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Abstract. The “Painlevé analysis” is quite often perceived as a collection
of tricks reserved to experts. The aim of this course is to demonstrate the
contrary and to unveil the simplicity and the beauty of a subject which is in
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To achieve our goal, we will not start the exposition with a more or less
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introduction to the rich world of singularities of nonlinear differential equations,
so as to remove any cooking recipe.

The emphasis is put on embedding each method of the test into the well
known theorem of perturbations of Poincaré. A summary can be found at the
beginning of each chapter.
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Chapter 1

Introduction

This course is a major revision of a previous one delivered in Chamonix [9].
Let us start with a few realistic applications.

1.1 A few elementary examples

1.1.1 Linearization of the Riccati equation

The Riccati equation

u′ = a2(x)u2 + a1(x)u+ a0(x), a2 6= 0, with ′ =
d

dx
(1.1)

is known to be linearizable, but how to retrieve the explicit formula which
maps it onto a linear equation? One just looks for the first coefficient u0 of
an expansion for u which describes the dependence on the integration constant
(a simple pole), i. e. a Laurent series in some expansion function ϕ(x) : u =
ϕ−1(u0 + u1ϕ + . . .). It is given by balancing the two lowest degree terms
−u0ϕ

′ϕ−2 = a2(u0ϕ
−1)2, and the linearizing transformation is then simply the

change of function u→ ϕ defined by the singular part transformation u = u0ϕ
−1

u = − ϕ′

a2ϕ
, ϕ′′ −

[
a′2
a2

+ a1

]
ϕ′ + a0a2ϕ = 0. (1.2)

This will be justified at the end of this course, in section 7.3.

1.1.2 A first integral of the Lorenz model

The Lorenz model of atmospheric circulation

dx
dt

= σ(y − x),
dy
dt

= rx− y − xz, dz
dt

= xy − bz(x− y) (1.3)
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admits for (b, σ, r) = (0, 1/3, arbitrary) the first integral[
−3

4
x4 +

4
3
x(y − x) + (z − r + 1)x2

]
e4t/3 = K, (1.4)

but can one go further, i. e. can one obtain more first integrals or even explicitly
integrate? The answer is yes [106]. By elimination of (y, z), one first builds the
second order equation for x(t)

d2x

dt2
=

1
x

(
dx
dt

)2

− x3

4
− K

3x
e−4t/3. (1.5)

For K = 0 this equation admits the first integral

1
x2

(
dx
dt

)2

+
x2

4
= A2, (1.6)

and the general solution x = (1/(2A)) cosh(t− t0). For K 6= 0 this equation for
x(t) is equivalent, as shown below, to the following equation for X(T )

X ′′ =
X ′2

X
− X ′

T
+
αX2 + β

T
+ γX3 +

δ

X
, (α, β, γ, δ) constant, (1.7)

which is the third of six irreducible equations discovered between 1900 and 1906
by Paul Prudent Painlevé and his student Bertrand Gambier and, according
to the theory of Painlevé developed in these lectures, the integration is then
achieved (“parfaite”, says Painlevé). Two words may not be familiar to the
reader : “equivalent” and “irreducible”. “Equivalent” means that the transfor-
mation law from the physical variables (x, t) to the variables (X,T ) which satisfy
(P3) should not result from a good guess, but should be looked for within a pre-
cise set of transformations (mathematically the homographic transformations
(3.5) defined section 3.3) designed so as not to alter the structure of singulari-
ties (poles, branch points, . . . ). In this case, one finds that the transformation

x = a(t)X, T = τ(t), with a =
2ic
3
e−t/3, τ = ce−t/3, c4 =

27
4
K, (1.8)

maps the equation for x(t) to the equation (P3) for X(T ) with the parameter
values for (P3) α = β = 0, γ = δ = 1.

As to “irreducible”, it means that there exist no transformation, again within
a precise class (Drach, Umemura, see section 3.5), reducing any of the six (Pn)
equations either to a linear equation or to a first order equation. Consequently,
the general solution of (Pn) has no “explicit expression”, it is just defined by
the equation itself. There is absolutely no difference between defining the “ex-
ponential function” from the general solution of u′ = u and defining the “P3
function” from the general solution of the equation (P3).
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1.1.3 A reduction of the Boussinesq equation

The Boussinesq equation of fluid mechanics

utt +
[
u2 +

1
3
uxx

]
xx

= 0, (1.9)

in the stationary case where u does not depend on time, reduces to an ordinary
differential equation (EDO) which admits two first integrals

u′′ + 3u2 +K1x+K2 = 0 (1.10)

and, depending on K1, this ODE is equivalent either to the (P1) equation

u′′ = 6u2 + x (1.11)

or, after one more integration, to an equation introduced by Weierstrass, the
elliptic equation

u′2 = 4u3 − g2u− g3, (g2, g3) complex constants. (1.12)

Both equations have a general solution single valued in the whole complex plane.

1.2 “Solvable” models, “integrable” equations
and so on

Two main fields contributed to the recent interest for the Painlevé theory.
The first one is statistical physics. When Ising solved his one-dimensional model
and found the partition function F = −(1/β) Log(2 cosh(βJ)), β = kBT , the
result was a posteriori not surprising. But, when Barouch, McCoy and Wu
[67] expressed the correlation function of the two-dimensional Ising model with
a (P3) function, this strongly contributed to revive the interest for these six
functions, which now appear in any “solvable model” of statistical physics (see
Di Francesco, this volume). Retrospectively, the cosh function of Ising is a quite
elementary output of the Painlevé theory.

The second field is that of partial differential equations (PDE), as shown
by the above Boussinesq example. After the extension of the Fourier transform
to nonlinear PDEs [57], called inverse spectral transform (IST), Ablowitz and
Segur [2] noticed a link between those “IST–integrable PDEs” and the theory of
Painlevé, link expressed by Ablowitz, Ramani and Segur [4] as the conjecture :
“Every ODE obtained by an exact reduction of a nonlinear PDE solvable by
the IST method has the Painlevé property”. For more details, see the book by
Ablowitz and Clarkson [1] and [84].
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1.3 Insufficiency of quadratures, the need for a
theory

Let us return to our main subject, the explicit, analytic integration of ODEs.
An exceptionally clear introduction ad usum Delphini is the Leçon d’ouverture
(Oeuvres vol. I p. 199) given by Painlevé in 1895 before starting the Leçons
de Stockholm. For centuries, the question of integration has been formulated
as : find enough first integrals in order to reduce the problem to a sequence of
quadratures. But even the simple example of the pendulum shows the insuffi-
ciency of this point of view. Its motion is reducible to a quadrature defined by
the integral

t− t0 =
∫ u

u0

du√
(1− u2)(1− k2u2)

, k constant, (1.13)

giving the time t as a “function” of the position u. However, this elliptic integral
does not provide the desired result, i. e. the position as a function of time,
and, worse, nothing ensures the existence of such an expression. This classical
problem (the inversion of the elliptic integral) could be solved by Abel and Jacobi
only by going to the complex domain, leading to a unique value u(t, t0, u0) =
u0 + sn(t − t0, k). The symbol sn does deserve the name of function (this is
one of the twelve Jacobi elliptic functions, equivalent to the unique Weierstrass
function) because, for any complex k, the application t → sn(t, k) is single
valued.

Following an idea of Briot and Bouquet, this led Painlevé to remark (Leçon
no. 1) : “Mais l’importance de cette classe d’équations [à solution générale uni-
forme] apparâıt mieux encore si on observe que la plupart des transcendantes
auxiliaires, dont le rôle est si considérable (fonctions exponentielle, elliptiques,
fuchsiennes, etc), intègrent des équations différentielles algébriques très simples.
Les équations différentielles apparaissent donc comme la source des transcen-
dantes uniformes les plus remarquables, susceptibles notamment de contribuer
à l’intégration d’autres équations différentielles dont l’intégrale n’est plus uni-
forme.”

This is the famous “double interest” of differential equations : one may
consider them either as the source for defining new functions, or as a class of
equations to be integrated with the existing functions available.

1.4 What can “to integrate” mean? The Painle-
vé property

Any converging Taylor series defined on some part of the real line, represent-
ing for instance a solution of an ODE on some interval −R < x < R, defines
in fact an analytic function inside the disk |x| < R. Therefore, even when their
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variables are real, differential equations and their solutions are naturally defined
in the complex plane.

To integrate an ODE is to acquire a global knowledge of its general solution,
not only the local knowledge ensured by the existence theorem of Cauchy. So,
the most demanding possible definition for the “integrability” of an ODE is the
single valuedness of its general solution, so as to adapt this solution to any kind
of initial conditions. Since even linear equations may fail to have this property,
e.g. 2u′+xu = 0, u = cx−1/2, a more reasonable definition is the following one.

Definition. The Painlevé property (PP) of an ODE is the uniformizability of
its general solution.

Following Bureau [13], we will call stable an equation with the PP. In the
above example, uniformization is achieved for instance by removing from the
complex plane any line joining the two branch points 0 and ∞.

1.5 Singularities of ordinary differential equa-
tions

“Les fonctions, comme les êtres vivants, sont caractérisées par leurs sin-
gularités” (Paul Montel). Singularities are responsible for the limitation of the
domain of validity of Taylor or Laurent expansions, so their study is mandatory.

There exits a deep difference between the singularities of solutions of differ-
ential equations according as whether these equations are linear or nonlinear.
In the linear case, the general solution (GS) has no other singularities than
those of the coefficients of the equation once solved for the highest derivative.
These singularities have a location independent of the arbitrary coefficients of
integration and they are called fixed.

On the contrary, solutions of nonlinear ODEs may have other singularities,
then called movable, at locations depending on the arbitrary coefficients. Thus,
the equations [89]

du
dx

+
u

x2
= 0, u = ce1/x, (1.14)

du
dx

+
u2

x
= 0, u =

1
c+ Log x

, (1.15)

du
dx
−
√

1− u2

x
= 0, u = sin(c+ Log x), (1.16)

where c is the arbitrary constant of integration, all have a fixed singularity in
their general solution at x = 0 (isolated essential singular point for the first one,
logarithmic branch point for the two others). In addition, among the last two
ones, which are nonlinear, the second one has movable simple poles, and the
third one has no movable singularity. All three have the PP.
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The possible singularities of differential equations have been classified by
Mittag-Leffler : in addition to the familiar ones (poles, branch points, essential
singular points), there can exist essential singular lines, analytic or not, or per-
fect sets of singular points, as illustrated by the Fuchsian and Kleinean functions
of Poincaré. One example is Chazy’s equation of class III

u′′′ − 2uu′′ + 3u′2 = 0, (1.17)

whose general solution is only defined inside or outside a circle characterized by
the three initial conditions (two for the center, one for the radius); this solution
is holomorphic in its domain of definition and cannot be analytically continued
beyond it. This equation therefore has the PP, and the only singularity is a
movable analytic essential singular line which is a natural boundary.

1.6 Outline and basic references

For the outline, we refer the reader to the detailed table of contents; the
choice made is to develop the construction of necessary conditions, at the ex-
pense of the explicit integration methods, only briefly introduced in chapter
7.

The basic texts are due to Painlevé and his students and we abbreviate their
references as Leçons ([89] Leçons de Stockholm, 1895, a high level course on non-
linear ODEs), BSMF ([90] first memoir, 1900, on first and second order ODEs),
Acta ([92] second memoir, 1902, on second and higher order ODEs), CRAS ([94],
1906, an addendum after Gambier discovered the functions (P4), (P5), (P6)),
Gambier ([56] thèse, 1909, on second order ODEs), Chazy ([22] thèse, 1910,
on third and higher order ODEs), Garnier ([58] thèse, 1911, on higher order
ODEs). Most Painlevé works are reprinted in Oeuvres ([95] three volumes 1973,
74, 76, again available from CNRS-Éditions, e-mail editions@edition.cnrs.fr).
For a global overview of these results, see the book of Hille [63]. preferably to
the one of Ince [66]. For a detailed exposition (indeed, in the classical period,
it was kind of fashionable to avoid details) and additional results, see the three
memoirs of Bureau M. I [14], M. II [15], M. III [16]. Peter Clarkson maintains
an extensive bibliography [26] covering both the classical and the recent period,
reproduced in [1].
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Chapter 2

The meromorphy
assumption

2.1 Specificity of the elliptic function

A very deep result of L. Fuchs, Poincaré ([98], cf. Oeuvres de Painlevé III
p. 189) and Painlevé (Leçon no. 7 p. 107) is that the class of first order ODEs
F (u′, u, x) = 0, with F polynomial in u′ and u, analytic in x, defines one and
only one function, from the general solution of (1.12). This function is not
historically new since this is precisely the elliptic function ℘ introduced earlier
by Weierstrass, i. e. the particular solution of

℘′2 = 4℘3 − g2℘− g3 = 4(℘− e1)(℘− e2)(℘− e3), (g2, g3, eα) ∈ C, (2.1)

which admits a pole at the origin

℘(x, g2, g3) = x−2 +
g2

20
x2 +

g3

28
x4 +O(x6). (2.2)

The novelty of ℘ is elsewhere : this is the transcendental dependence of
the general solution ℘(x− x0, g2, g3) on the arbitrary constant x0, which makes
impossible the reducibility of the elliptic equation to a linear equation. Among
the many nice properties of elliptic functions (see e.g. [5]), the most interesting
to us is their structure of singularities. These are doubly periodic meromorphic
functions (which is their usual definition), and there exists an entire function
σ, i. e. without any singularity at a finite distance, whose −℘ is the second
logarithmic derivative

℘ = − d
dx
ζ, ζ =

d
dx

Log σ, ζ ′′2 + 4ζ ′3 − g2ζ
′ + g3 = 0. (2.3)
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Therefore the only singularities of the general solution ℘(x−x0, g2, g3) of (1.12)
come from the zeroes of σ and are a lattice of movable double poles located at
x0 + 2mω + 2nω′, with m and n integers, ω, ω′ the two half-periods.

2.2 The meromorphy assumption

The Laurent expansion (2.2) certainly motivated two students of Weierstrass,
Paul Hoyer and Sophie Kowalevski, to investigate further the possibility for the
GS of an ODE to be represented by a Laurent series with a finite principal part,
so as to exclude essential singularities. This meromorphy assumption, briefly
said, consists in checking the existence of the Laurent series and its ability
to represent the GS, i. e. to contain enough arbitrary parameters. But, since a
Laurent series is only defined inside its annulus of convergence, this study is only
local and it cannot dispense of a further study in order to explicitly integrate,
using completely different means.

The first attempt is due to Hoyer in 1879 [64] with the system

d
dt

x1

x2

x3

 =

 a1 a2 a3

b1 b2 b3
c1 c2 c3

x2x3

x3x1

x1x2

 , (2.4)

under the restriction that neither the determinant nor any of its first or sec-
ond order diagonal minors vanishes; he even generalized the assumption to the
Puiseux series

xi =
+∞∑
j=0

Aij{(t− t0)
1
r }−n+j , i = 1, 2, 3,

with n and r positive integers and (A10, A20, A30) 6= (0, 0, 0), but in fact the
numerous cases of integrability by elliptic functions which he discovered were
found by a direct Ansatz, and not as necessary conditions for the Laurent series
to exist. Continued by Kowalevski with a quite similar system except that it
is six-dimensional, which will be seen section 2.5, the method will only get its
final shape with Gambier in 1910 (see pages 9 and 49 of his thesis).

2.3 A flavor of the meromorphy test

We must warn the reader that this section is not the algorithm to apply, but
just a flavor of it; the final algorithm will only be given section 6.6.

Let us start with a single equation; the case of a system is not different,
apart from technical complications.

Consider the equation

E(x, u) ≡ −d2u

dx2
+ 6u2 + g(x) = 0, (2.5)
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with g analytic.
Assume that u has a polar behavior at some location x0 distinct from any

of the possible singularities of the coefficients of the equation, here g(x); such a
pole is therefore movable. One has to check the existence of all possible Laurent
series with a finite principal part

u =
+∞∑
j=0

ujχ
j+p, χ = x− x0, u0 6= 0, (2.6)

in which −p is the order of the pole, which must be an integer, and the coeffi-
cients uj are independent of x.

After insertion of this series in (2.5), which is polynomial in u and its deriva-
tives, and replacement of g(x) by its Taylor series in the neighborhood of x0,
the left-hand side, as a sum of Laurent series, is itself a Laurent series with a
finite principal part

E = [p(p− 1)u0χ
p−2 + (p+ 1)pu1χ

p−1 + . . .] + 6[u2
0χ

2p + 2u0u1χ
2p+1 + . . .]

+[g(x0) + g′(x0)χ+ . . .], (2.7)

which we denote more generally

E =
+∞∑
j=0

Ejχ
j+q, (2.8)

q being the smallest integer of the list (p − 2, 2p, 0). The method consists of
expressing the conditions for this series to identically vanish : ∀j ∈ N : Ej = 0.

First step. Determine all possible families of movable singularities (u0, p).
This is expressed with three conditions :

• 1) (condition u0 6= 0) equality of at least two elements of the list (p −
2, 2p, 0) (q denotes their common value), the involved terms of E being
called dominant and denoted Ê,

• 2) (dominance condition) inferiority of q to the other elements of the list,

• 3) (vanishing Laurent series condition) vanishing of the coefficient E0 of
the lowest power χq, which involves only the dominant terms

E0 ≡ lim
χ→0

χ−qÊ(x, u0χ
p) = 0, u0 6= 0, (2.9)

i. e. respectively : one linear equation for p by pair of terms considered, several
linear inequations for p, one algebraic equation for (u0, p).

A necessary condition to prevent multivaluedness is then

13



• C0. All possible values for p are integer.

If there exists no family which is truly singular (p negative), the method
stops without concluding.

Here, the various possibilities for these linear equations and inequations are

q = p− 2 = 2p and q ≤ 0, (2.10)
q = 2p = 0 and q ≤ p− 2, (2.11)
q = p− 2 = 0 and q ≤ 2p. (2.12)

Their geometric representation is known as the Puiseux diagram or Newton’s
polygon (ref. [63] sec. 3.3, [66] sec. 12.61). The two solutions (p, q) = (−2,−4),
(2, 0) satisfy the condition C0 and the second one must be rejected, as being
nonsingular. So, the dominant part is here Ê = −u′′ + 6u2. The algebraic
equation E0 = 0

E0 ≡ −6u0 + 6u2
0 = 0, u0 6= 0, (2.13)

has only one root u0 = 1.
For j = 1, 2, . . ., each successive equation Ej = 0 has then the form

∀j ≥ 1 : Ej ≡ P (u0, j)uj +Qj({ul | l < j}) = 0, (2.14)

here

P (u0, j) = −(j − 2)(j − 3) + 12u0 = −(j + 1)(j − 6), (2.15)
Q1 = 0, Q2 = 6u2

1, Q3 = 12u1u2, (2.16)

∀j ≥ 4 : Qj =
g(j−4)(x0)

(j − 4)!
+ 6

j−1∑
k=1

ukuj−k. (2.17)

So the sequence Ej = 0, j ≥ 1, is just one linear equation with different right-
hand sides, and it can be solved recursively for uj . Whenever the positive integer
j is a zero of P , two subcases occur : either Qj does not vanish and the Laurent
series does not exist, or Qj vanishes and uj is arbitrary. Since x0 is already
arbitrary, in order to represent the GS, one wants N − 1 additional arbitraries
to enter the expansion, where N is the order of the ODE. Let us admit for a
moment that the value j = −1 is always a zero of P , a result whose general
proof (given section 5.5) needs prerequisite notions of perturbation theory; this
value j = −1 will be seen to represent the arbitrary location of x0. Hence the
following steps.

Second step. For each family, determine the polynomial P (do not compute
Qj yet) and require the necessary conditions :

• C1. The polynomial P has degree N .

• C2. N − 1 zeroes of P are positive integers.
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• C3. The N zeroes of P are simple (i. e. of multiplicity one).

If either C1, C2 or C3 is violated, the method stops and one concludes to
a failure because the general solution cannot be meromorphic.

The zeroes of P are called indices and P = 0 itself is the indicial equation.
Indeed, anticipating on the exposition of the general theory sections 5.6 and
5.7, they are the Fuchs indices i near χ = 0 of a linear equation introduced by
Darboux [45] under the name “équation auxiliaire”, so the indicial equation is
computed as follows [52]. Take the derivative of Ê(x, u) with respect to u

∀v : Ê′(x, u)v ≡ lim
λ→0

Ê(x, u+ λv)− Ê(x, u)
λ

, (2.18)

here
Ê′(x, u) ≡ −∂2

x + 12u; (2.19)

evaluate this linear operator at point u = u0χ
p, which defines the “auxiliary

equation” (i. e. the linearized equation at the leading term)

∀v : Ê′(x, u0χ
p)v = 0, (2.20)

here
∀v : Ê′(x, u0χ

−2)v ≡ (−∂2
x + 12u0χ

−2)v = 0; (2.21)

establish the indicial equation of this linear ODE near its Fuchsian singularity
χ = 0

P (i) = lim
χ→0

χ−i−qÊ′(x, u0χ
p)χi+p = 0, (2.22)

here

P (i) = lim
χ→0

χ−i+4(−∂2
x + 12u0χ

−2)χi−2

= −(i− 2)(i− 3) + 12u0

= −(i+ 1)(i− 6). (2.23)

The shift i → i + p in the above equation is just a convention aimed at not
producing an unfortunate difference between the Fuchs index i and the index j
of the recursion relation Ej = 0.

Now, one just has to check the existence of the Laurent series.
Third step. For every positive integer zero i of P (a Fuchs index), require

the condition

• C4.

∀i ∈ N , P (i) = 0 : Qi = 0. (2.24)
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This is done by successively solving the recursion relation up to the greatest
positive integer Fuchs index. As soon as a C4 condition is violated, one stops
and concludes to a failure : the ODE has not the PP. After the greatest positive
integer Fuchs index has been checked, the method is finished.

Here, one finds

u0 = 1, u1 = u2 = u3 = 0, u4 = − g0

10
, u5 = −g

′
0

6
, (2.25)

and the condition C4 at index i = 6 is

Q6 ≡ g′′0/2 = 0. (2.26)

i.e., since x0 is arbitrary, g′′ = 0. The ODE (2.5) is restricted to be (1.10) which
has been seen to have a meromorphic GS, so in this case the generated necessary
conditions are sufficient.

Remarks.

1. We have retained the classical vocabulary (“famille” is used by Gambier,
p. 38 of his thesis [56], “indices” is used by Gambier, Chazy [22] and Bu-
reau [13]), rather than the one more recently introduced [3, 4] (“branch”,
“resonances”). Indeed, “branch” has another meaning in classical analysis,
where it denotes a determination of a multivalued application, which may
create some confusion. As to “resonance”, its identification with a basic
notion of a linear theory, the Fuchs indices, makes useless the introduction
of such a term.

2. Conditions Qi = 0 at Fuchs indices i are often referred to as “no-logarithm
conditions” because, if some of them are not satisfied, there exists a gen-
eralization of the Laurent series, called ψ−series ([63] chap. 7), which is
a double expansion in χ and Logχ. This series contains no logarithms
(i. e. reduces to the Laurent series) iff all Qi vanish.

3. One must prove that the radius R of the punctured disk |x − x0| < R in
which the series converges is nonzero.

4. As indicated by Gambier [56] p. 50, there is no need to expand the coeffi-
cients g(x) of the equation around x0. This is achieved [30] by taking for
the expansion variable not x − x0, but a mute variable χ with the only
property χx = 1. Coefficients uj in eq. (2.25) become dependent on x
instead of x0 :

u0 = 1, u1 = u2 = u3 = 0, u4 = −g(x)
10

, u5 = −g
′(x)
15

,

Q6 ≡
g′′(x)

2
= 0. (2.27)
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Let us insist again on the danger of using the present test as it is. An
example of Chazy makes evident the necessity for a more reliable test : the
equation with a single valued general solution ([22] p. 360)

(u′′′ − 2u′u′′)2 + 4u′′2(u′′ − u′2 − 1) = 0, u = ec1x+c2/c1 +
c21 − 4

4c1
x+ c3.

possesses a logarithmic family u ∼ −Log(x− x0).

Exercise 2.1 Handle the equation

2uu′′ − 3u′2 = 0, u = c1/(x− c2)2. (2.28)

Solution.

2p− 2 = 2p− 2, E0 ≡ 2u2
0p(p− 1)− 3u2

0p
2 = 0. Hence p = −2, u0 arbitrary.2

(2.29)

2.4 Extension to a system

If the differential equation is defined by a system

E(x,u) = 0, (2.30)

(boldface characters represent multicomponent quantities), the scalar equations
of section 2.3 become systems : a linear system for the components of p, an
algebraic system for the components of u0, a linear system with a rhs for uj , a
determinant for the indicial equation, etc. Take the example of the Euler system
(diagonal Hoyer system)

E1 ≡
dx1

dt
−αx2x3 = 0, E2 ≡

dx2

dt
−βx3x1 = 0, E3 ≡

dx3

dt
−γx1x2 = 0. (2.31)

First step. The necessary condition on (p,u0) is

• C0. All components of p are integer, all components of u0 are nonzero.

Of course, if a component of u0 is zero, one must increase by one the as-
sociated component of p until the new component of u0 becomes nonzero. It
there exists no truly singular family (at least one component of p negative), the
method stops without concluding.

