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Abstract: We investigate the pair correlation function of the sequence of fractional
parts ofan?, n = 1,2,..., N, whered > 2 is an integer and an irrational. We
conjecture that for badly approximaklethe normalized spacings between elements of
this sequence have Poisson statisticd/as> co.

We show that for almost afl (in the sense of measure theory), the pair correlation
of this sequence is Poissonian.

In the quadratic casé = 2, this implies a similar result for the energy levels of
the “boxed oscillator” in the high-energy limit. This is a simple integrable system in
2 degrees of freedom studied by Berry and Tabor as an example for their conjecture
that the energy levels of generic completely integrable systems have Poisson spacing
statistics.

1. Introduction

Hermann Weyl [11] proved that for an integée> 1 and an irrationad, the sequence

of fractional partsan? mod 1,n = 1,2, ... is equidistributed in the unit interval. A
different aspect of the random behavior of the sequence has attracted attention recently:
Are the spacings between members of the sequence distributed like those between mem-
bers of a sequence of random numbers in the unit interval (or as some would say, do
they have a “Poissonian” distribution)? This issue came up in the context of the distri-
bution of spacings of the energy levels of integrable systems [1]. For thelcadehe
spacings between the fractional partsoof are essentially those of the energy levels

of a two-dimensional harmonic oscillator [4, 2, 3]. kbe 2 the spacings are related

to the spacings between the energy levels of the “boxed oscillator” [1], a particle in a
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2-dimensional potential well with hard walls in one direction and harmonic binding in
the other. The spacings of:> mod 1 were also investigated numerically in [5].

If d = 1itis elementary that the consecutive spacings have at most 3 values [9, 10].
Hence the sequence is not random in this casedFor2 the picture is very different.
To explain it, we recall a basic classification of real numbers with regards to their
Diophantine approximation properties: We gais of typex if there isc = ¢(«) > 0 so
that

la —p/q| > ¢/q"

for all integersp, ¢. For rationalx, < = 1 anda is irrational if and only ifx > 2. Itis
well known that almost allv (in the sense of measure theory) are of type 2 +¢ for
all e > 0. We will call sucha “Diophantine”. For instance, algebraic irrationals are of
this type (Roth’s theorem).

In[7] we establish some results towards the conjectureithét mod 1 is Poissonian
for any « of Diophantine type. In this note we examine the behavior for almost,all
which according to the above should be Poissonian. The statistic we examinpéérthe
correlationt The pair correlation density for a sequenceNdofnumbersdy, ..., 0n €
[0, 1] which are equidistributed a& — oo, measures the distribution of spacings
between the; at distances of order of the mean spacingvl Precisely, if||z| =
distanceg, Z) then for any interval f s, s] set

1 . S
Rol=s,8), {02}, N) = L #{1<j 7R < N2 [l0;— 0l < -} (L)
For random number®; chosen uniformly and independently,
RZ([f‘Sa S]a {on}a N) — 2s

with probability tending to 1 asV= — oco. Our main result is that this holds for
the sequence of fractional par{fsn? mod 1} for almost everya: Denoting by
Ry([—s, s], a, N) the pair correlation sum (1.1) for this sequence, we show

Theorem 1. For d > 2, there is a sefP? C R of full Lebesgue measure such that for
anya € P, and anys > 0,

Ry([—s, 8], a, N) — 2s, N — oo.

Remark 1.1.The proof given below does not provide (and we do not know of) any
specifica which isprovablyin P.

Remark 1.2.Already with the pair correlation we see the necessity of a condition on
the type ofa. For if there are arbitrarily large integersqg so that

1
1%d+l )

thenR,([—s, s], o, N) /£ 2s. Indeed if we choos&/ = ¢, then form #n < N,

la -2 <
q

(n? —mYp t(n? —m?)
with |¢| < 1. Hence eithefin?a — m?a|| < 1/10¢ = 1/10N if ¢ dividesn? — m?, or
|[n?a — m?al|| > 9/10¢ = 9/10N otherwise. Thus there are no normalized differences
N |[n®a — m?a|| in the interval (¥10,9/10) for this sequence a¥ = g.

