left-handed helix. This difference is sometimes 

expressed by saying that  the fl carbon atoms may be 

in position 1 or position 2 (Pauling & Corey, 1951). 

If we have a model with tiC in position 1, and then 

change it over to position 2, without any other altera- 

tion, we shall change the c~ carbon atom from an 

L to a D configuration. If we now look at this new 

structure in a mirror, the image we see there will 

have an L configuration for the a carbon atom once 

again. The mirror will also change the sense of twist 

of the helix. Thus the two possible structures are the 

one we built first, and the mirror image of the second. 

If we 'turn a right-handed ~-helix upside down, it 

stays a right-handed helix, but the direction of the 

polypeptide chain is reversed in space. The sequence 

C-N-C-C is like an arrow fixed to the helix to show 

its direction. 

We thus have four possibilities for an ~-helix whose 

axis is parallel to some given direction in space, since 

it must have both its sense of twist and its direction 

given to fix it unambiguously, apart from the pos- 

sibility of rotating it about its own axis. These four 

possibilities are illustrated diagrammatically in Fig. 1. 

(a) (b) (c) (d) 

Fig. 1. (a) and (b) Right-handed helices. (c) and (d) Left- 
handed helices. The arrow symbolizes the direction of the 
sequence of atoms in the polypeptide chain. 

I t  is possible that  all the a-helices found in polypep- 

tides and proteins have the same sense. Yakel, Pauling 

& Corey (1952) have claimed that  for polymethyl- 

glutamate the tiC2 position is probably established by 

the data. Riley & Arndt (1952) favoured the same 

position for bovine serum albumin from their radial- 

distribution studies. On the other hand, more recently 

(Riley & Arndt, 1953) they suggest that  insulin may 

have both types of chain. 

In none of these cases, however, can the matter 

be said to be definitely established, and the question 

must still be regarded as open. 

I shall discuss here mainly the packing together of 

~-helices of the s a m e  sense. I t  is easy to see that  the 

packing of helices of opposite sense is simpler, since 

their side-chains can mesh together in the way that  

two gear wheels revolving in opposite directions can 

interlock. They would, therefore, be expected to pack 

parallel to each other. I t  will be shown that  it is 

probably difficult for two ~-helices of the same sense 

to do this. 

The basic packing scheme 

Consider, therefore, the packing together of two ~- 

helices of the same sense. For the moment we will also 

assume that  they have the same direction. We shall 

idealize the side-chains into knobs of uniform size and 

shape, without specifying too closely what this is, 

and examine the pattern they make in space. 

Imagine that  we have a model of such an c~-helix. 

Let us pretend that  we wrap round it, at a radius of 

about 5/k, a cylinder of paper, and mark on the paper 

the point where each side-chain comes. We then open 
up the paper until it is flat again, and examine the 

pattern we have drawn. For an ~-helix having 3.6 

residues per turn we shall find something like Fig. 2. 

I t  can be seen that  we have a regular pattern of 

points, about 7 or 8 A apart, which slants across the 

paper. The broken line in Fig. 2 is not parallel to the 

helical axis because the ~-helix is a non-integer helix, 

and repeats nearly, but not exactly after two turns. 

Let us do the same thing for a second ~-helix. 

Naturally we get the same pattern as before. If we 
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now t ry  to pack our two helices together,  the  two 

pieces of paper  will come into contact ,  and the  con- 

dition t h a t  the  knobs of one helix fall between the knobs 
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Fig. 2. The pattern formed by the side-chains of an a-helix 
(see text). Helical axis vertical. 

of the  other  is equivalent  to saying t h a t  where the  two 

pieces of paper  are in con t ac t - -o r  near ly  in c o n t a c t - -  

the  marks  on one mus t  fall between the marks  on the  

other.  I f  we do this wi th  the  two bits of paper  opened 

out  flat,  however,  we mus t  tu rn  one of them over 

before we superimpose them,  since the  'outside '  of 

both sheets mus t  come into contact .  

I t  is immedia te ly  found t h a t  we can only do this in 

one way  if the  chains are to be approx imate ly  parallel. 

This is i l lustrated in Fig. 3. I t  can be seen t h a t  the 
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Fig. 3. The pattern formed by the side-chains of two a-helices. 
The side-chains of one are denoted by crosses, and of the 
other by circles. 

knobs on one helix (marked as crosses) fall nicely 

between the  knobs of the  second (marked as circles) 

in a sys temat ic  manner .  Moreover, the  pa t te rns  fit  not  

only near  the  line of contact ,  shown as broken lines, 

bu t  r ight  across the  paper,  showing t h a t  we could roll 

one helix round the  other  and they  would a lways 

interlock. The reason for this is t h a t  the  broken line in 

Fig. 2 is roughly a mirror  plane in the  pa t tern .  

