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1. Introduction. The Padé table of a formal power series
Clzy= > c,z"
m=0

is a doubly infinite array of rational functions

Pwl2) _Gg +az + -+ + a,z"
qmn(z) bO + blz + -+ ann

rmn(z) =

determined in such a manner that the Maclaurin expansion of r,, agrees with
C(z) as far as possible. The power series C(z) is said to be normal if, for each pair
(m, n), this agreement is exactly through the power z™*". The original concept of
the Padé¢ table is due to Frobenius who developed the basic algorithmic aspects
of the theory. The attribution to Padé, whose thesis came later, seems to be due to
his treatment of certain abnormal cases which may arise. See Theorem 3.2.

There are interesting connections between the Padé table and other, not
obviously related, areas of analysis. The bibliography provides a sample of some
of these areas. Perhaps the most significant connection is that with the analytic
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theory of continued fractions, a subject of earlier origin, which lists among its
contributors Chebyshev, A. A. Markov and Stieltjes. The so-called associated and
corresponding continued fractions for the power series C(z) are, respectively, the
superdiagonal {r, ,.}¢ and the staircase {r,,.r, ,+1}¢ consisting of the diagonal
and superdiagonal in the Padé table. Moreover, since the origin of the theory of
orthogonal polynomials lies within the theory of continued fractions, it is not
surprising that the Padé table has connections with the former. If the coefficients

+

e
-0

are moments of a nondecreasing function y with infinitely many points of increase,

then the reciprocal polynomials

q:(,n+ 1(2) = Zn+1qn,n+ 1(2_1)’ n = 0,

of the denominators g, ,., are the polynomials orthogonal with respect to p.
To see this compare the determinant expressions of Theorem 3.3 with those in
Szego, p. 27.

There are also connections with Euclid’s algorithm for finding the greatest
common divisor of two polynomials and with a generalization of the criterion of
Routh and Hurwitz for counting the number of zeros of a polynomial in the left
half-plane. These are closely related to the material of § 4.

The modern stimulus for interest in these areas has come from two principal
sources. In his thesis D. Shanks introduced a class of nonlinear sequence trans-
formations, the e, (s,) transformations, and related them to the Padé table. Shanks’
transformations were given as certain determinantal quotients, and hence were
not readily computable. By appealing to a classical, but little known, determinant
identity, P. Wynn showed how to compute the e,(s,) transformations recursively.
This resulted in Wynn’s epsilon algorithm, of which Bauer’s eta algorithm is a
computationally more stable variant. The first step of each of these algorithms is
mathematically equivalent to the well-known Aitken AZ-process. Several years
later Wynn, on eliminating certain auxiliary values from the epsilon algorithm,
found a fundamental identity (Theorem 5.5) among the Padé fractions themselves.
This identity, which was overlooked by Frobenius, completes the set of those given
by him. Thus it is natural to refer to it as “the missing identity of Frobenius.”

The second modern development is the quotient-difference algorithm of H.
Rutishauser. The original problem, suggested by E. Stiefel, was that of determining
the characteristic roots of a finite square matrix A from the values of the Schwarz
constants

S = Vo A™Xy, mz=0,

which are readily computed as a byproduct of the power method iteration
Xme1 = AX,,, mz0.
Rutishauser observed that this is in essence a special case of Hadamard’s problem,
namely that of determining the poles of the rational function
[eel
s

fO) = V50L = A7t = Y i

m=0
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from the coefficients in its Taylor expansion about 4 = o0, and applied the theory
of continued fractions to the problem. Now there is a relation between formal
J(acobi)-fractions (= the continued fractions associated with the above power
series) and tridiagonal matrices J. The successive approximants of the J-fraction
are the (1, 1)-elements of the matrices (I, — J,)~ !, with J, the nth principal sub-
matrix of J. This led to Rutishauser’s matrix interpretation of the quotient-
difference algorithm as an LR-algorithm for tridiagonal matrices and, on general-
ization, to the corresponding algorithm for full matrices.

The latter is as follows. Let 4 = A" be the given matrix. If 4% is known,
factor

AR — [WRE®

into the product of a (unit) left triangular matrix L™ and a right triangular matrix
R™_Then let

A+ _ RUIL K

and repeat indefinitely. Under certain hypotheses, which include the assumption
of the existence of the factorization at each step and the requirement that the
moduli of the roots of A be distinct, the matrices A’ converge to a right triangular
matrix 4’ whose diagonal consists of the roots of 4. A number of refinements
are possible.

Now the LR-factorization of a matrix A is the significant part of Gaussian
elimination. The factorization exists if the leading principal submatrices of 4 have
nonnull determinants. Practically there is the need for maximal pivot selection.
The QR-algorithm (= UR-algorithm) of Francis and Kublanovskaja avoids
these problems by replacing the LR-factorization above by a UR-factorization:
A = UR with U unitary and R right triangular. The next iterate is then A’ = RU.
Again, important refinements make this a practical computing procedure. The
UR-algorithm has been studied by Parlett and Wilkinson (see the bibliography)
and is the method of choice for ihe nonsymmetric matrix eigenvalue problem.
Hence by generalization and stabilization, the theory of continued fractions, of
which that of the Padé table is an extension, has led to significant advances in the
numerical solution of the algebraic eigenvalue problem.

The contents of the present paper are as follows. In § 2 certain determinant
identities are developed which will have application in the sequel. The most
significant are the Cauchy-Binet formula and Sylvester’s determinant identity.
Section 3 presents the fundamental existence and uniqueness theory for Padé
fractions, an extension of the theorem of Padé on block structure of the table,
and gives determinant formulas for the entries. The Padé table of a quotient of
two formal power series is studied in § 4. This illuminating concept provides con-
nections with resultants and a more general theorem of Trudi on the greatest
common divisor of two polynomials. It also leads to a rather natural, but useful,
duality relation between the Padé table of C(z) and that of its reciprocal series D(z).
In § 5 the classical identities of Frobenius are established, together with Wynn’s
addition already referred to. Section 6 presents the algebraic basis for the epsilon
and eta algorithms.
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Normality criteria and sign patterns associated with the Padé tables of certain
classes of power series occupy § 7. The specific connection between Polya fre-
quency series and the quotient-difference algorithm is apparently new. Algorithms
for this class of series seem to be more numerically stable than for the class of
Stieltjes series (see the example of § 9). These results should be of interest to numeri-
cal analysts. The material of § 8 on the asymptotic behavior of elements associated
with the Padé table of a meromorphic function includes a refinement (Theorem
8.3(b)) of a classical theorem of Montessus de Ballore. It finds application in § 9
where a variant of the quotient-difference algorithm is developed. The duality
theory, which was pointed out for the original quotient-difference algorithm by
Henrici, has purposely been emphasized. In particular the corollary of Theorem
9.3 contains a dual LR-, RL-characterization of the new algorithm, and provides a
convenient computational check which will be useful in studying stability prop-
erties for the two classes of series mentioned above.

2. Some determinant identities. In this section are collected some classical
facts about determinants. Proofs of well-known results are omitted. Those given
are instructional.

The set of m x n matrices over the complex number ficld ¥ is denoted by
M, and 4, is the set of n square matrices. In general the jth column of 4 € .4,
is a;, and the (i, j) element is a;;:4 = (a;,a,, -+, a,) = (a;;). An exception is the
unit matrix I =1, = (e;,e,, -+, ¢,) = (5;;)€ .#4,. The transpose of Ae .4, is
AT = (a;)e M, with ai; = a;, and if m = n the determinant of A satisfies

det A = det A”. For A e .#,, by definition,
pa(2) = det(4 + zI),
and
qu(z) = det(zl, — A) = (=1)"p(—2)

is the characteristic polynomial of A.
The set of multi-indices « with k elements taken from {1,2, ---, m} is

Ap={e=@, 0, -, nq) 10 <oy < <o <m};

A, contains

m
k) elements and is empty if m < k. The length of ae A, is |o]

=0y + oy + -+ oy, and of = (), 05, -, 0, )EA, . is the complement
of o with respect to {1,2, .-+, m}. If 4 = (a;)) € M,,,,x€ A,;,and f e A, then

al?aZ"”’ak
Bl’ﬁza""ﬁl

is the submatrix of A formed from rows o; and columns f3;. The index of A(, p) is

A, p) = A( ) = Ay, € My

k-1 1-1
pla, ) = Z (0s1 — (0 + D] + Z Bjer — (B; + 1)]

== —k+ D+ B =By — 1+ 1);
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Ala, B) is a connected submatrix of A4 if p(a, ) = 0. By convention det A(o, §) = 1 if
a0, BEA,.
The adjugate of A€ M, is A* = (b} M, with

o 1o j—1,j+1,---.n
bij=(—1)’+fdetA( S ")

Loy i— i1,

It satisfies AA* = A*A = (det A)I,. Hence if A is nonsingular A~ = (det 4)~' A4
THEOREM 2.1 (On the characteristic polynomial). If A€ .#,, then

Palz) = i ( Y. det A(oc;c,oc;‘))z".

k=0 \ axeAni

THEOREM 2.2 (Jacobi’s theorem on subdeterminants of 44). If Ae .#, and
o, feA,, then

det AA((X, ﬁ) = (__ 1)|“|+|ﬁ| det A(ﬁ/, O(l),

THEOREM 2.3 (Cauchy-Binet formula). Let A e . #,

n> BE My, and Ce My,
with A = BC.If ae A,;and B A, then

det A(o, f) = ) det B(a,y) det C(y, B).

yEAK!

The special case | = 1 corresponds to ordinary matrix multiplication, and
the case k = [ = m = n states that det 4 = detB-det C. If k < [, the sum is
empty and det A(x, f) = 0.

THEOREM 2.4 (Laplace expansion). Let A € .4, and a.e A,,;.. Then

detA = ) (=118 det Aa, B)det A, B).

BeAmk

THEOREM 2.5 (Extensional identity). Let a,b,c,de #,, and Me #,, .
Then

det (a,b, M)det (c,d, M) = det(a,c, M)det(b,d, M) — det (a,d, M)det (b, c, M).

Proof. By elementary operations,

M a b c d O ) ( M
det = det
O a b ¢ d M -M

Mabch)

=det(
0 00 0 0 M

= det (M, a, b) det (0,0, M) = 0.
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On the other hand, by the Laplace expansion with m = 2n, k = n, and
a:(]"z".‘7n)’
M a b ¢ d 0
det = det (M, a,b)det(c,d, M)
0 a b ¢c d M
— det(M,a,c)det(b,d, M)
+ det(M,a,d)det(b,c, M)
+ det(M,b,c)det(a,d, M)
— det(M,b,d)ydet(a,c, M)
+ det (M, c,d)det{a, b, M)
= 2[det (a, b, M) det (c,d, M)
— det(a,c, M)det(b,d, M)
+ det(a,d, M)det (b, c, M)],

the last equality again following by elementary operations.
THEOREM 2.6 (Sylvester’s determinant identity). Let A'e . #,, n = 2, be
partitioned

A #* * A * g
a=la, A a :(11 ):( 12):( 12)

S
BE Az
with a;;€6,1,j = 1,2. Then
detA-det A" = det A, -det 4,, — det A,,-detA,,.
Proof 1.Puta =e,,b = ¢,,and (¢, M, d) = A’ in the extensional identity
det (a, M, b)det(c, M ,d) = det(a, M,d)det(c,M,b)
— det(a,c, M)det(M,d,b).
Proof 2. If the matrices B;; are square and B, is nonsingular, then
5 (B11 Bu) _ (B11 0) (1 Bi!B,, .
B,, B,, B,; I/\0 B,, — B,;B{{'B;,
Consequently
det B = det By, -det(B,, — B,,B{'B;,).

Hence if A is nonsingular,

A 4
det A4;; = =+ det (aT a’) =t detAd-(a; — af A7 'd)),
i ij
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with the negative sign only possible if i # j. Then similarly,
A d, d)
det A-det A" = det A-det [al a,, ay,
a; dy; Ay

— (det A)? det[(a“ a”) - (a;)A—l(a;,a;)]
a

Gy Gy 2
= (det A)* det (a;; — af A "))} =,
=detA,,-detd,, —det A,, -detA,,.

