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Les cas où l’on peut intégrer une équation
différentielle sont extrêmement rares, et
doivent être regardés comme des exceptions;
mais on peut considérer une équation
différentielle comme définissant une fonction,
et se proposer d’étudier les propriétés de
cette fonction sur l’équation différentielle
elle-même.

Charles Briot et Jean-Claude Bouquet,
1859.



Preface

Nonlinear differential or difference equations are encountered not only in mathemat-
ics, but also in many areas of physics (evolution equations, propagation of a signal
in an optical fiber), chemistry (reaction-diffusion systems) and biology (competition
of species).

The purpose of this book is to introduce the reader to nonperturbative methods
allowing one to build explicit solutions to these equations. A prerequisite task is to
investigate whether the chances of success are high or low, and this can be achieved
without any a priori knowledge of the solutions, with a powerful algorithm called
the Painlevé test. If the equation under study passes the Painlevé test, the equation is
presumed integrable in some sense, and one can try to build the explicit information
displaying this integrability:

• for an ordinary differential equation, the closed form expression of the general
solution;

• for a partial differential equation, the nonlinear superposition formula to build
soliton solutions;

and similar elements in the discrete situation. If on the contrary the test fails, the
system is nonintegrable or even chaotic, but it may still be possible to find solutions.
Indeed, the methods developed for the integrable case still apply and may in prin-
ciple produce all the available pieces of integrability, such as the solitary waves of
evolution equations, or solutions describing the collision of solitary waves, or the
first integrals of dynamical systems, etc.

The examples chosen to illustrate these methods are mostly taken from physics.
These include on the integrable side the nonlinear Schrödinger equation (contin-
uous and discrete), the Korteweg–de Vries equation, the Boussinesq equation, the
Hénon–Heiles Hamiltonians, and on the nonintegrable side the complex Ginzburg–
Landau equation (encountered in optical fibers, turbulence, etc), the Kuramoto–
Sivashinsky equation (phase turbulence), the reaction-diffusion model of Kolmogo-
rov–Petrovski–Piskunov (KPP), the Lorenz model of atmospheric circulation and
the Bianchi IX cosmological model which are both chaotic.
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Written at a graduate level, the book contains tutorial text as well as detailed
examples and describes the state of the art in some current areas of research.

Brussels, Robert Conte
February 2008 Micheline Musette



Outline

In Chap. 1, we insist that a nonlinear equation should not be considered as the pertur-
bation of a linear equation. We illustrate using two simple examples the importance
of taking account of the singularity structure in the complex plane to determine the
general solution of nonlinear equations. We then present the point of view of the
Painlevé school to define new functions from nonlinear ordinary differential equa-
tions (ODEs) possessing a general solution which can be made single valued in its
domain of definition (Painlevé property, PP).

In Chap. 2, we present a local analysis, called the Painlevé test, in order to in-
vestigate the nature of the movable singularities (i.e. whose location depends on
the initial conditions) of the general solution of a nonlinear differential equation.
The simplest of the methods involved in this test was historically introduced by
Sophie Kowalevski [257] and later turned into an algorithm by Bertrand Gambier
[163]. For equations possessing the Painlevé property, the test is by construction
satisfied, therefore we concentrate on equations which generically fail the test, in
order to extract some constructive information on cases of partial integrability. We
first choose four examples describing physical phenomena, for which the test selects
cases which may admit closed form particular solutions1 or first integrals.

This procedure is illustrated in several examples.
In the first example, the Lorenz model of atmospheric circulation [284]

dx
dt

= σ(y− x),
dy
dt

= rx− y− xz,
dz
dt

= xy−bz,

the test isolates four sets of values of the parameters (b,σ ,r).
We next consider the Kuramoto–Sivashinsky equation (KS),

ut + νuxxxx + buxxx + µuxx + uux = 0, ν �= 0,

1 By definition, a solution is called particular if it can be obtained from the general solution by
setting some constants of integration to numerical values.
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x Outline

an equation which describes the propagation of flames on a vertical wall, and we
analyze for simplicity the ODE for its stationary flow. The test first detects the pres-
ence of movable multivaluedness2 in the general solution whatever the parameters
(ν,b,µ), then it displays the possible existence of particular solutions without mov-
able branching.

We then analyze the one-dimensional cubic complex Ginzburg–Landau equation
(CGL3),

iAt + pAxx + q|A|2A− iγA = 0, pqγ �= 0, (A, p,q) ∈ C , γ ∈ R.