Here, the unique solution p of the linear system q1 = p1 − 1 = p2 + p3 and
cyclically is thus p1 = p2 = p3 = −1, q1 = q2 = q3 = −2. The algebraic system
for u0

E0 ≡ lim
χ→0

χ−qÊ(x,u0χ
p) = 0, u0 6= 0, (2.32)
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is written
E1,0 ≡ −x1,0 − αx2,0x3,0 = 0 and cyclically, (2.33)

and it defines four families

x2
1,0 =

1
βγ

, x2
2,0 =

1
γα

, x2
3,0 =

1
αβ

, x1,0x2,0x3,0 = − 1
αβγ

, (2.34)

which we gather under the unique algebraic writing x1,0 = a, x2,0 = b, x3,0 = c.
Second step. The linear system

∀j ≥ 1 : Ej ≡ P(j)uj + Qj({ul | l < j}) = 0 (2.35)

generates the indicial equation

det P(i) = 0, P(i) = lim
χ→0

χ−i−qÊ′(x,u0χ
p)χi+p, (2.36)

here

P(i) =

 i− 1 −αc −αb
−βc i− 1 −βa
−γb −γa i− 1

 , det P(i) = (i+ 1)(i− 2)2 = 0. (2.37)

Classical results from linear algebra on the resolution of the matrix equation
AX = B give the necessary conditions

• C1. The polynomial det P has degree N .

• C2. N − 1 zeroes of det P are positive integers.

• C3. Every positive zero i of det P has a multiplicity equal to the dimension
of the kernel of det P(i).

Here, each of the four families has the same indices (−1, 2, 2) and, for the
double index i = 2, the three rows of matrix P(2) are proportional, so its kernel
has dimension two.

Third step. For every positive integer zero i of P (a Fuchs index), require
the condition

• C4.

∀i ∈ N , det P(i) = 0 : the vector Qi is orthogonal to the kernel
of the adjoint of operator P(i). (2.38)

Here, the condition C4 is satisfied at index two, and the Laurent series are
finally

x1 = aχ−1 + a2χ+O(χ2), χ = t− t0, (2.39)
x2 = bχ−1 + b2χ+O(χ2), (2.40)
x3 = cχ−1 + c2χ+O(χ2), a2 + b2 + c2 = 0, (2.41)

with (t0, b2, c2) arbitrary.

18



2.5 Motion of a rigid body around a fixed point

It is ruled by the system

A
dω1

dt
+ (C −B)ω2ω3 + (x3k2 − x2k3) = 0,

dk1

dt
− ω3k2 + ω2k3 = 0,

B
dω2

dt
+ (A− C)ω3ω1 + (x1k3 − x3k1) = 0,

dk2

dt
− ω1k3 + ω3k1 = 0,(2.42)

C
dω3

dt
+ (B −A)ω1ω2 + (x2k1 − x1k2) = 0,

dk3

dt
− ω2k1 + ω1k2 = 0,

depending on six parameters : the components (A,B,C), positive, of the diag-
onal inertia momentum I and the components (x1, x2, x3), real, of the vector
−−→
OG linking the fixed point O to the center of mass G. Because it admits the
three first integrals

K1 = (I−→Ω).−→Ω − 2−−→OG.−→k = Aω2
1 +Bω2

2 + Cω2
3 − 2(x1k1 + x2k2 + x3k3),

K2 = (I−→Ω).−→k = Aω1k1 +Bω2k2 + Cω3k3,

K3 = −→k .−→k = k2
1 + k2

2 + k2
3,

and a last Jacobi multiplier equal to 1,

3∑
j=1

∂ωj

(
dωj
dt

)
+

3∑
j=1

∂kj

(
dkj
dt

)
= 0, (2.43)

a sufficient condition of reducibility to quadratures (i. e. to separation of vari-
ables, which implies neither meromorphy nor single valuedness) is the existence
of a single additional first integral independent of time.

Before Kowalevski, the only such known cases were

• the isotropy case, with

A = B = C : K4 = −−→OG.−→Ω = x1ω1 + x2ω2 + x3ω3, (2.44)

• the case of Euler (1750) and Poinsot(1851) G at the fixed point O (x1 =
x2 = x3 = 0) with

G = O : K4 = |I−→Ω |2 = A2ω2
1 +B2ω2

2 + C2ω2
3 , (2.45)

• the case of Lagrange (1788) and Poisson (1813)

A = B, x1 = x2 = 0 : K4 = ω3, (2.46)

and for these three cases the general solution is elliptic, hence meromorphic [59].
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Let us denote a family as (t− t0 is abbreviated as t)

ωl =
+∞∑
j=0

ωl,jt
nl+j , kl =

+∞∑
j=0

kl,jt
ml+j , ω1,0ω2,0ω3,0k1,0k2,0k3,0 6= 0,

with l = 1, 2, 3 and (ωl,j , kl,j) complex. There exist numerous families, some of
them with nl − nk,ml −mk not integer. To shorten, let us restrict to the case
where all the differences nl − nk,ml −mk are integer, and redefine a family as

ωl = tn
+∞∑
j=0

ωl,jt
j , (ω1,0, ω2,0, ω3,0) 6= (0, 0, 0),

kl = tm
+∞∑
j=0

kl,jt
j , (k1,0, k2,0, k3,0) 6= (0, 0, 0). (2.47)

One such family is defined [72] by the exponents nl = −1,ml = −2, and the
sextuplets (ωl,0, kl,0) solutions of the algebraic system

Aω1,0 + (B − C)ω2,0ω3,0 + x2k3,0 − x3k2,0 = 0, 2k1,0 + ω3,0k2,0 − ω2,0k3,0 = 0,
Bω2,0 + (C −A)ω3,0ω1,0 + x3k1,0 − x1k3,0 = 0, 2k2,0 + ω1,0k3,0 − ω3,0k1,0 = 0,
Cω3,0 + (A−B)ω1,0ω2,0 + x1k2,0 − x2k1,0 = 0, 2k3,0 + ω2,0k1,0 − ω1,0k2,0 = 0,

and the linear system for j ≥ 1 is
(j − 1)A (C −B)ω3,0 (C −B)ω2,0 0 x3 −x2

(A− C)ω3,0 (j − 1)B (A− C)ω1,0 −x3 0 x1

(B −A)ω2,0 (B −A)ω1,0 (j − 1)C x2 −x1 0
0 k3,0 −k2,0 j − 2 −ω3,0 ω2,0

−k3,0 0 k1,0 ω3,0 j − 2 −ω1,0

k2,0 −k1,0 0 −ω2,0 ω1,0 j − 2




ω1,j

ω2,j

ω3,j

k1,j

k2,j

k3,j


+ Qj = 0. (2.48)

The determinant det P must have five positive zeroes.
In the generic case (A,B,C) all different and G 6= O, there exists a unique

solution to the algebraic system, depending on one arbitrary parameter and the
root of an eighth degree equation [73], but the determinant

det P = ABC(j + 1)j(j − 2)(j − 4)(j2 − j − µ), (2.49)

where µ is an algebraic expression of (A,B,C, x1, x2, x3), has five positive integer
zeroes iff µ = 0, which corresponds to inadmissible values for the six parameters
(A,B,C must be real positive, x1, x2, x3 real).

A thorough discussion of the nongeneric cases of this family nl = −1,ml =
−2 led Kowalevski to retrieve the three known cases, as expected, and finally
to find the subcase

A = B, (x1, x2) 6= (0, 0), ω2
1,0 + ω2

2,0 = 0, (2.50)
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for which the unique solution is

ω1,0 = − iC

2(x1 + ix2)λ
, ω2,0 = iω1,0, ω3,0 = 2i, i2 = −1,

k1,0 = − 2C
x1 + ix2

, k2,0 = ik1,0, k3,0 = 0, (2.51)

det P = ABC(j + 1)(j − 2)(j − 3)(j − 4)(j + 1− 2C/A)(j − 2 + 2C/A),

in which λ is defined by the relation

2C −A− 4λx3 = 0, λ 6= 0. (2.52)

There exist five positive integer indices iff A = 2C, x3 = 0, and the first integral

A = B = 2C, x3 = 0 : K4 = |C(ω1 + iω2)2 + (x1 + ix2)(k1 + ik2)|2 (2.53)

terminates the proof of reducibility to quadratures. Sophie Kowalevski then
managed to explicitly integrate with hyperelliptic integrals and to prove the
meromorphy of the general solution, a feat which won her an instantaneous
fame.

Remark. Neither Hoyer nor Kowalevski enforced conditions C3 and C4.
This was done for the first time by Appelrot [6], who found another family
nl = −1,ml = 0 with the indices (−1,−1, 0, 1, 2, 2) and, despite the absence of
five positive integer indices, computed the next terms and found at the double
index 2 the no-log condition

x1

√
A(C −B) + x2

√
B(A− C) + x3

√
C(B −A) = 0, (2.54)

whose real and imaginary parts yield, with the convention A > B > C,

x2 = 0, x1

√
A(B − C) + x3

√
C(A−B) = 0. (2.55)

Nekrasov [86] and Lyapunov then proved the multivaluedness of this case by
exhibiting yet another family with complex exponents.

2.6 Insufficiency of the meromorphy

Here is the opinion of Painlevé ([92] pp. 10, 83, Oeuvres III pp. 196, 269) :
“Me Kowalevski se propose de trouver tous les cas où le mouvement du solide est
défini par des fonctions méromorphes de t qui possèdent effectivement des pôles.
Son procédé laisse échapper les cas où ces fonctions seraient uniformes sans avoir
de pôles, soit qu’elles fussent holomorphes, soit que toutes leurs singularités
fussent transcendantes.

De plus, après avoir formé les conditions pour qu’il existe des pôles mo-
biles, Me Kowalevski remarque que ces conditions entrâınent l’intégrabilité des
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équations du mouvement, ce qui lui permet de mener la question jusqu’au bout.
Mais cette remarque laisse échapper un cas où il existe des pôles et qui n’est pas
un cas d’intégration. Toutefois les géomètres Russes ont montré, par la suite,
que, dans ce cas, les équations du mouvement n’ont pas leur intégrale uniforme.

Les résultats de Me Kowalevski subsistent donc en fait. Mais, si intéressante
que soit la voie suivie par Me Kowalevski, il était désirable de reprendre la
question d’une façon plus rationnelle. C’est ce que permettent les procédés
que j’ai employés pour les équations du second ordre : ils fournissent de la
manière la plus naturelle et la plus simple les conditions nécessaires pour que
ce mouvement soit représenté par des fonctions uniformes de t, sans qu’il soit
besoin de faire aucune hypothèse sur ces fonctions. Les conditions auxquelles
on parvient ainsi ne diffèrent pas d’ailleurs de celles de Me Kowalevski. Pour ce
problème particulier, on n’arrive donc pas à des cas nouveaux.”

Painlevé thus insists that poles are not privileged : they are just one kind
of singularity among many possible others.

“Une discussion qui écarterait d’avance certaines singularités comme in-
vraisemblables serait inexistante.” (Painlevé, [92] p. 6, Oeuvres III p. 192).

“In the statement of the problem, poles are not mentioned; if in the final
result the particular integrals prove to be meromorphic, it is a result of the
research. Likewise, no mention is made of one or another type of critical or
singular point.” (Bureau [19] p. 105).

Thus, definitely, the meromorphy assumption has to be waived as a global
property, although it may be, and indeed is, quite useful at the local level. The
only relevant property based on singularities is the Painlevé property as defined
in section 1.4, and the goal is to build a rigorous theory without any a priori
on the movable singularities. Despite the pessimistic opinion of Picard who
thought the task impossible, Painlevé built that theory by a clever application
of the theorem of perturbations of Poincaré and Lyapunov.

2.7 A few examples to be settled

The theory to come and the resulting “Painlevé test” should be able to han-
dle the following differential systems for which the meromorphy test of section
2.3 is inconclusive or even erroneous. We give the location where the solution
can be found.

1. (“Soit qu’elles fussent holomorphes”) Extend the test to handle the equa-
tion 2uu′′−u′2 = 0, with general solution u = (c1x+c2)2. Solution section
5.4.

2. (“Soit que toutes leurs singularités fussent transcendantes”). Extend the
test to handle the equations uu′′−u′2 = 0 and 2u2u′u′′′−3u2u′′2 +u′4 = 0,
whose general solution is, respectively, u = ec1x+c2 and u = c1e

1/(c2x+c3).
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One may notice that the second equation is the Schwarzian derivative of
Log u.

3. The “uncoupled” system with a meromorphic general solution

du
dx

+ u2 = 0,
dv
dx

+ v2 = 0. (2.56)

admits two families (modulo the exchange of u and v)

(F1) : u ∼ χ−1, v ∼ χ−1, indices (−1,−1) (2.57)
(F2) : u ∼ χ−1, v ∼ v0χ

0, v0 arbitrary, indices (−1, 0), (2.58)

of which the first one fails the condition C2. Solution section 5.4.

4. (“Un cas où il existe des pôles et qui n’est pas un cas d’intégration”). The
Bianchi IX cosmological model

(LogA)′′ = A2 − (B − C)2 and cyclically, ′ = d/dτ, (2.59)

admits for B = C a particular four-parameter meromorphic solution [108]

A =
k1

sinh k1(τ − τ1)
, B = C =

k2
2 sinh k1(τ − τ1)

k1 sinh2 k2(τ − τ2)
. (2.60)

Prove the absence of the PP by studying the family p = (0,−2,−2) which
has only four Fuchs indices (−1, 0, 1, 2). Solution section 5.8.3.

5. The Bianchi IX model (2.59) admits a family p = (−1,−1,−1) with the
indices (−1,−1,−1, 2, 2, 2). Prove the absence of the PP by studying this
family. Solution section 5.7.6.

6. The Chazy’s equation of class III (1.17) admits a Laurent series which
terminates u = u0/(x − x0)2 − 6/(x − x0), with (x0, u0) arbitrary. From
the study of this family, decide about the meromorphy of the general
solution. Solution section 5.8.1.

7. In a problem in geometry of surfaces, Darboux [44] encountered the system

dx1/dt = x2x3 − x1(x2 + x3) and cyclically, (2.61)

explicitly excluded by Hoyer, cf. section 2.2, and found the two-parameter
meromorphic solution

x1 = c/(t− t0)2 +1/(t− t0), x2 = x3 = 1/(t− t0), (t0, c) arbitrary. (2.62)

For c = 0, the Fuchs indices are (−1,−1,−1). Extend the test to build
no-log conditions at this triple −1 index. Solution section 5.7.
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8. The equations

−2uu′′ + 3u′2 + d3u
3 = 0, d3 6= 0, (2.63)

u′′′ + uu′′ − 2u′2 = 0, (2.64)
u′′′′ + 2uu′′ − 3u′2 = 0, (2.65)

have no dominant behaviour. Prove the absence of the PP for each of
them [24]. Solution section 5.9.
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Chapter 3

The true problems

In this chapter, we state the true problems and manage logically to the only
correct definition for the Painlevé property (PP) : “absence of movable critical
points in the general solution”, equivalent to that already given in section 1.4.
This includes

– the two classifications of singularities of differential equations (fixed or mov-
able, critical or noncritical),

– the two differences between linear and nonlinear (movable singularity, singu-
lar solution),

– the statement of the ambitious program proposed by Painlevé, a first, quick
look at the method of resolution (the “double method” and the “double
interest”) and the results for first order (equation of Riccati, function of
Weierstrass) and second order (classification of Gambier, the six Painlevé
functions).

All the ODEs considered are defined on C or on the Riemann sphere (i.e. the
complex plane compactified by addition of the unique point at infinity).

Firstly, a more precise definition of the term “to integrate” is required.

Definition. To integrate an ODE, in the “modern sense” advocated by
Painlevé, is to find for the general solution a finite expression, possibly multi-
valued, in a finite number of functions, valid in the whole domain of definition.

The important terms in this definition are “finite” and “function”.
Example 1 (nonintegrated ODE) : the Taylor series u = u0

∑+∞
j=0[−(x −

x0)u0]j for the Cauchy solution does represent the general solution of the ODE
u′ + u2 = 0 but this representation is local and the integration cannot be con-
sidered as achieved until one has : found the radius of convergence, performed
the summation, analytically continued the sum everywhere this is possible, and
identified the analytic continuation with the meromorphic function (x− x1)−1.
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Example 2 (integrated ODE) : the ODE 2uu′−1 = 0 has for general solution
u = (x − x0)1/2, a multivalued finite expression built from the “multivalued
function” (see below) z → z1/2.

Representations by an integral, a series or an infinite product are acceptable
iff they amount to a global, as opposed to local, knowledge of the solution.

A prerequisite to the integration in the sense of the above definition is there-
fore to extend the set of available functions, to serve as a réservoir from which to
build finite expressions. At this stage, one must go back to the term “function”.

Definition [12]. A function is an application of a set of objects into a set of
images which applies a given object onto one and only one image.

In other words, a function is characterized by its single valuedness, and terms
such as “multivalued function” should be carefully avoided. In our context, a
function is a single valued application of the Riemann sphere onto itself.

Definition (Painlevé [90] p. 206). A critical point of an application of the
Riemann sphere onto itself is any singular point, isolated or not, around which
at least two determinations are permuted. Common synonyms are : for critical
point, branch point, point of ramification; for determination, branch. Such a
point is an obstacle for an application to be a function.

Examples : the applications x →
√
x− a and x → Log(x − a) both have

exactly two critical points, a and ∞. Around each of them are permuted re-
spectively two determinations and a countable infinity of determinations.

Remark. An essential singular point is not necessarily a critical point, since
essential singularities, isolated or not, can be critical or not. Examples of critical
essential singularities are : x = 0 for tan(Log x) (nonisolated) or sin(C + Log x)
(isolated and transcendental, Leçons de Stockholm pp. 5–6, [92], [66] §14.1
p. 317). Examples of noncritical essential singularities are : x = ∞ for ex

or equivalently x = x0 for e1/(x−x0) (isolated), x = ∞ for tanx (nonisolated).
Although, according to a classical theorem of Picard, an analytic function can
take any value but at most two (∞ and another one) in the neighborhood of an
isolated essential singularity, a noncritical essential singularity is not an obstacle
to single valuedness.

3.1 First classification of singularities, uniformi-
zation

Definition. The first classification of singularities is the distinction critical
or noncritical between singular points of applications. Note that it does not
involve differential equations.

Consider a multivalued application of the Riemann sphere onto itself. There
exist two classical methods, called uniformizations, to define from it a single
valued application, i.e. a function.
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The first one is to restrict the object space by subtracting some lines, called
cuts, so as to forbid local turns around critical points; for the above two exam-
ples, one removes any line joining the two points a and ∞.

The second method is to extend the object space to a Riemann surface,
made of several copies, called sheets, of the Riemann sphere, cut and pasted.
A point of the image space may then have several antecedents on the Riemann
surface defining the object space. Example : two sheets for x→

√
x, a countable

infinity of sheets for x→ Log x.
As a consequence, to fill the réservoir of functions, one accepts all uniformiz-

able applications, at the price of either restricting the object space by cuts, or
defining a Riemann surface in the object space.

Theorem. The general solution of a linear ODE is uniformizable.
Proof. Let

E ≡
N∑
k=0

ak(x)
d(k)u

dxk
= 0, aN (x) = 1 (3.1)

be such an N th order ODE. Its general solution

u =
N∑
j=1

cjuj , cj arbitrary constant, (3.2)

has for only singularities those of the N independent particular solutions uj , a
subset of the singularities of the coefficients ak ([66] §15.1). One knows where
to make cuts or to paste the sheets of a Riemann surface in order to uniformize
the general solution. QED.

This has important consequences. Firstly, any linear ODE defines a func-
tion (Airy, Bessel, Gauss, Legendre, Whittaker, . . . ). Secondly, in the needed
réservoir of functions, one can put all the solutions of all the linear ODEs.
Thirdly, a nonlinear ODE is considered as integrated if it is linearizable (of
course via a finite linearizing expression). Fourthly, in order to extend the list
of known functions by means of ODEs, it is necessary to consider nonlinear
ODEs.

Hence the problem stated by L. Fuchs and Poincaré.
Problem. Define new functions by means of ODEs, necessarily nonlinear.

3.2 Second classification of singularities, differ-
ent kinds of solutions

There exist two features of nonlinear ODEs without counterpart in the linear
case, they concern the location of singularities of solutions and the possible
existence of solutions additional to the general solution.

The singularities of the solutions of nonlinear ODEs may be located at a
priori unknown locations, which depend on the constants of integration.
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Definition (already given in the chapter Introduction). A singular point of a
solution of an ODE is called movable (resp. fixed) if its location in the complex
plane depends (resp. does not depend) on the integration constants.

The point at ∞ is to be considered as fixed. A linear ODE has no mov-
able singularities, the zeroes of its general solution depend on the integration
constants and are sometimes called for this reason movable zeroes.

Definition. The second classification of singularities is the distinction mov-
able or fixed between singularities of solutions of ODEs.

Among the four structures (critical or noncritical) and (fixed or movable)
of singularities of solutions of ODEs, only one is an obstacle for this solution
to be uniformizable and hence to define a function. This is the presence of
singularities at the same time critical and movable. Indeed, in such a case, one
knows neither where to make cuts nor where to paste the Riemann sheets, and
uniformization is impossible.

But let us come to the second distinction between linear and nonlinear
ODEs : contrary to linear ODEs, nonlinear ODEs may have several kinds of
solutions.

Definition. The general solution (GS) of an ODE of order N is the set
of all solutions mentioned in the existence theorem of Cauchy (section 5.3),
i.e. determined by the initial value. It depends on N arbitrary independent
constants.

Definition. A particular solution is any solution obtained from the general
solution by giving values to the arbitrary constants. A synonym in English is
special solution.

Definition. A singular solution is any solution which is not particular. Linear
ODEs have no singular solution.

Example. The Clairaut type equation 2u′2 − xu′ + u = 0 has the general
solution cx− 2c2, a particular solution x− 2, and the singular solution x2/8.

A singular solution can only exist when the ODE

E(u(N), u(N−1), . . . , u′, u, x) = 0, (3.3)

considered as an equation for the highest derivative u(N), possesses at least two
determinations (branches), whose coincidence may define a singular solution.
This is a generalization of the notion of envelope of a one-parameter family of
curves. A practical criterium to detect the singular solutions will be given in
section 5.1.

Painlevé stated the following programme ([90] p. 201, Oeuvres vol. III p. 123;
[92] p. 2, Oeuvres vol. III p. 188) :
“Déterminer toutes les équations différentielles algébriques du premier ordre,
puis du second ordre, puis du troisième ordre, etc., dont l’intégrale générale est
uniforme”.

One notices that singular solutions are excluded from this statement. Indeed,
they present no interest at all for the theory of integration, for, according to
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the above theorem, they satisfy an ODE of a strictly lower order than the ODE
under consideration and have therefore been encountered at a lower order in the
systematic programme stated by Painlevé.

This problem (single valuedness of the general solution) splits into two suc-
cessive problems whose methods of solution are completely different : absence
of movable critical points, then absence of fixed critical points. Hence the final
statement.

Problem. Determine all the algebraic differential equations of first order,
then second order, then third order, etc., whose general solution has no movable
critical points.

This class of equations is often denoted “with fixed critical points”. Let us
prove that it coincides with the definition of the PP given section 1.4. Out of the
four configurations of singularities (critical or noncritical) and (fixed or mov-
able), only the configuration (critical and movable) prevents uniformizability :
one does not know where to put the cut since the point is movable.

We have now reached the usual definition, equivalent to the one of section
1.4.

Definition. One calls Painlevé property of an ODE the absence of movable
critical singularities in its general solution.

3.3 Groups of invariance of the PP

In the fulfillment of the programme of Painlevé, it is sufficient to take one
representative equation by class of equivalence of the PP. There exist two re-
lations of equivalence for the PP, defined in sections 3.3.1 and 3.3.2. Other
relations of equivalence are defined in section 3.3.3, but they violate the PP.

3.3.1 The homographic group

Theorem. The only bijections (one to one mappings) of the Riemann sphere
are the homographic transformations

z → αz + β

γz + δ
, αδ − βγ 6= 0, (α, β, γ, δ) arbitrary complex constants. (3.4)

Proof. See any textbook. These transformations define a six-parameter
group H called Möbius group, also denoted PSL(2, C). This group plays a fun-
damental rôle in the present theory. Given two triplets of points, there exists a
unique homographic transformation applying one triplet onto the other one.

Theorem. The PP of an ODE E(u, x) = 0 is invariant under an arbitrary
homographic transformation of the dependent variable u and an arbitrary holo-
morphic change of the independent variable x

(u, x)→ (U,X) : u =
α(x)U + β(x)
γ(x)U + δ(x)

, X = ξ(x), αδ − βγ 6= 0, (3.5)
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where α, β, γ, δ, ξ denote arbitrary analytic (synonym : holomorphic) functions.
Proof. Let x0 be a regular point of (α, β, γ, δ, ξ), and X0 = ξ(x0) its trans-

form. In some neighborhood of x0, the transformation between u and U is close
to a homographic transformation with constant coefficients and, according to
the previous theorem, the first classification (critical, noncritical) is invariant :
if x0 is critical (resp. noncritical) for u, then X0 is critical (resp. noncritical) for
U, and vice versa. Since (α, β, γ, δ, ξ) do not depend on x0, the second classi-
fication (fixed or movable) is also invariant. Thus the PP, which only depends
on these two classifications, is invariant. QED.