This last rational identity holds even if A is singular.
TueOREM 2.7 (Vandermonde determinant). Let

Vizy 2y, 0, 2,) = (27 e M,.
Then
(21,24, ,2z) =det V{z,,z,, -+, 2,)
:H(Zj_zi)
i<j
and
- _ Uz, 20,0, 2Z,)
1 1 1 15«2 s Lp
vz ',z ', -,z =g
i ") "(zyzp ez
with

g, = (_ 1)n(n— 1)/2.

THEOREM 2.8 (On totally positive matrices). Let all square connected sub-
matrices of A€ .M, have positive determinants. Then all subdeterminants of A
are positive.

Proof. It will be shown by induction on k, and for fixed k, on the index p(, )
=(a —ay —k+ 1)+ (B, — B, — k + 1) of A(x, §), that

det A, p) > 0, aelA,,,, PeA,.

By hypothesis this is true if p(a, f) = 0, and in particular if k = 1. Thuslet 1 < k
< min(m,n),0 < g £ m + n — 2k, and assume that

det A(y,d) > 0, yeA,,;, S€A,,

when ! =k — 1,and when both ! = kand p(y,0) < g — L

Let aeA,, and fe A, with p(a, f) = q. Suppose that B, ,, B, < fr+y
< B,,is an integer omitted in the sequence f = (f, 3, - - - , Bi)- In the extensional
identity

det (M, c,e,)det(a,M,b) = det(a,M,c)det(M,b,e)
— det(M,b,c)det(a, M, ¢)
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put
Oy, 0p, =, O
(a,M,b,c)zA( e “ )
ﬁl?ﬁZa""Bk+l
to obtain
a’-'.’a_,a7 (x’...’a
detA( ! ko2 Tk 1)detA( ! k)
BZa""ﬂk—l’ﬁlﬁ—l ﬁl""aﬁk
Oyy sty Oy O Oy, vy Oy
=detA( ! Tk )detA( ! - 1)
ﬂb"‘?ﬁbﬂ’ﬁk+1 ﬁ2’“'7ﬁk
Oyt oy Ol gy Ol Og sty O
g )
ﬁz""’ﬁk’ﬁk+l 317""ﬁk—1
The number of interchanges required to restore (f,, - -+, Bi— 1, Br+ () to its natural
order is the same as that for (8,, -, Bi_ 1, Pr+1), and one less than that for
(B2s -+, Bi» By ). Moreover the indices of the matrices so restored are at most
¢ — 1. Hence on division by
Oy, = vy Ol ny Ol
deLA(l k—2 k])
BZa ) Bk—lﬁﬁk+1
the induction hypothesis gives det A(a, f) > 0. If the integers (8,85, -, B
are consecutive, then since g > 0, (o1, 05, - - -, o) will omit an integer o, , ; with

oy < o, < o, and the above argument can be applied to A7.
THEOREM 2.9 (The determinant of a sum of matrices). Let 4, = (a?, a®, -- -,
ade #,,k=1,2,---,n Then

m
det( Y Ak) = > det(af, a5, -, al*)
k=1 ke®@un

with ®@,,, the set of functions » from {1,2, -+, n}to {1,2,---, m}.

3. The Padé and c-tables of a formal power series. The class # of formal
power series over ¥ consists of all expressions of the form

Ce)=co+ciz+ ez + =) ¢,2"
with coeflicients ¢,, € . Convergence of the infinite series for complex z # 0 is

not implied. Somewhat more precisely, 2 could be thought of as the set of infinite
sequences {¢q, ¢4, C5, ), ¢, € 6. The sum of

> b,z™ and Y c¢,z" is Y (b, + ¢)Z",
m=0 m=0

and the scalar multiple of

Y cnz™ by ceC is Y (cc,)z™.
m= m=0
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With these definitions & is an infinite-dimensional vector space over €, with
additive identity 0 = O + 0z + 0z® + ---. The algebraic dimension of Z is c,
the power of the continuum.

The (Cauchy) product of

[=¢) o)
Y b,z" and Y c,z™ is Y, a,z"
m=0 m=0
with
m
p= Y. by 1, m2=0.
k=0

With this product & is a commutative semigroup with multiplicative identity
1 =1+ 0z+ 0z2 + --- . It is easy to show that the cancellation law holds, and
that multiplication is distributive over addition. Hence 2, together with the opera-
tions of addition and multiplication, is an integral domain. The units of 2 are the
power series

Clz) = ) c,z" with ¢, #0.
m=0
Each unit C(z) has a reciprocal
C Yz)=D(z)= ) dz"
m=0

such that C(z)D(z) = 1. The coefficients of D(z) are determined by

-1
dg=¢g

m—1

dp=—10¢3" ) Cuoidyy, m21.
k=0

Corresponding to the formal power series C(z) € 2 is the semicirculant matrix

Co
€y Co
C=|c, ¢ ¢ =(¢_)eM,.

Observe that by definition

0.

C_I::c_zzc__3= “ v

The sum and product of two such matrices are defined, as is the scalar multiple of
C, by ¢ € €. Moreover this correspondence is an isomorphism with respect to these
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three operations, for the (i, j) element of A = BC is

) i
Z bi_yCh_; = Z b k- ;
k=0 =

k

-~

i

il
Nkl

bi_j_icr=a;_j
1

0

and the other two assertions are trivial. Finally, the composition of C(z) with
ce¥bis

Clez) = ), (cc™z™.
m=0
In particular the coefficients of C(—z) are (—1)"c,,.

Let C(z) € 2 and let m and n be nonnegative integers. The complex rational
form

wz)  ug + ugz A oo A u,z”
z)  vo+vizH oo 402"

is a Padé form of type (m, n) for C(z) if v # 0 and
C(z)u(z) — u(z) = Oz™*"*1).

The (algebraic) O-symbol indicates that the right side is a power series beginning
exactly with a power z"*"*%*1 (0 < k < + 00;k = + oo means that Cv — u = 0.
This is equivalent to the linear system of m + n + 1 equations in the m + n + 2
unknowns Uy, =+« , Uy, Vg ** 5 Uyt
Sonn

ui7 i=071"."ma

n
Cc_ v, =
S ,-;o'“ {0, i=m+1,---,m+n.

THEOREM 3.1 (Frobenius). There always exist Padé forms of type (m, n) for
C(2). Each such form is a representation of the same rational function r,,. The
reduced representation

mnl 2)
rmn(z) ==
Grn(2)
is possible with p,,, and q,,, relatively prime and p,,(0) = ¢, ¢,,,(0) = 1.
Proof. There always exist nontrivial solutions (ug, =« -, Up,Vgs " > V)"

of S,,,. With such a solution v # 0, for otherwise S%, would imply u = 0. Likewise,
ifv(z) = 0(z%), v, # 0,thenu(z) = 0(z"), u; = c,v;. Hence the reduced representa-
tion of u/v may be normalized as required.

If u/v and u'/v" are two Padé forms of type (m, n) for C(z), then

Cy —u= O(Zm+n+1), Cv —u = 0(Zm+n+1),
and
u' — u'v = (Cv' — u')p — (Cv — up/

— O(Zm+n+ 1)'
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The left side is a polynomial of degree at most m + n, the right side a power
series beginning with a power z"*"***1 L > 0. Hence both sides vanish, and the
rational functions determined by u/v and «'/v’ are identical. This completes the

proof.

The uniquely determined rational function r,,, = p,u/qms 1S the Padé fraction

of type (m, n) for C(z). The doubly infinite array shown in Table 1:

is the (extended) Padé table for C(z). The first column contains the partial sums

C.2)= ) ¢t
k=0

of C(z). The auxiliary values will be explained subsequently (§ 5).
Also associated with C(z) are the nontrivial connected submatrices

Cmn = (cm+i—j);l,j= 1
of the semicirculant matrix C. Their determinants are
Cn = det C,,,.,

and the array shown in Table 2:

is the (extended) c-table for C(z). Evidently

—_ — —
Cmo = 1’ Cu1 = Cp» Cop = Cg-

Example. The Padé table for

C@)=1+z+ 22 +22%+3z* +4z° + --.

nz1,

Cmo
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is given in Table 3:

TABLE 3

Too | For="02| Yos3™"0a=T0s | Tos to7
I T | | |

Pro {T11= 12|} F13= 4™ F15 ||F16™ F17
I I Il I Il

P20 21 Taz | 237 F2a=T2s5 ||T26™ 27

Tag T3y | F32= 33T 34=T 35 36="37—="""

| I | I [ |
Fao Tar | Ta2=Ta3=Tg4=F 5= 16=T4y="""

| | | |

with the nontrivial Padé fractions r,,, given by

1 1-z-2%
ro1(2) = 1 -2 ra(2) = 1 -2,
1—2z/2— 222+ 2%/3 1 —z/3 —z%/3 + 223/3 + z*/3
r34(2) = 1 =322 > ra(z) = 1= 473 s
1 -z l—z+72°
i e—— = T
1 1
o e T
1 -z 1
r16(2)=1—22+22—z3+z4+26’ r07(z)=1—z—z3+z6+z7'

As can be readily verified, C(z) is the Maclaurin expansion of the rational function
r3,(z). The c-table for C(z) is given in Table 4:

TABLE 4

01 23 456 7 8

1]1]1 01 0 Ot —1|1
2111 =111 0 01 01
311 2 11111 11
411 3 1 0000 0 0
511 4 1 00 00 0 0

The next result is an extension of a theorem of Padé. It shows that the block
structure exhibited by the previous example holds in general when C(z) is a unit,
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¢o # 0. Equal Padé fractions occur in square blocks in the Padé table. The c-table
has a corresponding block structure, with groups of determinants c,,, occurring in
maximal square blocks of the form

n
|
m_* * * *
* 0 0 0
* 0 0
0 k+1, x £ 0,
(3.1 * 0 0 0
*0 0 .- 0
N e
k+1

The theorem also characterizes the Padé forms of type (u, v) for C(z) and gives a
formula for the ranks of the linear systems S,, and S,,.

THEOREM 3.2. Let p/q be a Padé fraction for the power series C(z)e 2, ¢y # 0.
Let the degrees of p and q be m and n, respectively, and let the power series C(z)p(z)
— ¢(z) begin exactly with the power z"*"***1 Then the following statements are
true:

(@) k= 0.

(b) r,, = p/q if and only if

[\

(3.2) mZusm+k and nv=n+k.

For (u, v) satisfying (3.2):
(c) ufwisaPadé formoftype (i, v) for C(z)if and only if

uz) = v d(zp(z),  vlz) = 27 d(z)q(2),
with

Ay = max{0,(u —m) + (v — n) — k}

=

and d # 0 of degree at most

HELE

min {# — m,v — n}, k= + .
(d) #+v—rankS,, =v—rank S, = x,,.
(e) C,un5£07 méﬂém"‘k,

Cmv#:oa névén_i_k»

¢ =0, m<pu<m+k and n<v=n+k.
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Example. For k = 4 the corresponding blocks in the »- and A-tables are as
given in Tables 5 and 6:

TABLE 5 TABLE 6
x-block A-block
p—m~~T" 0 1 2 3 4 powt T 0 1 2 3 4
0 00 0 0O 0 000 00
1 01110 1 00 0 0 1
2 01210 2 00 01 2
3 01110 3 001 2 3
4 00 00O 4 01 2 3 4

Proof. Letr,, = p/q and let u/v be a Padé form of type (1, v). Then
degu < pu, degv =,
(3.3)
Cv—u=0(z""",

Since ¢y # 0 and (ug, -+, Uy, Vg, -+, 0,)" # 0, it follows from the form of S,
that v # 0 and u # 0. Remove the greatest common divisor from u and v to obtain

(3.4) u(z) = z4do + dyz + -+ + d,2)p(2),
' wz) = 2Mdy + dyz + -+ + d,29(2),
with dyd, # 0. Then
ZHCq — p) = O(z"">"1).
There follow the inequalities
% =0, A20,
x+A+mZ oy, x+A+n=sv,
u+v=E=m+n+k+ 4,
or equivalently,
=20,
(3.5) 4z max {0,(x — m) + (v — n) — k},
%+ A <min{u —m,v— n};
see Fig. 1.

Conversely, let the integers y, v be such that there exist integers x, A satisfying
(3.5). For arbitary d(z) =d, + dyz + -+ + d,z* # 0 define u and v by (3.4).
Then (3.3) holds, u/v is a Padé¢ form of type (4, v), and r,, = p/q.