This is a generic equation which describes many physical phenomena, such as the
propagation of a signal in an optical fiber [10], or spatiotemporal intermittency in
spatially extended dissipative systems [296]. The test first uncovers the generic non-
integrable nature of this PDE, then it selects as values of the parameters (p,q,γ)
those (q/p ∈ R,γ = 0) of the nonlinear Schrödinger equation (NLS), an equation
which is integrable in many acceptations. Finally it shows the possible existence of
particular single valued solutions in the CGL3 case Im(q/p) �= 0.

The next example is the Duffing–van der Pol oscillator

E(u) ≡ u′′ +(au2 + b)u′ − cu + β u3 = 0.

It is chosen to illustrate a weaker form of the test (weak Painlevé test) in which
the general solution is allowed to possess more than one determination around a
movable singularity, but only a finite number (weak Painlevé property), like the
square root function.

The last example is the two-degree of freedom Hamiltonian system

H =
1
2
(p2

1 + p2
2 + ω1q2

1 + ω2q2
2)+ αq1q2

2 −
1
3

β q3
1 +

c3

2q2
2

, α �= 0

q′′1 + ω1q1 −β q2
1 + αq2

2 = 0,

q′′2 + ω2q2 + 2αq1q2 − c3q−3
2 = 0,

in which α,β ,ω1,ω2,c3 are constants. In the case c3 = 0,β/α = 1, it was introduced
by Hénon and Heiles to describe the chaotic motion of a star in the axisymmetric
potential of a galaxy [198]. It is now known as the cubic Hénon–Heiles Hamiltonian
system (HH3). The test selects only three values β/α = −1,−6,−16.

The last two sections (2.2 and 2.3) deal with two fairly common situations when
the test, as initiated by Sophie Kowalevski, is inconclusive, because of the insuffi-
cient number of arbitrary constants in the local representation of the general solu-
tion.

Chapter 3 is devoted to the explicit integration of nonlinear ODEs by methods
based on singularities, mainly taking the examples of the previous chapter. We pro-

2 A point where multivaluedness occurs is classically called a critical point or ramification point
or branch point.
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cess successively the integrable (Sect. 3.1) and partially integrable (Sect. 3.2) situa-
tions.

In Sect. 3.1.1, in the four cases when the Lorenz model passes the Painlevé test,
we give a systematic method to compute the polynomial first integrals and we per-
form the full integration in terms of elliptic or Painlevé functions.

In Sects. 3.1.2 and 3.1.3, one looks for the traveling waves3 of two important evo-
lution equations, respectively the Korteweg–de Vries equation (KdV), which gov-
erns the propagation of waves in shallow water [39, 256],

but + uxxx − 6
a

uux = 0, (a,b) constant,

and the nonlinear Schrödinger equation (NLS),

iAt + pAxx + q|A|2A = 0, pq �= 0, A ∈ C , (p,q) ∈ R.

This is an easy task because the ODEs have the Painlevé property and, from their
general traveling wave, which is an elliptic function, one defines the various physi-
cally relevant particular solutions (pulses, fronts).

In Sect. 3.2, the partially integrable situation is mainly illustrated through the two
examples of the equations for the traveling waves of the KS equation and the CGL3
equation, which have been seen to fail the Painlevé test.

In Sect. 3.2.1.2, we introduce the concept of general analytic solution of a non-
integrable ODE, defined as the closed form particular single valued solution which
depends on the maximum possible number of integration constants, and we count
precisely this number. We then look for two classes of solutions which are not too
difficult to obtain and which have a great physical interest, the doubly periodic ones
(elliptic) and the simply periodic ones (trigonometric).

Those particular solutions which are doubly periodic (elliptic) are easy to find
because of necessary conditions arising from a nice property of elliptic functions.
These conditions and the associated solutions are established in Sect. 3.2.2.

Among the particular solutions which are simply periodic (trigonometric), some
are also easy to find by representing the possible solution as a polynomial in one
elementary variable τ or two elementary variables (σ ,τ) which obey fundamental
nonlinear first order ODEs. These truncation methods are described in Sects. 3.2.3
(for KS) and 3.2.4 (for CGL3).

In Sect. 3.2.5, in order to overcome the limitations of the truncation methods, by
implementing an old theorem of Briot and Bouquet (1856), we introduce a method
able to find all the doubly periodic or simply periodic solutions of a given ODE,
while any truncation method can only find some of these. Instead of searching an
expression for the solution, it builds an intermediate, equivalent information, namely
the first order autonomous ODE satisfied by the unknown solution. For KS and
CGL3, it provides no new result, this fact will be explained in Sect. 3.2.8 as an
application of the Nevanlinna theory.