An element of this homographic group (3.5) will be denoted T (α, β, γ, δ; ξ)
or simply T (α, β; ξ) in the case (γ = 0, δ = 1). The representative equation is
chosen so as to “simplify” some expression, e.g. a three-pole rational fraction
the poles of which can be set at predefined locations like (∞, 0, 1).

Exercise 3.1 Choose a representative for the Riccati equation (1.1) in its class
of equivalence under the homographic group.

Solution. Two coefficients can be made numeric and the equation reduced to

dU/dX + U2 + S(X)/2 = 0, (3.6)

under the linear transformation T (α, β; ξ)

u = αU + β, X = x, α = −1/a2, β = −(a′2 + a1a2)/(2a2
2).2 (3.7)

This canonical form, in which S is called the Schwarzian, will be encountered
again in section 6.3.

3.3.2 The birational group

The PP is also invariant under a larger group [89, 56], namely the group of
birational transformations, in short the birational group,

(u, x)→ (U,X) : u = r(x,U,dU/dX, . . . ,dN−1U/dXN−1) = 0, x = Ξ(X),
(3.8)

(U,X)→ (u, x) : U = R(X,u,du/dx, . . . ,dN−1u/dxN−1) = 0, X = ξ(x),

(N order of the equation, r and R rational in U, u and their derivatives, analytic
in x,X).

For instance, given the ODE u′′ − 2u3 = 0 and the new dependent variable
U = u′+u2, the algebraic elimination of (u′, u′′) among these two equations and
the derivative of the second one yields the inverse transformation u = U ′/(2U),
which, once inserted in the direct transformation, yields the transformed equa-
tion UU ′′ − U ′2/2− 2U3 = 0.
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3.3.3 Groups of point transformations (Cartan equivalen-
ce classes)

The definition of to integrate as given page 25 allows transformations outside
the above two groups, which therefore may alter the PP. For instance, the
unstable ODE 2uu′ − 1 = 0 is made stable by the change u2 → U . One such
group of point transformations, studied by Roger Liouville [82], Tresse [109] and
Cartan [21], is defined as (it includes hodograph transformations)

(u, x)↔ (U,X) : u = f(X,U), x = g(X,U), U = F (x, u), X = G(x, u),(3.9)

and the variables u and x are two equivalent geometrical coordinates. This geo-
metric approach, in which provides a complementary insight to that of Painlevé,
which forbids to exchange the dependent and the independent variables, see sec-
tion 1.3.

The subgroup of fiber-preserving transformations

(u, x)↔ (U,X) : u = f(X,U), x = g(X), U = F (x, u), X = G(x),(3.10)

whose equivalence classes are called Cartan equivalence classes, has been exten-
sively studied by Kamran et al., see e.g. [65].

3.4 The double interest of differential equations

Let us return to the above problem. At each differential order of the pro-
gramme, the results are twofold (this is the “double interest” of differential
equations) :

1. some new functions (defined from the general solution of a stable ODE
which is not reducible to a lower order nor to a linear equation),

2. an exhaustive list (i. e. a classification) of stable ODEs, which includes
the ones defining new functions.

Of course, each equation is characterized by one representative in its equiv-
alence class. Thus, as seen in the introduction, the ODE for x(t) in the case
b = 0, σ = 1/3 of the Lorenz model is not distinct, under the homographic
group, from the (P3) equation in the case α = β = 0, γ = δ = 1.

For instance, the result for order one and degree one (the degree of an al-
gebraic ODE is the polynomial degree in the highest derivative) is : no new
function, one and only one stable equation which is the Riccati equation (1.1).

3.5 The question of irreducibility
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The classical definition of irreducibility as given by the “groupe de ratio-
nalité” of Jules Drach (Drach, in Oeuvres vol. III p. 14, [90] p. 246, [100]) had
some weaknesses pointed out by Roger (not Joseph) Liouville in a passionating
discussion with Painlevé in the Comptes Rendus (see Oeuvres vol. III). This is
only after further mathematical developments, namely the differential Galois
theory, that a precise definition of irreducibility could be given by Umemura
[110], see Okamoto, this volume. This definition shares many features with
the algorithm of Risch and Norman in computer algebra (which decides if the
primitive of a class of expressions, e.g. rational fractions, is inside or outside the
class).

3.6 The double method of Painlevé

To solve his problem, Painlevé split it into two parts (this is the “double
méthode” [92] p. 11) :

• [1] (a local study) construction of necessary conditions for stability,

• [2] (a global study) proof of their sufficiency, either by expressing the gen-
eral solution as a finite expression of a finite number of elementary func-
tions (solutions of linear equations, . . . ), or by proving the irreducibility
of the general solution and its freedom from movable critical points.

The methods pertaining to each part are different. If some necessary condi-
tion is violated in the first part, one stops and proceeds to the next equations.
If one has exhausted the construction of necessary conditions, or if one believes
so (indeed, this process, although probably finite, is sometimes not bounded),
one turns to the explicit proof of sufficiency, i.e. practically one tries to integrate
(no irreducible equation has been discovered since 1906).

For a good presentation of ideas, see the book of E. Hille [63].
Remark. The reason why movable essential singularities create difficulties

lies in the inexistence of methods to express conditions that they be noncritical
(Leçons pp. 519 sq.).

3.7 The physicist’s point of view

The physicist is not interested in establishing a classification nor in finding
new functions. Usually, some differential system, whether ordinary or partial, is
imposed by physics, and the problem is to “integrate” it in some loose sense. By
the way, this loose objective is certainly the main responsible for the numerous,
of course divergent, interpretations of “integrable” to be found in the physicists’
world.

The best applicability of the present theory arises when one knows nothing
or very little on the possible analytical results : first integral, conservation laws
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of PDEs, particular solutions, . . . Then, the first part of the double method of
section 3.6 happens to be a precious integrability detector. We have already seen
a rough version of it : the meromorphy test of section 2.3, the final version of
which will be the Painlevé test section 6.6.

The loose objective of the physicist implies performing the test to its end,
even if at some point it fails and should be stopped. One thus gathers a lot
of information in the form of necessary conditions for a piece of local single
valuedness to exist. This partial integrability detector can be called the “partial
Painlevé test” and will be examplified in section 6.7.

Examining each condition separately, i. e. independently of the others, or
simultaneously, one may then find pieces of global information like a first integral
or a particular closed form solution.
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Chapter 4

The classical results
(L. Fuchs, Poincaré,
Painlevé)

The problem of determining all stable equations has been completely studied
for several classes of ODEs, while others are still unfinished. We review here
the main results achieved to date.

4.1 ODEs of order one

The completely studied class is (L. Fuchs, Poincaré, Painlevé)

E ≡ P (u′, u, x) = 0, P polynomial in (u′, u), analytic in x. (4.1)

When the degree is one, i.e. for the class u′ = R(u, x) with R rational in
u and analytic in x, one finds one and only one stable equation, the Riccati
equation (1.1). Since it is linearizable, this case defines no new function.

When the degree is greater than one, one finds one and only one new func-
tion, the elliptic function ℘ of Weierstrass, defined from eq. (1.12). The stable
equations are : all the ODEs whose general solution has an algebraic dependence
on the arbitrary constant, plus five binomial equations with constant coefficients
(i. e. u′n = Pm(u), (m,n) ∈ N , Pm polynomial of degree m). Historically found
by Briot and Bouquet, these binomial equations have the following solution (see
e.g. [83] Table 1 p. 73)

u′n = (u− a)n+1(u− b)n−1, n ≥ 2,
u− b
u− a

=
[
b− a
n

(x− x0)
]n

(4.2)
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u′2 = (u− a)2(u− b)(u− c), 1
u− a

= A cosh [B(x− x0)] + C (4.3)

u′2 = (u− a)(u− b)(u− c)(u− d),
1

u− a
= A℘(x− x0, g2, g3) +B(4.4)

u′3 = [(u− a)(u− b)(u− c)]2 , 1
u− a

= A℘′(x− x0, 0, g3) +B (4.5)

u′4 = (u− a)3(u− b)3(u− c)2,
1

u− c
− 1
a− c

= A℘2(x− x0, g2, 0)(4.6)

u′6 = (u− a)5(u− b)4(u− c)3,
1

u− a
= A℘3(x− x0, 0, g3) +B, (4.7)

in which a, b, c, d are complex constants and (A,B,C, g2, g3) algebraic expres-
sions of (a, b, c, d).

Remarks.

1. Equation (4.3) is a degeneracy of (4.4). The T transformation u→ ai+u−1

(ai zero of P2n) generates eleven other equations with m < 2n, among
them the Weierstrass equation (1.12).

2. If the Weierstrass equation had not been known, it would have been dis-
covered at this order one of the systematic process of Painlevé.

4.2 ODEs of order two, degree one

The study of the class

u′′ = R(u′, u, x), R rational in u′, algebraic in u, analytic in x (4.8)

was started by Painlevé [90, 92, 94] and finished by his student Gambier [56].
This class provides six new functions, the functions of Painlevé, defined by

the ODEs

(P1) u′′ = 6u2 + x

(P2) u′′ = 2u3 + xu+ α

(P3) u′′ =
u′2

u
− u′

x
+
αu2 + β

x
+ γu3 +

δ

u
,

(P4) u′′ =
u′2

2u
+

3
2
u3 + 4xu2 + 2(x2 − α)u+

β

u

(P5) u′′ =
[

1
2u

+
1

u− 1

]
u′2 − u′

x
+

(u− 1)2

x2

[
αu+

β

u

]
+ γ

u

x
+ δ

u(u+ 1)
u− 1

,

(P6) u′′ =
1
2

[
1
u

+
1

u− 1
+

1
u− x

]
u′2 −

[
1
x

+
1

x− 1
+

1
u− x

]
u′

+
u(u− 1)(u− x)
x2(x− 1)2

[
α+ β

x

u2
+ γ

x− 1
(u− 1)2

+ δ
x(x− 1)
(u− x)2

]
,
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depending on respectively 0,1,2,2,3,4 complex parameters, since the homogra-
phic group allows to restrict to γ(γ − 1) = 0, δ(δ − 1) = 0 for (P3), and to
δ(δ − 1) = 0 for (P5).

The stable equations (4.8) define 53 equivalence classes under the homo-
graphic group, including of course the six above ones. They split into 50 with
R rational in u and 3 with R algebraic in u, and their list can be found in :
the original articles of Gambier [54, 55], [94], Gambier Thèse 1910, Ince 1926
[66] (caution : the numbers 5, 6, 48, 49, 50 of Gambier are changed to 6, 5, 49,
50, 48 in Ince), Murphy 1960 [83], Davis 1961 [46], Bureau M. I 1964, Cosgrove
1993 [38]. In fact, the historical list of Gambier mixes two notions on purpose,
namely the irreducibility and the homographic group, which makes this number
53 rather arbitrary; for instance, the classes numbered 1− 4, 7− 9 by Gambier
have been united by Garnier [58] into the single class

u′′ = δ(2u3 + xu) + γ(6u2 + x) + βu+ α, (4.9)

a stable equation admitting a second order Lax pair.
The 50 stable equations (4.8) with R rational in u define 24 equivalence

classes [56] under the birational group and less than 24 Cartan equivalence
classes [65] under the group of point transformations (3.10).

This extremely important result (the discovery of six new functions, nowa-
days frequently encountered in physics, and the exhaustive list of 50 + 3 equa-
tions) deserves several comments depending on the field of interest.

• (Practical usage). Given an algebraic second order, first degree ODE,
either it is transformable by a T transformation (3.5) into one of the
50 + 3 equations or not. If it is not, it has movable critical points. If
it is, it is explicitly integrated and, by looking in the table of Gambier,
its general solution is a known finite single valued expression made of the
following functions : solutions of linear equations of order at most four,
Weierstrass, (P1) to (P6).

• (Movable singularities). The only movable (and of course noncritical)
singularities of these ODEs are : poles for 50 + 2 of them, in addition a
nonisolated essential singularity for 1 of them. This result of Painlevé and
Gambier (poles are the only movable singularities of stable second order,
first degree equations rational in (u′, u) and analytic in x) is often believed
to be more general, leading to wrong definitions for the PP; it is no more
true for third order, degree one, or even second order, degree higher than
one.

• (Fixed critical singularities). (P1), (P2), (P4) have none, (P3) and (P5)
have two transcendental critical points (∞, 0), both removable by the uni-
formizing transformation x → ex. (P6) has three transcendental critical
points (∞, 0, 1).
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• (Dependence on the arbitrary constants). What characterizes the 6 Pain-
levé equations among the 24 is the transcendental (i.e. not algebraic) de-
pendence of their general solution on both constants of integration. The
24− 6 equations whose general solution does not involve (P1)–(P6) have
either an algebraic dependence on both constants or a semi-transcendental
dependence (algebraic for one, transcendental for the other one).

• (Confluence). By a confluence process (Painlevé [94], Gambier Thèse, see
Mahoux, this volume), (P6) generates the five others and (P1) generates
the Weierstrass equation, so up to now algebraic equations have only de-
fined one master function.

• (Monodromy). (P6) was found independently by R. Fuchs [53] and Schle-
singer [105] in the twenty-first problem of Riemann. Given the second
order linear ODE y′′(t) + a1(t, x, u)y′(t) + a2(t, x, u)y = 0 with four Fuch-
sian singular points t = (∞, 0, 1, x) (see definitions section 5.2.1) and an
apparently singular point u, the necessary and sufficient condition for the
group of monodromy (see Mahoux, this volume, for definitions) to be in-
dependent of x is that u(x) satisfies equation (P6).

4.3 ODEs of higher order or degree

Painlevé’s opinion was that no new function should be expected at third
order and that one should go to fourth order. In fact, despite huge efforts, no
new function has yet been found.

• ODEs of order two, degree higher then one.

Only some subclasses have been studied, and their classification is nearly
finished. See Chazy (Thèse), Bureau (M. III), Cosgrove (1993 [43, 40, 41]).

Those of degree two have the necessary form[
u′′ + E0u

′2 + E1u
′ + E2

]2
= F0u

′4 + F1u
′3 + F2u

′2 + F3u
′ + F4, (4.10)

with (Ek, Fk) rational in u and analytic in x. Its binomial subset (E0 =
E1 = E2 = 0) is classified in Ref. [43].

The binomial subset (u′′)n = F (u′, u, x) of equations of degree n ≥ 3 is
classified in Ref. [40].

• ODEs of order three, degree one.

The classification is nearly finished. See Garnier (Thèse), Chazy (Thèse),
Bureau (M. II, [20]), Cosgrove [41].
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• ODEs of order four, degree one.

The classification is just started. See Chazy (Thèse), Bureau (M. II).

For an account of similar work on PDEs, see Ref. [84].
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Chapter 5

Construction of necessary
conditions. The theory

The reader only interested in using the Painlevé test may skip this chapter,
whose relevant parts will anyway be referred to in next chapters. By so doing,
however, his/her confidence in the Painlevé test will falter at the first encounter
of one of the innumerable so-called exceptions, counterexamples, and so on,
which are published every year.

This chapter describes all the methods to build necessary conditions (NC)
for the absence of movable critical points in the general solution. Most methods
are analytic, and we unify their presentation by describing each of them as a
perturbation in a small complex parameter ε, to which can then be applied the
theorem of perturbations of Poincaré, itself a generalization of the existence the-
orem of Cauchy. One of them is arithmetic and leads to diophantine conditions
on the Fuchs indices of a linear differential equation.

What we try to emphasize is the quite small amount of nonlinear features
in these methods. Indeed, most of the information is obtained by well known
theories concerning linear equations, whether differential or algebraic.

The detection of singular solutions is first explained in section 5.1. The
linear ODEs are then reviewed from the point of view of interest to us. Then
we state the fundamental theorems at the origin of all methods. For comparison
purposes, two equations are defined which will be later processed by all methods.
Finally, we describe each method and apply it to the two examples.

Unless otherwise stated, the class of DEs considered is made of DEs (2.30)
polynomial in u and its derivatives, analytic in x, with (E,u) multidimensional.

5.1 Removal of singular solutions
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Since the PP excludes the consideration of singular solutions, one must dis-
card them as early as possible.

Let us give a practical criterium to detect singular solutions.
Theorem. A necessary condition for a solution of an ODE to be singular is

the existence of a common finite root u(N) to E = 0 and its partial derivative
with respect to u(N). If E(u, x) = 0 depends polynomially on the two highest
derivatives u(N), u(N−1), after factorization of this polynomial existence condi-
tion in u(N−1) (called discriminant), it is necessary that the vanishing factor
has an odd multiplicity.

Proof. See e.g. Chazy (Thèse). The condition is not sufficient, and details
and examples can be found in [104] chap. 10.

Hence the method : compute the discriminant, factorize it, discard the even
factors, test each odd factor to check if it defines a solution to the equation.

Chazy (Thèse p. 358) was the first to notice the absence of correlation be-
tween the structure of singularities of the GS and of the SS. Here are such
examples.

Single valued GS, SS with a movable critical point (Chazy, Thèse p. 360)

(u′′′ − 2u′u′′)2 + 4u′′2(u′′ − u′2 − 1) = 0,
discriminant = −16u′′2(u′′ − u′2 − 1),

GS : u = ec1x+c2/c1 +
c21 − 4

4c1
x+ c3, SS : u = C2 − Log cos(x− C1).(5.1)

GS with a movable critical point, single valued SS (Valiron tome II §148)

27uu′3 − 12xu′ + 8u = 0,
discriminant = −123 × 272u2(27u3 − 4x3),
GS : u3 = c(x− c)2, SS : u3 = (4/27)x3. (5.2)

Single valued GS and single valued SS (Painlevé BSMF p. 239)

u′′2 + 4u′3 + 2(xu′ − u) = 0,
discriminant = −8(2u′3 + xu′ − u),
GS : u = (1/2)v′2 − 2v3 − xv, v′′ = 6v2 + x, SS : u = Cx+ 2C3.(5.3)

5.2 Linear equations near a singularity

Our only interest here is to decide about the local single valuedness near a
singularity x = x0, put for convenience at the origin by a homographic trans-
formation (x → x − x0 or x → 1/x according as x0 is at a finite distance or
not).

These results are detailed in the course of Reignier, this volume.
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Consider the most general linear system, put in a form solved for all first
order derivatives (the canonical form of Cauchy)

x
dU
dx

= AU, (5.4)

with U a column vector of N components and A a square matrix rational
in x. This can be the representation of the general scalar ODE (3.1), with
Uk = xku(k), k = 0, . . . , N − 1 and bk = xN−kak, e. g. for N = 3

x
d

dx

U0

U1

U2

 =

 0 1 0
0 1 1
−b0 −b1 2− b2

U0

U1

U2

 . (5.5)

Definition. The point x = 0 is called Fuchsian iff all solutions of (5.4) have
a polynomial growth near it. It is called nonFuchsian if at least one solution
has a nonpolynomial growth.

Example. For the ODE u′ + axnu = 0, n integer, a nonzero, the Fuchsian
case is n ≥ −1 and the nonFuchsian one is n ≤ −2. The solution u(n) for
n = −2,−1, 0 is u(−2) = ea/x, u(−1) = x−a, u(0) = e−ax and its singularity at
x = 0 is respectively : an isolated noncritical essential point, a critical point or
pole or zero (depending on a), a regular point.

Remarks.

1. This definition is the one of modern authors [7]. It involves a property
of the solutions, not of the coefficients of the equation. Fuchsian denotes
at the same time a case with the solutions u = (x, x2) (classically called
regular point) and a case with u = (x−1, x2) (classically called singular
regular point). The motivation for such a definition is the difficulty to
recognize it on the matricial notation. While in the scalar case (3.1) the
canonical form defined by setting aN−1 = 0 provides an easy criterium
to decide about the nature of the singularity, in the matricial case the
example

A/x =
(
n/x 0
x−n 0

)
, U1 =

(
xn

x

)
, U2 =

(
0
1

)
(5.6)

shows the difficulty to do so.

2. We avoid the usual synonyms regular singularity and irregular singularity
for their built-in conflict.

Definition. Given a point x0, a fundamental set of solutions of a linear
ODE of order N is any set of N linearly independent solutions defined in a
neighborhood of x0.
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5.2.1 Linear equations near a Fuchsian singularity

Definition. Given a Fuchsian point x = 0, the eigenvalues i of A(0) are
called Fuchs indices. The indicial equation is the characteristic equation of the
linear operator A(0)

lim
x→0

det (A(x)− i) = 0. (5.7)

Near a Fuchsian point x = 0, there exist a fundamental set of solutions

xλi
mi∑
j=0

ϕij(x)(Log x)j , i = 1, N (5.8)

in which the λi’s are complex numbers (the Fuchs indices), mi positive integers
(their multiplicity), ϕij converging Laurent series of x with finite principal parts.

Series (5.8) are the simplest examples of ψ−series.
The necessary and sufficient condition of local single valuedness of the general

solution of the linear equation is : λi all integer, no Log terms.
In the scalar case (3.1), the indicial equation is

0 = lim
x→0

xN−iE(x, xi) = lim
x→0

det (A(x)− i) (5.9)

= b0(0) + b1(0)i+ b2(0)i(i− 1) + . . .+ bN (0)i(i− 1) . . . (i−N + 1).

Theorem. Given a Fuchsian point of the scalar ODE (3.1), necessary and
sufficient conditions for the general solution to be locally single valued near it
are

◦ the N indices are distinct integers,

◦ N(N − 1)/2 conditions for the absence of logarithms are satisfied.

Proof. See Hille book [63] or any other textbook.
In the matricial case (5.4), these conditions are replaced by

◦ the N indices are integers,

◦ the multiplicity of each index i is equal to the dimension of the kernel of
A(0)− i,

◦ all conditions for the absence of logarithms are satisfied.

The search for the no-log conditions can be achieved in one loop, by requiring
the existence of a Laurent series extending from the lowest Fuchs index i1 to
+∞

xi1
+∞∑
j=0

ujx
j (5.10)
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and containing N arbitrary independent coefficients; this is a finite process,
which terminates when j + i1 reaches the highest Fuchs index. Consider for
instance the third order ODE admitting the three solutions

u1 = x−2, u2 = x−3 + ax−2 Log x, u3 = x−4 + bx−3 Log x+
ab

2
x−2(Log x)2,

namely ∣∣∣∣∣∣∣
u u1 u2 u3

u′ u′1 u′2 u′3
u′′ u′′1 u′′2 u′′3
u′′′ u′′′1 u′′′2 u′′′3

∣∣∣∣∣∣∣ = 0.

Its three Fuchs indices −4,−3,−2 are simple, it is sufficient that j runs from 0
to 2 with i1 = −4, the condition b = 0 is found at j = 1 and the condition a = 0
at j = 2.

In some of the next sections, we will encounter inhomogeneous ODEs in
which the rhs is itself a Laurent series with a finite principal part, so we will
have in addition to express the single valuedness of a particular solution as well.
This can be incorporated in the single loop described above, provided it starts
from the smallest of the two values i1 and the singularity order of the particular
solution, imposed by the rhs.

5.2.2 Linear equations near a nonFuchsian singularity

Near a nonFuchsian singular point x = 0, there exist N linearly independent
solutions

eQi(1/zi)xsi
mi∑
j=0

ϕij(zi)(Log x)j , zi = x1/qi , i = 1, N (5.11)

in which the qi’s are positive integers, Qi polynomials, si complex numbers
called Thomé indices, ϕij formal Laurent series with a finite principal part.
The question of local single valuedness of the general solution cannot be settled
so easily, because formal series are generically divergent.

5.3 The two fundamental theorems

Theorem I (Cauchy, Picard). Consider an ODE of order N , of degree one in
the highest derivative, defined in the canonical form

du
dx

= K[x,u], x ∈ C, u ∈ CN . (5.12)

Let (x0,u0) be a point in C × CN and D be a domain containing (x0,u0). If K
is holomorphic in D,

43



• there exists a solution u satisfying the initial condition u(x0) = u0,

• it is unique,

• it is holomorphic in a domain containing (x0,u0).

Proof. See any textbook. For delicate points on this classical theorem, see
Leçons p. 394. The contribution of Picard is to have moved the holomorphy
property from the hypothesis to the conclusion.

There exists an important complement to the theorem of Cauchy, due to
Poincaré : the Cauchy solution is also holomorphic in the Cauchy data.

Remark. More practically, the canonical form can also be defined as

dNu
dxN

= K[x, u, u′, . . . , u(N−1)]. (5.13)

The theorem says nothing whenever the holomorphy of K is violated, as in
the following two cases.

Case 1. du/dx = u/(u − 1), at u0 = 1, a point of meromorphy for K.
The only way to possibly remove this singularity without altering the structure
of singularities is to perform a T transformation (3.5). The homography T :
1/(u− 1) = U yields a new K, defined by dU/dx = −U2 − U3, which is indeed
holomorphic in C × C, now making the theorem applicable. In order to shorten
the exposition, this step of an homographic transformation will be omitted in
the whole chapters 5 and 6, and only reminded for the synthesis of all methods
into the Painlevé test section 6.6.

Case 2. du/dx =
√

4(u− e1)(u− e2)(u− e3), at u0 = ej , j = 1, 2, 3, critical
points for K.

Example. du/dx + u2 = 0, with the datum u = u0 at x = x0. The Cauchy
solution is represented by the (infinite) Taylor series u = u0

∑+∞
j=0[−(x−x0)u0]j ,

a geometric series whose sum depends on one, not two, arbitrary constants, the
arbitrary location x1 = x0−u−1

0 of the movable simple pole; it only exists locally,
inside the disk of convergence centered at x0 with radius |u0|−1. This sum is
also represented by the Laurent series (x − x1)−1. One notices the enormous
advantage of the Laurent series : it reduces to one term, and it has a much
larger domain of definition (the whole complex plane but one point).