The problems of whether r,, = p/q and the general structure of Padé forms
of type (u, v) are thus reduced to statements involving the inequalities (3.5).

Since p/q is a Padé fraction for C(z) there exist integers x, A, u, v satisfying
(3.5). Then

kzpw—m+@—-—n—122x+4120,
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proving statement (a).
A

N

u+)\=min{p.-m.v-n}

A= max {0, (u-m)+(v-n)-k}

TITTTTTTTTTRTRTTITIL]

A ST

v
RN .

FiG. 1

Further, r,, = p/q if and only if there exists a solution (x, 4) of (3.5). This is
possible if and only if

max {0,(u —m) + (v —n) —k} Smin{yg —m,v — n},

that is, if and only if (3.2) holds. This proves (b).

The most general Padé form of type (u, v) is obtained when A is minimized
and » maximized subject to the inequalities (3.5). An easy computation shows that
the optimal values are A = 4, and » = %, . This proves (c). Statement (d) follows
since the general solutions of S, and S}, contain x,, + 1 parameters.

Now c,, = 0 if and only if S}, has a nontrivial solution with v4 = 0. But it
follows from (c) that

%,y + Ay =min {g — m,v — n}

is the maximal integer A for which v(z) = O(z*) in some Padé form of type (u, v).
Hence ¢,, = 0if and only if min { — m,v — n} > 0. This proves (e), completing
the proof of Theorem 3.2.

A number of results follow easily from Theorem 3.2. For example,

Fon = Tt 1041 Cmt 1 we 1 = 0.

The implication = is a direct consequence of (). But the reverse implication <=
isalso an (indirect) consequence of (). For ifr,, # 7,11 ,+1.thenr, andr, i .4y
belong to different blocks in the Padé table. Moreover, 7, ,+; must lic on the
left or upper boundary of its block. Hence ¢, ,.; # 0 by (¢). More generally, if
the c-table contains the (maximal) block (3.1), then (b) holds. The following criteria,
among others, are easily seen to be sufficient for the former.

COROLLARY 1. Either of the criteria (&), (8), or (y) is sufficient for (b) to hold.

Cm+ l,ncm,n+1 # 0,

(o) cm+l,n+l:0’ I=1,2,---,k,

Cotik+nrk+1 # 03
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Cont 1,0Cmnt+1 & 0,

B Cotrmer = 0, I=1,2,---,k,
Cotict tur1 # 05
Cm+1.ncm,n+1 ;é 09

(V) Cm+1,n+l=09 l=172a""k9

Cut i+t # 0.

In each case if k = 0 (+ o0) the second (third) condition is dropped.

The square r- and c-blocks described in Theorem 3.2 are called blocks of
order k. The Padé fraction r,,, is normal if the r-block containing it is of order k = 0;
that is, r,,, occurs exactly once in the Padé table. The power series C(z) is normal
if all its Padé fractions are normal ; that is, no two are equal.

COROLLARY 2. The following statements are equivalent :

() the Padé fraction t,, = Pun/Qmn iS nOrmal;

(i) the degrees of p,,, and q,,, are m and n, respectively, and the power series
expansion of C(2)q,(z) — P,.(z) begins exactly with the power z" "1 ;

(iii) the determinants

Cmn Con+ 1
Cm+1in Cm+1im+1
do not vanish. The power series C(z) is normal if and only if
Con 7 0, m=0, nz=0;

in particular each coefficient c,,; = c,, must not vanish.
Deserving of emphasis is an important special case of Theorem 3.2.
COROLLARY 3. The formal power series C(z) is the Maclaurin expansion of
an irreducible rational function r(z) = p(2)/q(z), with p and q of degrees M and N,
respectively, if and only if

cn#0, m=M,
e 0, n=N,
Com = 0, m>M and n>N.
It is appropriate to call such a power series (M, N)-normal if, in addition,
Con # 0, 0m<M or 0Zn<N.

The Padé table of an (M, N)-normal power series has exactly one block of order
k > 0, and this block is infinite with its upper left element r = r,,y as the common
entry.

There also occur power series C(z) which are seminormal in the sense that

Con # 0, m + n odd.

The blocks of a seminormal power series are of order at most one, and by Theorem
3.2 (d) all systems S,,, are of maximal rank.
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The final theorem of this section provides explicit determinant representations
for all (distinct) Padé fractions in the table.

THEOREM 3.3. Let the rank of the linear system S,, be maximal. Then r,,
has the (not necessarily reduced) representation

Pl 2) = Ul 2)/0pun(2)

with
Cu2) zC,_i(z2) --- z°C,,_,(2)
(36) umn(z) = det Cm+1 Cm U Cm—n+1 ’
Cm+n cm+n— 1 Cm
and
1 Z Z"
C C “es C —n
(37) Umn(z) = det m'+1 m m : +1
Cmtn Cmtn-1 " Co
(3.8) =det (Cpp — 2Cpur1.0)-
Moreover,
C(Z)Umn(z) - umn(z)
Cm+1 cm cen Cm—n+1
39 = (=1 3 det ' ' ) mtntk
(3.9 (=1) kz,l € Cortn Coony o e z
cm+n+k cm+n+k—1 cm+k
Proof. It will be shown that (3.6) and (3.7) imply (3.9). From (3.7),
Clz) z2C(z) -+ 2z"C(2)

C C cer Cpm
C(Z)Umn(Z) _ det m.+1 m m ‘n+ 1
Contn cm+n—1 Cm

Fori = 1,2, .-, n, multiply the (i + 1)th row of (3.6) by z"* ! and add to the first
row. There results

Cm+n(z) Zcm+n— I(Z) o ZnCm(Z)

Cn+1 Cm tt Cpept
Up(2) = det . .

Cm+n Com+n—1 Cm
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Subtraction, followed by a change of indices and permutation of the first row
to the last, gives

C(Z)Umn(Z) - umn(z)

o0 o0 o)
k k+1 k+n
Y oz Y ¢z e Y gz
k=m+n+1 k=m+n k=m+1
= det Cm+1 Cm Con—n+1
Coatn Cn+n—1 Cim
Con+1 Cm e Cn—n+1
_ n
= (—1)"det Coutn Contne 1 Cm
o 0 0
m+n+k m+ntk m+n+k
2 Cmintil Z Com+n+r—12 Y Cmii?
k=1 k=1 k=1

which is equivalent to (3.9). By the rank assumption v,,, # 0.

To prove (3.8) multiply the jth column of (3.7) by z and subtract from the
(j+ Dth, j=1,2,---, n. Then expand the resulting determinant along the first
row.

COROLLARY 1. If ¢,,, # 0, then the reduced representation

rmn(z) = pmh(z)/QMn(z)’

with
u ¥4 c
pmn(z)zm—n(2=00+ s+ _”‘_’"_tl_zma
Cmn cmn
Umn(z) cm+ 1,n
Go2) = L = 1 4 e (= 1yl
cm" cmn
and

C(Z) - rm,,(z) = (_1)"M+_1~Zm+n+l + O(Zm+n+2)‘

mn

Proof. From (3.6), (3.7), and (3.9),
Upn(2) = Colpmy + *** + Cpyns12™
Vunl2) = Cow + -+ 4 (= 1)y 102"
and
CY0mnl(2) = Upnl2) = (= 1)1 1 s 12" "1 + O(" 77 2).

Since c,,, # 0, r,,, lies on the left or upper boundary of its block in the Padé table.
By Theorem 3'2(0)’ %mn = A‘mn = 07 and umn(Z) = cmnpmn(z)9 vmn(z) = cmnqmn(z)'
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COROLLARY 2. The alternative representations

(3.10) Unl(2) = Oyi12” ™ det (ATTIC, (2D} =0
and
(3.11) Uil 2) = Oy 12~ ™" det (AH—ij—n(Z))'i‘,j:l

are valid, with o, = (—1)"®" V2 C_(2) = 0 if m < 0, and forward differences

k
Ars, = ) (—l)k_’(lj)swl, k=0.
1=0

Also if the Hankel determinants

¢y = det (cm+i+j)ri',;=10a nz1,
then
(3.12) ™ = det (A" e, )72,
and
(313) cmn = a."cilm—n+ 1)’ ch) = Uncm+n—1,n'
Proof. For j = 0,1, - -+, ndivide the jth column of (3.7) by z/. Then multiply
the ith row by z®*i,i = 1,2, -+ -, n. This gives, on reversing the columns,
1 1 e 1
ACm—n ACm—n-*—l ACm
Upn = o.n+1z—mn det ACm~n+1 ACm—n+2 ACm+1
Acm—l ACm ACm+n—1
Now since

Aetis, = Aks, ., — Aks

ns

one has, by a sequence of row operations,

ACm—n ACm—n+1 T ACm
O = G0z ™det | A2C,_, AC,_,., - A?C,
AnCm—n Ancm—n+ [ A"Cm

The result (3.11) follows from this by the corresponding sequence of column
operations, and expansion along the first row. The proofs of (3.10), (3.12) and (3.13)
are similar.
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4. The Padé table of the quotient of two formal power series. Now let

C(z) = A(z)/B(2), by = 1.
The requirement

C(2)v(z) — u(z) = O(z"*"+1)
is equivalent to

A(z)o(z) — B(2)u(z) = O@"*"+ 1)

and hence to the linear system

M=

m
a_p;— Y b_ju; =0, i=0,1,---,m+ n.
) izo

i

i

A number of interesting consequences result from this formulation. The first is
an easy, but substantial, generalization of Theorem 3.3.

THEOREM 4.1. The determinants c,,, are bigradients in the coefficients of A(z)
and B(z):

b, 0 e 0 a 0 e 0
b b e 0
Con = (bl = det| ° o
4.1)
bm+n-1 bm+n—2 bn Quin—1 Aumin-2 " Oy
Moreover,
b, 0 0 ag 0 0
b, b, 0 a ay 0
(4.2) u,,(z) = (= 1"+ det . '
bm+n bm+n—1 bn Auin Quin—1 "' Ay
1 z ez 0 0 o 0
by 0 ao 0
b, b, e 0 a, a, e 0
@43)  v,(z) = (—=1)"det : : : : :
bm+n bm+n—1 bn Anin Apin-1 °°° Gy

0 0 .o 0 1 z e P
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and

A(Z)Umn - B(Z)umn(z)

by 0 0 ag 0 0
b, b, e 0 a ay e 0
@4 = (—=1ydet : ‘ : :
L S
B(z) zB(z) <o Z"B(z) A(z) zA(z) .- Z"A(2)
= (-1 i det
k=1
by 0 0 ag 0 0
b, b, 0 a, a, 0
buin  buiw-i v by Gpiw Gpagey Gy
butnsk bmansk—1 0 Pusk Guanik Guenii-1 0 Gk

Proof. Let u(z) and v(z) be the right sides of (4.2) and (4.3), respectively. As in
the proof of Theorem 3.3, A(z)v(z) — B(z)u(z) is equal to the determinant expres-
sions of (4.4). Since b, = 1, by expansion along the first and last rows, u(0)
= (=1)yritmratlitmg (bla),, = cobla),,. Similarly v(0) = (b|a),,,. Hence (4.1) will
imply (4.2), (4.3), and (4.4). Now observe that if B(z) = 1, then A(z) = C(z), and
so in general

l £ 3
(bla),,, = det ( (;" ) = Cpp-

This completes the proof.
The reciprocal polynomial of a polynomial

wz) =uy + uz + - + u,
of degree at most I, is
wz) =upz +u 27+ o+ =2z,

the name indicating that (if uyu; # 0) the zeros of u* are the reciprocals of those of .
Clearly (u*)* = u; that is, the operation of forming the reciprocal polynomial is
involutory.