3 A traveling wave of a given PDE E(u,x, t) = 0 is any solution of the reduction ξ = x− ct if it
exists.
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Section 3.2.6 deals with the Duffing–van der Pol oscillator when it passes the
weak Painlevé test. In a particular case when a first integral exists, the resulting
ODE can be mapped by a special transformation (hodograph) to another equation
possessing the Painlevé property.

In Sect. 3.2.7, we display an example (the Bianchi IX cosmological model in vac-
uum), in which the necessary conditions to pass the test are used in a constructive,
unusual way, in order to isolate all possible single valued solutions. The perturbative
method of Sect. 2.2 shows the probable existence of one additional solution to the
known ones.

In Sect. 3.2.8, we briefly present additional results on the KS equation which are
obtained by the Nevanlinna theory. This theory, which is not based on singularity
analysis, gives a complementary insight on the analytic structure of the solutions.

Chapter 4 deals with the extension to nonlinear partial differential equations
(PDEs) of the Painlevé property and Painlevé test previously introduced for ODEs.
In Sect. 4.1, we mention solutions of a PDE which are also solutions of some ODEs,
i.e. what is called a reduction. In Sect. 4.2, we introduce the quite important class of
soliton equations, together with their main properties: existence of an N-soliton so-
lution and of a remarkable transformation called the Bäcklund transformation (BT).
In Sect. 4.3, we extrapolate to PDEs the notion of integrability and the definition of
the Painlevé property. After defining in Sect. 4.4.1 the expansion variable χ which
minimizes the computation of the Laurent series representing the local solution, we
present in Sect. 4.4.2 the successive steps of the Painlevé test, on the example of the
KdV equation in order to establish necessary conditions for the Painlevé property.
Finally, in Sect. 4.4.3, we apply the test to the equation of Kolmogorov–Petrovski–
Piskunov (KPP) [255, 383] to generate necessary conditions for the existence of
closed form particular solutions.

The subject of Chap. 5 is the “integration” of nonlinear PDEs. Constructive al-
gorithms must be devised to establish the Painlevé property and ultimately to find
explicit solutions. Known as the singular manifold method (SMM), these algorithms
are the natural extension of the truncation methods already encountered in Chap. 3.

In Sect. 5.1, we first extract from the numerous results of the Painlevé test some
global information about the analytic property of the solutions. In Sect. 5.2, we re-
call the two main approaches to build the so called N-soliton solution and briefly
introduce the main integrability tools of the soliton equations: Lax pair, Darboux
transformation, Bäcklund transformation, nonlinear superposition formula and the
Crum transformation. The precise definitions are then given in Sect. 5.3, with ap-
plication to two physically important equations, the KdV and Boussinesq equations
[39], which are integrable by the inverse spectral transformation method (IST) [1].

In order to establish the Painlevé property of the PDEs under consideration, the
challenge is to derive these integrability items by using methods based only on the
singularity structure of the equations.

In Sect. 5.5.1 we present the basic ideas of this singular manifold method mainly
consisting in converting the local information provided by the Painlevé test into the
above mentioned (global) integrability items. The next two sections are respectively
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devoted to the SMM in the case of equations possessing the PP (Sect. 5.6) and in
the case of partially integrable equations, i.e. equations which fail the Painlevé test
but nevertheless admit particular singlevalued solutions (Sect. 5.7).

More precisely, in Sect. 5.6.1 we process the Korteweg-de Vries and Boussinesq
equations, which possess only one family of movable singularities. Their two non-
linear superposition formulae are found to be the same, the reason being that the
KdV and Boussinesq equations are two different reductions of a 2+1-dimensional
IST-integrable equation, the Kadomtsev–Petviashvili (KP) equation [243]. How-
ever, the two reductions induce two different solitonic behaviors: KdV only de-
scribes the overtaking interaction of solitary waves, while Boussinesq may also de-
scribe the head-on collision of solitary waves.

In Sect. 5.6.2, the SMM is applied to two IST-integrable equations (sine-Gordon,
modified KdV) which possess two families of movable singularities, and again ob-
tain for both equations the same form of the NLSF.

In Sect. 5.6.3, we apply the SMM to two other integrable PDEs which have a
third order Lax pair, the Sawada–Kotera (SK) [387] and Kaup–Kupershmidt (KK)
[246, 148] equations. The key ingredient is to consider, in the list of Gambier [163]
of second order first degree nonlinear ODEs possessing the PP, the very few equa-
tions which are linearizable into a third order ODE, yielding simultaneously the Dar-
boux transformation and the x-part of the Lax pair. In addition to the auto-Bäcklund
transformation and the NLSF in each case, the SMM provides a BT between SK
and KK.