Lemma (Poincaré, Mécanique céleste [99]). Consider an ODE of order N, of
degree one in the highest derivative, depending on a small complex parameter
ε, defined in the canonical form

du
dx

= K[x,u, ε], x ∈ C, u ∈ CN , ε ∈ C. (5.14)

Let (x0,u0, 0) be a point in C×CN×C and D be a domain containing (x0,u0, 0).
If K is holomorphic in D, the Cauchy solution exists, is unique and holomorphic
in a domain containing (x0,u0, 0).
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Proof. See any textbook. Note that K may be independent of ε.
Definition. Given x, the application u → E(x,u) and some point u(0), one

calls differential of E at point u(0) the linear application, denoted E′(x,u(0)),
defined by

∀v : E′(x,u(0))v = lim
λ→0

E(x,u(0) + λv)−E(x,u(0))
λ

. (5.15)

This notion is known under various names : Gâteaux derivative, linearized
application, tangent map, Jacobian matrix, and sometimes Fréchet derivative.

Definition. Given a DE E(x,u) = 0 and a point u0, the linear DE

E′(x,u(0))v = 0 (5.16)

in the unknown v is called the linearized equation in the neighborhood of u(0)

associated to the equation E(x,u) = 0.
This is precisely the équation auxiliaire (2.20) of Darboux. The auxiliary

equation of a linear equation is the linear equation itself.
Let us define the formal Taylor expansions

u =
+∞∑
n=0

εnu(n), K =
+∞∑
n=0

εnK(n). (5.17)

The single equation (5.14) is equivalent to the infinite sequence

n = 0 :
du(0)

dx
= K(0) = K[x,u(0), 0] (5.18)

n ≥ 1 :
du(n)

dx
= K(n) = K′[x,u(0), 0]u(n) + R(n)(x,u(0), . . . ,u(n−1)).(5.19)

At order zero, the equation is nonlinear.
At order one, the equation, in the particular important case when K is

independent of ε, is the linearized equation (without rhs, R(1) = 0) canonically
associated to the nonlinear equation.

At higher orders, this is the same linearized equation with different rhs R(n)

arising from the previously computed terms, and only a particular solution is
needed to integrate.

Theorem II (Poincaré 1890, Painlevé BSMF 1900 p. 208, Bureau 1939, M. I).
Take the assumptions of previous lemma. If the general solution of (5.14) is
single valued in D except maybe at ε = 0, then

• ε = 0 is no exception, i.e. the general solution is also single valued there,

• every u(n) is single valued.

45



Proof. See BSMF p. 208. The main difficulty is to prove the convergence of
the series. This theorem remains valid if one replaces “single valued” (Painlevé
version) by “periodic” (Poincaré version) or “free from movable critical points”
(Bureau version).

Remarks.

• This feature (one nonlinear equation (5.18), one linear equation (5.19)
with different rhs) is a direct consequence of perturbation theory, it is
common to all methods aimed at building necessary stability conditions.
The equations may be differential like (5.18)–(5.19), or simply algebraic.
Moreover, all the methods which we are about to describe (except the one
of Painlevé) will reduce the differential problems to algebraic problems
keeping the same feature, and the overall difficulty will be to solve one
nonlinear algebraic equation, then one linear algebraic equation with a
countable number (practically, a finite number) of rhs.

• The two theorems and the lemma express a local property, not a global
one, therefore they cannot serve to prove integrability as defined page 25.
Conversely, they can be used to disprove the PP. In the same spirit, it is
generally useless to try and sum the Taylor or Laurent series which will be
defined. Indeed, these series only serve as generators of necessary stability
conditions. The proof of sufficiency is achieved by completely different
methods.

• The two theorems only apply to ODEs written in the canonical form of
Cauchy.

As a summary, the equations successively involved are

• the original DE E(x,u) = 0 also called unperturbed DE because ε will be
introduced into the equation from the outside,

• the perturbed DE E(X,U, ε), obtained from the preceding one by some
transformation (x,u,E)→ (X,U,E, ε) called perturbation,

• a canonical form (it is not unique) dU/dX = K(X,U, ε) of the perturbed
equation, also called abusively perturbed equation,

• the infinite sequence (5.18)–(5.19) of equations independent of ε.

The methods described in next sections for establishing necessary stability
conditions consist of building one or two perturbed equations from the original
unperturbed equation, then of applying the theorem II at a point x0 which is
movable. This movable point can be either regular (method of Painlevé) or sin-
gular noncritical (all the others), which will require its previous transformation
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to a regular point (by a transformation close to u → u−1) for theorem II to
apply. One is thus led to the equations (5.19), i.e. to one linear DE with a
sequence of rhs. In order to avoid movable critical points in the original equa-
tion, one requires single valuedness in a neighborhood of x0 for : the general
solution of the linear homogeneous equation, a particular solution of each of the
successive linear inhomogeneous equations.

One must therefore express that a very special class of linear inhomoge-
neous DEs has a general solution single valued in a neighborhood of x0. Their
lhs (homogeneous part) is the linearized equation (équation auxiliaire) of a
nonlinear equation which has already passed the requirement n = 0 of the-
orem II. The rhs (inhomogeneous part) of equation n depends rationally on
{u(k), k = 0, . . . , n− 1} and their derivatives, all single valued near x0 since the
necessary conditions have been fulfilled until n− 1.

For the coefficients of the homogeneous linear DE, the point x0 will appear
to be either a point of holomorphy (method of Painlevé) or a singular noncrit-
ical point (the other methods). In the latter case, both situations (Fuchsian,
nonFuchsian, see sections 5.2.1 and 5.2.2) will occur.

5.3.1 Two examples : complete (P1), Chazy’s class III

Example 1 (“complete (P1)”) (BSMF p. 224, [66] §14.311 p. 329, [14] p. 267,
[75]).

E ≡ −d2u

dx2
+ c

du
dx

+ eu2 + fu+ g = 0, (5.20)

with (c, e, f, g) analytic in x, and e nonzero. This equation arises in the system-
atic study of class (4.8) and has led to the discovery of (P1).

Under a transformation T (α, β; ξ) (3.5), equation (5.20) is form-invariant
([14] p. 267)

− d2U

dX2
+
[
c− ξ′′

ξ′
− 2

α′

α

]
ξ′−1 dU

dX
+ e

α

ξ′2
U2 +

[
f + c

α′

α
+ 2eβ − α′′

α

]
U

ξ′2

+
[
g + fβ + cβ′ + eβ2 − β′′

]
α−1ξ′−2 = 0, αξ′ 6= 0. (5.21)

This allows to assign simple predefined values to as many coefficients as gauges
in T , i.e. three. For any value of (c, e, f, g) it is possible to choose for the
coefficients of dU/dX,U2, U the values 0, 6, 0, and this requires solving two
quadratures and one linear algebraic equation for (α, β; ξ)

(Logα)′ =
2
5

[
c− e′

2e

]
(5.22)

ξ′2 =
eα

6
, β =

1
2e
[
f + c(Logα)′ + (Logα)′′ + (Logα)′2

]
. (5.23)

Consequently, in what follows, one always assumes c = 0, e = 6, f = 0 in (5.20).
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Example 2 (Chazy complete equation of class III [22]).

−uxxx +
a

2
(2uuxx − 3u2

x) + a1uxx + c1uux + c0ux + d3u
3 + d2u

2 + d1u+ d0 = 0,

(5.24)
where (a, ai, ci, di) are analytic in x, and a nonzero. This one has led Chazy to
the discovery of his equation (1.17).

Under a transformation T (α, β; ξ), equation (5.24) is form-invariant. For any
value of (a, ai, ci, di) it is possible to choose the values 2, 0, 0 for the coefficients
of UUXX , UXX , U2, and this requires solving the coupled ODEs for (α, β; ξ)
[notation Λ = α′/α]

2Λ′ − Λ2 + 2a−3[(a2c1 + 18ad3)Λ + a2d2 + 9a′d3 − 3a2a1d3] = 0,(5.25)

ξ′ =
aα

2
, β = a−2(6aΛ + 3a′ − aa1), (5.26)

i.e. one Riccati equation followed by two quadratures. Consequently, in what
follows, one always assumes a = 2, a1 = 0, d2 = 0 in (5.24).

None of these two examples has singular solutions.

Exercise 5.1 Show the impossibility to cancel d3 in (5.24) by choosing α, β, ξ.

5.4 The method of pole-like expansions

This is a reliable version of the meromorphy test given in sections 2.3 and
2.4.

Consider a movable singular point x0 of either the general solution or a
particular solution. Since u(x0) is not finite, the theorems of section 5.3 cannot
be applied. It is nevertheless immediate to check that the perturbation

x = x0 + εX, u = (εX)p
+∞∑
n=0

(εX)nu(n)(x), E = (εX)q
+∞∑
n=0

(εX)nE(n)(x),

(5.27)
in which the key point is the dependence of u(n) on x, not X, generates equations
E(n) = 0 which only differ from the algebraic equations Ej = 0 defined by (2.8)
by the replacement of x0 by x. The identification is even complete if χ is defined
by χx = 1 instead of χ = x− x0, see Remark page 16.

Fortunately, the method we are about to describe has been made by Bureau
(1939) [13] an application of theorems I and II, as will be seen in section 5.6.
This method of pole-like expansions is the most widely used in Painlevé analysis.
Initiated by Paul Hoyer [64] and Sophie Kowalevski [72, 73], it has been for-
malised by Gambier [56], revived by Ablowitz et al. [4] who applied it to wide
classes of physical equations, extended to partial differential equations (PDEs)
by Weiss et al. [111] (WTC), with technical simplifications by Kruskal [68]
and Conte [28, 29]. Painlevé himself never used “le procédé connu de Madame
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Kowalevski . . . dont le caractère nécessaire n’était pas établi” (Acta pp. 10, 83,
Oeuvres III pp. 196, 269), see section 2.6.

We now rephrase the steps and generated conditions of sections 2.3 and 2.4
so as to adapt them to the new objective : the PP. The expansion is denoted

u =
+∞∑
j=0

ujχj+p, u0 6= 0, χ′ = 1. (5.28)

First step. Determine all possible families (p,u0). The necessary condition
on (p,u0) is

• C0. For each family not describing a singular solution, all components of
p are integer.

It there exists no truly singular family (at least one component of p negative),
the method stops without concluding.

Remarks.

• Some components of u0 can be zero, or even some components of u.

• To avoid missing some family, one should firstly put the ODE under a
canonical form of Cauchy (5.12) or (5.13), so as to enumerate all the points
u which make inapplicable the existence theorem of Cauchy, secondly for
each such point build a transformed ODE under an homography making
the point regular for the Cauchy theorem, thirdly determine families of
the transformed ODE as in section 2.3.

• The derivative of order k of χp does not behave like χp−k if p is positive
and p− k negative.

Second step. For each family, compute the indicial polynomial det P. None
of the conditions C1, C2, C3 of section 2.4 is required for the existence of
the Laurent series since we also accept particular solutions and only exclude
singular solutions.

Third step. Unchanged as compared to section 2.4. The condition C4 is
unchanged.

The resulting expansion (5.28) thus contains as many arbitrary coefficients
ui as the sum of the multiplicities of the distinct positive indices, in addition to
the arbitrary location of x0, associated to the index −1.

For indices which are not positive integers, the method says nothing, not
even that they should be integers, and in such a case the expansion (5.28) only
represents part of the general solution, without indication about some possible
multivaluedness in the missing part.

Remarks.
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• The semi-infinite Laurent expansion (5.28) for u about the singular point
x0 is equivalent to an expansion for u−1 about a regular point, expansion
however different from the Taylor one. This is used in Bureau’s method
section 5.6.

• We prefer the terms “pole-like singularity” to “pole singularity”, for the
actual singularity of the general solution may not be a pole, as shown
by the example of Chazy’s equation (1.17), for which it is a movable
noncritical essential singularity.

• Index −1 also corresponds to an arbitrary coefficient but, since the general
solution cannot depend on more than N such arbitrary coefficients, some
renormalisation occurs. In the example du/dx + u2 = 0 already consid-
ered in section 3.1, the Cauchy solution near the regular point x0 can be
reexpanded

u =
0∑

j=−∞
(−u0)j(x− x0)j−1 (5.29)

[if the example were not so simple, this would be a doubly infinite Laurent
series] so as to exhibit an arbitrary coefficient at index j = i = −1, the
only index of this too simple ODE. Note the “pole-like” singularity x0,
which is in fact an apparent, inessential singularity, in this case a regular
point!

5.4.1 The two examples

Example 1. “Complete (P1)” eq. (5.20). Already handled in section 2.3.
Example 2. Chazy’s equation (1.17).
First step. The dominant terms are among −u′′′, 2uu′′ − 3u′2, d3u

3, hence
two possible families

(p, q) = (−1,−4) u0 = −6 Ê ≡ u′′′ − 2uu′′ + 3u′2

(p, q) = (−2,−6) d3u
3
0 = 0 Ê ≡ −2uu′′ + 3u′2 + d3u

3.

The second family only exists if d3 = 0. See section 5.9 for a direct proof that
d3 = 0 is a necessary stability condition.

Second step. The indicial polynomial of the first family is

χ−(i−4)[−∂3
x + 2u0χ

−1∂2
x − 6(u0χ

−1)x∂x + 2(u0χ
−1)xx]χi−1

= −(i− 1)(i− 2)(i− 3)− 12(i− 1)(i− 2)− 36(i− 1) + 2(−1)(−2)
= −(i+ 3)(i+ 2)(i+ 1), (5.30)

and the indices are −3,−2,−1; the algorithm stops here, due to the absence of
positive integer indices.

Provided d3 = 0, the second family has the indices −1, 0.
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Third step (only for the second family provided d3 = 0). At the index 0, the
condition C4 Q0 = 0 is satisfied and the algorithm stops.

Exercise 5.2 Find the families and indices of the following equations.

u′′ − 2 = 0, u = (x− a)(x− b) (5.31)

uu′′ − 2u′2 = 0, u = a(x− x0)−1 (5.32)

u′′ + 3uu′ + u3 = 0, u =
1

x− a
+

1
x− b

. (5.33)

5.4.2 Nongeneric essential-like expansions

Just like (5.28), the expansion

u =
∞∑
−j=0

ujχj+p, u0 6= 0, (5.34)

valid outside a disk centered at x0 i.e. in a neighborhood of the point ∞, is
locally single valued. From this downward Laurent series, one could conceive a
“method of essential-like expansions” quite similar to the method of pole-like
expansions, in order to generate necessary stability conditions, this time from
the negative integer indices only.

However, for most equations, this method is not applicable. For instance,
with the example −u′′′ + 2uu′′ − 3u′2 + d3u

3 = 0 (a subset of (1.17)), none of
the two expansions (5.34) with p = −1 or p = −2 exists, unless d3 = 0, which
is not a reason to conclude that d3 must vanish.

It only applies to the very restricted class of equations with constant coef-
ficients invariant under a scaling law (x,u) → (kx, kpu), having at least one
pole-like family with a negative integer index other than −1. Even then, its
failure to detect the movable logarithm in numerous equations which have one
makes it of very little use. Such equations are (5.128), (5.144) or the equation
u′′′ − 7uu′′ + 11u′2 = 0 whose single family p = −1, u0 = −2 has only negative
integer indices (−6,−1,−1).

5.5 The α−method of Painlevé

Consider an ordinary differential equation (2.30), a regular point x0 (i.e. a
point of holomorphy of the function K when (2.30) is written in the canonical
form (5.12)), define a small nonzero complex parameter (which Painlevé denoted
α) and the perturbation

α 6= 0 : x = x0 + αX, u = αp
+∞∑
n=0

αnu(n) : E = αq
+∞∑
n=0

αnE(n) = 0, (5.35)
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where p is a sequence of constant integers to be chosen optimally (see example
below), q another sequence of constant integers determined by p, then apply
theorem II to the equation for u(X,α).

At perturbation order zero :

• all the explicit dependence of coefficients on X is removed, i.e. all coeffi-
cients of the equation are constant,

• for a suitable choice of p, there only survive a few terms.

• the equation is invariant under the scaling transformation
(X,u(0),E(0)) → (kX, kpu(0), kqE(0)) (physicists call such an equation
scaled, or weighted).

Definition. The simplified equation (équation simplifiée) associated to a given
perturbation (5.35) is the equation of order zero E(0)(x0,u(0)) = 0 in the un-
known u(0)(X).

The simplified equation admits the one-parameter solutions u(0)
0 (X −X0)p

where u(0)
0 are constants. Its above properties usually make it easy to study.

Definition. The complete equation (équation complète), as opposed to the
simplified equation, is the equation itself (2.30).

The value α = 0 is forbidden in (5.35), but theorem II takes care of that.
The constants p and q must be integers, chosen so as to satisfy the holomorphy
assumption in the small complex parameter of the above lemma. Moreover,
since a linear ODE has no movable singularity and since all successive equations
E(n) = 0, n ≥ 1, are linear, the only way to have movable singularities, in order
to test their singlevaluedness, is to select simplified equations which are truly
nonlinear.

The successive steps of the α−method and the generated necessary condi-
tions for stability are (BSMF p. 209 §7 and footnote 1)

First step. Find all sequences p of integers satisfying the holomorphy as-
sumptions of Theorem II for the perturbation (5.35). Retain only those defining
a truly nonlinear simplified equation. For each sequence p perform the next
steps.

Remark. If the ODE (2.30) has degree one and order N , the holomorphy
assumptions of Theorem II require that the highest derivative contributes to
the simplified equation.

Second step. Find the general solution u(0) of the simplified equation.

• C0. Require u(0) to be free from movable critical points.

The general solution v of the auxiliary equation (5.16) of the simplified
equation is then (BSMF p. 209 footnote 1)

v =
N∑
k=1

dk
∂u(0)

∂ck
, dk arbitrary constants, (5.36)
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and, since u(0) has no movable critical points, v has no movable critical points
either (theorem Leçons p. 445).

Third step. For each n ≥ 1, define u(n) as a particular solution of equation
E(n) = 0 (linear with a rhs), by the classical method of the variation of constants.

• C1. Require each u(n) to be free from movable critical points.

These steps amount to require stability for all the sequence of perturbed
equations, exactly as formulated in Theorem II.

Remarks.

• In the second step one can take for u(0) either the general solution or a
particular one, but not a singular solution. The drawback of a particular
solution will be a lesser number of generated necessary stability conditions.
This may be useful when the quadratures of third step are difficult with
the general solution and easy with a particular solution.

• At order n = 1 equation E(1) = 0 may contain a rhs, making it different
from the auxiliary equation.

• If in the second step only a particular solution has been chosen, it is better
that u(1) be taken as the general solution of equation E(1) = 0.

Many people have intuitively used the α−method, let us give two recent
examples.

Example 1. In the Lorenz model (1.3), the simultaneous change of variables
(x, y, z)→ (ξ, η, ζ) and parameters (b, σ, r)→ (b, σ, ε) defined by

ξ = εx, η = ε2σy, ζ = ε2σz, ε2σr = 1 (5.37)

led Robbins [102] to believe to have found a new integrable case, defined by

σ 6= 0, ε = 0, r =∞ : first integrals ξ2 − 2ζ, −ξ2 + η2 + ζ2, (5.38)

while in fact the new dynamical system is just the simplified of the original one,
integrable by elliptic functions.

Example 2. The transformation t → t2 Log t with “t → 0” from the Lorenz
model to the system (24abc) of Ref. [81] is in fact the α−transformation
(x, y, z, t) = (ε−1X, ε−2Y, ε−2Z, t0 + εT ) resulting in the system

dX
dT

= σ(Y −X),
dY
dT

= −Y −XZ, dZ
dT

= XY, (5.39)

whose general solution is elliptic.

53



5.5.1 The two examples

Example 1. “Complete (P1)” eq. (5.20) (BSMF p. 224 §15). The Cauchy
form of the perturbed equation is

αp−2E ≡ −d2(u(0) + . . .)
dX2

+6αp+2[u(0)+. . .]2+α2−p[g(x0)+αXg′(x0)+. . .] = 0.

(5.40)
First step. The holomorphy requirement −2 ≤ p ≤ 2, p ∈ Z, selects five

values for p, and the requirement of a nonlinear simplified equation only retains
p = −2, i.e. q = p − 2 = 2p = −4. The g(x0) term, which could vanish, does
not contribute to the simplified equation

E(0) ≡ −d2u(0)

dX2
+ 6u(0)2

= 0. (5.41)

Second step. The general solution of this particular Weierstrass equation is

u(0) = ℘(X − c0, 0, g3), (c0, g3) arbitrary. (5.42)

The auxiliary equation of the simplified equation is a Lamé equation

E′(X,u(0))v ≡ − d2v

dX2
+ 12℘(X − c0, 0, g3)v = 0 (5.43)

whose general solution is a linear combination of ∂℘/∂g3 and ∂℘/∂c0 [5]

v = c1(X℘′ + 2℘) + c2℘
′, (5.44)

without any movable critical singularity.
Third step. The successive linear equations with their rhs are

E′(X,u(0))u(1) = 0 (5.45)

E′(X,u(0))u(2) = −6u(1)2
(5.46)

E′(X,u(0))u(3) = −12u(1)u(2) (5.47)

E′(X,u(0))u(4) = −12u(1)u(3) − 6u(2)2
− g0 (5.48)

E′(X,u(0))u(5) = −12(u(1)u(4) + u(2)u(3))− g′0X (5.49)

E′(X,u(0))u(6) = −12(u(1)u(5) + u(2)u(4))− 6u(3)2
− 1

2
g′′0X

2 (5.50)

with the particular solutions

u(n) = 0, n = 1, 2, 3 (5.51)

u(4) =
g0

24
[
2X℘℘′ + 2℘2 − ζ℘′

]
(5.52)

u(5) =
g′0
24
[
2X2℘℘′ + 2X℘2 + (X℘′ + 2℘)ζ

]
(5.53)
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u(6) =
g′′0
48
[
(X℘′ + 2℘)(X2 + 2Xζ − 2 Log σ)

+ (X3℘+X2ζ − 2X Log σ + 2
∫

Log σdX)℘′
]
, (5.54)

where the functions ζ and σ obey ζ ′ = −℘, σ′ = ζσ. To prevent movable
logarithms at n = 6 it is necessary that g′′(x0) = 0. Since x0 is arbitrary, this
condition is ∀x : g′′(x) = 0, and Painlevé proved it to be sufficient, thus defining
the (new in the sense of Section 3.2) function (P1) with the choice g = x.

Remarks.

• The reason why u(1), u(2), u(3) can be chosen zero is given on page 45. The
reason given in ref. [75] p. 120 is not correct : even if the general solutions
u(1), u(2), u(3) are meromorphic, they can in principle (this does not occur
for the ODE under study) generate some multivaluedness further up in the
computation. The theorem proven in Leçons p. 445 is quite profound : if
a [second order in Leçons] ODE is stable, its general solution has a single
valued dependence on the integration constants.

• Taking the particular solution u(0) = 1/(X − c0)2 instead of the general
one ℘ (see first remark section 5.5) makes all computations immediate
(ζ = 1/(X − c0), σ = X − c0). For this particular equation, one would not
miss the generation of the only necessary stability condition.

Example 2 (Chazy complete equation of class III (5.24)).
First step. For the canonical form of Cauchy of the perturbed equation

−d2(u(0) + . . .)
dX2

+ 2αp+1u(0) d2u(0)

dX2
− 3αp+1

[
d2u(0)

dX2

]2

+ . . .

+α3−pd0(x0) + . . . = 0,

the holomorphy condition is −1 ≤ p ≤ 3, p ∈ Z, which the condition for a truly
nonlinear simplified equation restricts to p = −1, q = −4. The value p = −2
[52, 31] of the method of pole-like expansions is therefore forbidden.

Second step. The simplified equation is that of Chazy (1.17), whose general
solution u(0) is [17, 18] an algebraic transform (finite single valued expression)
of the Hermite modular function y(X)

u(0) =
[
Log(y3

Xy
−2(y − 1)−2)

]
X
, (5.55)

evaluated at the point (c1X+c2)/(c3X+c4), c1c4−c2c3 = 1 and thus obviously
depending on three arbitrary constants.