The next two theorems are concerned with (monic) polynomials

M
PH@) = agz™ + a2+ ay = [] (2 - ()

m=1
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and
N
q*(z) = by + b2V + -+ by = H (z —=m,).
n=1

Their reciprocal polynomials
pz)= ) a,z", q(z)= ) bz
m=0 n=0

are special formal power series: a,, = 0,m > M,and b, = 0,n > N.
THEOREM 4.2. The resultant of p* and q* is

MN
R(p*,q*) = (Bla)yy = [[ o — m)-

mn=1
Consequently p* and g* have a common zero if and only if R(p*, q*) = 0.
Proof. Let M = 2 and N = 3. On taking determinants of both sides of
1§ & 4 i\ /b 0 a 0 0
10 8 8 Gylb b a ag 0
1 n, =t =} ={)|b, by ay a, a,
1l =n, n} =3 =3|\by b, 0 a, a,

1 ny =n3 =3 =3/ \0 b; 0 O a,

q*&) La*€) 0 0 0
q*(C2) (g% 0 0 0
= 0 0 p*(my) mip*(my) mip*(m,)
0 0 p¥(my) map*(my) mip*(my)
0 0 p*(ms) map*(ns) mip*(ms)

one finds

2 3
u(l1,8asmy sy, ) (bla)ys = vy, ()olny , Ty, 73) n q*(Cn) H p*(m,).
m=1 n=1
Now observe that

(1,8, my, My, m3) = (= §y) : (my — C)my — L)(my — £y)
|
(M= G)m — L) — )

(my — w)(my — my)

(n3 — 7,)

2,3
= U(Cl s Cz)’—’(nl sy, 7I3) l_[ (nn - Cm)

mup=1
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and that
2 2,3 3 2,3
[l ¢#C = 11 Cu—m, Il p*@m) = [I 1 (y — L)
m=1 mmn=1 n=1 mmn=

The general case is entirely similar. This completes the proof.

Theorems 4.1 and 3.2 may be applied to extend this result and provide an
explicit formula for the greatest common divisor of p* and ¢*

Theorem 4.3 (Trudi). Let d* be the (monic) greatest common divisor of p* and g*.
Then the degree of d* isk = M — n = N — n, with m and n determined by

(4.5) 0=blayy =blAy-1y-1 == (bla),,+ L+l F (b|@) -

Moreover if C(z) is the Maclaurin expansion of p(2)/q(z), then

(bla)nd*(2) = (= ' *(2)05 - 1 n-1(2) — XD 1 = 1(2)]

by 0 e 0 aq 0
b, be el 0 a aq e 0
— det . . . . . .
buytn-2 byin-3 0 byt Gpina Aptn-3 ° Gu—q
@6 \Z"7'q* @ "7q*2) - q¥2) TP 7Moo p*)
= i det
I=0
by 0 e 0 ag 0 e 0
b, b, e 0 a ag e 0
L
buytn-2 bpin-3 0 byt Gpin-2 Am+n-3 " Om—1
bpinti-1 bminri-2 0 busi Guinti-1 OGminti-2 0 Gmey

Proof. Consider the Padé table for C(z). By Theorem 3.2(c) the reduced rep-
resentation for ryy = p/q 1S 7,y = Ppun/Gmn» Where

TMN = TM—1 N1 = " VT F Pt n—1-
This occurs if and only if
0 =cuy =Crm-18-1= """ Ct1nt1 F Com>

that is, if and only if (4.5) holds. The reciprocal polynomial of d* is the greatest
common divisor of p and q, and satisfies p = dp,,,, ¢ = dq,.., that is,

bla)yp = s (Dl = AV,
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By Corollary 1 of Theorem 3.3,
(Bl [PV - 1,n-1 = Qb= 10— 1] = Bl yn{thylp— 1 3= 1 = Vi —1,0-1]
= (0la)unl[(Un — COpp)O— 1,01
+ U COp— 1 =1 = U1 n—1)]
= (= 1" [(bla),,,2d[z" """t + 0" "))
= (= 1" '[(bla)u,)2dz" ",

since the polynomial in the second bracket is of degree at most m + n — 1. Hence

(bla),d(2)z" "1 = (= 1) [P(2)0- 1 - 1(2) = DNty 1 0= 1(2)],

and (4.6) follows from this and Theorem 4.1 (equation (4.4)) on taking reciprocal
polynomials.

The final theorem of this section provides a useful duality relation between
the Padé¢ and c-tables of a unit C(z) and those of its reciprocal series.

THEOREM 4.4. If D(z) is the reciprocal of C(z) and ¢, = 1, then

4.7) Cun = (= 1)""d,y,.

Moreover, if 4,,, 0,,,, and ?,,, are the Padé elements of type (m, n) for D(z), then

(48) Uppn = (— l)mnﬁnm, Upn = (_ l)mnanm’
and the pointwise product
4.9 P " o = 1.

Proof 1. Let C(z) = A(z)/B(z) with aq = by = 1 so that D(z) = B(z)/A(z).
Permutation of the a- and b-blocks in the matrix of (4.1) requires mn column
interchanges. Hence

Con = (bla)mn = (_ l)mn(alb)nm = (— 1)mndnm'
Similarly with (4.2),

Uy = (_1)n+1+(m+ 1)(n+ 1)+mﬁnm — (_l)mnﬁnm’

and this is also equivalent to the second equality of (4.8). The assertion (4.9)
about the rational functions r,,, and #,,, requires a little care using Theorem 3.2.
By (4.7) the block structures of the Padé table for C(z) and the transpose of that for
D(z) are identical. From (4.8) and Theorem 3.3, (4.9) holds if r,,, and #,,, lie on the
left or upper boundaries of their blocks. Hence it holds in general.

Proof 2. This proof does not use determinants. First suppose that C(z)
is normal. Multiply D#,,, — #i,, = O(z"*"*!) by —C to obtain Ci,, — D,
= 0@z" """ 1. Also Cv,, — U,, = O(z"""* ). Since 9,,, and #,,, are polynomials
of degrees at most m and n, respectively, and since the rank of S,,, is maximal,
there exist scalars k,,, such that
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Comparison of the constant and leading terms in the first of these equations, using
Corollary 1 of Theorem 3.3, gives

Conn = kmndnm7 cm,n+1 = (_ 1)mkmndn+ 1,m-*
Hence D(z) is also normal, and since ¢, = dy,, = 1,

cmn m mn mn
b = 7 = (= )y = (= o = (= 1™,
The rational identities (4.7) and (4.8) now hold even if C(z) is not normal, and (4.9)
is proved as above.
Proof 3. An alternative proof of (4.7) may be obtained by applying Theorem
2.2 tothe matrix A = C§ .4 = Com+n = Do m+n- Thus

nm

dt (m+1,m+2,---,m+n)
= (V) n
Conn O,m+ 1 , o) yeen, n
n+l,n+2,---,n+m
= (=1)"det Do 1p
’ 1 , 2 S, m

— (_l)mnd

nm>

which completes the proof.
Theorem 4.4 provides the entries in the first row of the Padé table for C(z) as

1 1
D(2) do+djiz+ - +dz"

rOn(Z) =
Also, the second row of the c-table contains the values
Cin = (_ l)ndn'

This gives an explicit formula for the coefficients of the reciprocal series.
COROLLARY (Wronski).

c 1 0 0 0
1
C,y cy 1
o 03 c2 (4
D(z) = ) (—1ydet| . . . N P
#=0 : . : R
Com1 Cn—z Cu-z o0 Cp 1
Cn Cai-1 Cu—2 "~ C2 O

5. The identities of Frobenius. The basic algorithmic aspects of the Padé
table of the formal power series

Ci2) = > ¢z, co =1,
m=0
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are developed in this section. They consist of a hierarchy of identities among the
determinants c,,, numerators and denominators u,, and v,,, and finally the
rational functions r,, themselves. If C(z) is normal, such relations permit, in
principle, the recursive construction of these Padé elements. Several of the results
follow directly from Sylvester’s determinant identity (Theorem 2.6). Proofs of
others are simply verifications based on variations of the uniqueness argument of
Theorem 3.1. This was the original approach of Frobenius.
THEOREM 5.1. The quadratic identity

\ o — 02
* @* cm~1,n¢m+ 1.n + cm,n*l('m,n+1 - Cmn

is valid in the extended c-table.

Proof. Apply Sylvester’s identity to A" = C,, .. The extended c-values are
uniquely determined by the requirement that this identity and the duality relation
(4.7) hold in the extended table. This completes the proof.

If C(z) is normal, this and the boundary values

Cmo = Con = 17 Cu1 = Cpy Cyp = (—1)”dn

permit the construction of the c¢-table by successive addition of upward sloping
diagonals. Within a diagonal the computation is from bottom to top if the ¢, are
known, and vice versa if the d, are known.

The natural extensions of the u- and v-tables, corresponding to those of the
c- and Padé tables, are obtained by defining

um,*—l(z) = Zm’ vm,—l(z) = 0, m g 07

u—l,n(z) = 0’ U—l,n(z) = (_Z)n’ n=0.

Observe that the duality relations (4.8) continue to hold in the extended tables.
The next two theorems are concerned with identities among elements in
w-tables, where

Winl2) = P(2)y(2) + Q(2)0,0,(2)

and P(z) and Q(z) are arbitrary formal power series. Three obvious choices for
the pair (P(z), Q(z)) are (1,0), (0, 1), and (— 1, C(2)).

THEOREM 5.2. There exists, among any three elements occupying distinct
positions in the w-table, a linear homogeneous relation with polynomial coefficients.
In particular the triangle formulas:

CI) * cm,n+ lwm+1.n - cm+1,nwm,n+1 = Cp+ 1,n+ 1ZWpp
* (::) ConWm+1n — Cm+1,0Wmn = Com+ 1,n+lzwm,n~19

*

@ * cm,n+ tWoin — ConnWmn+1 = Cr+ 1,n+ lzwm—l,n’

* @ cm+1,nwm—1,n + Cm.n+ lwm,n-l = Cmnwmn’
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and the formulas relating three elements in a row, column, or diagonal :

CounCom + l,nwm,n+ 1= Cm,n+ 1Cm+ 1,n+ lzwm,n— 1

* () *
= (cm+ 1,ncm.n+1 ™ ComCm+ 1,n+ 1Z)Wmn7
* cmncm,n+ 1Wm+ 1,n + cm+ 1,ncm+ 1,n+lzwm—1.n
* —
- (cm,n+ lcm+l,n + cmncm+ i,n+ lz)wmn’
2 2 2
« ConmWm+1n+1 ~ Cm+ 10412 Win—1,n—1
* —_ , S o \
- [cmncm+1,n+1 + ((‘m,n—lcm+1,n+2 Cm—l,n(‘m+2,n+ l)z]wmn?
2 a2 w
Cm+1,nwm—1,n+1 Cm,n+1 m+1,n—1
* — > — ?
- [(cm—l,n+ lcm+2,n — Cpst l,n—lcm,n+2) cm+1,n(’m,n+ 1Z]Wmn’
are valid.

Proof. First let w = v. Apply Sylvester’s identity to

1 z Zn+1
Cm+1 Cm cm—n
Um,n+ I(Z) = det
cm+n+1 cm+n Cm

* @ *
to prove ® *. Likewise * follows from

Crut 1 Cpp .. C

m-—n
Cm+2  Cm+1 -+ Cm-n+i
(= 1) 10,04 1(2) = det
Cotn+1 Cont+n -« Cm
1 z ... M

Now apply the duality relations (4.7) and (4.8) to the corresponding identities for
the reciprocal series D(z) to show that they also hold for w = u. Since they are
linear and homogeneous (and P and Q are independent of m and n) they must also
hold for general w = Pu + Qu.

The remaining identities, and in fact identities relating elements of any three

* %k %k
distinct positions in the w-table, may be built up from * * and * in an inductive

manner by forming appropriate linear combinations of existing relations and using
%
Theorem 5.1 to simplify the resulting expressions. Thus to prove * ® consider

* ® ok i
*® and * © , that is,

ComWin—1 — Cm,n—lwmn = Cp+ 1,nZWm—1,n—1
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and

cm-—l,nwm,n"l - cm,n—lwm—l,n i Cmnzwm——l,n—l‘

Multiply the former by c,,,, the latter by ¢+ ,, and subtract to get

mn>
2 —
(cmn = Cp- l,ncm+ l,n)wm,n— 1 + Conyn— 1Cm+ l,nwm —1.n (’m,n‘ 1CmnWmn-
Application of Theorem 1 to the term in parentheses, and cancellation of ¢, ,— ¢,

*
proves * ® . Further details are similar, and hence are omitted.
THEOREM 5.3. The quadratic identity

2
* @* Wm—l,nwm+ 1,n + Wm,n—lwm,n+1 — Wmn

is also valid in the extended w-table.