We next apply the SMM to partially integrable PDEs. In Sect. 5.7.1, we han-
dle the Fisher equation [140], which models the evolution of mutant genes or the
propagation of flames. In this one-family equation, by finding a particular solution
of the necessary conditions generated by the Painlevé test, one obtains two elliptic
solutions [8].

In Sect. 5.7.2, we handle the KPP reaction-diffusion equation, possessing two
opposite families. The output is two one-soliton solutions (one tanh and one sech),
and a degenerate two-soliton without coupling factor.

In the last section (5.8), we examine what these integrability items become when
an integrable PDE reduces to an ODE:

◦ Lax pair → isomonodromic deformation
◦ Bäcklund transformation → birational transformation
◦ nonlinear superposition formula → contiguity relation.

In Chap. 6, we give an illustration on the various ways to “integrate” a Hamilto-
nian system using two examples of Hamiltonian systems with two degrees of free-
dom: the cubic HH Hamiltonian introduced in Sect. 2.1.5, three cases of which pass
the Painlevé test, and the quartic HH Hamiltonian (HH4),

H =
1
2
(P2

1 + P2
2 + Ω1Q2

1 + Ω2Q2
2)+CQ4

1 + BQ2
1Q2

2 + AQ4
2

+
1
2

(
α
Q2

1

+
β
Q2

2

)
+ γQ1, B �= 0,
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Q′′
1 + Ω1Q1 + 4CQ3

1 + 2BQ1Q2
2 −αQ−3

1 + γ = 0,

Q′′
2 + Ω2Q2 + 4AQ3

2 + 2BQ2Q2
1 −β Q−3

2 = 0,

in which A,B,C,α,β ,γ,Ω1,Ω2 are constants. The Painlevé test selects four sets
of values of these constants, A : B : C = 1:2:1, 1:6:1, 1:6:8, 1:12:16 (the notation
A : B : C = p : q : r stands for A/p = B/q = C/r = arbitrary).

These various ways to integrate are

◦ (Liouville integrability) to find a second invariant in involution with the Hamil-
tonian, which is however insufficient to perform a global integration; we recall
the seven first integrals which establish this integrability for both HH3 (Sect.
6.2.1) and HH4 (Sect. 6.3.1);
◦ (Arnol’d–Liouville integrability) to find the variables which separate the Hamilton–
Jacobi equation, thus leading to a global integration; this has been done for HH3
(Sect. 6.2.2), and nearly finished for HH4 (Sect. 6.3.2);
◦ (Painlevé property) to find an explicit closed form single valued expression
for the general solution q j(t),Q j(t); this has been done in all seven cases (Sects.
6.2.3 and 6.3.3), via birational transformations to fourth order ODEs isolated and
integrated by Cosgrove.

Chapter 7 deals with discrete nonlinear equations. After some generalities, in
Sect. 7.1 we consider the logistic map of Verhulst,

un = aun−1(1−un−1),

a paradigm of chaotic behavior [405, 139], which admits a continuum limit to the
Riccati equation. From the point of view of integrability, the logistic map is a “bad”
discretization of the Riccati equation, because it cannot be linearized, and it must
be replaced by a “good” discrete equation, i.e. one which preserves the property
of linearizability. More generally, the goal is to extend the Painlevé property to the
discrete world.

Section 7.2 presents an outlook of the difficulty to give an undisputed definition
for the discrete Painlevé property.

In Sects. 7.3.1, 7.3.2 and 7.3.3, we present the three main methods of the discrete
Painlevé test: the singularity confinement method [184], the criterium of polynomial
growth [206], and the perturbation of the continuum limit [88].

In order to prove the discrete Painlevé property, one can either linearize the dis-
crete equation, or explicitly integrate or, as admitted by most researchers, exhibit a
discrete Lax pair.

In Sect. 7.4, we return to the question of finding a “good” discretization of the
Riccati equation; this results in the homographic map

un =
a1un−1 + a2

a3un−1 + a4
.

The notion of discrete Lax pair is introduced in Sect. 7.5.
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We then describe two examples of exact discretizations, i.e. for which the ana-
lytic expression of the general solution is the same for the continuous and discrete
equations.

In Sect. 7.6.1 we consider the question of discretizing the nonlinear ODE for the
modulus v = |ψ | of the linear Schrödinger equation, namely [133, 305, 358],

v′′ + f v + c2v−3 = 0,

usually called the Ermakov–Pinney equation. Again, the property to be preserved is
the linearizability, since the starting equation is linear.