The auxiliary equation of Chazy’s simplified equation

E(0)′v ≡ [−∂3
X + 2u(0)∂2

X − 6u(0)
X ∂X + 2u(0)

XX ]v = 0 (5.56)
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has the three independent solutions ∂u(0)/∂ci , i = 1, 2, 3, all single valued.
Instead of the general solution u(0), which would make the computations

rather involved, let us restrict to the two-parameter particular solution

u(0) = −6χ−1 + cχ−2, χ = X − x0, (x0, c) arbitrary constants, (5.57)

for which the auxiliary equation admits the general solution

v = k2χ
−2 + k3χ

−3 + k4v4, v4 = c−2χ−2(e−2c/χ − 1− 2cχ−1), (5.58)

with (k2, k3, k4) arbitrary constants.
Third step. The successive linear equations with their rhs are

−E(0)′u(1) = c1,0u
(0)u(0)′ + d3,0u

(0)3
(5.59)

−E(0)′u(2) = 2u(1)u(1)′′ − 3u(1)′2 + c1,1Xu
(0)u(0)′ + c1,0u

(0)′(u(0) + u(1))

+d3,1Xu
(0)3

+ 3d3,0u
(0)2

u(1) + c0,0u
(0)′ . (5.60)

A particular solution of the first one is provided by the method of variation
of the constants u(1) = K2(X)χ−2 +K3(X)χ−3 +K4(X)χ−4

K ′2χ
−2 +K ′3χ

−3 +K ′4v4 = 0 (5.61)
−2K ′2χ

−3 − 3K ′3χ
−4 +K ′4v

′
4 = 0 (5.62)

6K ′2χ
−4 + 12K ′3χ

−5 +K ′4v
′′
4 = c1,0(−6χ−1 + cχ−2)(6χ−2 − 2cχ−3)

+d3,0(−6χ−1 + cχ−2)3. (5.63)

To prevent a movable logarithm in K2 (resp. K3), it is necessary that, in the
rhs of last equation, the coefficients of χ−5 and χ−6 vanish :

∀(x0, c) : −2c2c1(x0)− 18c3d3(x0) = 0, c3d3(x0) = 0, (5.64)

hence the two necessary stability conditions ∀x d3(x) = c1(x) = 0, obtained at
the perturbation order n = 1. We leave it as an exercise to check that, after
completion of n = 4, one has obtained all the conditions (c1 = c0 = d3 = d1 =
d0 = 0) which Chazy proved to be necessary and sufficient.

Theorem. For any family of the method of pole-like expansions, the value
i = −1 is a Fuchs index.

Proof. Let u ∼ u0χ
p be such a family and Ê(x,u) be the dominant terms.

The equation Ê(x0,u) = 0 admits as a particular solution the monomial X →
u = u0(x0)(X − X0)p, therefore the linearized equation at the leading term
(2.20) admits as a particular solution its derivative with respect to X0 : X →
const × ∂X0(X − X0)p. Since at least one component of p is negative, the

associated component of ∂X0(X−X0)p is proportional to (X−X0)p−1, therefore
i = −1 is a root of the indicial equation (2.36). 2

56



5.5.2 General stability conditions (ODE of order m and
degree 1)

Using his method, Painlevé could obtain quite general necessary stability
conditions for algebraic ODEs of arbitrary order and degree, cf. BSMF p. 258,
Acta p. 74, Chazy (Thèse). Consider the class, defined in the canonical form of
Cauchy

u(m) = R(u(m−1), u(m−2), . . . , u′, u, x), (5.65)

with R rational in u and its derivatives, analytic in x [for R algebraic, and for
arbitrary order and degree, cf. Acta pp. 73, 77]. Necessary stability conditions
are :

C1. As a rational fraction of u(m−1), R is a polynomial of degree at most two

u(m) = Au(m−1)2
+Bu(m−1) + C. (5.66)

C2. As a rational fraction of u(m−2), A has only simple poles ai with residues
ri equal to 1− 1/ni, ni nonzero integers possibly infinite

A =
∑
i

1− 1/ni
u(m−2) − ai

. (5.67)

The above sum is finite.

For second order m = 2 the fraction A has at most four simple poles, and
the set of their residues can only take the five values of Table 5.1

A =
4∑
i=1

ri
u− ai

,
4∑
i=1

ri = 2, ri = 1− 1
ni
, ni ∈ Z or ni =∞. (5.68)

Table 5.1: Order two, degree one. Number of poles (nonzero ri), list of their
residues. The poles may be located at ∞ and may not be distinct. The type
numbering convention is that of ([83] Table I p. 169). The least common mul-
tiplier (lcm) is shown for convenience.

Type lcm(ri) r1 r2 r3 r4

I n ≥ 1 1 + 1/n 1− 1/n 0 0
III 2 1/2 1/2 1/2 1/2
IV 3 2/3 2/3 2/3 0
V 4 3/4 3/4 1/2 0
VI 6 5/6 2/3 1/2 0

Note the one-to-one correspondence between Table 5.1 and the list of
powers of the five Briot-Bouquet equations page 34.
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Exercise 5.3 For the six equations (Pn), determine the set (ai, ri) of
simple poles with their residue.

Solution.

(P6) (∞, 1/2), (0, 1/2), (1, 1/2), (x, 1/2), (5.69)
(P5) (∞, 1/2), (0, 1/2), (1, 1), (5.70)
(P4) (∞, 3/2), (0, 1/2), (5.71)
(P3) (∞, 1), (0, 1), (5.72)
(P2) (∞, 2), (5.73)
(P1) (∞, 2). (5.74)

For instance, (P4) belongs to type I of Table 5.1, and it is also a confluent
case of types III, V, VI. 2

The similar finite lists of admissible values of A for any order m can be
found in Painlevé (m = 3 Acta p. 68, Oeuvres vol. III p. 254; m ≥ 4 Acta
p. 75, Oeuvres vol. III p. 261).

C3. As rational fractions of u(m−2), B and C have no other poles than those
of A, and these poles are all simple. Writing B,C as rational fractions
of u(m−2) whose denominators are that of A, this implies the degrees
limitations

(order 2, degree 1) : deg num B ≤ 1, deg num C ≤ 3. (5.75)

C4. (Chazy, Thèse). Every ODE u(m−2) − ai = 0 (a denominator of A) is
stable.

C5. ([24]). All polynomial degrees in u(k), k = 0, . . . ,m− 2, (of the numerator
and denominator of A,B,C written as irreducible fractions of u and its
derivatives) are limited, except in the “Fuchsian” case ni = −2, ri = 3/2
(see Ref. [24] for details).

For additional conditions, see Ref. [91].

5.6 The method of Bureau

Firstly, this method exhibits a linear differential equation with a Fuchsian
singularity which allows to interpret the indices i in the recursion relation of
Kowalevski as Fuchs indices. Secondly, it brings rigor to the heuristic method of
Kowalevski and Gambier. However, the generated no-log conditions are identical
to those of the method of pole-like expansions.
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Consider an N th order ODE E(x, u) = 0 (for simplicity, one assumes u and
E unidimensional; the multidimensional case is handled in [19]) and a movable
noncritical singular point x0 where the general solution behaves like u ∼ u0(x−
x0)p, with p a negative integer to be determined.

The integer p is computed by the method of pole-like expansions and the
highest derivative is required to contribute (M. II p. 9) in order to be sure that
one deals with the general, not a singular, solution.

One wants to apply the two fundamental theorems. Since the singularity
x0 violates the holomorphy assumption of theorem I, one defines an equivalent
differential system (in fact two systems) for which x0 is a point of holomorphy.
These systems will depend on a perturbation parameter ε.

One first defines two new dependent variables (z, U) by the relations (Gam-
bier Thèse p. 50, Bureau 1939)

u = szp,
dz
dx

= 1 + Uz, s 6= 0. (5.76)

Elimination of u and the derivatives of z (M. II pp. 13, 77)

z−pu = s (5.77)

z−p+1 du
dx

= ps+
(

ds
dx

+ psU

)
z (5.78)

z−p+2 d2u

dx2
= p(p− 1)s+

(
2p

ds
dx

+ p(2p− 1)sU
)
z

+
(

d2s

dx2
+ 2p

ds
dx
U + p2sU2 + ps

dU
dx

)
z2 (5.79)

etc, transforms E into

E ≡ E
(
x,U,

dU
dx

, . . . ,
d(N−1)U

dxN−1
, s,

ds
dx
, . . . ,

d(N)s

dxN
, z
)

= 0, (5.80)

an equation for U of order N − 1 polynomial in z. For the equivalent system
(5.76), (5.80) made of two ODEs of orders one and N − 1 in the unknowns
(z, U), the point z = 0 is still a point of meromorphy, see examples below.

To remove it, one introduces a dependence in a small nonzero parameter ε
to obtain a perturbed system to which Theorem II can be applied. Two such
perturbations have been defined (Bureau 1939).

First perturbation of Bureau

x = x0 + εX, z = εZ, U unchanged : E ≡ (εZ)q
+∞∑
n=0

(εZ)nE(n) = 0, (5.81)

where the positive integer −q is the singularity order of E. The coefficients must
be expanded as Taylor series like in the α−method

s(x) = s0 + (εX)s′0 + . . . , s
(k)
0 =

d(k)s

dxk
(x0), a(x) = a0 + (εX)a′0 + . . . . (5.82)
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Expansions up to order one in ε for the above derivatives (5.77)–(5.79) are

z−pu = s0 + (s′0X)ε+O(ε2) (5.83)

z−p+1 du
dx

= ps0 + ((ps′0)X + (s′0 + ps0U)Z) ε+O(ε2) (5.84)

z−p+2 d2u

dx2
= p(p− 1)s0 (5.85)

+p
(

(p− 1)s′0X + (2s′0 + (2p− 1)s0U + s0Z
dU
dX

)Z
)
ε+O(ε2)

etc, together with dZ/dX = 1 + εZU = 1 +O(ε).
Order zero is an algebraic equation E(0)(x0, s0) = 0 for the nonzero coeffi-

cient s0.
Order one is subtle : it filters out all terms nonlinear in U and its derivatives

d(k)U/dXk, and it extracts the contribution of d(k)U/dXk from the term zk+1

in the expansions (5.77)–(5.79). This results in

E(1) ≡ AX
Z

+B +
N−1∑
k=0

ckZ
k d(k)U

dXk
= 0, (A,B, ck) constant. (5.86)

Since dZ/dX is unity at this order, this is a linear inhomogeneous ODE of order
at most N − 1 for U with constant coefficients, whose homogeneous part is by
construction of Fuchsian type (exactly one singular point Z = 0, of the singular
regular type) and even Eulerian type.

In order to be sure of dealing with the general solution of the original nonlin-
ear ODE, the linear ODE (5.86) must have exactly the order N −1; a necessary
stability condition for the nonlinear ODE is the single valuedness of the general
solution of the linear ODE (5.86). Hence the necessary conditions, for each
value of (p, s0)

- the order of the linear ODE at perturbation order one is exactly N − 1;

- its N − 1 Fuchs indices are distinct integers;

- if 0 is an index, the rhs vanishes (A = B = 0 condition for the particular
solution to contain no logarithm).

Since (5.86) is Eulerian, these conditions are sufficient for the general solution
of the linear ODE (5.86) to be single valued, but only necessary for the stability
of the nonlinear ODE.

Higher perturbation orders yield no information. The reasoning is then that
any condition thus found at x = x0, such as s0 = 1, is valid at any x since x0 is
arbitrary.
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Second perturbation of Bureau

x unchanged, z = εZ, U =
+∞∑
n=1

(εZ)n−1U (n) : E ≡ (εZ)q
+∞∑
n=0

(εZ)nE(n).

(5.87)
Expansions for the above derivatives (5.77)–(5.79) are

z−pu = s

z1−p du
dx

= ps+
(
psU (1) + s′

)
εZ + psU (2)(εZ)2 + psU (3)(εZ)3 +O(ε4)

z2−p d2u

dx2
= p(p− 1)s+ p

(
(2p− 1)sU (1) + 2s′

)
εZ

+
(
p2s(2U (2) + U (1)2

) + 2ps′U (1) + s′′ + ps
dU (1)

dx

)
(εZ)2

+O(ε3)

etc, together with εdZ/dx = 1 + εZU (1) + (εZ)2U (2) +O(ε3).
Equation E(0)(x, s) = 0, s 6= 0, is the same algebraic equation as above for

the unknown s(x), not s(x0). Each perturbation order n ≥ 1 defines a linear
algebraic equation

∀n ≥ 1 : P (n)U (n) +Qn(x,U (1), . . . , U (n−1)) = 0, (5.88)

where P (n) is the indicial polynomial of Fuchsian equation (5.86), and Qn de-
pends on the previously computed coefficients. Necessary stability conditions
Qi = 0 arise at every value of i which is also one of the N − 1 Fuchs indices.
These conditions are identical to those of the method of pole-like expansions,
as proven in section 5.6.1.

The successive steps and generated necessary conditions of the method of
Bureau are

Step a. Determine all possible p like in the method of pole-like expansions
(details M. I p. 256, M. II p. 9). For all p satisfying (C0, C1), perform
step b.

C0. All p are integers.

C1. The linear ODE (order one of first perturbation) has exactly order N − 1
[this holomorphy condition excludes for instance p = −2 in Chazy]. This
implies the necessity for the highest derivation order to contribute to the
dominant part during the computation of p.

Step b. Solve the algebraic equation for s0 at order zero of first perturbation.
For all nonzero s0 perform steps c and d.
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Step c. Solve the linear inhomogeneous Euler equation for U(Z) at order one
of first perturbation.

C2. Its N − 1 Fuchs indices are distinct integers.

C3. If 0 is an index, the inhomogeneous part vanishes.

Step d. Solve the linear algebraic equation (5.88) (order n of second perturba-
tion) from n = 1 to the highest Fuchs index.

C4. Whenever the order n in step d is a Fuchs index i, Qi is zero.

As compared with the α−method, these stability conditions are directly
taken at x, not at x0. However, the method provides no conditions from the
negative integer indices.

5.6.1 Bureau expansion vs. pole-like expansion

Let us first prove the existence of a one-to-one correspondence between the
coefficients U (n) of Bureau (second perturbation) and those uj of the method
of pole-like expansions. The relations defining Bureau coefficients are

u = szp (5.89)
dz
dx

= 1 + U (1)z + U (2)z2 +O(z3) (5.90)

and those defining the pole-like expansion are

u = χp(u0 + u1χ+ u2χ
2 +O(χ3)) (5.91)

dχ
dx

= 1. (5.92)

The property χx = 1 of χ first ensures s = u0 [taking χ = x− x0 would just
create useless complications]. The elimination of u between (5.89) and (5.91)
yields

z = χ

(
1 +

u1

u0
χ+

u2

u0
χ2 +O(χ3)

)1/p

= χ

(
1 +

u1

pu0
χ+

2pu2 + (1− p)u2
1

2p2u2
0

χ2 +O(χ3)
)
. (5.93)

Let us invert this Taylor series z of χ into a Taylor series χ of z

χ = z

(
1− u1

pu0
z +
−2pu2 + (3 + p)u2

1

2p2u2
0

z2 +O(z3)
)
. (5.94)
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One finally substitutes this χ and dz/dx, both Taylor series in z, into eq. (5.92)
to obtain

dχ
dx

= 1

=
(

1− 2u1

pu0
z + 3

−2pu2 + (3 + p)u2
1

2p2u2
0

z2 +O(z3)
)

×(1 + U (1)z + U (2)z2 +O(z3))− 1
p

d
dx

(
u1

u0

)
z2 +O(z3). (5.95)

The identification of the lhs and rhs as series in z provides the correspondence
between the two sets of coefficients

s = u0 (5.96)

U (1) =
2u1

pu0
(5.97)

U (2) =
3u2

pu2
0

+
(

2u1

pu0

)2

− (3p+ 1)
u2

1

2p2u2
0

+
1
p

d
dx

(
u1

u0

)
, (5.98)

or

u0 = s (5.99)

u1 =
p

2
sU (1) (5.100)

u2 =
p

3
s2U (2) + p

3p+ 1
24

s2U (1)2
− p

6
s2 dU (1)

dx
. (5.101)

This bijection between the coefficients induces a bijection between the equa-
tions E(n) = 0 of the expansion of Bureau (second perturbation) and the equa-
tions Ej = 0 of the method of pole-like expansions, hence a bijection between
the no-log conditions.

This proves the equivalence between the method of pole-like expansions and
the second perturbation of Bureau. As to the first perturbation of Bureau, it
brings quite important information not obtaibable by the method of pole-like
expansions.

5.6.2 The two examples

Example 1. “Complete (P1)” eq. (5.20). See Bureau M. I eq. (17.3), (21.2).
The unperturbed equivalent meromorphic system (5.76)–(5.80) in (z, U) is,

in Cauchy form

dz
dx

= 1 + Uz (5.102)

dU
dx

= 6s2zp − (p− 1)z−2 −
[
2
s′

s
+ (2p− 1)U

]
z−1 − s′pU + s′′

ps
+

g

ps
z−p.
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Step a. The only value is p = −2, integer. The original ODE then reads, by
increasing powers of z

E ≡ 6s(1− s)z−4 + 2s
[
5U − 2

s

ds
dx

]
z−3

−2s
[

dU
dx

+
2
s

ds
dx
U − 1

2s
d2s

dx2
− 2U2

]
z−2 − g(x) = 0.(5.103)

Step b. Equation E(0) ≡ 6s0(1− s0) = 0 has for only nonzero solution s0 = 1.

Step c. At order one

E(1)

2s0
≡ −Z dU

dX
+ 5U − 2

s′0
s0

+ 3
s′0
s0

X

Z
= 0,

dZ
dX

= 1 +O(εZ). (5.104)

The only Fuchs index is i = 5. There is no condition on the rhs.

Step d. The computation presents no difficulty.

s = 1, U (1) = U (2) = U (3) = 0, U (4) =
g

4
, U (5) =

g′(x)
4

, Q6 ≡ −
g′′(x)

2
= 0.

(5.105)

Remark. On the Cauchy form (5.102) with p = −2, s = 1, one sees easily
how perturbations I and II remove the meromorphy.

Example 2 (Chazy complete equation of class III (5.24)).

Step a. The two solutions are p = −1, p = −2. For p = −2 the computation
of the linear equation (5.86) yields a zero coefficient for d2U/dX2, thus
violating condition C1.

For p = −1 the original ODE then reads, by increasing powers of z

E ≡ s(s+ 6)z−4 + s

[
6U − 6

s

ds
dx

+ 2
ds
dx
− c1s+ d3s

2

]
z−3

+s
[
− 2(s+ 2)

dU
dx

+ ((2− 9
s

)
ds
dx
− c1s)U − c0

+c1
ds
dx
− 3
s

(
ds
dx

)2 + (2 +
3
s

)
d2s

dx2
+ (7− s)U2

]
z−2

+s
[d2U

dx2
+ 3

ds
dx

dU
dx

+ (
3
s

d2s

dx2
− c0)U + d1 +

c0
s

ds
dx

−1
s

d3s

dx3
− 3
s

ds
dx
U2 − 3U

dU
dx

+ U3
]
z−1 + d0. (5.106)

Step b. Equation E(0) ≡ s0(s0 + 6) = 0 has for only nonzero solution s0 = −6.
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Step c. At order one

E(1)

s0
≡ Z2 d2U

dX2
− 2(s0 + 2)Z

dU
dX

+ 12U − s0c1,0 − s2
0d3,0

+(2− 6
s0

)s′0 + (2 +
6
s0

)s′0
X

Z
= 0,

dZ
dX

= 1 +O(εZ).(5.107)

The Fuchs indices are i = −4,−3, there is no condition on the rhs, and
the algorithm stops here, due to the absence of positive integer indices.

5.7 The Fuchsian perturbative method

It allows to extract the information contained in the negative indices [52],
thus building infinitely many necessary conditions for the absence of movable
critical singularities of the logarithmic type [31].

The perturbation which describes it is close to the identity

x unchanged, u =
+∞∑
n=0

εnu(n) : E =
+∞∑
n=0

εnE(n) = 0, (5.108)

where, like for the α−method, the small parameter ε is not in the original
equation.

Then, the single equation (2.30) is equivalent to the infinite sequence

n = 0 : E(0) ≡ E(x,u(0)) = 0 (5.109)
∀n ≥ 1 : E(n) ≡ E′(x,u(0))u(n) + R(n)(x,u(0), . . . ,u(n−1)) = 0,(5.110)

with R(1) identically zero. From Theorem II, necessary stability conditions are

- the general solution u(0) of (5.109) has no movable critical points,

- the general solution u(1) of (5.110) has no movable critical points,

- for every n ≥ 2 there exists a particular solution of (5.110) without movable
critical points.

Order zero is just the complete equation for the unknown u(0), so, to get
some information, one must apply Theorem II for a perturbation different from
(5.108). Since Bureau has proven that the method of pole-like expansions, with
more rigorous assumptions, can be casted into an application of the two basic
theorems, one uses it at order zero, only to obtain the leading term u(0) ∼ u(0)

0 χp

of all the families of movable singularities.
First step. Determine all possible families (p,u(0)

0 )

u(0) ∼ u(0)
0 χp, E(0) ∼ E(0)

0 χq, u(0)
0 6= 0 (5.111)
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which do not describe a singular solution, by solving the algebraic equation

E(0)
0 ≡ lim

χ→0
χ−qÊ(x,u(0)

0 χp) = 0. (5.112)

• C0. All components of p are integer.

If there exists no family which is truly singular (at least one component of
p negative), the method stops without concluding.

Second step. For each family, compute the indicial equation (2.36) and re-
quire the necessary conditions :

• C2. Every zero of det P (a Fuchs index) is integer.

• C3. Every zero i of det P has a multiplicity equal to the dimension of the
kernel of det P(i)

∀ index i : (multiplicity of i) = dim Ker P(i). (5.113)

Remark. There is no such condition as C1 on page 14, i. e. the indicial
polynomial may have a degree smaller than N . If the indicial equation has
degree N , the conditions C2 and C3 (N distinct integers in the one-dimensional
case) are slightly stronger than the conditions in Bureau (N−1 distinct integers).

The next step is easily computerizable [27, 47] if one represents u(0),u(1), . . .,
as Laurent series bounded from below : u(0) with powers in the range (p : +∞),
u(1) with powers in the range (ρ+ p : +∞), where ρ denotes the smallest Fuchs
index, an integer lower than or equal to −1, . . .

Order n = 0 is identical to the method of pole-like expansions and the
Laurent series for u(0)

u(0) =
+∞∑
j=0

u(0)
j χj+p, (5.114)

represents a particular solution containing a number of arbitrary coefficients
equal to one (index −1) plus the number of positive Fuchs indices, counting
their multiplicity.

Order n = 1 is identical to the “équation auxiliaire” of Darboux

E(1) ≡ E′(x,u(0))u(1) = 0, (5.115)

and the Laurent series for u(1)

u(1) =
+∞∑
j=ρ

u(1)
j χj+p, (5.116)

represents a particular solution containing a number of arbitrary coefficients
equal to the number of Fuchs indices, counting their multiplicity. If det P(i)
has degree N , it represents the general solution of (5.115).
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Consequently the sum u(0) +εu(1) is already, in the neighborhood of (χ, ε) =
(0, 0), a local representation of the greatest particular solution of (2.30) available
in this method (the general solution if det P(i) has degree N), and this is a
Laurent series with a strictly larger extension (ρ + p : +∞) than that for the
unperturbed expansion (p : +∞).

At each order n ≥ 2, the singularity order of the particular solution of the
linear inhomogeneous equation (5.110) E(n) = 0 is dictated by the contribution
R(n) of the previously computed coefficients : it is increased by ρ at each order
n and is equal to nρ+ p

∀n ≥ 0 : u(n) =
+∞∑
j=nρ

u(n)
j χj+p. (5.117)

Third step. Solve the recurrence relation for u(n)
j for all values of (n, j) 6=

(0, 0)

∀n ≥ 0 ∀j ≥ nρ, (n, j) 6= (0, 0) : E(n)
j ≡ P(j)u(n)

j + Q(n)
j (x, {u(n′)

j′ }) = 0.
(5.118)

The generated necessary stability conditions are

• C4.

∀n ≥ 0 ∀ index i, (n, i) 6= (0, 0) : Q(n)
i orthogonal to Ker adj P(i).

(5.119)
These orthogonality conditions must be satisfied whatever be the previ-
ously introduced arbitrary coefficients. For a single equation, the condition
C4 is simply Q(n)

i = 0.

Q(n)
j depends on all u(n′)

j′ with n′ ≤ n, j′ − n′ρ ≤ j − nρ, (n′, j′) 6= (n, j),
and this is the only ordering to be respected during the resolution. The costless
ordering on (n, j) is the one which generates stability conditions the sooner, and
it depends on the structure of indices of the DE under study.

In order to avoid introducing more arbitrary coefficients than N , the precise
rule is :

• if n = 0 or (n = 1 and i < 0), assign arbitrary values to mult(i) compo-
nents of u(n)

i defining a basis of Ker P(i),

• if (n = 1 and i ≥ 0) or n ≥ 2, assign the value 0 to mult(i) components of
u(n)
i defining a basis of Ker P(i).

The resulting double expansion (Taylor in ε, Laurent in χ at each order in
ε) can be rewritten as a Laurent series in χ extending to both infinities

∀n ≥ 0 : u(n) =
+∞∑
j=nρ

u(n)
j χj+p, E(n) =

+∞∑
j=nρ

E(n)
j χj+q, (5.120)
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u =
+∞∑
n=0

εn

 +∞∑
j=nρ

u(n)
j χj+p

 =
+∞∑
j=−∞

ujχj+p. (5.121)

Remarks.

1. The Fuchsian perturbative method (as well as the nonFuchsian one which
will be seen section 5.8) is useful if and only if the zeroth order n = 0 fails
to describe the general solution. This may happen for two reasons. The
most common one is a negative Fuchs index in addition to −1 counted
once, the second, less common one is a multiplicity higher than one for
some family, as in the example of section 5.7.3.

2. We do not know of an upper bound for n, but there exists a lower bound.
Indeed, in the linear inhomogeneous ODE (5.110), logarithms can arise
only when some precise powers of χ, only depending on the homogeneous
part, are present in the rhs Laurent series R(n). The lower bound n results
from the condition that the lowest Fuchs index and the highest one, once
forced to interfere by the nonlinear terms, start to contribute to such
dangerous powers. An example of such a condition is given in section
5.7.5.