[~ ma]| =
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The proof of the theorem follows the steps in [8] (where a similar assertion is proven
for the values of binary quadratic forms). We first establish that as a functiordD, 1],
Ry([—s, 5], o, N) — 2s in L?(0, 1). This together with standard bounds on the Weyl
sumsS(n, N) = > _ v e(naz?) allows us to pass to almost everywhere convergence.
In Sect. 4 we briefly discuss higher correlations and show that they do not converge in
L? to the expected value. Thus our approach does not lend itself directly to establishing
almost everywhere convergence of the higher correlations.

2. Bounding the Variance

Let f € C2°(R) be atest function and set

Rolf 1021 M) = 0 Fwlt; — 00 1)
1<j7R<N
where
Fu)= Y FV G +m)) 22)
meZ

The functionF'y (y) is periodic and has a Fourier expansion

)=+ 3 F () etny). 2.3)
nez
Hence
Rl (03 ) = 55 ST () S0 ettt — 00, (2.4)
nez 1<j7k<N

In particular, ifd,, = an® mod 1, then the pair correlation function is given by

Ro(f, 00 N) = 103 37 F () sog(n, V), (25)
nez
where
Soff(n, N) := Z e (na(a:d - yd)) . (2.6)
1<a7y<N

As a function ofa, Ro(f, , N) is periodic and from (2.5) its Fourier expansion is
Ro(f, 0, N) =Y bi(N)e(la), (2.7)
lez
where forl Z 0,
1 ~/n
M= Y T (2.8)
ST,

Themeanof Ry(f, a, N) overa € [0, 1] is
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()=o) = 55 3 FO)=(1- 3 ) Fo (29)
1<aF<N
so that
(R) = /OO f(x)dz+0O (;) , (2.10)

which is the expected value for a random sequence.
We next estimate the variance Bi(f, o, N) as a function ofv:

Proposition 2. As a function ofx € [0, 1],
|Ratt 0oy = FO), < N2 (2.11)

for anye > 0, the implied constants depending ©and f.

Proof. Itis easy to see from (2.8) that sinfec C'2°(R), the Fourier coefficients; (V)
are negligable for > N1* for any fixeds > 0. Also from (2.8) we have far# 0,

T(|t)?

bl(N) < N2’

(2.12)

wherer(|l|) is the numbers of divisors ¢f|. This is because the factorsiofletermine
n, x,y. We will use the well-known estimate

7(m) <« m*, for anye > 0. (2.13)

Thus by Parseval

~ 2
| Bats.0 ) - FO) = (%”) 3 (W)
170

NE
< ZWVH(NN
170
NE

- Z m|bl(N)|+ smaller order term
0l <N d+t+o

NE
< ﬁZUH(N)\
170

]\/v6 1 - n —1+e
<wm 2 wl(F)l<y
1<ay<N
neZ
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3. Almost-Everywhere Convergence

3.1. Overview of the argument for TheoremIh. order to prove Theorem 1 from the
decay of the variance of the pair correlation, we first show that for gaehC'°(R),
there is a set of full measute(f) C R so that for alla € P(f),

-~

RZ(fa «, Nrn) - f(O) (31)

for a subsequenc¥,,, which grows faster tham. Indeed, fixj > 0, and let{ N,,,} be
a sequence of integers with

Np, ~m

Set
Xn(a) = Ro(f, 0, N) — f(O).

By Proposition 2|| X v ||5 <. N~1* for all e > 0 and so

oo 1
Z/ | X, (@)?|da < oo.
m=1"0

Therefore (sincéXy, |? > 0)

1 1
/O > 1Xn,, (@) Pdao = Z/O | X, (@)]2da < oo,

m

and soy_, |Xn,,|? € L}(0,1). Thus the sum is finite almost everywhere:

Z | X, (@) < oo, for almost alla.

m

Therefore Xy, (o) — 0 asm — oo for almost alle, that is we have (3.1) on a sB(f)
of a’s which we may assume consists only of Diophantine numbers.
To go from almost everywhere convergence along a subsequence to almost every-
where convergence, we will show that as a functioVofR,(f, IV, o) does not oscillate
much for Diophantine.. More precisely, there is some> 0 so thatifV,, < n < N+
then for Diophantiney, there isc(f, «) > 0 so that

| Xon(@) — Xn,, ()] < c(f, a)N,".