In Sect. 7.6.2 we recall the remark by Baxter and Potts that the addition formula
of the Weierstrass function ℘ can be identified to an exact discretization of the
Weierstrass equation. This is the foundation for a family of special two-component
rational maps [367, 368] which, like its continuous counterpart, is a starting point to
isolate discrete equations which may possess the discrete PP.

In Sect. 7.7, we briefly review two related problems. The first problem, still open
but of a very high physical interest in optical fibers, is to find exact solitary waves
(dark and bright) for the nonintegrable discrete nonlinear Schrödinger equation,

iut + p
u(x + h,t)+ u(x−h,t)−2u(x)

h2 + q|u|2u = 0, i2 = −1, pq �= 0.

In the context of optical fibers or Bose–Einstein condensation [10], this equation
is not obtained as a discretization of NLS but it arises by a direct construction.
The second one is to isolate discrete versions of the nonlinear Schrödinger equation
which might possess the discrete Painlevé property, and one such equation is the
Ablowitz and Ladik [4] discrete equation.

Finally, in Sect. 7.8, after setting up the natural problem to extend to the dis-
crete world the six transcendents of Painlevé, we introduce the two methods which
have been devised to handle it. In the analytic method (Sect. 7.8.1), the procedure
starts from the addition formula of the elliptic function, takes some inspiration from
the method of Painlevé and Gambier and produces a rather long list of discrete
Pn equations, but no proof exists that the list is exhaustive. The geometric method
(Sect. 7.8.2) first displays the importance of two groups describing the continu-
ous Pn, then uses the theory of rational surfaces to build an object which admits
the largest of the just mentioned groups, object interpreted as the master discrete
Painlevé equation e−P6, whose coefficients have an elliptic dependence on the in-
dependent variable. The main properties of all these d−Pn are then summarized in
Sect. 7.8.3.

After an FAQ chapter, a few appendices collect material too technical to be pre-
sented in the main text.
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6.3 Quartic Hénon–Heiles Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3.1 Second Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.2 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.2.1 Case 1:2:1 (Manakov System) . . . . . . . . . . . . . . . . . 154
6.3.2.2 Cases 1:6:1 and 1:6:8 . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.2.3 Case 1:12:16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
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BT Bäcklund transformation
CGL3 Cubic complex Ginzburg–Landau equation
CGL5 Quintic complex Ginzburg–Landau equation
DT Darboux transformation
FAQ Frequently asked question
Gn Gambier equation number n
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Chapter 1
Introduction

Abstract A nonlinear equation should not be considered as the perturbation of a
linear equation. We illustrate using two simple examples the importance of taking
account of the singularity structure in the complex plane to determine the general
solution of nonlinear equations. We then present the point of view of the Painlevé
school to define new functions from nonlinear ordinary differential equations pos-
sessing a general solution which can be made single valued in its domain of defini-
tion (the Painlevé property).

1.1 Singularities in the Complex Plane

Given some nonlinear differential equation, an intuitive approach to find a solution
is to split the equation into the sum of a so-called linear part and a perturbation. Let
us explain, using two examples, why this should not be done.

Consider the following elementary nonlinear equations

u′ = k(1−u2), ′ =
d
dx

, (1.1)

v′2 = k2v2(1− v2), (1.2)

with the aim of finding their general solution,

u = tanhk(x− x0), (1.3)

v =
1

coshk(x− x0)
= sechk(x− x0). (1.4)

The arbitrary complex constant x0 is linked to the initial condition u(xi) = ui,v(xi) =
vi by the relation

ui = tanhk(xi − x0), vi = sechk(xi − x0). (1.5)

1
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On the real axis, u and v have no singularities but, in the complex plane, the
singularities of u and v are a countable number of simple poles, located at x =
x0 + (2n + 1)iπ/(2k),n ∈ Z . Such singularities are by definition said to be mov-
able, as opposed to fixed, because their location depends on the initial conditions,
i.e. on the constants of integration. The general solution of any linear differential
equation has no movable singularity because it depends linearly on the constants of
integration.