Even if all Fuchs indices are positive (except −1 counted once), the lower
bound on n may be greater than 0, as in the example of section 5.7.3.

3. Remark on index −1. In the case of a single equation, since indices must be
distinct integers, the condition Q(1)

ρ = 0 at the smallest Fuchs index i = ρ
is identically satisfied. Nevertheless, the frequently encountered statement
“resonance −1 is always compatible” is erroneous, and numerous nonzero
stability conditions Q(n)

−1 = 0 can be found in the examples of [31]. Indeed,
even at first perturbation order, the stability condition at index −1 may
not be satisfied : just like Fuchs index i = ρ provides an identically satisfied
stability condition, Painlevé “resonance” −1 has the same property if and
only if ρ = −1, i.e. if −1 is the smallest integer index.

If ρ is different from −1, Painlevé resonance −1 seems to be satisfied, but
it is only because a Laurent series ranging from power p to +∞ cannot
represent the general solution, thus preventing the building of Painlevé
stability condition Q

(0)
−1 = 0.

5.7.1 Fuchs indices, Painlevé “resonances” or Kowalevski
exponents?

Given a nonlinear algebraic DE of order N , one can define three sets of at
most N numbers associated to it :

1. the Fuchs indices of the auxiliary equation of Darboux (section 5.7),
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2. the “resonances” of the nonlinear equation (section 5.4),

3. the Kowalevski exponents, only defined if the nonlinear equation in invari-
ant under a scaling transformation (x,u,E)→ (kX, kpu, kqE).

We have already seen the identity of the first two sets, defined for each family
of movable singularities. Let us prove that the third notion is not distinct. The
third set is defined as follows (for an introduction, see [10]). The invariance
implies the particular solution (“scaling solution”) u(0) = const (x−x0)p, which
is identical to a family of movable singularities. The Kowalevski exponents ρ
are defined as the characteristic exponents of the linearized system near this
solution, which proves the identity of the three notions.

Said differently, all these numbers are Fuchs indices, and this link to the the-
ory of linear DEs proves the uselessness of the notions of Kowalevski exponents
and Painlevé resonances.

5.7.2 Understanding negative Fuchs indices

The ODE with a meromorphic general solution [31]

E ≡ uxx + 3uux + u3 = 0, u =
1

x− a
+

1
x− b

, a and b arbitrary, (5.122)

has two families,

(F1) p = −1, u(0)
0 = 1, indices (−1, 1),

(F2) p = −1, u(0)
0 = 2, indices (−2,−1),

and this provides a clear comprehension of negative Fuchs indices, since the
index −2 must coexist with the meromorphy. Indeed, the representation of the
general solution (5.122) as a Laurent series of x − x0 is the sum of two copies
of an expansion of 1/(x− c), and there exist two expansions of 1/(x− c)

(x− c)−1 =
−1∑

j=−∞
(c− x0)−1−j(x− x0)j , |c− x0| < |x− x0| (5.123)

=
+∞∑
j=0

−(c− x0)1−j(x− x0)j , |x− x0| < |c− x0|. (5.124)

The family (F1) corresponds to the sum (first expansion with c = a = x0) plus
(second expansion c = b), while the family (F2) corresponds to the sum (first
expansion with c = a) plus (second expansion with c = b). This can be checked
by a direct application of the algorithm, which for family (F2) gives [31]

u = 2χ−1 + ε(A1χ
−3 +B1χ

−2) + ε2(
A2

1

2
χ−5 +

3A1B1

2
χ−4)
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+ε3(
A3

1

4
χ−7 +

5A2
1B1

4
χ−6 +A1B

2
1χ
−5 − 1

2
B3

1χ
−4) +O(ε4) (5.125)

= 2χ−1 + εB1χ
−2 + εA1χ

−3 + (
3
2
ε2A1B1 −

1
2
ε3B3

1)χ−4 +O(χ−5)(5.126)

=
2χ− εB1

χ2 − εB1χ+ 1
2 (−εA1 + ε2B2

1)
, (5.127)

where A1 and B1 are the arbitrary coefficients at order one. The simple pole
χ = 0 with residue 2 has been “unfolded” by the perturbation into two simple
poles with residue 1, at the two arbitrary locations 1

2

[
εB1 ±

√
2εA1 − ε2B2

1

]
,

both close to 0.
For other examples, see [96] and conference proceedings referenced in [31].

5.7.3 The simplest constructive example

The equation
u′′ + 4uu′ + 2u3 = 0 (5.128)

is the simplest constructive example, because

1. there exists a movable logarithm, as shown by the α−method (BSMF §13,
p 221),

2. the method of pole-like expansions fails to find it,

3. the assumption of a “descending” Laurent series (5.34) fails to find it,

4. the Fuchsian perturbative method finds it after a very short computation,
as we now show.

There exists a single family

p = −1, E(0)
0 = u

(0)
0 (u(0)

0 − 1)2 = 0, indices (−1, 0), (5.129)

with the puzzling fact that u(0)
0 should be at the same time equal to 1 accord-

ing to the equation E
(0)
0 = 0, and arbitrary according to the index 0. The

application of the method provides

u(0) = χ−1 (the series terminates) (5.130)
E′(x, u(0)) = ∂2

x + 4χ−1∂x + 2χ−2 (5.131)

u(1) = u
(1)
0 χ−1, u

(1)
0 ) arbitrary, (5.132)

E(2) = E′(x, u(0))u(2) + 6u(0)u(1)2
+ 4u(1)u(1)′

= χ−2(χ2u(2))′′ + 2u(0)2
χ−3 = 0 (5.133)

u(2) = −2u(1)2

0 (χ−1 Logχ− χ−1). (5.134)
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The movable logarithmic branch point is therefore detected in a systematic way
at order n = 2 and index i = 0.

The necessity to perform a perturbation arises from the multiple root of the
equation for u(0)

0 , responsible for the insufficient number of arbitrary parameters
in the zeroth order series u(0).

5.7.4 The two examples

Example 1. “Complete (P1)” eq. (5.20). The method is useless.
Example 2 (Chazy complete equation of class III (5.24)).
For the second family (in case d3 = 0), the method is useless.
For the first family, since all indices are negative, one must start the pertur-

bation process n ≥ 1.
To obtain the stability conditions up to a given order n ≥ 1, we only need

to compute the first 3n coefficients of each element :

u(r) =
−3r+3n−1∑
j=−3r

u
(r)
j χj−1, r = 0, . . . , n, (5.135)

i.e.
u

(0)
0:3n−1, u

(1)
−3:3n−4, . . . , u

(n−1)
−3n+3:2, u

(n)
−3n:−2, (5.136)

where j1 : j2 denotes a range of j values. The most efficient way to perform the
double loop on (n, j) is to perform the outside loop in the variable k = j − nρ,
with ρ = −3, and the precise double loop is : for k = 0 to kmax do for
n = (if k = 0 then 1 else 0) to nmax do solve the linear algebraic equation
(5.118) for u(n)

j , j = k + nρ.
Let us compute all the stability conditions at first and second order. The

computer printout reads (full details are given in Ref. [31]) :

k = 0 : Q
(1)
−3 ≡ 0, u(1)

−3 arbitrary (5.137)

k = 1 : Q
(1)
−2 ≡ −6(5c1 + 42d3)u(1)

−3 = 0, u(1)
−2 arbitrary (5.138)

k = 2 : Q
(1)
−1 ≡ −12(c1 + 9d3)u(1)

−2 + 18(c1 − 8d3)u(1)′

−3

+
6
5

(2c0 − 3c21 − 117c1d3 − 594d2
3 + 18c′1 + 108d′3)u(1)

−3 = 0,(5.139)

u
(1)
−1 arbitrary, (5.140)

k = 3 : Q
(2)
−3 ≡ −

66
5
d1u

(1)2

−3 = 0, (5.141)

k = 4 : Q
(2)
−2 ≡

1
7

(8d0 + 57d′1)u(1)2

−3 − 12d1u
(1)
−3u

(1)
−2 = 0 (5.142)

k = 5 : Q
(2)
−1 ≡ −

1
35

(18d′0 + 99d′′1)u(1)2

−3 −
24
5
d1u

(1)2

−2

+
3
35

(16d0 + 72d′1)u(1)
−3u

(1)
−2 = 0. (5.143)
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Five conditions are obtained, three at order one, equivalent to d3 = c1 =
c0 = 0, and two at order two, equivalent to d1 = d0 = 0 [in order to simplify
expressions, we have put the first order conditions in the above expressions for
k = j + 3n ≥ 3], after seventeen values of (n, j). These conditions were given
without any detail by Chazy[22]. They restrict the complete ODE (5.24) to the
simplified ODE (1.17), modulo (3.5).

Chazy proved the general solution of (1.17) to be single valued inside or
outside a circle whose centre and radius depend on the choice of the three
arbitrary constants; it is holomorphic in this domain, and the only singularity
is a movable natural boundary (“coupure essentielle”) defined by this circle. He
also gave a parametric representation of the general solution u(x) in terms of
two solutions of the (linear) hypergeometric equation, but single valuedness is
not at all apparent on this representation.

The direct explicit solution of Bureau [17, 18] is given section 5.5.1.

5.7.5 An example needing order seven to conclude

The following equation, isolated by Bureau ([15] p. 79),

u′′′′ + 3uu′′ − 4u′2 = 0 (5.144)

possesses the two families

p = −2, u(0)
0 = −60, ind. (−3,−2,−1, 20), K̂ = u′′′′ + 3uu′′ − 4u′2,(5.145)

p = −3, u(0)
0 arbitrary, indices (−1, 0), K̂ = 3uu′′ − 4u′2. (5.146)

The second family has a Laurent series (p : +∞) which happens to terminate
[31]

u(0) = c(x− x0)−3 − 60(x− x0)−2, (c, x0) arbitrary. (5.147)

The Fuchsian perturbative method is useless, for the two arbitrary coefficients
corresponding to the two Fuchs indices are already present at zeroth order.

The first family provides, at zeroth order, only a two-parameter expansion
and, when one checks the existence of the perturbed solution

u =
+∞∑
n=0

εn

+∞∑
j=0

u
(n)
j χj−2−3n

 , (5.148)

one finds that coefficients u(0)
20 , u

(1)
−3, u

(1)
−2, u

(1)
−1 can be chosen arbitrarily, and, at

order n = 7, one finds two violations [31]

Q
(7)
−1 ≡ u

(0)
20 u

(1)7

−3 = 0, Q(7)
20 ≡ u

(0)2

20 u
(1)6

−3 u
(1)
−2 = 0, (5.149)

implying the existence of a movable logarithmic branch point.
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Remark. The value n = 7 is the root of the linear equation n(imin − p) +
(imax − p) = −1, with p = −2, imin = −5, imax = 18, linking the pole order p in
the Fuchsian case c = 0, the smallest and the greatest Fuchs indices. It expresses
the condition for the first occurence of a power χ−1, leading by integration to
a logarithm, in the r.h.s. R(n) of the linear inhomogeneous equation (5.110),
r.h.s. created by the nonlinear terms 3uu′′ − 4u′2.

5.7.6 Closed-form solutions of the Bianchi IX model

In this example, the no-log conditions are used in a constructive way, in
order to isolate all possible single valued solutions.

The Bianchi IX cosmological model [78] is a system of three second order
ODEs

(LogA)′′ = A2 − (B − C)2 and cyclically, ′ = d/dτ, (5.150)

or equivalently

(Logω1)′′ = ω2
2 + ω2

3 − ω2
2ω

2
3/ω

2
1 , A = ω2ω3/ω1, ω

2
1 = BC and cyclically.

(5.151)
One of the families [36, 79]

A = χ−1 + a2χ+O(χ3), χ = τ − τ2,
B = χ−1 + b2χ+O(χ3), (5.152)
C = χ−1 + c2χ+O(χ3),

has the Fuchs indices (−1,−1,−1, 2, 2, 2). The Fuchsian perturbative method

A = χ−1
N∑
n=0

εn
2+N−n∑
j=−n

a
(n)
j χj , χ = τ − τ2, and cyclically, (5.153)

then gives a failure of condition C4 at (n, i) = (3,−1) and (5,−1) [79], and the
satisfaction of these no-log conditions generates the three solutions :

(b(0)
2 = c

(0)
2 and b

(1)
−1 = c

(1)
−1) or cyclically (5.154)

a
(0)
2 = b

(0)
2 = c

(0)
2 = 0, (5.155)

a
(1)
−1 = b

(1)
−1 = c

(1)
−1. (5.156)

These are constraints which reduce the number of arbitrary coefficients to, re-
spectively, four, three and four, thus defining particular solutions which may
have no movable critical points. The question is : do they define additional
solutions to what is known?

The only three closed-form solutions which are known are single valued, they
are defined as the general solution of the following three subsystems.
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1. The 4-dim axisymmetric case B = C [108], whose general solution (2.60)
is trigonometric.

2. The 3-dim Darboux-Halphen system [44, 61]

ω′1 = ω2ω3 − ω1ω2 − ω1ω3, and cyclically. (5.157)

3. The 3-dim Euler system (1750) [8], describing the motion of a rigid body
around its center of mass

ω′1 = ω2ω3, and cyclically, (5.158)

whose general solution is elliptic [8], see (2.31) and (2.45).

The first constraint (5.154) implies the equality of two of the components
(A,B,C) at every order and thus represents the four-parameter solution of Taub
(2.60).

The second constraint (5.155) represents the three-parameter solution of the
Darboux-Halphen system (5.157).

The third and last constraint (5.156) represents an extrapolation to four
parameters of the three-parameter solution ot the Euler system described by
a

(0)
2 + b

(0)
2 + c

(0)
2 = 0. This would-be four-parameter, global, closed form, single

valued exact solution has not yet been found.

5.8 The nonFuchsian perturbative method

Whenever the family under study has a number of Fuchs indices smaller
than the differential order N , the Fuchsian perturbation method fails to build
a representation of the general solution, thus possibly missing some stability
conditions. Examples are (5.146) and the second family of (5.24) in the case d3 =
0. The missing solutions of the auxiliary equation (5.115) are then nonFuchsian
solutions, see section 5.2.2.

There is no difficulty to algorithmically compute the nonFuchsian expansions
(5.11), but these are of no immediate help, due to their generic divergence.

There is one situation where some stability conditions can be generated
algorithmically (indeed, we are not interested in computations adapted to a given
equation, only in computerizable methods). It occurs when the two following
conditions are met [85].

1. There exists a particular solution u = u(0) which is known globally, mero-
morphic and has at least one movable pole at a finite distance denoted
x0.

2. The only singular points of the linearized equation E(1) = 0 are x = x0,
nonFuchsian, and x =∞, Fuchsian.
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Then, the property that a fundamental set of solutions u(1) be locally single
valued near χ = x − x0 = 0 is equivalent to the same property near χ = ∞.
This is the global nature of u(0) which allows the study of the point χ = ∞,
easy to perform with the Fuchsian perturbation method.

An important technical bonus is the lowering of the differential order N of
equation E(1) = 0 by the number M of arbitrary parameters c which appear in
u(0). Indeed, again since u(0) is closed form, its partial derivatives ∂cu(0) are
closed form and are particular solutions of E(1) = 0, which allows this lowering
of the order.

At each higher perturbation order n ≥ 2, one similarly builds particular
solutions u(n) as expansions near χ =∞ and one requires the same properties.

5.8.1 An explanatory example : Chazy’s class III (N =
3,M = 2)

The simplified equation (1.17), which possesses the PP [22] and therefore for
which no u(n) is multivalued, is quite useful just to understand the method. This
equation admits the global two-parameter solution (5.57) u(0) = cχ−2 − 6χ−1.
The linearized equation

E(1) ≡ E′(x, u(0))u(1) ≡ [∂3
x − 2u(0)∂2

x + 6u(0)
x ∂x − 2u(0)

xx ]u(1) = 0 (5.159)

possesses the two single valued global solutions ∂x0u
(0) and ∂cu

(0), i.e. u(1) =
χ−3, χ−2, and it has only two singular points χ = 0 (Fuchsian) and χ = ∞
(nonFuchsian with Thomé rank two). The lowering by M = 2 units of the order
of the linearized equation results from the change of function

u(1) = χ−3v : E(1) ≡ χ3[∂x + 3χ−1 − 2cχ−2]v′′ = 0, (5.160)

and the study of the Fuchsian point χ =∞ yields an integer Fuchs index, which
proves the global single valuedness of the general solution u(1).

Remarks.

• The local study of χ = 0 provides a formal expansion (5.11) which happens
to terminate, a nongeneric situation, thus providing the fundamental set
of global solutions at perturbation order n = 1

∀χ ∀c : u(1) = χ−2, χ−3, (e−2c/χ − 1 + 2cχ−1)χ−2/(2c2).(5.161)

This proves the existence of an essential singularity at χ = 0 (ref. [66]
chap. XVII).

• Going on with the formalism of Painlevé’s lemma at higher orders consti-
tutes the rigorous mathematical framework of the local representation of
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the general solution obtained by Joshi and Kruskal [70]

u = −6χ−1 +cχ−2

(
1 + z − z2

8
+

z3

144
− 7

z4

13824
+O(ε5)

)
, z =

ε

c
e−2c/χ.

(5.162)
This representation reduces to the one given by Chazy (Taylor series in
1/χ) if one starts from the Fuchsian family u ∼ −6χ−1.

5.8.2 The fourth order equation of Bureau (N = 4,M = 2)

In section 5.7.5, the fourth order equation (5.144) has been proven to be
unstable after a computation practically untractable without a computer. Let
us now prove this result without computation at all [85]. For the global two-
parameter solution (5.147), the linearized equation

E(1) = E′(x, u(0))u(1) ≡ [∂4
x + 3u(0)∂2

x − 8u(0)
x ∂x + 3u(0)

xx ]u(1) = 0 (5.163)

has only two singular points χ = 0 (nonFuchsian) and χ = ∞ (Fuchsian), it
admits the two global single valued solutions ∂x0u

(0) and ∂cu
(0), i.e. u(1) =

χ−4, χ−3. The lowering by M = 2 units of the order of the linearized equation
(5.163) is obtained with

u(1) = χ−4v : [∂2
x − 16χ−1∂x + 3cχ−3 − 60χ−2]v′′ = 0, (5.164)

and the local study of χ =∞ is unnecessary, since one recognizes the confluent
hypergeometric equation. The two other solutions in global form are

c 6= 0 : v′′1 = χ−3
0F1(24;−3c/χ) = χ17/2J23(

√
12c/χ), (5.165)

v′′2 = χ17/2N23(
√

12c/χ), (5.166)

where the hypergeometric fonction 0F1(24;−3c/χ) is single valued and possesses
an isolated essential singularity at χ = 0, while the fonction N23 of Neumann is
multivalued because of a Logχ term.

Remark. The local study of (5.163) near χ = 0 provides the formal expan-
sions (5.11) for the two nonFuchsian solutions

χ→ 0, c 6= 0 : u(1) = e±
√
−12c/χχ31/4(1 +O(

√
χ)), (5.167)

detecting the presence in (5.163) of an essential singularity at χ = 0, but the
generically null radius of convergence of the formal series forbids to conclude
to the multivaluedness of u(1). A nonobvious result is the existence, as seen
above, of a linear combination of the two formal expansions (5.167) which is
single valued.
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5.8.3 An example in cosmology : Bianchi IX (N = 6,M =
4)

The Bianchi IX cosmological model in vacuum (5.150) does not possess the
PP [37, 79]. Let us prove it rapidly [79, 85]. Taub [108] found the general
solution of the axisymmetric case of two equal components, a meromorphic
expression (2.60) depending on the four arbitrary parameters (k1, k2, τ1, τ2).
The linearized system generated by the perturbation

A = A(0)(1 + εA(1) +O(ε2)) and cyclically (5.168)

has the differential order N = 6, which is then lowered by M = 4 units by the
change of function dictated by the symmetry of the system : P (1) = B(1) +
C(1),M (1) = B(1) − C(1)

A(1)′′ − 2A(0)2
A(1) = 0, (5.169)

P (1)′′ − 2A(0)B(0)P (1) = 4(A(0)B(0) −A(0)2
)A(1), (5.170)

M (1)′′ + 2(A(0)B(0) − 2B(0)2
)M (1) = 0. (5.171)

Indeed, the four single valued global solutions

(A(1), P (1)) = ∂c(LogA(0),Log(B(0) + C(0))), c = k1, k2, τ1, τ2, (5.172)

are those of the equations (5.169)–(5.170),

M (1) = 0, (A(1), P (1) + 2A(1)) =


((τ − τ1) coth k1(τ − τ1)− 1/k1, 0),
(0, (τ − τ2) coth k2(τ − τ2)− 1/k2),
(coth k1(τ − τ1), 0),
(0, coth k2(τ − τ2)),

(5.173)
and there only remains to study the equation (5.171). It has a countable infinity
of singular points : τ −τ2 = imπ/k2,m ∈ Z (nonFuchsian, of Thomé rank two),
accumulating at τ = ∞. This uneasy situation can be overcome by taking the
limit k1 = k2 = 0; it is indeed sufficient to exhibit a movable logarithm in this
limit, for it will persist for (k1, k2) 6= (0, 0). In this limit

k1 = k2 = 0 :
d2M (1)

dt2
+
(

2
t2
− 4(t− 1)2

t4

)
M (1) = 0, t =

τ − τ2
τ1 − τ2

,(5.174)

the only singular points are t = 0 (nonFuchsian) and t = ∞ (Fuchsian), the
optimal situation. The Fuchs indices being −2 and 1, the computation of three
terms is sufficient to exhibit a logarithm, and this proves the absence of the
Painlevé property for the Bianchi IX model in vacuum.

Remarks
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1. The two solutions are globally known [79] :

k1 = k2 = 0 : M (1) = e−2/tt−1, e−2/tt−1

∫ 1/t

z−4e4zdz,(5.175)

which shows the presence of a logarithmic branch point at t = 0, or at
t =∞ as well.

2. The two formal non-Fuchsian solutions are

τ − τ2 → 0 : M (1) = eα/(τ−τ2)
+∞∑
k=0

λk(τ − τ2)k+s, λ0 6= 0, (5.176)

with

α = ±2k−1
1 sinh k1(τ2 − τ1), s = 1∓ 2 cosh k1(τ2 − τ1). (5.177)

The two generically irrational values for the Thomé exponents s allow to
conclude only if the divergent series λk(τ − τ2)k can be summed.

5.9 Miscellaneous perturbations

The differential complexity of the α−method explains why it usually suc-
ceeds in case of failure of all the other methods, which only have an algebraic
complexity. Consider the ODEs, none of which admits a power-law leading
behaviour

−2uu′′ + 3u′2 + d3u
3 = 0, d3 6= 0, (5.178)

u′′′ + uu′′ − 2u′2 = 0, (5.179)
u′′′′ + 2uu′′ − 3u′2 = 0, (5.180)

and let us prove that each of them has movable logarithms. The first one is
extracted from Chazy’s class III (5.24) by the perturbation u = ε−1U, x =
x0 + εX, and it represents its second family, see section 5.4.1. The second and
third ones were considered by Chazy [23, 24] who had to establish a special
theorem, using divergent series, to exhibit the movable logarithms. Having
degree one, none of these ODEs admits singular solutions.

The first equation (5.178) is classically processed by the α−method

u = ε−1
+∞∑
n=0

εnu(n), E = ε−4
+∞∑
n=0

εnE(n), x = x0 + εX, (5.181)

resulting in

E(0) ≡ −2u(0)u(0)′′ + 3u(0)′2 = 0 (5.182)
u(0) = c(X −X0)−2, (X0, c) arbitrary, (5.183)
E(1) ≡ c(X −X0)−5[−2((X −X0)3u(1))′′ + c2d3/(X −X0)] = 0,(5.184)
u(1) = c2d3(X −X0)3[(X −X0) Log(X −X0)− (X −X0)]/2. (5.185)
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and proving the instability at perturbation order one.
For equations (5.179) and (5.180), there exists no perturbation satisfying

the assumptions of Theorem II page 45, there only exist singular perturbations,
i. e. which discard the highest derivative. Since they however give the correct
information, it would be desirable to extend Theorem II in that direction.

Equation (5.179) is handled by the singular perturbation

u = ε−1
+∞∑
n=0

εnu(n), E = ε−2
+∞∑
n=0

εnE(n), (5.186)

which excludes u′′′ from the simplified equation

E(0) ≡ u(0)u(0)′′ − 2u(0)′2 = 0 (5.187)
u(0) = cχ−1, χ = x− x0, (x0, c) arbitrary, (5.188)
E(1) ≡ c(χ−3(χ2u(1))′′ − 6χ−4) = 0, (5.189)
u(1) = 6χ−1(Logχ− 1). (5.190)

This same perturbation (5.186) solves the case of the equation (5.180)

E(0) ≡ 2u(0)u(0)′′ − 3u(0)′2 = 0 (5.191)
u(0) = cχ−2 (5.192)
E(1) ≡ c(2χ−5(χ3u(1))′′ + 120χ−6) = 0 (5.193)
u(1) = −60χ−2(Logχ− 1). (5.194)

5.10 The perturbation of the continuum limit of
a discrete equation

Discrete equations can be considered as functional equations linking the val-
ues taken by some field variable u at a finite number N + 1 of points, either
arithmetically consecutive : x+kh, k−k0 = 0, 1, . . . , N , or geometrically consec-
utive : xqk, k− k0 = 0, 1, . . . , N , where h or q is the lattice stepsize, assumed to
lay in some neighborhood of, respectively, 0 or 1, and k0 is just some convenient
origin.