Each  mark  on Fig. 3 is surrounded by four nearest  

neighbours about  5 /~ or so away  on the  paper.  The 

exact  distance in space will depend on the  radius a t  

which we pu t  our knobs. Since the  van  der Waals  

d iameter  of a me thy l  group is 4 J~, we see t h a t  there  

will p robab ly  be a reasonable amoun t  of room. 

I f  the  reader  wishes to have  a graphic demonst ra-  

t ion of this form of packing he should, make  himself an 

idealized model of two short  sections of a-helix, using 

(say) the  handle  of a broomstick (to represent  the  

polypept ide backbone) and knobs of plasticine (to 

represent  side-chains) placed over nails carefully in- 

serted in the  correct positions on the  broomstick.  I t  

will be found t h a t  such models pack na tu ra l ly  together  

in the  manner  described. 

To achieve this superposition it is necessary to 

incline the  axes of the  helices to each other. The angle 

between them is about  20 ° . I f  the  two helices remain  

s traight ,  they  will separate,  but  if we deform them 

slightly we can make  them remain in contact  in- 

definitely. They will then  slowly wind round each 

other  like the  two wires of a piece of twin lighting 

cable. Eve ry  seventh knob of one will fall into every 

seventh hole in the  other,  and their  axes will each 

follow a larger, more gradual  helix with a pitch angle of 

about  10 °. 
I t  can be shown (Crick, 1952) t h a t  the  energy to 

deform each helix into a curved helix or 'coiled-coil' 

is probably  very  small. 

I f  the  two helices have  the  same sense, but  run  in 

opposite directions, then we should get the  same pat-  

terns  on our pieces of paper  as before, and thus  we 

should again expect  a similar coiled-coil, though its 

diffraction pa t t e rn  m a y  not  be identical with t h a t  of 

the  coiled-coil described first, because of the difference 

in the  directions of the  polypept ide backbones.  

I f  we do not  require the  two helices to be ap- 

p rox imate ly  parallel  we can find a fur ther  position in 

which the  side-chains crudely interlock. In  this pack 

the  helices are about  70 ° away  from parallel.  This case 

will not  be considered fur ther  here. 

As ment ioned earlier, if we pack  together  two helices 

of opposite sense our bits of paper  will superpose 

accurate ly  when the  chains are parallel. We shall not  

consider this case fur ther  here either, since its dif- 

fract ion pa t t e rn  can be worked out from the simple 

theory  for a s t ra ight  a-helix.  

T h e  F o u r i e r  t r a n s f o r m  of  a c o i l e d - c o i l  

The Four ier  t rans form of a set of scat ter ing points 

(atoms) a r ranged at  regular  intervals  along the locus 

of a coiled-coil has been given by Crick (1953). The 

method  of using this to calculate the s t ructure  factors 

4 4 *  



692 T H E  P A C K I N G  OF a - H E L I C E S :  S I M P L E  C O I L E D - C O I L S  

of a real  coiled-coil s tructure is explained in the  

int roduct ion to t ha t  paper. 
The gradual  helix followed by  the axis of the  curved 

a-hel ix  is called the major  helix. I t  has  radius  r 0, 

a repeat  distance of P in the z direction, and  its pi tch 

angle a is given by  t an  a -- 2r~ro/P. The helix which 

approximates  to the  a-hel ix  itself is called the  minor  

helix, r 1 is the  distance of an atom from the axis of 

the  minor  helix. The complete s tructure is assumed 

to repeat  after a distance c in  the z direction, the major  

hel ix mak ing  N o turns,  and  the minor  hel ix N 1 turns  

' in  its own f rame '  in  tha t  distance. The precise defini- 

t ion of N1 is given in  the original paper. There are 

M atoms, equal ly  spaced along the coiled-coil locus, 

in  the  repeat  dis tance c. The cylindrical  co-ordinate 

of reciprocal space are denoted by  R, yJ and  Z. 

The Fourier  t ransform C(R, % Z) is non-zero only 

on  the  layer-l ines (we shall  call 1 the  number  of the 

layer-line) since the structure is periodic in  the z 

direction (the fibre axis) bu t  non-periodic in the  other 

two directions. F rom equations (10) and  (12) of Crick 

(1953) we write down the result  for a r ight -handed 

ma jo r  hel ix and  a lef t -handed minor  helix. This is 

C(R,  % Z) = C(R,  % l/c) 