1.1.1 Perturbative Method

In the perturbative method [199], one first determines the stationary points, which
leads to u0 =±1 and v0 = 0,±1, then one perturbs the solution in the neighborhood
of a stationary point by expanding it in series of a small parameter ε . Under this
perturbation

u =
∞

∑
n=0

εnun, u0 = 1, (1.6)

Equation (1.1) splits accordingly into

∞

∑
n=0

εnEn = 0, E0 ≡ 0. (1.7)

E1 ≡−u′1 −2ku0u1 = 0, (1.8)

E2 ≡−u′2 −2ku0u2 − ku2
1 = 0, · · · (1.9)

Choosing u1 = c1e−2kx with c1 arbitrary, this infinite set of linear equations with the
same homogeneous part admits the particular solution

un = 2−n+1cn
1e−2knx, n ≥ 1, (1.10)

which defines a geometric series, and its sum provides the general solution of (1.1)

u = 1 +
εc1e−2kx

1− (εc1/2)e−2kx
= tanhk(x− x0), x0 =

1
2k

log
(
−εc1

2

)
· (1.11)

Equation (1.2) is handled slightly differently because of its nonlinearity in the
highest derivative. One first takes its derivative,

v′′ = k2v(1−2v2), (1.12)

to make the first perturbed equation E1 = 0 linear in the highest derivative. Then the
computation is quite similar: the expansion v = ∑∞

n=0 εnvn around v0 = 0 generates
an infinite set of linear equations with the same homogeneous part. Choosing v1 =
c1e−kx, with c1 arbitrary, the particular solutions are
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v2n+1 = (−4)−n
(

c1e−kx
)2n+1

, v2n = 0, n = 1,2, · · · (1.13)

Therefore the series for v is geometric and it sums into:

v =
εc1e−kx

1 +(εc1/2)2e−2kx ≡ sechk(x− x0), x0 =
1
k

log
εc1

2
, (1.14)

which represents the general solution of (1.2).
Why is this perturbative method not efficient for equations more complicated

than (1.1)–(1.2)? There are several reasons for this:

1. In order to obtain the general term un, one must solve a recurrence relation, a
difficult task even for a linear recurrence relation.

2. The resummation must be performed in closed form1 and this is generically im-
possible; indeed, any solution which is not in closed form is what Painlevé calls
“illusoire”, in a sense to be developed soon.

3. After performing the resummation, one must check whether the closed form ex-
pression is valid everywhere except at a few points, called singularities; the lo-
cation of these singularities cannot be restricted to the real axis but must be ex-
tended to the whole complex plane C ; in the above example, the reason for the
finite value of the radius of convergence is the presence of a simple pole on the
imaginary axis at x = x0 ± iπ/(2k).

To summarize, the main reason for the generic inapplicability of this perturbative
method is that the singularity structure has not been taken into account: the mov-
able singularity which is present in the exact solution is absent at all orders of the
perturbation.

1.1.2 Nonperturbative Method

Let us now present a nonperturbative method, which yields the same result in a
finite number of steps because it takes the singularity structure into account from
the beginning.

Since nonlinear ODEs generically possess movable singularities, let us first es-
tablish the behavior of the general solution of (1.1) near such a movable singularity
x = x0. Assuming this behavior to be algebraic, this amounts to computing the pos-
sible values of the leading power p and the leading coefficient u0 defined by

u ∼
χ→0

u0χ p, u0 �= 0, χ = x− x0, (1.15)

with p not a positive integer. Then

1 This will be defined precisely later. For the moment, it is sufficient to know that an example of
such a closed form is u = ψ ′/ψ, with ψ the solution of any linear equation.
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u′ ∼ pu0χ p−1 + u′0χ p ∼ pu0χ p−1, (1.16)

so u0 can be assumed constant when determining the leading behavior. The various
terms of (1.1) then contribute as

term −u′ +k −ku2

leading power p−1 0 2p
leading coefficient −pu0 k −ku2

0

and the l.h.s. of the ODE, which must vanish, evaluates to

E(u) ≡ −u′ + k(1−u2)
=

(−pu0χ p−1 + O(χ p)
)
+ kχ0 − k

(
u2

0χ2p + O(χ2p+1)
)

(1.17)

= E0χq + O(χq+1) = 0. (1.18)

The condition u0 �= 0 implies the equality of at least two of the three leading powers,
the two equal powers being lower than or equal to the third one. As to the condition
E0 = 0, it expresses the vanishing of the sum of the two corresponding leading
coefficients. Out of the three possibilities

(q = p−1 = 0 ≤ 2p) and (−pu0 + k = 0), (1.19)

(q = 0 = 2p ≤ p−1) and (k− ku2
0 = 0), (1.20)

(q = p−1 = 2p ≤ 0) and (−pu0 − ku2
0 = 0), (1.21)

only the third one defines a solution,

p = −1, q = −2, u0 = 1/k. (1.22)

To summarize, the local behavior of u is that of a simple pole,

u ∼
χ→0

k−1χ−1, χ = x− x0. (1.23)