Because &KX n — N,,, < N1 — Ny, K N;jl, this estimate in turn will follow from:

Proposition 3. Let0 < § < 1/2¢-1, Then for allf € C.(R) and all o of Diophantine
type, there is somé&f, o) > 0 so that for all0 < k& < N?,

[ Xnak(@) = Xn(a)| < e(f, ) N7,

wherev < 1/24-1 — g,
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SinceXy,, (o) — 0 for alla € P(f), which by throwing out a measure-zero subset
we assumed consisted only of Diophantiri®, Proposition 3 implies(,, (o) — O for all
a € P(f). We will prove this proposition after finishing the proof of Theorem 1. What
remains to do is to find one subsetC R of full measure for whichRy(f, o, N) —
ffzo f(x)dzforalla« € Pand allf which are characteristic function of intervalsy, s]
(orinC2°(R)). To do this, pick a (countable) sequence of posifive C'2°(R) so that for
eachf > 0 as above, there are subsequer{gés} C {f;} which satisfyf,” < f < f
andff‘;c(fi+ — f7)(@)dx — 0. TakeP := N, P(f;) which is still of full measure. For
everya we have

RZ(f;aavN) < RZ(faavN) < RZ(f;—vavN)v

and in addition fora € P, we haveRy(f, o, N) — [~ f. Since [ f& —
S5 [ this shows thaRa(f,or, N) — [*_ f for a € P and gives Theorem 1.
The proof of Proposition 3 will occupy the rest of this section.

3.2. Estimates for Weyl sum¥Ve begin with some consequences of Weyl's estimates
for the “Weyl sums”S(n, N) = Zng e(nax?) which we will need. Throughout the

remainder of this section, we sBt= 241,
Lemma 4. For « Diophantine, andV/ > 1, we have

Z |S('I’L, N)‘D << ]\/[l‘FENDfl'FG
1<n<M

forall e > 0 (D = 2471,

Proof. This follows from proof of Weyl’s inequality (see [6], Lemma 3). We will outline
the steps. By repeated squaring, one finds that

N

1
S(n,N)|P « NP~1+ NP min {N, } ,
| ( )| Z 1 ||d!nay1...yd,1||

Yi5--,Yd—17

where||-|| denotes the distance to the nearest integer. Now sumno¥en/, collecting
together terms with the produ@tny; . . . y4_1 having a given valuen. The number of
such terms is at most the divisor functiofm) < m¢. Since the maximal value of: is

d'M N1, we find

_ 1
n, < T+ - min .
> 1S, N)P < MNP™E+ MNP He Y {N }
1<n<M m<dMNd—1 HmaH (3.2)

Proceeding asin [6], we replaaéy a rational approximatiom/q with |a—a/q| < 1/¢,
and divide the range of summation into consecutive blocks of lepgrthis will give

d—1
> min{N, 1 } < <MN +1> (N +¢logq).
[[ma| q

m<dMNd-1

Inserting into (3.2) we get



Pair Correlation of Fractional Parts 67

d—1
Z |S(n, N)|P < MNP+ preNP-dre (MN + 1> (N +¢logq).
1<n<M q (3.3)

Now choosey < MN¢~twith |a —a/q| < 1/¢gMN*"* (so certainlyla —a/q| <
1/4? so (3.3) holds). Since is Diophantine|a — a/q| > 1/¢?* which givesq >
(M N=1)1=¢ Therefore
MNd—l
(%

+ 1) (N +q¢logq) < (M N4yl

and consequently
Z |S(n,N)\D < NpLte g D—1te
1<n<M

asrequired. O

As animmediate consequence of this lemma, we get on repeatedly using the Cauchy-
Schwarz inequality that

Corollary 5. For « Diophantine, and\/ > 1,

> 1S, N)P < MM Nz P (3.4)
1<n<M
and
> 1S, N)| < MMeNTYPre, (3.5)
1<n<M

3.3. Proof of Proposition 3We first show

1

Xnen0) = Xn(@)= 5 30 F(5) {sorsn N +8) = 010, )}
0<|n|<M

+0 (M2+EN72+572/D) . (3.6)

We use the representation (2.5),
1 ~/n
Xn(0) = <5 2?; F(55) sorst, N).