Definition [35]. A discrete equation is said to possess the discrete Painlevé
property if and only if there exists a neighborhood of h = 0 at every point of
which the general solution x→ u(x, h) has no movable critical singularities.

Consider an arbitrary discrete equation (5.195),

∀x ∀h : E(x, h, {u(x+ kh), k − k0 = 0, . . . , N}) = 0 (5.195)

algebraic in the values of the field variable, with coefficients analytic in x, the
stepsize and some parameters a. Let (x, h, u, a) → (X,H,U,A, ε) be an ar-
bitrary perturbation admissible by the suitable extension of the theorem of
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Poincaré to discrete systems. Two such perturbations are well known, the au-
tonomous limit

x = x0 + εX, h = εH, u = U, a = analytic (A, ε), (5.196)

and the continuum limit

x unchanged, h = ε, u = U, a = analytic (A, ε). (5.197)

The latter can be extended into a perturbation of the continuum limit [35]

x unchanged, h = ε, u =
+∞∑
n=0

εnu(n), a = analytic (A, ε), (5.198)

entirely analogous to the Fuchsian (section 5.7) or nonFuchsian (section 5.8)
perturbative method of the continuous case.

It generates an infinite sequence of (continuous) differential equations E(n) =
0 whose first one n = 0 is the continuum limit. The next ones n ≥ 1, which are
linear inhomogeneous, have the same homogeneous part E(0)′u(n) = 0 indepen-
dent of n, defined by the derivative of the equation of the continuum limit, while
their inhomogeneous part R(n) (“right-hand side”) comes at the same time from
the nonlinearities and the discretization.

Let us just handle the Euler scheme for the Bernoulli equation

E ≡ (u− u)/h+ u2 = 0 (5.199)

(notation is u = u(x), u = u(x+h)), i.e. the logistic map of Verhulst, a paradigm
of chaotic behaviour. Let us expand the terms of (5.199) according to the
perturbation (5.198) up to an order in ε sufficient to build the first equation
E(1) = 0 beyond the continuum limit E(0) = 0

u = u(0) + u(1)ε+O(ε2) (5.200)

u2 = u(0)2
+ 2u(0)u(1)ε+O(ε2) (5.201)

u = u+ u′h+ (1/2)u′′h2 +O(h3) (5.202)
u− u
h

= u(0)′ + (u(1)′ + (1/2)u(0)′′)ε+O(ε2). (5.203)

The equations of orders n = 0 et n = 1 are written as

E(0) = u(0)′ + u(0)2
= 0 (5.204)

E(1) = E(0)′u(1) + (1/2)u(0)′′ = 0, E(0)′ = ∂x + 2u(0). (5.205)

Their general solution is

u(0) = χ−1, χ = x− x0, x0 arbitrary (5.206)

u(1) = u
(1)
−1χ

−2 − χ−2 Logψ, ψ = x− x0, u
(1)
−1 arbitrary, (5.207)

and the movable logarithm proves the instability as soon as order n = 1, at the
Fuchs index i = −1.
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5.11 The diophantine conditions

In fulfilling the systematic programme of Painlevé, one encounters the fol-
lowing kind of diophantine equations

p∑
k=1

1
nk

=
1
n
, (5.208)

with n and p given integers, whose unknowns (nk) are Fuchs indices, which
must therefore be either integer or infinite. They admit a finite set of solutions,
which allows all cases to be further examined. Details can be found in Bureau
1964, M.I, M.II.

Such a diophantine condition always arises when there exists more than one
family, as the constraint that, simultaneously, all Fuchs indices of all families
be integer. Let us just give one example [31]. The Hamiltonian Hénon-Heiles
system [62] in two coupled variables (q1, q2)

H ≡ (1/2)(q2
1,x + q2

2,x + c1q
2
1 + c2q

2
2) + αq1q

2
2 − (1/3)βq3

1 = E,(5.209)

q1,xx + c1q1 − βq2
1 + αq2

2 = 0 (5.210)
q2,xx + c2q2 + 2αq1q2 = 0 (5.211)

defines by elimination the fourth order ODE in v = q1 [50]

vxxxx + (8α− 2β)vvxx − 2(α+ β)v2
x − (20/3)αβv3

+(c1 + 4c2)v1,xx + (6αc1 − 4βc2)v2 + 4c1c2v + 4αE = 0, (5.212)

with (α, β, c1, c2, E) constants. Let us restrict here to c1 = c2 = 0.
There exist two families

p = −1, v0 =
3
α
, indices (−1, 10, r1, r2), (5.213)

p = −1, v0 = − 6
β,

indices (−1, 5, s1, s2), (5.214)

in which ri and si satisfy the equations

r2 − 5r + 12 + 6γ = 0, s2 − 10s+ 24 + 48γ−1 = 0, γ = β/α. (5.215)

The diophantine equations to be solved are

(r1 − r2)2 = (2k − 1)2, (s1 − s2)2 = (2l)2, (ri + 1)(ri − 10)(si + 1)(si − 5) 6= 0,
(5.216)

with k and l two strictly positive integers. Making use of (r1 − r2)2 = (2r −
5)2, (s1 − s2)2 = 4(s− 5)2, the elimination of γ between (5.215) yields

γ =
48

1− l2
, l2 = 1 +

1152
23 + (2k − 1)2

, (5.217)
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and this provides sharp bounds for l : 1 < l2 ≤ 49. One thus obtains the four
solutions for β/α, (k, l), (r1, r2), (s1, s2)

−1 : (1, 7), (2, 3), (−2, 12) (SK), (5.218)
−2 : (3, 5), (0, 5), (0, 10), (5.219)
−6 : (6, 3), (−3, 8), (2, 8) (KdV5), (5.220)
−16 : (10, 2), (−7, 12), (3, 7) (KK). (5.221)

Three of them restrict the ODE to the stationary reduction of well-known
soliton equations, thus proving the PP : Sawada-Kotera (SK [103]), higher-
order Korteweg-de Vries (KdV5, [80]) and Kaup-Kupershmidt (KK, [71, 51])
equations.

The case β = −2α is similar to that of the ODE in section 5.7.3 : v0 is a
double root of its algebraic equation and is not arbitrary although 0 is an index.
The results of the Fuchsian perturbative method are also similar; listed by
increasing cost (number of needed values of (n, i)), the first stability conditions
Q

(n)
i = 0 are

Q
(1)
0 ≡ 0, cost = 2 (5.222)

Q
(2)
0 ≡ −40αu(1)2

0 = 0, cost = 5 (5.223)

Q
(0)
10 ≡ −30α3u

(0)2

5 = 0, cost = 10 (5.224)

Q
(1)
5 ≡ −120αu(0)

5 u
(1)
0 = 0, cost = 12. (5.225)

To detect the instability, the method of pole-like expansions is here sufficient
but the Fuchsian perturbative method is much cheaper.
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Chapter 6

Construction of necessary
conditions. The Painlevé
test

This chapter makes the synthesis of all the methods of chapter 5 in order to
define a usable end product which makes obsolete the meromorphy test of section
2.3. This end product is widely known as the Painlevé test. Before detailing
the steps of this algorithm in section 6.6, for ODEs as well as for PDEs, some
prerequisite technical developments are needed : implementation of physicists’
desiderata (section 6.1), technicalities to simplify the computations (section 6.2)
and the quite important feature of the invariant Painlevé analysis (sections 6.3,
6.4 and 6.5).

6.1 Physical considerations

Some DEs encountered in physics are unstable, although integrable or par-
tially integrable in some obvious physical sense. It is then extremely important
not to discard them; this is achieved by relaxing some of the mathematical
requirements.

Firstly, nonpolynomial DEs can be made polynomial by transformations on
u like in section 3.3.3, necessarily outside the groups of invariance of the PP
defined in sections 3.3.1 and 3.3.2.

Example 1 (sine-Gordon).

(sine-Gordon) uxt = sinu, eiu = v, 2(vvxt − vxvt)− v3 + v = 0. (6.1)
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Example 2 (Benjamin-Ono). The nonlocal, nonpolynomial PDE

ut + uux + H(uxx) = 0, H(v) =
1
π

pp
∫ +∞

−∞

v(x′, t)
x′ − x

dx′, (6.2)

in which H is the Hilbert transform, and pp the Cauchy principal value distri-
bution, is equivalent [60, 101] to the local and polynomial system

ut + uux + uxy, uxx + uyy = 0 (6.3)

in one additional independent variable y.
Secondly, unstable polynomial DEs may be made stable and polynomial by

transformations like (3.9).
Example 3 (parity invariance). The Ermakov-Pinney ODE [49, 97]

uxx − α2u+ β2u−3 = 0. (6.4)

is unstable (algebraic branch point p = 1/2) and invariant by parity on u :
the transformation u → u2 or u−2 preserves its polynomial form and makes it
stable.

6.2 Technicalities

A careful choice of the dependent variables can save many computations.
Example 1 (dynamical systems). These systems of first order ODEs some-

times possess an equivalent scalar ODE. This is the case of the Lorenz model
(1.3), equivalent to [107]

xx′′′−x′x′′+x3x′+(b+σ+1)xx′′+(σ+1)(bxx′−x′2)+σx4+b(1−r)σx2 = 0 (6.5)

and of the Hénon-Heiles Hamiltonian system in (q1, q2) (5.209) which implies
the fourth order ODE in q1 only (5.212). This offers two advantages. The first
one is to reduce the matricial recurrence relation to a scalar one. The second one
is much more interesting : the scalar ODE has a number of families lower than
or equal to that of the DS, which saves a lot of useless cases to consider; thus,
in the HH system, the leading powers for (q1, q2) are (−2,−2), (−2,−1), (−2, 0),
while the equivalent fourth order ODE for q1 has only one leading power −2.

Choosing an integrated dependent variable for the computations saves a lot.
The principle is that, if a DE for u is to be stable, this allows the presence of
one movable logarithm in its primitive v =

∫
u dx. If changing u to vx allows

the DE to be integrated once or more, expressions are shortened.

6.3 Equivalence of three fundamental ODEs

Let S be a given analytic function of a complex variable x, and let us consider
the three differential equations in ϕ, χ, ψ :
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ϕxxx
ϕx
− 3

2

(
ϕxx
ϕx

)2

= S (6.6)

ω = χ−1, −2ωx − 2ω2 = S (6.7)

−2
ψxx
ψ

= S (6.8)

The first one is the Schwarz equation; if read backwards, it defines S as the
Schwarzian {ϕ;x} of ϕ. The second one is the Riccati equation in its normalized
form (equations for ω or χ are equivalent and both of Riccati type). The third
one is the second order linear Sturm-Liouville ODE in its normalized form.

Each of these three ODEs possesses a fundamental uniqueness property.
As shown by S. Lie, the Schwarzian is the unique elementary homographic
differential invariant of a function ϕ, i.e. the unique elementary function of the
derivatives Dϕ of ϕ, excluding ϕ itself, invariant under the 6-parameter group
H (or Möbius group, or PSL(2,C)) of homographic transformations :

H : ϕ→ aϕ+ b

cϕ+ d
, (a, b, c, d) arbitrary complex constants, ad− bc = 1. (6.9)

Among nonlinear first order ODEs in the class :

u′ = R(u, x) (6.10)

where R is rational in u and analytic in x, the Riccati equation is the unique
one whose general integral has no movable critical points. As to equation (6.8),
its uniqueness lies in its linear form.

It is a classical result due to Painlevé (1895, Leçons p. 230, Oeuvres I) that
the three ODEs (6.6), (6.7), (6.8) are equivalent : it is sufficient to integrate
one in order to integrate the two others. Consequently, any ODE reducible to
one of these three ODEs can be considered as explicitly linearizable. The six
ODEs obtained by elimination of S between any two of the three ODEs have
the general solution :

ω(ϕ) =
c1ϕx

c1ϕ+ c2
− ϕxx

2ϕx
(6.11)

ψ(ϕ) = (c1ϕ+ c2)ϕ−
1
2

x (6.12)

ϕ(ω) =
c1(ω2 − ω1) + c2(ω3 − ω1)
c3(ω2 − ω1) + c4(ω3 − ω1)

, c1c4 − c2c3 = 1 (6.13)

ψ(ω) = c1ψ1 + c2ψ2, ψ
2
1 =

ω2 − ω3

(ω2 − ω1)(ω3 − ω1)
, ψ2 = ψ1

ω3 − ω1

ω3 − ω2
(6.14)

ϕ(ψ) =
c1ψ1 + c2ψ2

c3ψ1 + c4ψ2
, c1c4 − c2c3 = 1 (6.15)

ω(ψ) =
c1ψ1,x + c2ψ2,x

c1ψ1 + c2ψ2
(6.16)
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where the ci ’s are arbitrary constants, ωi and ψi particular solutions of (6.7)
and (6.8).

Only two of these six solutions, namely χ(ϕ) and ψ(ϕ), eq. (6.11)–(6.12),
are expressed with a single function; therefore, among the three equivalent func-
tions, ϕ is the most elementary one, and we are going to see that the two others,
χ(ϕ) and ψ(ϕ), are the basic building blocks of the invariant Painlevé analysis
of both PDEs and ODEs.

If the space of independent variables is multidimensional, for each additional
independent variable t let us define a function C(x, t, . . .) by :

−ϕt
ϕx

= C. (6.17)

As seen from eq. (6.11)–(6.12), the t dependence of the three equivalent functions
is then characterized by the three equivalent linear PDEs (two homogeneous,
one inhomogeneous) :

ϕt + Cϕx = 0 (6.18)

ω = χ−1, ωt + (Cω − 1
2
Cx)x = 0 (6.19)

ψt + Cψx −
1
2
Cxψ = 0. (6.20)

The linearity of these PDEs, as well as the invariance of C under the change of
function ϕ → F (ϕ), F arbitrary, show that all independent variables but one
give rise to linear equations.

Systems (6.6)–(6.8) and (6.18)–(6.20) require the cross-derivative condition :

ϕ−1
x ((ϕxxx)t − (ϕt)xxx) = 2((χ−1)t)x − 2((χ−1)x)t (6.21)

= 2ψ−1((ψt)xx − (ψxx)t) = St + Cxxx + 2CxS + CSx = 0. (6.22)

6.4 Optimal choice of the expansion variable

A PDE has movable singularities which are not isolated, on the contrary to
an ODE, but which lay on a codimension one manifold

ϕ(x, t, . . .)− ϕ0 = 0, (6.23)

in which ϕ is an arbitrary function of the independent variables and ϕ0 an
arbitrary movable constant. Even in the ODE case, the movable singularity can
be defined as ϕ(x) − ϕ0, since the implicit functions theorem allows this to be
inverted to x − x0 = 0; this provides a gaude freedom to be used later on in
chapter 7.

The singular manifold and the expansion variable play two different roles,
and there is no a priori reason to confuse them, so let us denote ϕ the function
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which defines the movable singular manifold ϕ − ϕ0 = 0, and χ the expansion
variable. The only requirement on χ is that it must vanish as ϕ− ϕ0 and be a
single valued function of ϕ− ϕ0 and its derivatives.

The Laurent series for u and E are defined as

u =
+∞∑
j=0

ujχ
j+p, −p ∈ N (6.24)

E =
+∞∑
j=0

Ejχ
j+q, −q ∈ N ∗ (6.25)

To illustrate our point, let us take as an example the Korteweg-de Vries
equation

E ≡ −ut + uxxx + 6uux = 0 (6.26)

(this is one of the very rare locations where this equation can be taken as an
example; indeed, usually, things work so nicely for KdV that it is hazardous to
draw general conclusions from its single study).

With the choice χ = ϕ − ϕ0 [111], the coefficients (uj , Ej) are invariant
under the two-parameter group of translations ϕ→ ϕ+ b, b arbitrary complex
constant, and therefore they only depend on the differential invariant ϕx of this
group and its derivatives :

u = −2ϕ2
xχ
−2 + 2ϕxxχ−1 +

ϕt
6ϕx
− 2

3
ϕxxx
ϕx

+
1
2

[
ϕxx
ϕx

]2

+O(χ). (6.27)

[The quantity C = − ϕt
ϕx

is invariant under ϕ → F (ϕ), F arbitrary function,
and therefore is uninteresting for the moment.]

With the choice χ = (ϕ − ϕ0)/ϕx, always possible since the gradient of ϕ
has at least one nonzero component, the invariance is extended to the four-
parameter group of affine transformations ϕ→ aϕ+ b, (a, b) arbitrary complex
constants, with accordingly a dependence on the differential invariant ϕxx/ϕx
and its derivatives :

u = −2χ−2 + 2
ϕxx
ϕx

χ−1 +
ϕt

6ϕx
− 2

3

[
ϕxx
ϕx

]
x

− 1
6

[
ϕxx
ϕx

]2

+O(χ). (6.28)

Let us extend this invariance to the six-parameter homographic group.
Eliminating ϕ0 between χ and χx for each of the two choices of χ, one obtains

the ODEs of order one for χ

χx − ϕx = 0, χ = ϕ− ϕ0 (6.29)

1− χx
χ

− ϕxx
ϕx

= 0, χ =
ϕ− ϕ0

ϕx
, (6.30)
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whose coefficients only depend on the respective differential invariants. Now,
one knows since S. Lie the differential invariant of the homographic group

S = {ϕ;x} =
[
ϕxx
ϕx

]
x

− 1
2

[
ϕxx
ϕx

]2

(6.31)

and ipso facto the associated ODE of order one. Its general solution leads,
by taking the homographic transform which vanishes as ϕ − ϕ0, to the good
expansion variable

χ =
ϕ− ϕ0

ϕx − ϕxx
2ϕx

(ϕ− ϕ0)
=
[

ϕx
ϕ− ϕ0

− ϕxx
2ϕx

]−1

. (6.32)

Check : due to the homographic dependence of χ on ϕ, grad χ is a polyno-
mial of degree two in χ with coefficients homographic invariants. Denoting t an
arbitrary independent variable, possibly equal to x, one obtains

χt = −C + Cxχ−
1
2

(CS + Cxx)χ2 (6.33)

χx = 1 +
S

2
χ2 (6.34)

(Log ψ)t = −Cχ−1 +
1
2
Cx = −C( Log ψ)x +

1
2
Cx (6.35)

Again, eq. (6.33)–(6.34) are not different from eq. (6.7), (6.19).
The only price to pay for invariance is to privilege some coordinate x.
For our KdV example, the final Laurent series, to be compared with the

initial one (6.27), is remarkably simple :

u = −2χ−2 − C

6
− 2S

3
+O(χ). (6.36)

The successive values of χ and the corresponding subgroup items are gath-
ered in the following table.

Group Invariant I Riccati(χ) Solution for χ
ϕ+ b ϕx χx = I ϕ− ϕ0

aϕ+ b ϕxx/ϕx χx = 1− Iχ (ϕ− ϕ0)/ϕx
(aϕ+ b)/(cϕ+ d) {ϕ;x} χx = 1 + (I/2)χ2 ϕ−ϕ0

ϕx−ϕxx2ϕx
(ϕ−ϕ0)

Kruskal’s choice
Kruskal [68] indicated the very simple choice χ = x− f(t, . . .) of expansion

variable to make the practical computations as short as possible. This choice
is equivalent in our formalism to a choice of gauge, namely S = 0, Cx = 0,
and ϕ is then an arbitrary homographic function of x− f(t, . . .) with constant
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coefficients. The choice of Kruskal is really a choice of the expansion variable,
not of the singular manifold, i.e. χx = 1, not ϕx = 1.

Caution : this choice should only be used at the stage of building neces-
sary conditions for the PP, and never at the stage of sufficiency because of the
constraints put on (S,C).

6.5 Unified invariant Painlevé analysis (ODEs,
PDEs)

This is a reference section containing all the items of that version of Painlevé
analysis which is common to ODEs and PDEs and which generates the simplest
possible expressions, due to its built-in invariance.

Consider a DE
E(u,x) = 0 (6.37)

polynomial in u and its derivatives, analytic in x (E,u,x multidimensional), and
the Laurent series for u and E around the movable singular manifold ϕ−ϕ0 = 0 :

u = u−p,1 Logψ +
+∞∑
j=0

ujχj+p, −p ∈ Z (6.38)

E =
+∞∑
j=0

Ejχ
j+q, −q ∈ Z (6.39)

The coefficient u−p,1 can be nonzero only if E does not explicitly depend on
u. Let us denote x any independent variable such that ϕx 6= 0. In order to
establish the most general formulae, we need two other independent variables,
t and y. The gradient of expansion variables χ and ψ is (auxiliary notation is
ω = χ−1) :

χx = 1 +
S

2
χ2 (6.40)

χt = −C + Cxχ−
1
2

(CS + Cxx)χ2 (6.41)

χy = −K +Kxχ−
1
2

(KS +Kxx)χ2 (6.42)

(Logψ)x = χ−1 (6.43)

(Logψ)t = −Cχ−1 +
1
2
Cx = −C(Logψ)x +

1
2
Cx (6.44)

(Logψ)y = −Kχ−1 +
1
2
Kx = −K(Logψ)x +

1
2
Kx (6.45)

ωx = −ω2 − S

2
(6.46)
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ωt = Cω2 − Cxω +
1
2

(CS + Cxx) = (−Cω +
1
2
Cx)x (6.47)

ωy = Kω2 −Kxω +
1
2

(KS +Kxx) = (−Kω +
1
2
Kx)x (6.48)

(note that eq. (6.41) generates the eight others) where S,C,K are elementary
homographic differential invariants linked by the cross-derivative conditions :

ϕ−1
x ((ϕxxx)t − (ϕt)xxx) = St + Cxxx + 2CxS + CSx = 0 (6.49)

ϕ−1
x ((ϕxxx)y − (ϕy)xxx) = Sy +Kxxx + 2KxS +KSx = 0 (6.50)

ϕ−1
x ((ϕy)t − (ϕt)y) = Cy −Kt + CxK − CKx = 0. (6.51)

Kruskal’s choice is implemented by putting S = 0, C = ft,K = fy, . . . in
eq. (6.40)–(6.48), thus reducing each rhs to one term and making eq. (6.49)–
(6.51) useless.

The function ϕ − ϕ0 never appears in the above formulae. Similarly, the
explicit expressions of χ, ψ, S, C,K as functions of ϕ−ϕ0 are not needed during
the computations. We recall them here only for reference :

χ =
(

ϕx
ϕ− ϕ0

− ϕxx
2ϕx

)−1

(6.52)

ψ = (ϕ− ϕ0)ϕ−
1
2

x (6.53)

S = {ϕ;x} =
ϕxxx
ϕx
− 3

2

(
ϕxx
ϕx

)2

=
(
ϕxx
ϕx

)
x

− 1
2

(
ϕxx
ϕx

)2

(6.54)

= −2
(

ϕx
ϕ− ϕ0

− ϕxx
2ϕx

)
x

− 2
(

ϕx
ϕ− ϕ0

− ϕxx
2ϕx

)2

, (6.55)

C = −ϕt
ϕx

(6.56)

K = −ϕy
ϕx
. (6.57)

In some applications, it is necessary to choose for χ the most general homo-
graphic transform of (6.52) which vanishes as ϕ− ϕ0

gradχ = X0 + X1χ+ X2χ
2 , (6.58)

gradω = −X2 −X1ω −X0ω
2 (6.59)

grad Logψ = X0χ
−1 +

1
2
X1. (6.60)

The vectorial coefficients Xi depend on (S,C,K, . . .) and two additional arbi-
trary functions. The auxiliary expansion variable ψ is defined by its logarithmic
gradient and by the condition that it should vanish as ϕ− ϕ0.
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6.6 The Painlevé test

The synthesis of the different methods to generate necessary conditions for
the PP produces the following algorithm, called “Painlevé test”.

Consider a DE (2.30) of order N, already transformed if necessary, see sec-
tions 6.1 and 6.2, so as to be polynomial in u and its derivatives, analytic in x.
The Painlevé test is made of the following steps.

Step 0. Perform a transformation (3.5) in order to reduce the number of terms
in the equation (details in section 5.3.1 and ref. M.I and, for PDEs, [39]).

Ex. : equation ux+ut+uxxt+uxut = 0, under the translation u = U−x−t,
becomes Uxxt + UxUt + 1 = 0.

Step 1. Require the satisfaction of the very general necessary conditions ob-
tained by Painlevé (details in section 5.5.2).

Ex. [74] : −3u2u′u′′′ + 5u2u′′2 − uu′2u′′ − u′4 = 0. Unstable for 5/3 has
not the required value 1− 1/n.

Ex. [25] : (1+u2)uxx−2uu2
x+u2

t = 0. The ODE obtained by the reduction
(x, t)→ x−ct has an A with two simple poles u = ±i and residues 1±ic2/2.
The ODE is unstable, and so is the PDE.

Step 2. If the degree is greater than one, establish the ODE satisfied by the
singular solutions (details in section 5.1).

Step 3. Put the DE under a canonical form of Cauchy; find all the excep-
tional points where the Cauchy theorem fails; for each such point, define a
homographic transformation (3.5) allowing the Cauchy theorem to apply
(details in sections 5.3 and 5.5). For each DE (the original one and all
these homographic transforms), perform step 4.

Ex. : (P5) has the exceptional points u = 1 and u = 0 (poles of A, see
section 5.5.2). These points are regular for the ODE in (u−1)−1 and u−1.