In order to turn this local information into a global one, one then establishes
a parallel with a well known generator of simple poles, namely the logarithmic
derivative operator. If some function ψ(x) has an algebraic behavior ψ ∼ ψ0(x−
x0)p near x0 (with ψ0 and p any complex numbers), under action of the logarithmic
derivative operator,

D =
d
dx

log, (1.24)

this behavior (whatever it is, regular or singular, multivalued or singlevalued) be-
comes that of a simple pole of residue p,

d
dx

logψ ∼ p
x− x0

. (1.25)
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The crucial point is then to match (1.23) and (1.25), by introducing the transfor-
mation from u to ψ defined by

u = k−1 d
dx

logψ . (1.26)

This transformation, called the singular part transformation, maps the Riccati ODE
(1.1) to the second order ODE

ψ ′′ − k2ψ = 0, (1.27)

which has no more movable singularities since it is linear. Therefore its general
solution is known,

ψ = ccoshk(x− x1), (c,x1) arbitrary, (1.28)

and this provides the closed form single valued expression (1.3) for the general
solution of the Riccati ODE (1.1).

With our second example (1.2), one similarly obtains the two local behaviors

v ∼
χ→0

± ik−1χ−1, χ = x− x0. (1.29)

This complex value ±ik−1 for the residue should be no surprise, since it is the root of
an algebraic equation with real coefficients. The map from v to ψ must now involve
two functions ψ1,ψ2, and indeed, if one defines the singular part transformation as

v = ik−1(logψ1)′ − ik−1(logψ2)′, (1.30)

in which ψ1 and ψ2 are two different solutions of the same second order linear
equation

ψ ′′ − k2

4
ψ = 0, (1.31)

which can be chosen as

ψ1 = c1 cosh
k
2
(x− x1), ψ2 = c2 cosh

k
2
(x− x2), (1.32)

the expression (1.30) satisfies the ODE (1.2), provided x1,x2,k obey the relation

k(x1 − x2) = iπ + 2miπ , m ∈ Z , (1.33)

with the correspondence of notation x0 = (x1 + x2)/2.
Therefore, the fact of taking account of the singularity structure (one family of

simple poles, two families of simple poles with opposite residues, etc) allows one
to establish an explicit closed form link towards another ODE (in our examples a
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linear ODE) which has no movable singularities, ipso facto performing the explicit
integration of the nonlinear ODE.

The purpose of this book is to explain how to explicitly build analytic solutions
of nonlinear differential equations, whether ordinary or partial, by nonperturbative
methods such as the simple one presented above.

Since all the exact solutions one can derive by any method necessarily obey the
singularity structure of the equation in the complex plane, it is therefore a prerequi-
site to study these singularities. For instance, the solutions (1.3)–(1.4) have respec-
tively one family and two families of movable simple poles, therefore one must be
able to detect, directly on their ODEs without knowing the solutions in advance,
respectively one family and two families of movable simple poles.

1.2 Painlevé Property and the Six Transcendents

How can this be generalized? This is the whole problem of the explicit integration
of ODEs. To integrate an ODE, according to a definition attributed to Poincaré, is
to express its general solution as a finitely many term explicit expression, possibly
multivalued, built from elementary objects called functions. A function in turn is
defined as a map which can be made singlevalued in its whole domain of definition.
Any linear ODE defines a function because its general solution can be made singl-
evalued, by classical uniformization procedures such as cuts in the complex plane.
Typical examples are all the “special functions” of mathematical physics defined by
some linear equation (exponential and trigonometric functions, functions of Bessel,
Hermite, Legendre, Gauss, . . . ). Therefore, with the above definition, a large class of
ODEs are considered as integrated2: linear ODEs, linearizable ODEs, ODEs whose
general solution is rational in the solution of a linear equation, . . .

In order to extend the class of available functions, L. Fuchs and Poincaré stated
the problem of defining new functions from algebraic nonlinear differential equa-
tions. One such function had already been discovered by Jacobi when he solved the
motion of the pendulum. In this Hamiltonian system

H =
1
2

ml2
(

dθ
dt

)2

+ mgl(1− cosθ ), (1.34)

the problem is to find the position (characterized by the angle θ of the pendulum
of length l and mass m with the vertical axis) as a function of the time t. After
equating H to its constant value E , one obtains a first order second degree equation
(the degree is by definition the polynomial degree in the highest derivative) which
is often “integrated by separation of variables” as

2 For instance, the stationary Schrödinger equation of quantum mechanics, called the Sturm–
Liouville equation by mathematicians, is considered as integrated. To solve the spectral problem is
outside the scope of this volume.
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u = tan
θ
2