Proof. Let
(m—1,n) N
(m,n—1) (m,n) m,n+1)=W C E.
(m+1,n) S
Eliminate ¢,,,, Cpp+ 1> Cn+ 1,0 A0 oy o4 1 from the four triangle identities to get
0 — Wg Wg ZWe
det " 0 T TEW 22wy - wg + Wy o wp — w22 =0
—wg we 0 —zZwy
—ZWe ZWy ZWy 0

THEOREM 5.4. Let (m,n) and (m',n’) correspond to distinct positions in the
Padé table, and

{g=min(m + n,m + n), v=max(m + n,m+ n').
Then the cross product

— ,m'\n")
u % = UpniVm'n = €

m'n’Ymn

is a polynomial of degree at most v, and is divisible by the power z***. In particular
the following relations, corresponding to neighboring positions in the Padé table,
are valid:

—_— n, m+n+1
® Uy, + l,nvmn — Uil + 1,0 — (_ 1) Con+ l,ncm+ 1,n+ 12 ’
*

— n N m+n+1
@ * Upsn+ 1P = Upinlmn+1 = (_1) Con+1Cm+ 1,n+1Z >

— n.2 m+n+1
®* Up+ i1,n+ 1P = YVt 1n+1 = (“1) Cn+1,n+ 12 s

__ n,2 m+nt2
Q= Unn+1Pm+ 1,0~ Um+ 1 nVmn+1 = (—Dcps 1,n+12 .
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Proof. The degree of (™" is obviously at most v, and since

mn
efn";.,’",) = (Cvmn - umn)vm’n’ - (Cvm’n’ - um’n’)vmn
— O(Zm+n+ 1) + O(Zm’+n’+ 1) — O(Z;H— 1),
it is divisible by z#* !, The listed identities correspond to the four cases in which

u+ 1 =v; that is, ™™ is a scalar multiple of z**!. From Corollary 1 of
Theorem 3.3,

Cv

mn ™~ Uy = (= 1)"Cpi 1 ns 1Z'"+”+1 + O(Zm+n+2)

and
Umn = cmn + O(Z)'

The first three identities follow since, in these cases, u = m + n <m’' + n'. The
fourth requires Theorem 5.1:

(mn+1) _ m+n+2

em+1,n (_l)n(cm+2,n+ 1cm,n+1 + cm+1,n+2cm+ 1,n)Z
= (_1)ncr2n+1,n+lz

This completes the proof.
The final “missing identity of Frobenius™ was discovered by Wynn in 1966.
THEOREM 5.5. If the Padé fraction r,, is normal, then the identity

1 1 1 1

m+n+2

*
* @ *
*
+
Il
_l’_

P+ 1.n Frn rm*l,n — Tum rm,n+1 — Vo rm,n~1 — Ton

is valid.

Proof. If r,,, is normal, then, by Theorem 3.2, none of the Padé fractions
occurring in the alleged identity are equal. Moreover each linear system S, is
of maximal rank so that u,, = r,,v,, # 0. Again let

(m—1,n) N
(m,n—1) (m, n) (m,n+ 1) =W C E
m+1,n m+1,n+1) S SE

From Theorem 4,

*
® onOclry — 1) = (= 1)'ceegz™ ™",

@ UsUc(rs — 1¢) = (— l)ncsCSEZm+n+1s
® * vpvlrg — re) = (= 1)'cpegz™ 1,
*® vpvclre — ry) = — (= 1)ccesz™ ™",
Hence

onUs(ry — 1) rs — 1¢) + vyvglry — re)(rg — o) = 0.



Downloaded 08/09/22 to 106.51.226.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

30 W. B. GRAGG

From Theorem 3,

UNUSPNT's + Uy Ugtyty = Uyl + Upylip

I

ug = révg = ri{vgvs + vpog),
that is,
oNUs(PaTs — ré) + vy Up(rprs — ré) = 0.

Consequently,

0

det (

rars — I rwry — T¢ )

ry —rdlrs —re) (rw — r)rs — 1)

(ry — 1) + (rs — r¢) (”W_’"C)'f'(’”E"rc))
(ry = rc)lrs — r¢) (rw = ro)re — 1¢)

by subtraction of rows. This is equivalent to the stated result.
Wynn’s identity permits the recursive construction of a normal Padé table
from the partial sums

l

rc det (

rol®) = Cold) = 3 "
k=0

according to the scheme in Table 7

00: (io/‘rm/"oz/‘roa/’oat
00'| LOPU SPAN SPYN OTY

OOi (1‘2/"21/’22/'

0| Cls/ru/'

oo: C4/

OO! .

!
k
o
.
|
The dual algorithm begins with the partial sums

Fon (2) = Dy(2) = Z dyz*

of the reciprocal series D(z) and constructs the upward sloping diagonals from top
to bottom.
6. The epsilon and eta algorithms. A special case of the power series
C(2)=co + 1z + 22 + 323 + -+, ¢ =1,
is the infinite series
Cly=coy+cy+cy+cy:-
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The partial sums
Sm=Cpl)=co+cy + e+ 0 40y

form an infinite sequence {s,}¢’. Conversely, with any infinite sequence {s,,}J,
one may associate the formal power series C(z) by defining
Co = Sp» Cpp = AS,_ 1 mz 1.

Then s,, = C,(1).
The epsilon algorithm is a (nonlinear) sequence transformation. One constructs
the triangular array in Table 8:

TABLE 8
[
A 15 o
0 |l 2
[N 0
| e O
82)2) i 8(21) BLO)
(2 1 0
: &P & &0
SR
3 2 :
} e &P
{4) | (3)
€6 €
| 2
Iel®

(when possible) from the boundary values
e =0, &m =5,
and the rhombus rules
(6, — E)EY — ) = 1.

At the mth stage the upward sloping diagonal ef™, "~ 1), ..., &% is added to the
g-array. In practice this requires storage of only the latest upward sloping diagonal.
The following theorem provides explicit formulas for the values ¢ and
relates them to the Padé table of the formal power series C(z) corresponding to the
sequence {s,,}¢.
THEOREM 6.1 (Shanks, Wynn). If the indicated quantities exist, then
det (A5, ) -

(m) — —
A = — = p 1
2n+1 det(ﬁ‘”sm)?,j:l m+n,n( )

and
i+j+1
. det (A" 1s )iy

Eyp+2 = ——
n+2 det(A1+1+lsm):l’j:0

Proof. Let the array of rational functions in Table 9 be constructed from the
boundary conditions r,4(z) = C,(z) by the rhombus rules

N

M E (rs — r\) (g — rw) = (rs — ry)(rg — rw) = 1.
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TABLE 9

F20 21 T2 F23

LET LK LEY) LEX T A

Then r,,, is the Padé fraction of type (m, n) for C(z). For, consider the “constella-
tion”

Iy

’ !

Fnw ng

Fw e g

' !

Fsw rse
s

From the rhombus rules,
1 1 (! ’ ’ ’
+ = (ryw — rvp) + (Fsg — I'sw)

I

(ryw — T'sw) + (rsg — "'ng)

1 1
= + .
Fw —T¢c Fgp—T¢

Hence the functions 7,,, may be eliminated to give the “star identity”” of Theorem
5.5 for the Padé table. By Corollary 2 of Theorem 3.3,

det (A**IC,,_(2) Fi=0
det (Al +jcm—n(z))?,j= 1 ’

(6.1) Pl 2) =

and the duality theorem, Theorem 4.4, gives

- det (Ai+ij—n(Z))?.j=1
- det (Ai+ij—n(Z) ?,j=0’

(6.2) Pun2)
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with D,(z) the nth partial sum of the reciprocal series D(z). Now eliminate the
functions r,,, from the above array in the same way. Observe that the functions
.. are obtained from the r,,, exactly as the r,,, are obtained from the r,,. Since

b
AC, _4(2)’

Tmo(2) = Fom(2) =

D,(2)’
it follows from (6.2) that

det (A™AC,, -1 (2] =1
det (A™AC, - 1(2) =0

The theorem is a consequence of (6.1) and (6.3), on setting s, = C,(1), &%, |

= rm+n n(l) and 82n+2 - rm+n+1 n(z)'
The eta algorithm is a (nonlinear) series transformation. One constructs the
triangular array in Table 10 (when possible) from the boundary values

(6.3) Fun(2) =

(6.4) ngew=oco, 1" =c,,
TABLE 10
Y
{
no | 7y
|
P s
|
n6 ! 5 Y
)
! P 73 i
s | ¥ i
|
|
| 7 s
|
ne | s’
1
|
| i
|
|
|

and the rhombus rules

(6.5) AP+ g = gt 4oty
1 1 1 1

(6.6) - _ E— .

NSz NSh: %D gD

The next theorem is the analogue of Theorem 6.1 for the eta algorithm.
THEOREM 6.2 (Bauer). If the indicated quantities exist, then
. | = det (A"*ic, )} i.j=o det (A’ ey )2 Lj=0
2n+1 det(A1+1+1 m:lj—lodet(Az+1+1 m+1?,;=10’

(6.7)
(m) _ det (Al+]cm) i,j=0 det (A +Jcm+ 1)1 J=0

N2n+2 = det(Az+1+1 m) Pie Odet(A1+1+1cm+1 n,;=107




Downloaded 08/09/22 to 106.51.226.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

34 W. B. GRAGG

and
m-1 2n+1
rm+n,n(1) = Z ’7(1k) + z ’/’;cm)’
©8) ot aes
rm+n,n+1(1) = Z ”(lk) + Z ’75:")-
k=0 k=0

Proof. Let
n(anll)+1 = rm+n,n(1) - rm+n—1,n(1)a
’7(2”7‘:)-%2 = Tytnn+ 1(1) - rm+n,n(1)'

The boundary values (6.4), rhombus rules (6.5), (6.6), and the assertion (6.8) follow
directly from this definition; (6.6) is Wynn’s star identity with z = 1. Also the
*

identities * * and * of Theorem 5.4 provide

Cm+n,ncm+n,n+ 1
2
vm+n— l,n(l)vm+n,n(1)

Hamer = (—=1)

. = _1)n+lcm+n,n+lcm+n+1,n+1
2 = .
" Ot nn D)0t s 1(1)

From Corollary 2 of Theorem 3.3,

— (m+1) __ i+J -1
cm+n,n = Uncnm - O-n det (Al Jcm+ 1)?,j=0
and

Um+n,n(1) = O-n+ 1 det (Ai+jsm);"j= 1
= 0,4 det (AHHZSm)?,;:lo

- it yn-t
= 0,4 det (A Cmlij=0

since As,, = ¢,,+ 1. The assertion (6.7) follows since
6, = (_ 1)n(n-—1)/2 — (_ 1)1 +2+~'-+(n—1)‘
This completes the proof.

Observe that (6.8) states that the lower “almost triangular” half of the Padé
table shown in Table 11 is obtained by summing the eta scheme, first along the

TABLE 11

Too To1
o 11 Tiz
Ta0 T21 T2z Ta3

Tzo T31 Taz T3z Taa
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first column, and then along the downward sloping diagonals. The summed eta
array has the form shown in Table 12.

TABLE 12

20 21 T22

T30 T3

Hence some elements of the Padé table are repeated.

7. Normality criteria: Polya frequency, Stieltjes, and nonnegative definite
power series. In this section three classes of formal power series are investigated
with regard to normality properties of the Padé tables of their members.

The power series C(z) is a Polya frequency (PF) series if all subdeterminants
of the corresponding semicirculant matrix C are nonnegative.

LemMmAa 7.1. (a) If A(z) and B(z) are PF series, then so is their product A(z)B(z).

(b) If C(z) is a PF series and C(z)D(z) = 1, then D'(z) = D(—z) is also a PF
series.

Proof. (a) Let o, B € A, . By the Cauchy-Binet formula (Theorem 2.3),

det(AB)(«, ) = > det A(x,y)det D(y, f) = 0.

v€haok
(b) Ifa, pe Ay, then o, § € A, for some integer n = 1. Since
CoDos = 1, det Cy, = ¢§ > 0,
Jacobi’s theorem, Theorem 2.2, gives
det D', B) = det (— 1)~ Fid, _p )=y
= (— D!~ det Do,(at, B)
= (= D= Plegm det Cg,(at, B)

= cg"det Cq (B, ) = 0.
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THEOREM 7.1 (Schoenberg, Karlin). Let C(z) be the Maclaurin expansion
of the meromorphic function

ﬁ 1+ a,2)
(7.1) f@) = e
Ul (1 - an)

with o, 2 0, , 20,7 =2 0 and Y (o, + B;) < 0. Then C(z) is a Pblya frequency
series. Moreover if M (N) is the number of positive o, (8,), then:
(a) ify=0and M + N < 0, then C(z) is (M, N)-normal:
Com > 0, 0mEM or 0£ngN,

Cun = 0, m>M and n> N;

(b) if y >00r M + N = oo, then C(z) is normal:

Con > 0, mz0, nz 0.