Ex. : the reduced three-wave interaction dynamical system

x′ = −2y2 + z + γx+ δy, y′ = 2xy + γy − δx, z′ = −2xz − 2z

has the exceptional point y = δ/2 [11], not so evident on the system itself
but easily unveiled by considering the equivalent third order ODE for y(t).

Step 4. Find all the families u ∼ u(0)
0 χp (u(0)

0 6= 0) (details in section 5.4).
Discard those families which are also families of the ODE for singular
solutions established at step 2. Require all components of remaining p’s
to be integer. Discard all families having all components of p positive.
For each remaining family, perform step 5 and at least one of the steps 6
and 7.
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Ex. : (P5) has six families of movable simple pole-like singularities

u ∼ ±(2α)−
1
2xχ−1, u−1 ∼ ±(−2β)−

1
2xχ−1, (u− 1)−1 ∼ ±(−2δ)−

1
2χ−1.
(6.61)

Ex. : the reduced three-wave interaction has the families [11]

(x, y, z) ∼ (−(1/2)χ−1, (i/2)χ−1, z0), z0 arbitrary, indices (−1, 0, 2)
(x, y, z) ∼ (χ−1, δ/2,−χ−2), indices (−1, 2, 2).

The first one will pass the test while the second will generate at index 2
the conditions γδ = 0, γ(γ + 1) = 0.

In case the DE has too many terms, this step is worth being programmed
on a computer, by fear of missing some families.

Warning. If one is unsure about some component u of u behaving like a
positive integer power p of χ, it may be safer to switch to the DE for u−1.

Step 5. From the auxiliary equation of the simplified equation, compute the
linear operator P(i) eq. (2.36) and the indicial equation (2.36) det P(i) = 0
(details in section 5.4). Compute its zeroes (the Fuchs indices). Require
each index to be integer (details in section 5.11) and to satisfy the rank
condition (5.113).

Ex. ([31] example 5.B). These are two coupled PDEs with a single family
whose linear operator P(i) is

P(i) =
(
− 1

3 (i+ 2)2 1
3 (i+ 2)

−(i+ 2) i2

)
. (6.62)

The indices are the zeroes of its determinant (−2,−2,−1, 1). For the
double index i = −2, the rank of P(i) is one, so the system of PDEs is
unstable.

Ex. [22, 15, 52] : the equation uxxx−7uuxx+11u2
x = 0 has only one family

with three indices : p = −1, u(0)
0 = −2, indices (−6,−1,−1). The double

index −1 immediately proves the instability.

Step 6. (NonFuchsian case). If the degree of the indicial polynomial is strictly
lower than N , and if a particular solution is known in closed form, apply
the NonFuchsian perturbative method (details in section 5.8).

Step 7. (Fuchsian case). Denote ρ the smallest integer Fuchs index, lower than
or equal to −1. Define two positive integer upper bounds kmax and nmax
representing the cost of the computation to come, see advice below. Solve
the linear algebraic system (5.118) in the unknown u(n)

j , (j, n) 6= (0, 0),
for the successive values k = 0 to kmax, n = 0 to nmax with j = k + nρ;
whenever j is an index i of multiplicity mult(i),
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- require the orthogonality condition (5.119) to be satisfied for any value
of the previously introduced arbitrary coefficients,

- if n = 0 or (n = 1 and i < 0), assign arbitrary values to mult(i)
components of u(n)

i defining a basis of Ker P(i),

- if (n = 1 and i ≥ 0) or n ≥ 2, assign the value 0 to mult(i) components
of u(n)

i defining a basis of Ker P(i).

Details in section 5.7.

Advice for choosing kmax and nmax : if the order n = 0 fails to describe
the general solution, take at least nmax = 2; take kmax so as to test the
greatest Fuchs index for n = nmax (all details in the remarks at the end
of section 5.7).

This ends the test. Step 6 has been put before step 7 because in all our
examples it allows to conclude sooner.

Let us again stress that these sets of conditions may not be sufficient : Pain-
levé gave the counterexample of the second order ODE whose general solution
is ± sn[λLog(c1x + c2); k)], with (c1, c2) arbitrary, for which no local test can
generate the necessary and sufficient stability condition that 2πiλ be a period
of the elliptic function sn. For advanced features, see section 5.9 and [41].

6.7 The partial Painlevé test

.
In the search for the tiniest piece of integrability, the physicist, see section

3.7, will perform the above Painlevé test to its end, i. e. without stopping even in
case of failure of some condition, so as to collect a bunch of necessary conditions.

Turning to sufficiency, these conditions will then be examined separately in
the hope of finding some global element of integrability, most often a Darboux
eigenvector.

For instance, the Lorenz model (1.3) has two families

x ∼ 2iχ−1, y ∼ −(2i/σ)χ−2, z ∼ −(2/σ)χ−2, i2 = −1, (6.63)

with the same indices (−1, 2, 4), which generate the no-log conditions [106, 32]

Q2 ≡ (8/3)(b− 2σ)(b+ 3σ − 1) = 0
Q4 ≡ −4i(b− σ − 1)(b− 6σ + 2)x2 + (8/3)(b− 1)(b− 3σ + 1)S
−4bσ(b− 3σ + 5)r + f(b, σ) = 0,

in which x2 is arbitrary, S is the Schwarzian of the invariant analysis, and f a
polynomial irrelevant for what we want to emphasize. Performing a logical or
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operation on these conditions instead of the logical and of the mathematician,
one obtains the condition on (b, σ)

(b− 2σ)(b+ 3σ − 1)(b− σ − 1)(b− 6σ + 2)(b− 1)(b− 3σ + 1) = 0.(6.64)

What is remarkable is that all known analytic results on this model (first in-
tegrals [76], particular solutions [32], Darboux eigenvectors [48, 77]) belong to
one of these six cases. Conversely, to each of the six factors there corresponds
such a result, although sometimes only for a finite set of values of (b, σ).

Remarks.

1. With the restriction S = 0 one would miss two of the six factors.

2. First integrals P (x, y, x)eλt, with P polynomial and λ constant, should
not be searched for with the assumption P the most general polynomial
in three variables. Indeed, P must be an entire function of t i. e. have no
singularities at a finite distance. The generating function of such polyno-
mials is built from the singularity degrees of (x, y, z) [81]

1
(1− αx)(1− α2y)(1− α2z)

(6.65)

and it provides the basis, ordered by singularity degrees

(1), (x), (x2, y, z), (x3, xy, xz), (x4, x2y, x2z, yz, z2, y2), . . .(6.66)

Thus, P2 should be searched for as a linear combination of (1, x, x2, y, z).
All known first integrals are found at the P4 level [76].

3. The case b = 1 − 3σ is on an equal footing with the case b = 2σ which
admits the first integral (x2−2σz)e2σt, but finding its first integral is still
an open problem.
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Chapter 7

Sufficiency : explicit
integration methods

We review the algorithmic methods which may perform the explicit integra-
tion, with emphasis on ODEs. The PDE case is handled in another part of this
volume [84].

We assume that the application of the Painlevé test (necessary conditions
for the PP) has led either to no failure or to a minor failure, corresponding
respectively to a presumption of integrability in the Painlevé sense or of partial
integrability. If perturbative methods have been used, one has to decide to give
up at some perturbation order n (remember the counterexample of Painlevé).
The goal is then either to prove the sufficiency (integrability) or to build par-
ticular solutions (partial integrability).

If the DE belongs to one of the fully studied classes enumerated in chapter
4, the question is solved. Indeed, either it is possible, by some homographic
transformation (3.5), to bring the DE back to a normalized (“classified”) DE,
in which case the integration is finished, or this is impossible, in which case the
DE has not the PP.

For a DE which has not been classified, if one excludes the case where the
DE is an ODE and defines a new function (a quite improbable event which has
not occured since 1906), the explicit proof of sufficiency amounts to (the cases
below are not mutually exclusive)

• either (ODE case) express the general solution as a finite expression of a
finite number of elementary functions (solutions of linear equations, the
Weierstrass ℘ function, the six Painlevé functions),

• or (PDE case) find a Lax pair.

In the partial integrability situation, one tries to obtain degeneracies of these
results : a particular solution or a pair of linear operators able to generate a
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subclass of solutions.
The methods to handle both cases are the same, and they again only rely

on the singularity structure. Their basic common idea is that the singular part
of the Laurent expansions (of a local nature) contains all the information for a
global knowledge of the solution.

The two existing methods are known as the singular part transformation and
the truncation method. Before describing them, let us give a few definitions and
explain how Painlevé proved the sufficiency for the six equations (P1)–(P6).

7.1 Sufficiency for the six Painlevé equations

Painlevé introduced the concept of “intégration parfaite” and used it to solve
the question of sufficiency for the six equations discovered by himself and Gam-
bier. The idea is to perform a finite (in the sense of Poincaré : finite expression)
single valued transformation from (Pn) to another ODE which has no more
movable singularities although it may still have fixed critical singularities. Such
an ODE has qualitatively the same singularities than a linear ODE, and Painle-
vé says that its integration is then “parfaite” (achieved) (BSMF p. 205) : given
any initial conditions, its solution can be computed with an arbitrary accuracy
(by e.g. the sequence of coefficients of convergent Taylor series) since one knows
in advance where the remaining (fixed) singularities are located. The movable
singularities of the original ODE are then totally under control. The equations
with fixed critical points therefore constitute a natural extension to the linear
equations.

Painlevé defined such transformations (nowadays called “singular part trans-
formations”) for each of the six equations (P1)–(P6). These transformations, via
logarithmic derivatives, transform (P1)–(P6) into equations for ψ without mov-
able singularities ((P1) Acta p. 14, (P2) Acta p. 15, (P3) Acta p. 16, (P4,P5,P6)
CRAS 1906, Oeuvres III p. 120)

(P1) u = −∂2
x Logψ (7.1)

(P2) u = ∂x Logψ1 − ∂x Logψ2 (7.2)
(P3) u = e−x(∂x Logψ1 − ∂x Logψ2) (7.3)
(P4) u = ∂x Logψ1 − ∂x Logψ2 (7.4)
(P5) u = xe−x(2α)−1/2(∂x Logψ1 − ∂x Logψ2). (7.5)
(P6) u = x(x− 1)e−x(2α)−1/2(∂x Logψ1 − ∂x Logψ2). (7.6)

The Lax pairs of (P1)–(P6) can be found in Ref. [58] and [69].
The two methods developed in next sections (7.3) and (7.4) rely on this

result.
The logarithmic derivative plays a privileged role, as generator of a movable

simple pole with a residue generically unity. A prerequisite to the algorithmic
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derivation of a transformation from u to ψ such as (7.1) is the introduction of
a free gauge function which we denote ϕ.

Such a gauge naturally arises if one thinks of an ODE as the canonical
reduction of a PDE defined by suppressing the dependence upon all independent
variables but x. This is the function ϕ used in the description of the movable
singularities by (6.23) rather than x− x0 = 0. Useless at the stage of building
necessary conditions (the Painlevé test), this feature is the key to the algorithmic
explicit integration methods.

7.2 The singular part(s)

Definition. The singular part of one of the families of movable singularities
of a given DE is the finite sum of the Laurent series restricted to the nonpositive
powers in the method of pole-like expansions

uT =
−p∑
j=0

ujχ
j+p. (7.7)

Synonyms are : truncation, truncated expansion.
Given ϕ, the singular part uT is a one-parameter (ϕ0) family of expressions

uT (ϕ0), and the two particular values ϕ0 = 0 and ϕ0 =∞ are of special interest.
For the example of KdV (6.26)

uT (0) = −2
[
ϕx
ϕ
− ϕxx

2ϕx

]2

+
ϕt

6ϕx
− 2

3

(
ϕxxx
ϕx
− 3

2

[
ϕxx
ϕx

]2
)

(7.8)

uT (∞) = −2
[

− ϕxx
2ϕx

]2

+
ϕt

6ϕx
− 2

3

(
ϕxxx
ϕx
− 3

2

[
ϕxx
ϕx

]2
)
. (7.9)

Definition. The singular part operator D of a family is defined by

Logϕ→ D Logϕ = uT (0)− uT (∞). (7.10)

Example 1 (KdV). The operator D is linear and equal to 2∂2
x. This linearity

is strongly linked with the Darboux transformation [84].
Example 2. The single family of (P1) and the two families of (P2) have the

singular parts

(P1) : uT = χ−2 +
S

3
, D = −∂2

x (7.11)

(P2) : uT = ±χ−1, D = ±∂x. (7.12)
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7.3 Method of the singular part transformation

This is the method used by Painlevé and outlined in previous section 7.1.
It consists of transforming the DE for u into a DE for ϕ by the nonlinear
transformation

u = D Logϕ, (7.13)

where D is the singular part operator associated to one of the families of the
equation for u.

If the transformed equation for ϕ can be integrated, so is the original equa-
tion.

Example 1 (linearization). The unique first order first degree ODE with the
PP, namely the Riccati equation (1.1), has a D operator equal to −a−1

2 ∂x, com-
putable from the basic formulae (6.40), (6.52) and (7.10). The transformation
u = −a−1

2 ∂x Logϕ from u to ϕ leads to the second order linear equation (1.2)
for ϕ. It is then sufficient to know two particular solutions ϕ1 and ϕ2 (which
are functions) of this linear equation to have a global knowledge of the general
solution of the Riccati equation by the formula

u = −a−1
2 ∂x Log(c1ϕ1 + c2ϕ2). (7.14)

Similarly, the transformation ℘ = −∂2
x Log σ associates to the Weierstrass

elliptic function ℘ a function σ which is an entire function, solution of a nonlinear
ODE.

Example 2 (simplified equation of one of the 50 stable ODEs (4.8)). The
ODE

E ≡ u′′ + uu′ − u3 = 0 (7.15)

possesses two families of movable simple poles u0 = 1 and u0 = −2, with the
one-parameter particular solutions u0/(x − x0). The first family operator is
D = ∂x and it transforms it into

u = ∂x Logϕ, E ≡ ϕ
(
ϕ′′

ϕ2

)′
= 0, (7.16)

which integrates as ϕ = a℘(x− x0, 0, g3) with (a, x0, g3) arbitrary and provides
the general solution. The two families of movable simple poles for u correspond
to the movable simple zeroes of ℘ (residue u0 = 1) and to the movable double
poles of ℘ (residue u0 = −2).

Example 3 (indirect linearization). The Ermakov-Pinney equation (6.4),
after the transformation u−2 = v removing its algebraic singularity

E ≡ −1
2
vvxx +

3
4
v2
x − α2v2 + β2v4 = 0, (7.17)
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has two families v ∼ ±(2β)−1χ−1, and the transformed ODE under
v = (2β)−1∂x Logϕ [30]

ϕxxx
ϕx
− 3

2

(
ϕxx
ϕx

)2

= −2α2 (7.18)

is a Schwarz ODE (6.6). This integrates the Ermakov-Pinney equation via a
finite two-valued expression.

Well suited to DEs possessing only one family (Riccati, Weierstrass, (P1),
KdV), this transformation must be adapted, following the Painlevé formulae for
(P2)–(P6) in section 7.1, to suit DEs with more than one family (Jacobi elliptic
equation, (P2) to (P6)). This is done in the course on PDEs [84].

7.4 Method of truncation (Darboux transforma-
tion)

Perfectly adapted to PDEs [84], this method is rather poor for ODEs, for
an intrinsic reason which is the absence in this case of a Bäcklund transforma-
tion (link between two different solutions of the same DE introducing at each
iteration at least one more arbitrary parameter in the solution). It nevertheless
succeeds, at least partially, in many situations.

The idea [111] is to consider the singular part (7.7) of one family (or the
sum u =

∑
f D Logψf of the singular parts of several families) as a parametric

representation of a solution in terms of one function ψ linked to χ by χ−1 =
∂x Logψ (or several functions ψf , one per family f). Every function ψf , which
defines a singular manifold ψf = 0, is required to be an entire function, and for
instance to satisfy the same linear system of two PDEs L1 = 0, L2 = 0 with
some adjustable coefficients.

The method consists of identifying to zero the lhs E(uT ) considered as a
polynomial of ψf and its independent derivatives modulo the constraint that
each ψf satisfies the linear system. This generates an overdetermined set of
determining equations whose unknowns are the coefficients uj of (7.7) and the
coefficients of the linear system. The remarkable fact is that the determining
equations are easy to solve.

The result is some class of exact solutions, and this class is easily interpreted.
If the commutator [L1, L2] is identically zero (which is always the case if the
linear system has constant coefficients), the solutions are particular ones (PDE
case) or any kind (particular or general) (ODE case). If this commutator is
zero only when some coefficient of (L1, L2) satisfies some PDE, quite probably
(L1, L2) define a Lax pair.

Again, the ODE case to which we restrict is much less rich than the PDE
case [84] to which we refer the reader.
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7.4.1 One-family truncation

This is the celebrated WTC truncation procedure [111]. Applicable to any
DE with any number of families, it consists of selecting one of the families ψ = 0,
in which ψ obeys the linear system of the invariant analysis

ψxx +
S

2
ψ = 0, (7.19)

ψt + Cψx −
Cx
2
ψ = 0. (7.20)

The functions S et C are adjustable fonctions, only constrained by the cross-
derivative condition (6.49). Consider for instance the Ermakov-Pinney ODE
[49, 97]

E ≡ −1
2
vvxx +

3
4
v2
x − α2v2 + β2v4 = 0. (7.21)

The infinite Laurent series is v = (2β)−1χ−1 + v1 +O(χ) with v1 arbitrary and
β one of the two square roots of β2. Thanks to the gauge ϕ, the coefficient v1

is not a constant but a function.
The method consists of assuming that a solution v can be represented by

the truncation

v = vT =
1

2β
χ−1 + v1 = D Logψ + v1 (7.22)

implying for the lhs E of the DE the similar truncated expansion

E ≡
4∑
j=0

Ejχ
j−4. (7.23)

This generates, in this example, five equations Ej = 0 in the unknowns (v1, S).
Among them, E0 is zero since the coefficient v0 of the series for v is already the
good one. E1 is zero since 1 is a Fuchs index whose orthogonality condition is
satisfied. Denoting v1 = −V1/(2β), there remain the three equations

16β2E2 ≡ −4α2 + S + 6V 2
1 + 6V1,x = 0, (7.24)

16β2E3 ≡ 8α2V1 + 2SV1 − 4V 3
1 + Sx + 2V1,xx = 0, (7.25)

16β2E4 ≡
3
4
S2 − 4α2V 2

1 + V 4
1 − V1Sx + 3SV1,x + 3V 2

1,x − 2V1V1,xx = 0.(7.26)

The algebraic elimination (i. e. without differentiation) of V1,x and V1,xx

among these three equations yields (S − s)2 = 0, with s = −2α2, then V1 is
found to satisfy the Riccati equation

−2V1,x − 2V 2
1 = s. (7.27)
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Hence the particular solution

v =
1

2β
(χ−1 − V1), (7.28)

in which each variable χ−1 and V1 satisfies the same Riccati equation and de-
pend on one arbitrary parameter. This is the general solution, which can be
written as v = (2β)−1(∂x Logψ1 − ∂x Logψ2) in agreement with the structure
of singularities, cf. (7.2).

Remark. The class of particular solutions generically found by this method
is the class of polynomials in tanh, which correspond to a constant value for S.

Another example is the (P2) equation, for which the one-family truncation
u = χ−1 + u1 provides the one-parameter particular solution u1 = 0, S = x on
the condition α = 1/2, i. e. an algebraic transform of the Airy equation.

7.4.2 Two-family truncation

When a DE admits two families with opposite principal parts, such as (7.17),
it is natural to seek particular solutions described by two singular manifolds [34]

v =
1

2β
[∂x Logψ1 − ∂x Logψ2 + v0], (7.29)

in which (ψ1, ψ2) is a basis of the two-dimensional space of solutions of some
ODE whose general solution is entire, e.g. the second order linear equation with
constant coefficients

ψxx −
k2

4
ψ = 0 (7.30)

Ψ2 = C1e
k
2 x + C2e

− k2 x = C0 cosh
k

2
(x− x0), (7.31)

ψ1(x) = Ψ2(x+ a), ψ2(x) = Ψ2(x− a), a arbitrary, (7.32)

Substituting (7.29) into (7.17) and eliminating any derivative of (ψ1, ψ2) of
order higher than or equal to two in x results into a polynomial in the two
variables ψ1,x/ψ1, ψ2,x/ψ2. Before identifying it to the null polynomial, one
must take account of the first integral µ0, the ratio of two constant Wronskians

ψ1,x

ψ1

ψ2,x

ψ2
=
k2

4
− µ0

k

2

(
ψ1,x

ψ1
− ψ2,x

ψ2

)
, µ0 = cotanh ka, (7.33)

which splits the polynomial of two variables into the sum of two polynomials in
one variable :

16β2E ≡ (k2 − 4α2 + 6v2
0 + 6kµ0v0)(

(
ψ1,x

ψ1

)2

+
(
ψ2,x

ψ2

)2

)
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+(kµ0(k2 − 4α2 + 6v2
0) + 2(3k2µ2

0 − k2 − 4α2 + 4v2
0)v0)

×(
ψ1,x

ψ1
− ψ2,x

ψ2
)

+2α2k2 − k4

2
− 3k3µ0v0 − 4α2v2

0 − 3k2v2
0 + v4

0 . (7.34)

This defines three different algebraic equations in the unknowns (k, v0, µ0);
their two solutions

k2 = 4α2, v0 = 0, µ0 arbitrary, (7.35)
k2 = 4α2, v0 = 2α, kµ0 = −2α (7.36)

are just two different representations [34] of a solution of (7.17) depending on
two arbitrary constants (µ0, x0) : with this simple assumption, we have obtained
the general solution

u−2 = v =
1

2β

[
ψ1,x

ψ1
− ψ2,x

ψ2

]
=
α

β

sinh ka
cosh k(x− x0) + cosh ka

. (7.37)

In particular, with µ0 = 0 one thus obtains immediately the class of solutions
polynomial in the two variables tanh and sech [33], thus augmenting the class
indicated at the end of previous section. Evidently, if the DE has only one
family, no dependence on sech can be found.
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Chapter 8

Conclusion

The solution of an ODE cannot escape the structure of singularities of the
ODE. Such a structure can be studied on the equation itself, without any a
priori knowledge of the solution, providing a deep insight on the possibility or
not to perform the explicit integration.

Two levels of integrability have been defined : the Painlevé property (the
most elementary level) and the integrability in the sense of Poincaré (the prac-
tical level).

A first series of methods (globally called “the Painlevé test”) provide neces-
sary conditions for a differential equation to have the Painlevé property, without
any guarantee on the sufficiency. In case of a negative answer from these first
methods, there exist other methods (Leçons 8, 9, 10, 13, 19), not developed
here, to provide necessary conditions for the general solution to have only a
finite amount of movable branching, which implies the integrability in the sense
of Poincaré, a weaker property than the PP.

In case of a positive answer, the DE may have the PP, i.e. a general solu-
tion free from movable critical singularities. Then, a second series of methods
are available to perhaps constructively prove the PP by explicitly building the
general solution or some equivalent information (Lax pair). In case of failure of
these second methods, the only remaining tool is human ability.

There exists another approach to DEs which is not based on the study of
singularities, this is the method of infinitesimal symmetries [87, 88]. It provides
reductions of PDEs to “smaller” PDEs or to ODEs, and it may provide first in-
tegrals of ODEs. However, the PDEs or ODEs left over after its completion still
require to be integrated, and the only methods to do so are those based on sin-
gularities. For instance, with the ODE (P1), the method of symmetries cannot
provide any information (existence or not of a first integral, single valuedness
or multivaluedness).
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l’intégrale générale est à points critiques fixes, Bulletin de la Classe des Sciences
XXV (1939) 51–68.

[14] F. J. Bureau, Differential equations with fixed critical points, Annali di Mat. pura
ed applicata LXIV (1964) 229–364 [abbreviated as M. I ].

[15] F. J. Bureau, Differential equations with fixed critical points, Annali di Matem-
atica pura ed applicata LXVI (1964) 1–116 [abbreviated as M. II ].
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[22] J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur
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[64] P. Hoyer, Über die Integration eines Differentialgleichungssystems von der Form

dx1

dt
= a1x2x3 + a2x3x1 + a3x1x2

dx2

dt
= b1x2x3 + b2x3x1 + b3x1x2

dx3

dt
= c1x2x3 + c2x3x1 + c3x1x2

durch elliptische Funktionen, Dissertation Königl. Friedrich-Wilhelms Univ., Ber-
lin (1879) 1–36.

[65] L. Hsu and N. Kamran, Classification of second-order ordinary differential equa-
tions admitting Lie groups of fiber-preserving point symmetries, Proc. London
Math. Soc. 58 (1989) 387–416.

[66] E. L. Ince, Ordinary differential equations (Longmans, Green and co., London
and New York, 1926). Reprinted (Dover, New York, 1956). See errata in ref. [42].

[67] C. Itzykson et J.-M. Drouffe, Statistical field theory two volumes (Cambridge
University Press, Cambridge, 1989).

[68] M. Jimbo, M. D. Kruskal and T. Miwa, Painlevé test for the self-dual Yang-Mills
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(Gauthier-Villars, Paris, 1892, 1893, 1899).

[100] J.-F. Pommaret, Lie pseudogroups and mechanics (Gordon and Breach science
publishers, New York, 1988).

[101] A. Ramani, B. Grammaticos and T. Bountis, The Painlevé property and sin-
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