-- Z ~ ~ Jp (2~Rr0) Jq (2~Rrl) Js (2r~(1/c) r 1 sin a) 
p q s 

x exp ~[p(½~+~)+q(½~-~,)+s~], (1) 

subject  to the restrict ion tha t  one includes only terms 

for which 

N o p + ( N 1 - N o ) q + N ~ s  = l + m ' M  , (2) 

where p, q, s, and m'  can take  any  integer values, 

posit ive or negative. 
For the  reasons explained in the original paper, 

namely  t ha t  Jn  (x) is very  smal l  for smal l  x and  large n, 

we are usual ly  able to neglect Bessel functions Of high 

order, so tha t  we have to consider only terms for which 

i0, q and  s are all  small.  For  s imilar  reasons the most 

impor tan t  terms are l ikely to be those for which two 

of the Bessel functions are of order zero. I t  will  become 

apparent  later  on tha t  we can usefully describe some 

of these as follows: 

p = q = s = m ' - - 0  • equatorial ;  

q = s --- m'  = 0, P small :  near  equatorial ;  

p = q =  m ' = 0 ,  s = 1 • 5 . 1 / ~ m e r i d i a n ;  

p = q = s  = 0 ,  m ' =  1 : 1 . 5 A m e r i d i a n ;  

p = s = m ' = 0 r q  = 1  : 5 / ~ n e a r m e r i d i a n .  

We  shall  now consider the simple cases of the two- 

s t rand rope and the three-strand rope to i l lustrate the 

general character of the diffraction theory. 

T h e  t w o - s t r a n d  r o p e  

To make  the  model  precise we have to define the rela- 

t ion between the two a-helices making  up the  rope. 

We will restrict  ourselves for the moment  to two helices 

having  the  same direction. 

I t  seems probable tha t  t hey  will be related b y  a diad 

parallel  to the axis of the structure. Tha t  is, t ha t  the  

line of contact will be like the broken line in  Fig. 4, 

... 
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Fig. 4. Part of Fig. 3, showing an alternative position for the 
broken line. In the two-strand rope the broken line repre- 
sents the line of contact. 

ra ther  t han  tha t  in Fig. 3. Simple models suggest t ha t  

in  the case of the two-strand rope this a r rangement  

gives most  room for those side-chains which occur 

near  the line of contact to tu rn  outwards, away  from 

the line of contact, so tha t  packing should be easy. 

For  s impl ic i ty  the contr ibut ion of only one of the  

pair  of helices making  up the  two-strand rope will  be 

considered in the first instance. 

We take  as our parameters :  

Turns of the major  helixl N o = 1 . 

Turns of the minor helix, N 1 = 36 .  

Atoms in the set, M -- ½ × 36 × 7 -- 126.  

Repeat  distance, C = 126 × 1.5 cos 10 ° A - 

186 A.  

Radius  of major  helix, r 0 = 5.2 J~, s a y .  

Equa t ion  (2) therefore becomes 

10÷35q+36s = l ÷ 1 2 6 m ' .  (3) 

Now consider first the  mer id ian  of the  reciprocal 

lattice, i.e. R = 0. This makes  both  (2zRro) and 

(2gRrl) zero, so that ,  since Jp(0) is non-zero only for 

p = 0 and since Jo(0) = 1, we obta in  for the ampl i tude  

of the structure factor for a single set of £toms the 

value 

C(0, 0, 1/c) = .Z  J~(2r~(1/c)rl sin a) exp ( is~) ,  (4) 
8 

subject  to 

36s = l + 1 2 6 m ' .  (5) 

Thus since 36 and 126 are mult iples of 18, 1 mus t  be 

a mul t iple  of 18, so tha t  there are no reflexions on the  

mer id ian  except for spacings which are sub-mult iples  

of 186/18 = 10"35 J~. 
Such a simple result  is l ikely to spring from an 

equal ly  simple reason. Inspection of our model  shows 

tha t  each helix can be turned into itself (since we have  

tac i t ly  assumed all side-chains are the  same) b y  the 

operation of a screw axis which has  a t rans la t ion of 
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Table 1 

(//18) 0 1 2 3 4 5 6 7 8 9 

d (A) ¢o 10.3 5.17 3.45 2-59 2.07 1-72 1.48 1-29 1.15 

l 
0 1 2 3 4 

s --3 --2 --1 0 1 

This is a distribution of the same type tha t  one finds for a simple helix (Cochran, Crick & Vand, 1952). 

10 

1-03 

5 

10.35 A (the distance apar t  of every 7th side-chain) 

and a rotation of 20 °. This 20 ° springs from the fact 

tha t  in a straight a-helix, with a rotation of 100 ° per 

residue, the rotation after 7 residues is 700 °. This is 

20 ° less than 720 ° , which is two complete turns. The 

fact tha t  7000-720 ° = - 2 0  ° (not +20 °) explains why 

the major helix has the opposite sense to the minor 

helix in this case. A similar argument, though from a 

different premiss, has been given by Pauling & Corey 

(1953). 

The formula used by Crick (1952) for the expected 

meridional spacing for a coiled-coil s-helix, namely 

5.4 cos a /~, where a is the pitch angle, is seen to be 

incorrect. Here 5.4/~ is the axial distance per turn for 

the straight s-helix. The above formula is correct for 

an inclined helix (angle of inclination = ~), but  for a 

coiled-coil one must  also allow for the slow rotation 

of the major helix. Thus there is no need to postulate 

a = 18 ° in order to make cos a = 5.15/5.4, and in 

fact a tilt  of half this is satisfactory if the correct 

formula is used. 