Proof. Let Az) = 1 + az,a = 0. The nonnull subdeterminants of the matrix
A,are aF 20,k =0,1,2,---. Hence A4,(z) is a PF series. From Lemma 7.1(b),
By(z) = ) p"z" = 1/A,(—z) is also a PF series for § 2 0. By repeated application
of Lemma 7.1(a), the Maclaurin expansion C®(z) = ), ¢z™ of

1+ a,z)
1

fWﬂ=(1+¥ym
(1 - ﬁnz)

o % o 2

1

n

is a PF series for every integer s = 0. Since f®(z) — f(z) uniformly for |z| < ¢

< 1/max (B,), s— oo, the coefficients ¢ — ¢, as s— oo. Consequently

lim,_,  det C®a, B) = det C(a, B) = O for o, fe A, proving the first assertion.
Let E(z) = Z;" e (y)z" = Z"g (y™/mNz™. By induction using Theorem 5.1,

o - o D= D
mn V) = e ¥ — D!
with

k

kit =TT b, (-l = 1.

j=0

Also
k+1,k+2,---, k+n

det 4, =
k k+1,--- k+n—1
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Let m < M. By neglecting some nonnegative terms in the repeated application of
the Cauchy-Binet formula,

m+1lm+2,---, m+n
Con = det C
) 2 s "t n

ZdetE(m+1,m+2,---,m+ n;dé,) det A,,(6¢,0;) ---det A, (6,,—1,0,,)

with §,€A,,1,,. 6, = (1,2, .-, n). Ify = 0, take
=m+1—-im+2—~i,---, m+n-—1i,
i=0,1, ,m,
to obtain
Con = (01005 -+ 0,)" > 0, nz0.

From this and the duality theorem, Theorem 4.4, if n £ N, then
Con = (=)™ dppy = diy 2 (B12 - B)" > 0, mz0.

This proves the first part of (a) and Corollary 3 of Theorem 3.2 completes the proof
of(a). Ify > 0,putd, =(1,2,---,n),0 £i £ m,tofind
Coun = €mu(?) > 0, mz0, nz0.

This completes the proof.

The converse of the first assertion of Theorem 1 was conjectured by Schoen-
berg and proved by Edrei. Consequently the representation (7.1) characterizes a
Polya frequency series.

The formal power series C(z) is a nonnegative definite series if the coefficients
are moments of a nondecreasing function u:

+
Cpp = J "™ du(t), mz 0.
— 0
It is a Stieltjes series if, in addition, u(t) is constant for —co <t < O:
(7.2) Cp = f " du(t), m=0.
0
For positive definite series it is appropriate to consider, instead of the determinants
C.n» the Hankel determinants
¢ = det C = det (Cppy 4 ) j=1-

The matrices C™, m = 0, n = 1, are the connected submatrices of the Hankel
matrix
Cop €1 € C3

c, € €3 €4
(7.3) CR=|c, c3 ¢4 ¢5 - |=(ci+)5=0€ M.

¢y €, Cs Cg
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Of course

(m—n+1)
n ’

— (m) _
Cmn - O'”C Cn - ancm+n—1,n7

with the sign factor
O-n = (__ l)n(n— 1)/2

arising from a reversal of the columns. On dropping the signs ¢, the c-table becomes
Table 13

TABLE 13

CBO) c(l—l) 0(2—2) 0(3_3) cil»—4)

P Y OB R I
CE,:” 0(12) c(zl) CSO) c(4— 1)
cgt) c(13) 6(22) 6(31) (0)

%
S

=1, M=c¢, m
and
™M =0, nx1.
Also the Frobenius identity of Theorem 5.1 becomes
(7.4) ™ et D — e VeV = (e
THEOREM 7.2, Let C(z) be a Stieltjes series. Then
cm =0, m=0, n=0.

Moreover if the function pu has exactly N £ oo points of increase, then C(z) is
(N — 1, N)-normal :

™ >0, m20, 0<n<N,
G, > 0, mZ0<m+n<N,
™ =0, m+n>N, n>N.

In particular C(z) is normal if and only if u has infinitely many points of increase.
Proof. Let m = 0, n = 1. The quadratic forms

n—1 B w0
Z Cmtis+jCiC; ZJ "

i,j=0 0

2

dpr)

n—1

Y &t

i=0

are nonnegative; hence ¢™ = 0. Moreover c¢™ = 0 if and only if there exists a
polynomial y(t) = &, + &t + -+ + &, "1 # 0 with x(t) = 0 at every point
of increase of u(t). Since y(¢) has at most n — 1 zeros, ¢™ = Oifand onlyif N < n
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— 1.Thatis,form = 0,n = 0,c™ > Oifand onlyifn £ N.The proof of the second
assertion is completed by applying Theorem 3.2(¢) and (7.4) to determine the
(strict) signs of the remaining entries in the modified c-table (Table 13). For
N = 3, see Table 14.

TABLE 14

N

| <

I+ + = -+ - - +

| \\

1+ + 4+ e o~ o+ = -

| N

R T T S e

| N

:++++0\\0000
A

{++++00\900

|

+ 4+ + + 0 0 050 0

P

| .

|

COROLLARY 1. Let C(z) be the Maclaurin expansion of —f'(z)/f (z) with
N z \mn

f@ =11 (1 —~—) ;

n=1 n

distinct m, > 0, integers m, 2 1, and ) Y mn;' < co. Then C(z) is an (N — 1,
N)-normal Stieltjes series.
Proof. The logarithmic derivative

SO m w1

f(z)_—n=lz_nn— n=1 Ty 1"—Z/nn'

f/(z)__N%wimz_w
(ERRPE A IR

Consequently,

with

pe) = % m,m, 'hit — 7, ")

n=1

and & the Heaviside function

=4

t <0,
We)=<4%, t=0,
1

, t>0.
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The corollary follows from this and Theorem 7.2.

COROLLARY 2. Let C(z) be a normal Stieltjes series. Then all subdeterminants
of the matrix CR in (7.3) are positive.

Proof. This is a direct consequence of Theorems 7.2 and 2.8.

Similar results may be established for nonnegative definite series. However in
this case it is possible that some coefficients c,,,. ; vanish,

THEOREM 7.3. Let C(z) be a nonnegative definite power series. Then

m >0, m=0, n=0,.

Moreover if the function p has exactly N < oo points of increase, then C(z) is
(N — 1, N)-seminormal :

2 >0, m=20, 0<n<N,
(—1)/"c?™ >0, m<0<2m+n<N,
™ =0, m+n>N, n>N.

In particular C(z) is seminormal if and only if u has infinitely many points of in-
crease.
Proof. The quadratic forms

n—1

n—1 + 0 2
> Comsi+iCilj = J 2y g dule)
- i=0

i,j=0

are nonnegative for m = 0, n = 1. The remainder of the proof follows that of
Theorem 7.2. Apart from the infinite square block of null ¢!™, only those with
even superscript may be determined from (7.4). For N = 3, see Table 15.

TABLE 15

I +~0 0 0 0 0 0 0 O

i AN
J=— == NTT T T T T T T T T e e e e e

e

L+ + 0 -+ + - -+

| A

Lo +0 = + -

| \\

Lo+ N ~

| AN

L+ o+ 0°0 0 0 0

B + 0 0N0 0 0
N

b+ + 0 0 0.0 0

i \\

} .

|

|

This completes the proof.

Converses of the first assertions of Theorems 7.2 and 7.3 are related to the
classical moment problems of Stieltjes and Hamburger, respectively. For the
former, the conditions

™ =0, m=0,1, n=0,
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are sufficient for the existence of a nondecreasing function u satisfying (7.2).
The corresponding criterion for the Hamburger case is

9 >0, nz0.

For seminormal power series null determinants c,,,, if they occur, are neces-
sarily isolated. The following extension of Theorem 5.1 permits the recursive
construction of the c-table in such cases.

THEOREM 7.4. The identity

(1.5) CepCnwlsw + CwwCneCse = CssCnwlne + CNNCswCsE

+ (cwnCss — CwwCer — CnCs + CwCE)Ccs

relating the entries of the constellation

Css

in the extended c-table, is valid. In particular if ¢, = 0, then
CepCnwCsw T CwwCNECsE = CssCNwCNg T+ CNNCswCsk -
Proof. One has
Ch = cnCe + CawCngs CE = CygCsg t+ CcCiks
¢§ = CcCss + CswCsgs €c = CnCs + CwCg.

2
Cw = CnwCsw + CwwCc,
Consequently,

(cnes — cweg)ce = (encs — cweg)(eyCs + Cwep)

CNe§ — CicE

(ennce + cywenp)(CcCss + CswCsk)

~ (cywesw + cwwCc)(CnpCse + CcCpp)
= (CynCss — CwwCgr)Ce
~ (cesCNwCsw + CwwCNECsE — CssCNwCNE — CNNCswCsE)CCs
and cancellation of ¢ proves (7.5).

8. The Padé table of a meromorphic function: simple zeros and poles. In
this and the next section it is assumed that the power series C(z) is the Maclaurin
expansion of a function f which is meromorphic for |zl < R, 0 < R £ 0. Hence
for sufficiently small z,

f@) =cy+ciz+cpz 4+ -, co=1.
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Let f have simple zeros {,, ordered

O<lyl=ll=lls--- <R
and simple poles n, ordered
0 <|ml Slnyl sl £ -+ <RI

Let M be the number of zeros and N the number of poles: 0 < M < 0,0 N
L w. If M <o (N < o0), it is convenient to choose (., (my4+,) such that
ICnl < Cpre1 < Ryl < yyy < R).

The theorems of this section provide asymptotic formulas for the elements
associated with the Padé table of C(z), both as m — oo and n remains fixed, and
as n — oo while m is fixed. Only the former case needs to be considered since
corresponding results hold for the latter by easy applications of the duality
theorem, Theorem 4.4,

Denote by

o, = Res f(xn,), 1Sn<N+1,
the residue of f at the pole x,. The functions

=1 - 3, = i 2z 0<s<N+1,

k=12 — Ty m=0

%

are holomorphic for |z| < |, |. As in the proof of Corollary 1 of Theorem 7.2,

s

& < : -m—1)|m
% =—- 3 R FAN EREAP
1

k=12 — Ty m=0 \ k=

Consequently, on comparing coefficients of like powers of z,

S
8.1 c, = — oy ™ 4+ ), m = 0.
m k m
k=1

From Theorem 3.3, equation (3.8),form =z n — 1,

s

z\
z Oﬁk(1 "*“)nkm 176D Azcsvs.)ﬂ—j
k=1 Ty Lj=1

82)  v,,(z) = (—1)" det

with

A =z — ).

! There can be only a finite number of zeros (poles) in each closed disk |z| < p < R, for otherwise
the zeros (poles) would have a point of accumulation in the disk and f would vanish identically (not be
meromorphic) there. By choosing a countable sequence p, — R there can be at most a countable number
of zeros (poles) in |z] < R.
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For0 £s< N+ 1,let

z o
ot = (ol 2o e,
T

k=1,2,---,5s,
Us+1 = (u(ls+1)’u(25+1)’ Tt u;s+1)) = (Azcﬁ)-i-i“j)e‘%na
Z) i
e
and
Ws = (ﬂi~m+j— 1) € e%sn'
Then from Theorem 2.9,
vmn(z) = (_1)n det ( Z Uk + Us+ 1)
k=1
(83) = (— 1)" Z det (u(lm)’ u(ZXZ)’ Y u;xn))
#e@s 4 1,n
el o) F s ]
k=1 #e@s + 1,0~ Psn
(8.4) = (- 1)"[det (V,W,) + Y det ({0, ug?, - - ,uf,""))] .
#e@g 4 n—Psn

THEOREM 8.1. Let f be a rational function. Then for 0 < n < N and
m=2max(O,LM - N+ 1) +n—-1,

Vnl2) = Oyt g Z Oy Oy = avnvz(nh’nh’ Tt nyn)
y€ANn

Z Z z
1= == =) 1= = R B
R s R Ut L

Proof. Let s = N and observe that f™ is a polynomial of degree at most
M — N. Hence ¢ =0, m=zM — N + 1, and for m =2 max(O,M — N + 1)
+n-1,

Uml(2) = (= 1)" det (Vy Wy).