, t = t0 +
∫ u

u0

√
2ml2du√

(1 + u2)(E(1 + u2)−2mglu2)
, (1.35)

which expresses the time t as an elliptic integral of the position u. However, this
does not answer the question, which was to express the position as a function of
time. Indeed, the above answer is as bad as would be a multivalued expression like

t = t0 +
∫ u

u0

du
1 + u2 = t0 + Arctanu−Arctanu0, (1.36)

instead of the singlevalued answer

u =
u0 + tan(t − t0)

1−u0 tan(t − t0)
. (1.37)

This classical problem, called inversion of the elliptic integral, was solved by Abel
and Jacobi, who proved that, for the pendulum, the coordinates (l cosθ , l sinθ ) of
the position are singlevalued expressions of the time,

sin
θ
2

= k sn

(√
g
l
(t − t0),k

)
, k =

√
E

mgl
, (1.38)

cos
θ
2

= dn

(√
g
l
(t − t0),k

)
. (1.39)

The symbols sn(x,k) and dn(x,k), in which k is a constant, denote two of the twelve
Jacobi elliptic functions (Appendix C), which all satisfy equations of the type

(
du
dx

)2

−P(u) = 0, (1.40)

with P a polynomial independent of x of degree four with complex coefficients. The
general solution of (1.40) is singlevalued not only on the real x axis but in the whole
complex plane. Considering the complex plane is mandatory to unveil the beautiful
property of this function, which is to be a doubly periodic meromorphic function,
a characteristic property of elliptic functions. This equation is form invariant under
a transformation which plays a fundamental role in the present theories, the homo-
graphic transformation or homography,

u �→ αu + β
γu + δ

, (α,β ,γ,δ ) complex constants, αδ −β γ �= 0. (1.41)

The canonical representative in this equivalence class is the Weierstrass equation

u′2 = 4u3 −g2u−g3 = 4(u− e1)(u− e2)(u− e3), (1.42)
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in which g2,g3,e1,e2,e3 are complex constants and one zero of the polynomial P
has been moved to infinity by choosing −δ/γ equal to the affix of that zero. The
peculiarity of the homographic group is to be the unique bijection of the complex
plane (to which one has added the point at infinity) to itself, this is why this group
does not alter the singularity structure of the elliptic equation.

Another characteristic property of the elliptic equation, much more important in
our context than the previous one, is to be the unique first order algebraic ODE able
to define a “new” function in the above sense, i.e. from a nonlinear ODE.

This question (of defining new functions) has been investigated at higher orders
(up to six for special classes) by the Painlevé school (Painlevé, Gambier, Chazy,
Garnier) and its followers (Bureau, Exton, Martynov, Cosgrove). Its mathematical
formulation [349, p. 2]

Déterminer toutes les équations différentielles algébriques du premier ordre, puis
du second ordre, puis du troisième ordre, etc., dont l’intégrale a ses points critiques
fixes.3

naturally leads to the definition of a property of differential equations.

Definition 1.1. If the general solution of an ODE can be made singlevalued, one
says that such an ODE possesses the Painlevé property (PP).

A class of transformations which leaves invariant the singularity structure of u
and therefore the PP of the ODE for u is the homographic group (also called Möbius
group and denoted PSL(2,C ))

(u,x) �→ (U,X), u(x) =
α(x)U(X)+ β (x)
γ(x)U(X)+ δ (x)

, X = ξ (x),

(α,β ,γ,δ ,ξ ) functions, αδ −β γ �= 0, (1.43)

which depends on four arbitrary functions and generalizes the group (1.41).
At present time, only second order nonlinear equations have defined additional

functions, the six ones discovered by Painlevé and Gambier, called Painlevé tran-
scendents Pn,n = 1, . . . ,64

P1 : u′′ = 6u2 + x,

P2 : u′′ = δ (2u3 + xu)+ α,

P3 : u′′ =
u′2

u
− u′

x
+

αu2 + γu3

4x2 +
β
4x

+
δ
4u

,

P4 : u′′ =
u′2

2u
+ γ

(
3
2

u3 + 4xu2 + 2x2u

)
−2αu +

β
u

,

P5 : u′′ =
[

1
2u

+
1

u−1

]
u′2 − u′

x
+

(u−1)2

x2

[
αu +

β
u

]
+ γ

u
x

+ δ
u(u + 1)

u−1
,

3 To determine all the algebraic differential equations of first order, then second order, then third
order, etc., whose general solution has no movable critical points.
4 We adopt for P3 the choice made by Painlevé in 1906 [350] to replace his original choice of 1900
[348].