From equation (5) we can easily write down the 

values of s appropriate to the various layer-lines. They 

are given in Table 1. High values of s have been 

omitted. 

Thus we see tha t  the structure may produce re- 

flexions on the meridian at both 5.17 A and 1.48 A. 

We must  now estimate whether these reflexions are 

likely to be strong. 

Consider the 5.17 A reflexion. The amplitude is 

given by Jz(2xe(1/c)rl sin a), and, since 2~(1/c) sin ~ = 

0.21, this is Jl(0.21rz). Thus for the atoms of the 

polypeptide chain, for which r 1 is between 1.6 and 2.3, 

the contribution to this reflexion will by itself be 

small. H, however, we consider the side-chain, or more 
plausibly the first two or three atoms of the side-chain, 

as a blob with centre at r -- ~ ~½/~, say, which is not 

an unreasonable postulate at  this resolution, then we 

obtain Jl(0"9), which has the value 0.41 and is quite 

considerable. 

In order to give a concrete example the structure 

factor of this reflexion has been calculated for poly- 

valine. Valine has the side-chain -CH~(CH3),. The 

two methyl  groups were placed in the most plausible 

positions consistent with staggering the bonds. The 

results are given in Fig. 5. I t  can be seen tha t  the 

contribution OA from the polypeptide chain is nearly 

in phase with the side-chain contributions for the tic 

in position 2, but  about 90 ° out of phase for position 1. 

The effect is tha t  the former structure gives double 

the intensity of the latter. 

Consider next  the 1.48 reflexion. The amplitude of 

this is given by J0(0.74rl). For  r z = 1.65 we obtain 

J0(1.2) = 0.67. 

A 

Ca) (~) 

0 1 2 3 
I t I I 

Fig. 5. The ampli tude of the 5.1 A meridional reflexion for 

a hypothet ical  coiled-coil. (a) tiC in position 1. (b) tiC in 
position 2. OA: main chain; A B :  tiC; BC:  (CHa)u; OC: 

resul tant  amplitude. Scale in electrons per residue. 

The exact theory shows tha t  it is slightly less than 

this, but  i t  is easy to see tha t  the contribution from 

the main polypeptide chain is likely to be consider- 

able, and qualitative comparisons with the straight 

a-helix confirm this. The side-chains might be ex- 

pected to contribute little here, since it  is doubtful if 

they would be sufficiently ordered at  this resolution. 

As to the other possible meridional reflexions, we 

shall get very little for the 10.3 /~ reflexion, since Is] 

is 3 and 1 is small. Those at 1.72 and 1"03 _~ can only 

be weak or absent, since the main chain will contribute 

little, and the side-chains are unlikely to be sufficiently 

ordered at  these resolutions. The same may  be true of 

the 2.59 J~ reflexion. 

I t  is difficult to decide about the 3.45 and 2.07 A 

reflexions without detailed calculations, but  it would 

not be surprising if they  were weak or absent, since 

the analogous regions in the diffraction pat tern  of the 

straight co-helix are rather  weak. 

These results are not altered when we consider the 

effects of both helices together. I t  is easy to see from 

the expression for the phase in equation (1) tha t  the 

contributions from the two helices related by a diad 

will always add if (p-q) is even, and cancel if (p-q) 
is odd. Examinat ion of equation (3) shows tha t  in this 

particular case it  is equivalent to saying tha t  the 

contributions add on even layer lines, and tha t  odd 

layer lines are absent. This can be seen in another way. 

We have chosen our parameters so tha t  one of the 

coiled a-helices, considered separately, has an 18-fold 
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screw axis, and it will therefore have a screw diad 

as a component of this. Thus in this case the second 

ha l f  of one helix will be identical with the first half 

of the other, and the true repeat of the pair in the z 

direction will be half  tha t  of one of them considered 

separately. Thus odd layer lines will be absent. The 

contributions on the meridian from the two helices 

of this model.will add, since we have shown tha t  we 

only get non-zero intensity there when 1 is a multiple 

of 18. 

Thus the coiled:coil hypothesis explains in a straight- 

forward manner the co-existence of the 5.1 and the 

1.5 A reflexions on the meridian. The amplitude of the 

1.5 A comes from the precise repeat of the main 

polypeptide chain and the 5.1 A mainly from the less 

precise but  sufficiently regular arrangement of the 

side-chains, or the first two or three atoms of them. 

The origin of the coiled-coil is explained i'n an entirely 

natural  way as the result of the close-packing of two 

adjacent c~-helices, and it is not necessary to postulate 

a regular sequence of residues repeating every seventh 

residue. The figure seven comes directly from the 

nature of an ~-helix. 