By the Cauchy-Binet formula (Theorem 2.3),

det (VyWy) = Y det Wy

y€ANn

( 1’2,.‘.’;1

yl’VZ""ayn)
Y1:V2s s Vn

)detWN( 12
N ,..-’n
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From Theorem 2.7,

1,2,"'," V4 AR
det Vy = det |a, |1 — —|m, '
VisV2s " s Vn nyj i,j=1

Similarly,

Y15 V2> 5 T
1’ 2,...’ n

det WN( ) = VT Ty s Ty ) (T, Ty <o )"

A combination of these results provides the theorem.
THEOREM 8.2. (a) If n < N + 2, then
vmn(Z) = 0((7[17T2 tte Tcn)_m)’ m— 0.

b)Ifn<N+1landz # n,,1 £k £ n,then

vmn(z) = Opq g 00y + o O("UZ(TLI,TCZ, v, 7Zn)
zZ Z zZ
8.5 A1 - =111 - —1 - — ~m—n
® ( 7t1)( ”2) (1 ”n)(nlnz )

Foeflz)

©If1£k=<n< N+ 1,then
V) = Oy -+ Mpe 1Ty " )™ ™ m-— 0.

Proof. One first requires an estimate for the coefficients ¢ as m — co. If
[ng| = -+ =|n,| < |n,4qWithr > s,orif|n| < |7, | = -+ = |n,| with r maximal,
then the Maclaurin expansion ) & c%)z™ is convergent for z = n,. Hence ¢)n?
— 0asm — oo, thatis, ¢ = o(r,™) = o(n; ") as m — oo. Consequently from (8.1),

¥
(8.6) =— ¥ " '+ =0xm"), mo oo,
k=s+1
that is, ¢®=™, , is bounded as m — co.

Now consider (8.3) with s = n — 1. If x€ ®,, is such that »; = »; # n for
some pair i,j, then the columns u{*) and u{*) are proportional and det (u{*?,
ug, -, u§™) = 0. Using (8.6) and factoring (=, x,, - - - m, ) ™ from the columns
of the remaining determinants, one sees that the dominant factors are
(mymy -+ - m,)~ ™. This proves (a). Statement (b) follows from (8.4) with s = n. As
in the proof of Theorem 8.1, det (V,W,) = det V, - det W, is equal to the right side
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of (8.5), apart from the remainder term. The latter is estimated as above with the
additional observation that if xe®,,, — ®,,, then at least one %, =n + 1.
There results

Z det (u(lnl)a u(ZnZ)a Tt “51%")) = 0((7‘51 1Tyt 1)—m), m— oo,
®e®, 1 1,0~ Pnn

completing the proof. To prove (c) note that if z = =, , then U, = 0 and (8.3) with
s = n provides similarly

vmn(nk) = (— 1)n Z det (u(lm)’ u(ZEZ)’ Y uizx"))

*E@n +1,m¥Ek
=0(my Ty Ty T )™ "), m— 0.
COROLLARY 1. (@) If n < N + 2, then
Com = O(my7t, - )™™), m— oo.
(B)Ifn< N + 1, then
Com = O 1010 =+ + ATy, Ty, oo, MW7y - - ) """
1+ O((m,/m, 4 )], m— 0.

Proof. Put z = 0 in Theorem 8.2.
COROLLARY 2. If n < N + 1 and |n,| < |m, .|, then

8.7)

Con ~ Opp1%y0p * - OC,,UZ(TEI,TEZ, Tt nn)(nlnz tet n.n)—m——n, m— oo,
and
" z
lim qmn(z) = qn(z) = n (1 - _) .
m=> o0 k=1 Ty

Proof. The remainder terms in (8.5) and (8.7) tend to zero as m — oo. In par-
ticular c,,, # 0 for m sufficiently large. By Corollary 1 of Theorem 3.3, g,,(2)
= Uy 2)/Cpn = 4,(2) S M — 0.

The first statement of the following theorem is due to Montessus de Ballore.
The second seems to be new.

THEOREM 8.3.(a) If n < N + land|n,| < |m,. |, then

f(z) = lim r,(2)
uniformly on compact subsets of
D,={z:lz| <|myiyl,z # m, 1 £k < n}.

bYIfn < N+ 2,|n,| <|m,ii| <|mys,l,and ze D, then

o 2 Pty z m+n+1
S@ = ) ~ 22 GiTas) . mo o,
Z— TMyyy qn(z) Tyt

k
Proof. From the Frobenius identity #,

cm,n+1 (_l)nzm+n

Cm— ] qmn(z)qm— l,n(z)

rmn(z) - rm-—l,n(z) =
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for m = my. From Corollary 8.1 (a),

Cmn+1 = Oy 7y - ey )™, m= .
From Corollary 8.2,
Cnm—1,n ™~ Opp 1010y “n”z(nunz, s, (Mg, - nn)—m—n+1’
qmn(z)qm~ 1,n(Z) g q,%(Z), m— 0.

Hence if A, is any compact subset of D,, then
rmn(z) - rm—l,n(z) = 0((2/7I”+ l)m)

uniformly for z e A, and m = m, . By the theorems of Weierstrass, the limit function

£ = lim r,(z) = lim Y [re(2) — 7 2]
m-— o m— k=0
exists uniformly for z € A, and is holomorphic there. Moreover
d* d*
g;,;fn(z) = lim yrmn(z), zeD,, k=0.

Since by construction
dk dk
im0 = 22f0),  O0sks=m+n, mzm,

the uniqueness of the Maclaurin expansion shows that f, = f. This completes the
proof of (a).
To prove (b) observe that the additional hypotheses imply

Comn+17~ Opya0y o Ul 10Ty s ooy Ty T ) (g < )"
m — o0,
Consequently ifze D,,,
2 m+n
Xn+1 qn(nn+1){ z
FunkZ) = Ty nl2) ~ — = m— oo
" o Tyt qrzt(z) \Tcn+1 ’ ’
and
[s 0]
f(Z) - rmn(Z) = Z [rkn(z) - rk—l,n(z)]
k=m+1
_ an+1 qz(nn+1)( Z )m+n+1 OZO: ( 4 )k
Tyt Qf(z) Tyt 1 k=0 \Tn+1
2 m+n+1
— OCn+1 Qn(fn+1)( Z ) , M — 0
Z— Ty4q qn(Z) Tpt1
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9. A quotient-difference algorithm. By Corollary 2 of Theorem 8.2, if
n<N + land|n,) < |r,4, then

Coe 1,/ Con = Ty =+ W, M= 0.

If, in addition, |r,_,| < |«,, then

Cman—1
e S MM, Ty_qy, Mo 00

Cn+ 1,n—-1

consequently,

B = cm—l,ncm+1,n—1 -7

mn m — 0.
C

n?®
m,n— lcmn

Let D(z) be the reciprocal series of C(z). From the duality theorem, Theorem 4.4, if
m< M+ land |{,—| < |l < [{ns1l, then

C dn—l,mdn+1,m—1
mn

dn,m - 1dnm

Cpyn—1Cm—
__“mn 1%m 1,n+1_}cm, n— 0.
4 Con

i

m—1,n

TABLE 16

(=]

<

[=]

i
I
|
|
i
}
|
|
i
I
I
I
i
: T3y T3z 33 T34
I
i
I
I
!
I
|
|
[
i

The array in Table 16 is the n{-table for the power series C(z). Observe that the
n{-table for D(z) is the transpose of that for C(z2).
THEOREM 9.1. In the n{-table the boundary conditions

Ty = cm—l/cm7 Cln = dn—l/dn

and rhombus rules

Tonbmn = Pmn = 7.Em,n+ 1Cm+ 1,n»

Tt 1 T Cm-i-l,n E Oy = Mg gnt1 T Cmet 1n+1
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are valid. Moreover,

_ Cm—1nt1Cmt1m-1
Pmn = — 2 .
cnm

Proof. The boundary conditions follow directly from the definitions; also

cm—l,ncm+ 1,n—1 cm,n—lcm—l,n+1
C C C

nmnCmn = -

m,n—lcmn m—1,n%mn

_cm—l,n+lcm+ 1,n—1

cmn

_ Cm—1n+1%m+ 1,0 Cm+1,n—1Cmin+1

cmncm,n+ 1 cmncm+ 1,n

= Tt 16mt 1,n-
The additive rhombus rule requires two applications of Theorem 5.1:

cmﬁl,n+ 1cm+1,n _ Cm+ 1,n—lcm,n+1

Tmt1 T Cmt1n =
cmncm,n+ 1 Cmncm+ i,n

2 2
Con—1n+1Cm+10+1%m+10 7 Cot1,n-1Cm+1,0+1Cmn+1

cmncm,n+ lcm+ l.ncm+ 1,n+1

2 2 2 .2
_ (cm,n+1 - cmncm,n+2)cm+ 1,n (cm+1,n - cmncm+2,n)('m,n+1

Cmncm,n+ lcm+ 1,ncm+ 1,n+1

.2 2
Cm cm+2n mnu+1 ConCom n+2cm+1,n

Cm Lm n+ lcm+1 ncm+1 n+1

_ Cm,n+ lcm+2,n cm+ 1,ncm,n+2 -
= - = Tyt tnt1 T St tont 15
Cont1,0Cm+1,n+1 Con+1Cm+1,n+1

completing the proof.

The consequences of Theorem 9.1 are illustrated in Table 16. Beginning with
the coefficients ¢,, of a normal power series C(z) the rhombus rules permit the
recursive construction of the n{-table by successive addition of upward sloping
diagonals. The dual algorithm applies when the coefficients of D(z) are known.
In practice only two one-dimensional arrays of storage are required, one for each
of the latest upward sloping n- and {-diagonals.

Example. The reciprocal of the function

16 =I5 = ¥ ;f))—

satisfies the hypotheses of Theorem 7.1(b),
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Hence C(z) = Jg 1(2\/;) is a normal Pélya frequency series. The first seven
columns of the n{-table for C,(z) are given in Table 17.

TABLE 17

—1.0000 —4.0000 —9.0000
1.0000 A 3.0000 A 5.0000 A 7.0000

A —0.3333 A —2.4000 A —6.4286 A
1.3333 A 5.0667 A 9.0286 A 13.016
A —0.0877 A —1.3468 A —4.4592 A

14211 A 6.3258 A 12.141 A 18.079
A —0.0197 A —-0.7017 A —2.9946 A
1.4408 A 7.0078 A 14.434 A 22.242

A —0.0041 A —0.3407 A —1.9433 A
1.4448 A 7.3445 A 16.036 A 25.579
A —0.0008 A —0.1560 A —1.2184 A

1.4456 A 7.4997 A 17.099 A 28.178
A —0.0002 A —0.0684 A —0.7393 A
1.4458 A 7.5680 A 17.770 A 30.145

A —0.0000 A —0.0291 A —0.4358 A
1.4458 A 7.5971 A 18.176 A
A —0.0000 A —-0.0122 A

1.4458 A 7.6093 A

A —0.0000 A
1.4458 A
A

Also from Corollary 1 of Theorem 7.2, the Maclaurin expansion, C,(z), of
— f'(z)/ f(2) is 2 normal Stieltjes series. The corresponding entries in the n{-table
of C,(z) are given in Table 18.

The algorithm of Theorem 9.1 has a useful matrix interpretation. With the
elements

0= Ck+1,07nk1’Ck157ck—1,25 Tt nlkaClkanl,k+1 =0

of the kth upward sloping diagonal in the n{-table, and the definitions

Opn = nm,n+1 + Cm+ 1,n» pmn = TonSmno
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TABLE 18
~_—20000 T~ _ 60000 > 4.0000
20000 T~ _ —8.0000 T~ 20000 >
v 05000 \\f—24.000 \\\\\ 32.000
1.5000 v 16500 \\f— 54000 TS
v 0.0455 v 73333 - - f— 108.00
1.4545 v 9.2121 v 61.333 \\\\
Y 0.0072 v 1.1014 v 34.500
1.4474 v 8.1178 v 27.935 v
v 0.0013 v 0.3201 v 5.9308
1.4461 v 7.7990 v 22.324 v
v 0.0002 v 0.1118 v 2.0549
1.4459 v 7.6875 v 20381 v
v 0.0000 v 0.0422 v 0.8805
1.4458 v 7.6453 v 19.543 v
v 0.0000 v 0.0165 v 04158
1.4458 v 7.6288 v 19.143 v
v 0.0000 v 0.0066 v
1.4458 v 7.6223 v
v 0.0000 v
1.4458 v
v

form the tridiagonal matrices

Oio Pri1

1 op-11 Pu-12
® — 1 Ok-2,2 Pr-2.3
Jﬂ: = .