Sincef € C¢°(R), its Fourier transfornf is rapidly decreasing and so on using the
trivial estimatels, s ¢(n, N)| < N2 we see that for any > 0, M = N1*,

1 ~/n . .
Xny(a) = Nz Z f (ﬁ) soff(n, N) + rapidly decaying term.
07 n|<M

Next we usés,sr(n, N)| < N +|S(n, N)|? and Corollary 5 to deduce that

ST Isops N+ < MN+ Y [S(n, N +k)]? < MY N2,
= o= (3.7)
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Next we claim that

1 "
(N + k)2 Z f (N+k) sorf(n, N +k) = N2 Z f (%) Soff(n, N +k)
07n|<M 05|n|<M

+O(M2+EN_2+6_2/D). (38)

Indeed, write
ﬁ - % +0 (;;) = % +O(N—3%)
and
Noh :%J'O(%):%“LO (]\71\24—5) :

so that forjn| < M, k < N?,

) =7 (20 ().

Therefore
(N+k)2 > Fag) sorsu N )
071n|<]\l
~/n
- ﬁ >of N) Soff(n, N +k)
0;4n|<M

(o), 2, (1) o) oo

— ( )50ff(n N +k)
o;1n|<M

M 1
< <N4_5+Ns—a) Y lsors(n, N +h)|
0An|<M

NJY M1+6N2 2/D — M2+5N72+672/D by (37)

as required. This proves (3.6).
Next we express the differensgs s(n, N + k) — sors(n, V) as

<

Soff(n, N +k) — so¢(n, N) = 2Re Z e(—nay?) Z nomc
N+1<y<N+k 1<z<N

+ Z e (na(xd — yd)) .

N+1<z7Zy<N+k

We estimate the second term trivially by:
5077 (n, N+ k) — 507 7(n, N)| < k|S(n, N + k)| + k2.
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Then inserting this into (3.6) we get

1
Xni(0) = Xn(0) < 53 Y (K[S(n, N + k)| + k) + M2 N 2072/ D
0<|n|<M

Mkz + M2+£N—2+5—2/D

k
<3z > 1Sm, V) t Nz

0<|n|<M

k Mk?
< ﬁMlﬁlel/D + = + ) f2re N—2+0—2/D by (3.5)

< M1+ekalfl/D < Nb+671/D+6.

Sinceb > 0 can be made arbitrarily small, this proves our proposition. (]

4. Triple and Higher Correlations

The higher correlations run into some basic difficulties. For example, consider the triple
correlation foran? mod 1. For a test functiofi € C2°(R?), let

Fx(yuy)= Y f(N(y+ma), N(yz+m2)). (4.2)

(ma1,mp)eZ?

This function is periodic and has a Fourier expansion

)= 5 7 (55 ) etk @2)

kez?

The triple correlation function of the sequenee® mod 1 and for the test function

fis

RfoN)= 5 Y Fx(aG? - et -2), (@3
1<z,y,2<N

where the sun}_’ is over all triples ofdistinctintegerse, y, z. The Fourier expansion
of Rz is

Ra(f, 0, N) =Y ai(N)e(lo) (4.4)
l
with
a(N) = % > f(];\; ’;\;) . (4.5)

Loy, z<N, kyky
ky (22 —y2)rhy(y2 —z2)=1

There is no doubt that the me&Rs) = co(N) — f(o, 0), asN — oo, the expected
answer for random sequence, and that more geneé&l) — 0 if [ # 0. That is to say
that R3(f, o, N) — f(o, 0) in the weak sense. This can probably be proven. However,
a much greater difficulty appears and that is that(#) = 0 then
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| Bstr. ) - > v (4.6)

This shows that thé.? approach to almost-everywhere convergence is problematic in
this case. In fact, this feature of tli-norm being as large a manifestation®f being

~

very large at rational’s. For almost alkv we still expect thats(f, o, N) — f(0, 0).
To prove (4.6) note that a8 — oo,

Sz X Y F(RE)~ o

l 1<z,y,x<N ki,k2
Hence if f(0) # O then

1/2 1/2

N2< D a) < (D la@)? Y1
l l

I< N3
1/2

=N (S laM?)

l

which gives (4.6).
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