We next consider the equatorial region of the dif- 

fraction pat tern  of the two-strand rope. 

On the equator we have l = 0. Thus s must be zero, 

or the third Bessel term will be zero. We thus have for 

the structure amplitude 

Z Jp (2~Rr0) Jq (2zRrl) , 
p q 

subject to 

p+35q = 126m'.  

For small R the only term of any importance has 

p = q = 0. This is the approximation used (though 

for their 7-core cable) by Pauling & Corey (1953). 

For higher R one might have to consider such terms 

a s p = 7 ,  q = 7 ; p =  --14, q = 4 ; p =  --7, q =  l l e t c .  

One can find such combinations sytematically by 

plotting them on graph paper, using p and q as the 

two co-ordinates. The possible values will be found to 

form a regular pattern,  and it is easy to see whether 

any important  term has been missed. 

Of the general reflexions from the two-strand rope 

we shall discuss only the near equatorials, i.e. those 

terms given by p # 0, q = s = m' = 0. We thus have 

for a single coiled coil 

c(R, 9, = 

Jp (27~Rro) Jo (2~Rh) Jo (2~ (l/c)h sin a) exp ip (½~ + y~), 

subject to 

NoV= 

Since N o = 1, we have p = 1. For  small values of l, 

J0(2~r(1/c)h sin ~) is approximately equal to 1.0. For  

simplicity let us consider r 1 small, so tha t  Jo(2~Rh)  

is varying slowly with R. Then the position of the 

first maximum qf this function will be near the first 

maximum of Jp(2~Rro). Taking r 0 = 5.2, we obtain 

the results of Table 2 for the spacing (l/R) of this 

maximum. 
Table 2 

p 1 2 3 4 

1/R (/~) 17.8 10.9 7 . 7 5  6.2 
0 (°) 5½ 6½ 7 7½ 

Here tan  0 = 1/cR. The pitch angle of one coiled- 

coil was 10 °. Thus the maximum of the Bessel func- 

tions of the near equatorials occurs at  an angle from 

the equatorial direction of about two-thirds of the 

pitch angle. This gives us a very rough-and-ready 

method of estimating the pitch angle of a coiled-coil 

from the near equatorial region of the diffraction 

pattern.  

As shown above, for our two-strand rope only even 

values of 1 are present, so tha t  the first near-equatorial 

will be for 1 = 2. The maximum of J~ is fairly broad, 

and the exact spacing observed in practice will depend 

upon the distance of neighbouring parts of the structure, 

but  we can reasonably expect a fairly strong reflexion 

in the 10 A region. 

The terms we have been considering correspond 

crudely to taking the a-helix as a curved rod of elec- 

tron density. Thus while we might expect the intensity 

for 1 = 2 to be large, tha t  for 1 = 4 and higher is 

likely to be small, owing to the finite radius of the 

a-helix. For example, for r 1 = 1-8 /~, Jo(2ztRh) = 0 

when 1/R = 4½ A. 

The remainder of the general reflexions will not be 

discussed here in detail. The most important  terms 

are likely to be the 5 /~ near-meridionals, which can 

be thought  of as coming from the strong reflexion on 

the 5.4 A layer line of the straight ~-helix, which 

have now been dispersed into a number of reflexions 

in tha t  region of the reciprocal lattice. They are given 

in the theory by terms for which m' is zero, s and q 

are either 0 or 1, and p is small. There will also be a 

similar set due to the dispersal of the 1 .5 /k  reflexion. 

For  these m' = 1, (s+q) = 0 and p and q are small. 

Their main effect is likely to be the production of a 

broad 'arc'  in tha t  region. 

The three - s t rand  rope 

This is the next simplest case. Three a-helices pack 

together so tha t  they slowly coil round a straight line 

running between them. This structure is called the D a 

rope by Paullng & Corey (1953). One possible way to 
relate the helices is by a triad axis. Each helix is then 

arranged so tha t  the broken line in Fig. 3 always 

points towards this t r iad axis. If we make a section 

perpendicular to z at the appropriate level we shall 

obtain something like Fig. 6. Had  we taken the section 

about 10.3 A higher, we should have obtained an 

identical picture except tha t  it had been rotated 

through about 20 ° about the fibre axis. If we had gone 

only 5.15 /~ higher we should have got the mirror 

image of Fig. 6 reflected about the broken line, ~dth 
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a 10 ° rotat ion superimposed. I t  is these layers of side- 

chains occurring every 5 .15/~ in the z direction which 

are ma in ly  responsible for the 5.15 J~ meridional  

reflexion. 
I 

i ..,' : 
• i 

a'. ,  .,.-°" I 
I 
, 0 
, I 

s h  
I 

Fig. 6. Schemat ic  d i ag ram to i l lustrate  the  pack ing  of the  

th ree - s t r and  rope.  The figure is a sect ion perpendicu la r  to 

the  fibre axis. The  circles represen t  the  main  po lypep t ide  

chains.  The  knobs  represen t  side-chains.  Only  the  inner 
s ide-chains are shown.  The  d o t t e d  side-chains are a t  a 

s l ight ly d i f ferent  level f rom those  d r a w n  wi th  solid lines. 