1 O1k-1

and

JO = (JOY,

162.50

\

64.431

47.566

41.384
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Let the bidiagonal matrices

L Gy Tk1
| B SR 1 mey
R® = L . LW =
1. Cix 1 T
1 1 oy
and
1 Cevro 1
Ty | Ga 1
LY = , R¥P =
Tok-1 1 ORI
Ty 1 Ciw

Then the following result is a direct consequence of the boundary conditions and
rhombus rules.

COROLLARY. The quotient-difference algorithm of Theorem 9.1 is equivalent
to the algorithms:

(m): Let J® = 0. For k = 1 factor
chk —-1)

K® = (
el 0

) = RL®

subject to {1, = dy_,/dy; then let

k k k
J® = LWR®

(0): Let J® = 0. For k z 1 factor
k=1 g .
K = k
K%’:( 0 0)=L‘C’R‘g’
subject to W = cy_/Cy; then let
J® = RPLO

The next theorem provides convergence results for certain rows and columns
of the n{-table when C(z), and hence also D(z), is the Maclaurin expansion of a
meromorphic function with simple zeros and poles.

THEOREM 9.2. If n < N + 2 and |r,| < |7, 1], then

Cmn = O((TC,‘/R,H, l)m) - Oa m— o0,
and

Pmn = O((TC,,/?I,H. 1)m) - Oa m— 0.
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Ifn< N+ land|n, ;| <|n,| < |7,.1), then

Ty = Ty + OO — 7, m— o0,
and
Opn-1 =Ty + 007 - 7, m-— o0,
with
gnzmax( T __)
Ty Tyt

The duals of these statements also hold. If m < M + 2 and \{,,| < |{m+ 1], then

T = 0((Cm/Cm+ l)n) - O’ n-— oo,

and

Pmn = 0((Cm/Cm+ l)n) g 0, n— Q.
Ifm< M+ 1and|(, 1| <[l < |{n+1ls then

Cmn = Cm + O(T:‘n) i Cma n— wa

and
Om—1n={m + O(p) > (s m—> 00,
with
rmzmax( bn=s , m )
C | 1 Cme1

Proof. From Corollary 1 of Theorem 8.2,
¢, = 0[(“1“2 Ty TRy 7'Cn+1)—m]

nlnz...n".nlnz...nn

o]

Tyt 1

likewise for p,,, as m — oo. Similarly,

[ O/ YL + O((m- o/
" " 4 Oy a/m PN + O/ )]

=7, + 0™, m— oo,

and the fourth assertion follows from these, thus completing the proof.
Now let the polynomials

psr?rz(z) = umn(z)/cm,n+ 1: qsr(l)rg(z) = (_ l)n(vmn(z)/cm+ 1,n) .
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From Corollary 1 of Theorem 3.3, p©) (¢'%) is the numerator (denominator) of
the Padé fraction r,,,, normalized so that its leading coefficient is unity. It is also
natural to define, as in § 3,

Pila(@) =28 = ¢ (2),  kz0.

THEOREM 9.3. The triangle identities

® jokes 1.a(2) = 2poi2) = s L+ 1P§r?,)n+ 1(2),
* qir(l),)n+ 1(2) = 2g2) — T L+ 1‘1$y?)+1,n(z),
" pin(z) = pgr(t),)n— 1(2) + s 1D 1,42),
®* @n2) = > 1.2) + Lt 10— 1(2),

and the identities relating three consecutive polynomials along an upward sloping
diagonal

@ *® pir(z)-)f-l,n—l(z) = (Z - amn)pgr?rz(z) - pm,n+ lpsr?ll,n+ 1(2),
* qgr?)—l,nJr l(z) = (Z - o-mn)qir?rZ(Z) — Pm+ l,nqtr?—)i-l,n-l(z)a
are valid:

Proof. These follow {rom the definitions and the corresponding Frobenius
identities of Theorem 5.2.

Either pair of triangle identities permits the recursive construction of the
polynomials

_ (0) (0 0) (0 L k+1
1= q;tO)’ qi—’l,l, ?qgk)’ q(—)l,k+1 =2z

and
k+1 __ (0 0 0 0) __
4 -—Pkll,—ul’;co),"'sP(x,}c—uPE)k)—1

from those of the previous diagonals in their respective tables, and the entries
of the kth diagonal in the n{-table. The following corollary is a consequence of the
third pair of identities.

CoROLLARY. The polynomials ¢2,,, n=0,1,---, k+ 1, and p¥}_,.. m
=0,1,---, k + 1, are the characteristic polynomials of the submatrices

k+2-mk+3—-—m,---  k+1
k+2—-—mk+3—-—m,---, k+1

J(k)

n

(1,2’...,,1

) and J(ck)(
1,2,---.n

of J® and J¥, respectively. In particular,
det(zl, ., — J®) = 2**1 = det (zl, ., — JP)

and the trace
k k

™= o= Y Corerg + M) =0,
1=0 =0

k=0,1,2,---.
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Proof. The first assertion is true for n = 0, 1. If it is assumed to hold up to n,
then by Laplace expansions along the last column and row,

1,2, n+1
ot e[l )]

1,2,---,n+1
1,2,---,n
= (z — 04, det zI,,——Jﬁl‘)( T )]
&= G-nd [ 1,2,-++,n
1,2,---,n—1
— Pr—ns1adet]| zl,_ —Jﬁ"( T )]
Pr—n+1, |:Z 1 1.2, n—1

= (Z - o-k—n,n)qgco—)n,n(z) — Pr—n+ l,nqgco—)n+ 1,n~1(z)

= qgco—)n— 1,n+ 1(2).

Similarly for the polynomials p%, _,. by Laplace expansions along the first
column and row. From Theorem 2.1 the trace of J® is equal to the sum of its
characteristic roots. Since each such root is null, t* = 0, completing the proof.

The last fact provides a convenient check on the numerical stability of the
computation. The next theorem, on the convergence of the polynomials p{% and
49, is a consequence of the definitions and Theorem 8.2, as in the proof of Theorem
9.2.

THEOREM 94. Let n < N + 1l and |n,}) < |7pq|. If z # 7y, 1 < k < n, then

216 = 9 + 0| 2]
T

n+1
n
gV =[]z—m), m->oo;
k=1

forl1 £k £n,

Tyt 1

qgﬁ(ﬂk)=0(( L ) )—»0, m-o 0.

The dual statements also hold. Let m <M + 1 and |{,| <|(wsil- If z #,,
1k m,then

pore) = e + of =] )
Cm+ 1

R =]E-0), n-ow;
k=1

Jor1 £k <m,

G

et

Psr?n)(Ck)=0(( )") -0, n— 0.
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Generalizations of the polynomials p!% and q'°) are useful for the determina-
tion of equimodular zeros and poles. Observe that if
0 <lmy| = =) <Imysrl = =lmp,l <
then by Theorem 9.2,
pmnk—)O, m— oo, k=1,2,3,--+,

and as m — o0, the matrix

J(m)(1 2, N)

1,2,---, N
becomes block lower bidiagonal with diagonal blocks of order v, = nyiy — !
J(m)(nk—i—1,nk+2,---,nk+1), k=01.2, ..
TAme Lm 2, M
and subdiagonal blocks
ejel e My .\ > k=1,2,3,---

For example, withn, = 1,n, =3 andn; = N = 5:

x| 0 |
)

1:* *:

1,2,3,4,5 | |

T 2sas) T L0 moe

: 1)* =
} ||1 *

| |

Unless v, = 1, the elements of the diagonal blocks do not converge as m — 0.
However it will now be shown that the characteristic polynomials of these blocks
do converge to the monic polynomials with zeros 7, ,, 7, 12, *, 7 For
this purpose define the polynomials

k+n+2,k+n+3,~-,m+n+1”
k+n+2k+n+3,---, m+n+1

LT

e = et | a1, — 70|
and

k+1,k+2,~--,n):|

®(z) = det [ZI,,_ ~J§,’”+")(
Grl2) ¢ k+1,k+2,-,n

THEOREM 9.5. The polynomials p), and q%), satisfy the recursion relations
A2 =0,  pia) =1,

pm+1.n—1(z) (Z - O-mn)p(k)(z) pm,n+1rgz()—1,n+ I(Z)’

and
¢¥-12)=0, ¢ =1,

qglo—l,n+ 1(2) (Z - Gmn)q(k)(z) — Pm+ 1, nqm+1 n— l(z)
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Ifm<M+ 1and

ICkl < |Ck+1| é e é lCm' < |Cm+1|7
then

lim pi(z) = p2) = [] (z-0).

n= o I=k+1

Dually, if n < N + 1 and

I < mpsiql £ -+ S iml < Impial,

then

n

hm q"‘)(z) =qPz= |] (z—-n).

I=k+1

Proof. The recursion relations follow directly from the definitions, as in the
proof of the corollary of Theorem 9.3. From that corollary,

1,2,---,n
© =det[ J<m+n>( )]
Gon(2) 12,

If the matrices B;; are square, and B, is nonsingular, then as in the proof of
Theorem 2.6,

Bll

(det B;y)™! det( 12) = det (B, — By B1}'By))

21 22
= det [B,, — (det By,)”'B,B{,B,,].
Now apply this with

1,2,k
B11=ZIk—J§zm+n)(1 7. k)’ B12=Pm+n—k+1,keke£,
k+1,k+2,---,n
B :eeT’ B =ZI,,_~ _J;:m+n)( 4 > s ’
4 Tk 22 , k+1,k+2,---,n

and observe that the (k, k) element of B, is
1,2,---,k—1

P
1,2, k—1

):| = qgr(l)-)FrH-k— 1,k— 1(2).
There results

(0)
Gmn (2) k+1,k+2,---.n
_dmn\%] det I, — J(m+n) ()
457 - 1(2) [z T (k F k42, n) I

with

) Pm+n+k- 1kqm+n it 1k~ 1(2)
enlz) = o)
qm+n kk(z)
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By Theorems 9.1 and 8.2,

Coi—1,k+1%m+1,k-1 ¥ ,k—l(z)
pmkqgr?,)k—-l(z) = (- 1)k = 3 = =
Cnk Cm+1,k-1

Con— Vpi—1(2)
- kCm—1,k+1Ump—1
=(-1) 3

cmk
= O((my/my+ )™ = 0, m-— 0.
From Theorem 84, if z # n, =,, ---, 7y, then
(0)
(0()1"'”( 2 - q¥z), ez -0, m— 0.
G+ n-kilZ )

Hence, by the continuity of the determinant as a function of its elements,

d(2) > ¢¥2),  m— oo,
provided z # m,, ®,, --- , ;. Since the g% are polynomials of degree at most
n — k, this holds for unrestrlcted values of z. This completes the proof.

A useful simplification in the quotient-difference algorithm of Theorem 9.1
occurs if

Clz) =pz) = co + 12 + -+ + cpz™
is a polynomial of degree M. In this case, by Corollary 3 of Theorem 3.2,
Cun 76 Oa n g 0’

and
Con = 0, m>M and n>0.

The n{-table then has the form given in Table 19.

TABLE 19
0 0 0 0
O:F {11 . P {13 Lia
:L 11 . 7121\ “22/ \n23
0l o0l e D G
1 21 \\”22/F 23 T24
| .
i
“
|
I
0 i Cr-11 Cr-1.2 Cu-1,3 =10
E TM-1.1 Tm-1,2 TM-1.3 TM-1,4
0 1 L Lma {ms Cma
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It may be constructed by successive addition of columns, working from left to
right. This is a progressive quotient-difference algorithm. The dual algorithm
applies when D(z) is a polynomial.

The quotient difference algorithm developed here is a variant of, and for
general formal power series, distinct from, the original one of Rutishauser. Its
relation to the Padé table and the corresponding duality theory is perhaps more
natural.
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