The diffraction pa t te rn  for the three-s t rand rope 

will have broad similarit ies to tha t  of the two-strand 

rope. We can take the values of _No, _N1 and M to be 

the  same as before. As each curved helix can be 

turned  into itself by  the same screw axis as before, 

i.e. by  a t rans la t ion of 10.3 /~ and a rotat ion of 20 °, 

the  meridional  reflexions will occur at the same 

spacings. We shall  have s l ight ly  larger values for r o 

and  a, so t ha t  the  intensit ies will not  be quite the 

same, but  the general  a rguments  used will still  apply.  

The in tens i ty  of the  5.15 reflexion is l ikely to be in- 

creased ra ther  t h a n  decreased, owing to the increase 

i n a .  

The fact  tha t  we have three ra ther  t han  two ~- 

helices means  tha t  only every th i rd  layer  line will be 

present, ra ther  t han  every second. The fundamen ta l  

repeat  for this  s imple model  will therefore be about  

186/3 = 62 A. 

A d d i t i o n a l  c o n s i d e r a t i o n  

Under  this  heading will be discussed the  effect of the 

slight distortions of our simple structures which pre- 

vent  them repeat ing exact ly  after one tu rn  of the major  

helix, the effect of repeat ing sequences of residues, 

and  ~he effect of the helices not  all  running in the same 

direction. 

Al though the  knobs-into-holes packing a rgument  

makes  it  very l ikely tha t  every seventh residue will 

be the same distance from the fibre axis, there is no 

need for the major  hel ix to rotate e x a c t l y  20 ° in this  

interval ,  and  quite minor  distortions of the helix m a y  

al ter  this  figure appreciably.  Suppose, as an illustra- 

tion, tha t  in our three-s t rand rope the angle was 

3 6 0 ° / 1 9 ~ 1 9  °. The structure would then  repeat  

exact ly  after (19 × 7) -- 133 residues. We should have 

_N 0 - -  1, _N1 = 38, m - -  133, c = 1 3 3 × 1 - 5 c o s 1 2  ° - -  

195/~ and r 0 = 10.4/[/3 = 6 A (the values of r 0 and a 

are only i l lustrat ive;  t hey  will depend on the na ture  

of the residues packing round the t r iad  axis, and they  

m a y  well be ra ther  smaller). 

We should then  have, ins tead of equat ion (3), the 

restr ict ion 

p + 3 7 q ÷ 3 8 s  = l +  133m' .  

The meridian reflexions will thus  be sub-spacings of 

195/19 = 10.26 A, and will be ra ther  s imilar  to our 

previous figures. (If r 0 were smaller,  so tha t  ~ were 10 °, 

they  would be ident ical  with the previous values.) 

However, since each curved helix now has a 19-fold 

screw, and since 19 is prime, we shall  now get layer- 

lines for all values of l, and not  merely  for I a mul t iple  

of 3. However, the rule tha t  ( p - q )  must  be a mul t iple  

of 3 still  holds. This imposes definite restrictions on 

terms occurring. Thus for example  the near  equatorials  

for which q = s = m '  = 0, will occur only when 1 is a 

mult iple  of three, as before. The main  term on the 

equator  remains  unchanged,  but  some of the higher 

terms are altered. 

In  the general  case the minor  helix m a y  not  repeat  

an exact  number  of t imes for one te rm of the major  

helix, so tha t  _No will be greater t han  one. Because of 

the knobs-into-holes we might  expect for these models 

tha t  M would always be 7/2 t imes _N1. As an example  

we m a y  take  _No = 99, _N1 = 3,800, M = 13,300, so 

tha t  our restr ict ion would be 

9 9 p +  3 , 7 0 1 q  + 3 , 8 0 0 s  = l +  13,300m'.  

This has two interest ing consequences. First ,  since the 

true repeat  is so long the strong reflexions m a y  occur 

on layer  lines which are not  s imply  related. For  

example  the 5.1 A reflexion will come on 1 = 3,500, 

and the first near  equatorial  for a three-s t rand rope 

on 1 = 297, giving a ratio of 38.38/3, instead of 38/3 

as in the previous case. Thus it  m a y  be impossible to 

index the X-ray  picture in a simple and unambiguous  

manner .  Secondly, for the equatorial  reflexions it  will 

be found tha t  all the  terms except the f i r s t  can be 

ignored, because the order of the Bessel functions is so 

high. This might  be expected on physical  grounds 

since the  effect of the inexact  repeat  will be to smear  

over the details of the project ion in the z direction. 

The te rm for which p = q = s = m '  = 0 is therefore 

the only one tha t  need be considered. A similar  

a rgument  can be used to jus t i fy  the  use of this  single 

te rm by Paul ing & Corey (1953). 

In  the completely, general  case two helices m a y  pack 

together in an unsymmet r i ca l  manner .  This corre- 

sponds, in terms of Fig. 3, to drawing the broken line 

which represents the line of contact in some other 

direction than  the one shown. The pa th  this new dotted 

line will follow on one of our pieces of paper  will not  

correspond to  the one it follows on the other piece, 
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so tha t  the relationship between the two :helices will 

not be symmetrical. This might happen, for example, 

if one helix "were straight and the other coiled round it 

as in the A B  e cable of Pauling & Corey (1953). Beyond 

pointing out tha t  this may  alter the ratio of the main 

meridian spacings (5.15 and 1.50 /~) from the value 
3-50, such structures will not be discussed further here. 

We next consider the effect on the diffraction pat- 

tern of a repeating sequence of residues. This has been 

postulated by  Pauling & Corey (1953) in their model 

for ~-kerat in to account for the curving of the ~- 

helices. I t  might also be expected if ~-keratin were 

made up of small sub-units placed end to end.* I t  

is easy to see tha t  we may get extra spots, in particular 

on the meridian. The s~mplest way to allow for this 

complication is to add to our basic structure some extra 

atoms to represent a heavy side-chain. If the sequence 

repeats after @ residues, we consider an additional 

discontinuous coiled-coil, with the same parameters as 

the basic one, except tha t  we now write M/Q instead 

of M, since our extra atom occurs only tha t  number of 
times. 

Thus for our simple two-strand rope if we postulate 

every 12th residue the same, so tha t  M/Q = 126/12 = 

21/2, we should obtain for meridional reflexions the 
condition 

36s = 1+(21/2)m' 

instead of 

36s = l+  126m'. 

This implies tha t  the structure now only repeats 

exactly after twice the distance it did before, so tha t  

if we put  l '  = 2/, where l' is the index appropriated to 
the longer repeat, we have 

"THE P A C K I N G  OF ~ - H E L I C E S :  S I M P L E  C O I L E D - C O I L S  

72s ----/ '+21m'. 

Thus not only do we get the obvious extra meridional 
reflexions, given in our terminology by s = 0, but also 

other spots as well. However, we should expect the 
structure factors for such spots to be small, since not 

many  atoms would be contributing to them. I t  should 
be remembered, however, tha t  the Lorentz factor for 

meridional spots often makes them appear stronger 

on the actual X-ray photograph than reflexions in 
general positions. 

I t  should be noticed tha t  if 1 is 7, we do not obtain 

extra spots on the meridian, since on our hypothesis 

M will necessarily be a multiple of 7. The effect of such 

a repeating sequence on meridlonal reflexions is merely 

to alter the intensities of the reflexions already dis- 
cussed. 

In  our considerations so far we have assumed tha t  

the chains all run in the same direction, so tha t  they 
can be related by simple diads or triads. If they run in 

different directions we may expect the relationship 

between the side-chains tha t  pack together to remain 

roughly the same. Thus the 5.1 J~ meridian reflexion 

* See Farrant, Rees & Mercer, 1947. 

for these simple models is likely to remain substantially 

unaltered. Moreover, the 10 A equatorial and near- 

equatorial reflexions should be relatively unaffected, 

since at  this resolution the direction of the polypeptide 

chain mak~es little difference. The 1.5 meridional re- 

flexion, however, which comes mainly from the atoms 
of the backbone of the helix, will depend on the exact 

phasing, in the z direction, of the backbones of chains 

running in opposite directions. I ts  intensity could only 

be decided from a detailed examination of models. 

P o s s i b l e  a p p l i c a t i o n s  

Tropomyosin 

The simple structures described so fa r - - the  two- 

strand rope and the three-strand rope - -may  be the 

basis of long thin molecules, such as tropomyosin, 

which are only two or three polypeptide chains thick 

(Bailey, 1953). The X-ray diagram to be expected from 

a loose array of such molecules would have the broad 

characterist ics already described i.e. a diffuse ~ dia- 

gram. One is unlikely to detect very long spacings, 
unless the orientation and packing were particularly 

good, since the only strong reflexions to show a long 

axial periodicity are the near-equatorials, and these 

would probably be merged with the true equatorials. 

We should expect a diffuse meridional arc in the 5 J~ 

region, with an emphasis on the meridian at  about 

5.15 J~. The equatorial reflexions near 10 J~ would be 
expected to be rather diffuse and perhaps at  a ra ther  

greater average spacing than usual, owing to the 
difficulties of packing. This is a fair description of the 

X-ray results of Astbury, Reed & Spark (1948) for 

stretched films of tropomyosin. These films also give a 

1-5 ~ meridional reflexion (Astbury, reported by 

Perutz, 1952), as one would predict. 

One interesting possibility arises from models of this 

kind. I t  is noticeable tha t  the proportion of non-polar 

to polar groups in tropomyosin is lower than for a more 
globular protein like haemoglobin. I t  is plausible to 

postulate tha t  these non-polar groups tend to occur 

between the chains, rather than on the outside of the 

molecule, since the packing of hydrophobic groups 

together would allow more hydrogen bonds to be made 

elsewhere, and thus is energetically preferable. I t  is 

noteworthy tha t  no straight hydrocarbon side-chains 

(beyond alanine) occur in proteins. The more awkward, 

less flexible nature of the valine, leucine and iso- 

leucine may make it easier ~or the ~-helices ~o fall 

into a coiled-coil configuration. One might expect 

these non-polar side-groups to make up about two- 

sevenths of the residues. I t  is probably a coincidence, 

but the analysis of tropomyosin by  Bailey (1948) 
shows tha t  alanine plus valine plus the leucines make 

up 0"29 of the total  number of residues, which is very  

close to two-sevenths. If this hypothesis were correct, 

one would expect there to be a tendency towards an 

alteration of groups of polar and non-polar residues 

in tropomyosin, the non-polar occurring at an average 
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interval of 3½ residues, so tha t  they always pointed 

'inside' the molecule. The experimental difficulties of 

determining the sequence or part ial  sequence of very 

long polypeptide chains are at the moment very great, 

but  the possibility of obtaining a result of this sort 

should not be overlooked. 

a-Keratin 

A glance at  the X-ray diagram of African porcupine 

quill (McArthur, 1943), which gives the most perfect 

a-keratin pictures, shows tha t  we have to deal with a 

structure of great complexity. I t  is not proposed to 

discuss it here in detail. The following remarks should 

be regarded as preliminary. 

At first sight the protein appears to be a very good 

example of the three-strand rope (the D 3 rope of 

Pauling & Corey, 1953). The repeat is 198 /~ and, as 

far as can be seen from McArthur's Fig. 2, the near 

equatorials occur at the right place. However, the 

three-strand rope would not easily explain the equa- 

torial reflexion at  27 A, nor the high density (about 

1.3 g.cm.-3). 
The model proposed by Pauling & Corey (1953) 

par t ly  overcomes these objections. I t  remains to be 

seen whether this model can be generated by packing 

considerations rather than by repeating sequences of 

residues, as postulated by Pauling & Corey. 

While this model appears to explain the very strQng 

reflexions, it is unlikely in its simple form to predict 

the rich spectrum of reflexions on or very close to the 

meridian. I t  is possible tha t  these are produced because 

the structure is made out of sub-units, joined end to 

end, or perhaps because of distortions due to some 

complicated interaction between chains. 

Globular proteins 

The implication for globular proteins, if they are 

mainly made up of a-helices, is tha t  the a-helices may 

well pack some 20 ° or so away from parallel. This may 

go a long way to explain the difficulties experienced in 

at tempting to interpret the diffraction patterns of 

protein crystals. Riley & Arndt (1953) make a similar 

point when mentioning their a t tempts  to build models 

of insulin, and it will be interesting to see if the skew 

structures they  mention are due to an approximation 

to knobs-into-holes packing, or to some other reason. 

The curious way that  one a-helix can roll round 

another while preserving this general sort of pack 

tempts one to speculate whether this may occur in 

enzyme action, since it would provide a mechanism 
whereby two small molecules, each rather rigidly 

at tached to part  of the protein surface, could be 

brought into proximity in a specific manner. I t  is clear 

tha t  these questions are unlikely to be settled until 

the architecture of some of the globular proteins is 

definitely established, and this remains the major aim 

of protein crystallography. 

C o n c l u s i o n  

The main conclusion of this paper is tha t  it is no longer 

possible to claim tha t  the a-keratin pat tern  cannot be 

explained in terms of the s-helix. The general features 

of the observed X-ray pat tern  can be predicted merely 

by postulating tha t  a-helices tend to pack side-by-side 

in a knobs-into-holes manner. I t  is not necessary to 

postulate a repeating sequence of residues. The in- 

herent plausibility of such a form of packing, and the 

entirely unforced way in which it leads to the main 

characteristics of the observed X-ray diagrams, make 

it probable tha t  it forms the basis of the structure of 

the fibrous proteins. 

Note added in proof, 22 Ju ly  1953.--Astbury & Hag- 

gith (1953) have recently reported meridional reflexions 

for a-keratin at  spacings of 3-40 and 2.5 s /~; inten- 
sities (w-m). 

I should like to thank Sir Lawrence Bragg and also 

my colleagues in the Medical Research Council Unit  

both for the interest they have shown in this problem 

and for helpful suggestions and criticisms. 
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