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Abstract: We investigate the pair correlation function of the sequence of fractional
parts ofαnd, n = 1, 2, . . . , N , whered ≥ 2 is an integer andα an irrational. We
conjecture that for badly approximableα, the normalized spacings between elements of
this sequence have Poisson statistics asN → ∞.

We show that for almost allα (in the sense of measure theory), the pair correlation
of this sequence is Poissonian.

In the quadratic cased = 2, this implies a similar result for the energy levels of
the “boxed oscillator” in the high-energy limit. This is a simple integrable system in
2 degrees of freedom studied by Berry and Tabor as an example for their conjecture
that the energy levels of generic completely integrable systems have Poisson spacing
statistics.

1. Introduction

Hermann Weyl [11] proved that for an integerd ≥ 1 and an irrationalα, the sequence
of fractional partsαnd mod 1,n = 1, 2, . . . is equidistributed in the unit interval. A
different aspect of the random behavior of the sequence has attracted attention recently:
Are the spacings between members of the sequence distributed like those between mem-
bers of a sequence of random numbers in the unit interval (or as some would say, do
they have a “Poissonian” distribution)? This issue came up in the context of the distri-
bution of spacings of the energy levels of integrable systems [1]. For the cased = 1 the
spacings between the fractional parts ofαn are essentially those of the energy levels
of a two-dimensional harmonic oscillator [4, 2, 3]. Ford = 2 the spacings are related
to the spacings between the energy levels of the “boxed oscillator” [1], a particle in a
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2-dimensional potential well with hard walls in one direction and harmonic binding in
the other. The spacings ofαn2 mod 1 were also investigated numerically in [5].

If d = 1 it is elementary that the consecutive spacings have at most 3 values [9, 10].
Hence the sequence is not random in this case. Ford ≥ 2 the picture is very different.
To explain it, we recall a basic classification of real numbers with regards to their
Diophantine approximation properties: We sayα is of typeκ if there isc = c(α) > 0 so
that

|α − p/q| > c/qκ

for all integersp, q. For rationalα, κ = 1 andα is irrational if and only ifκ ≥ 2. It is
well known that almost allα (in the sense of measure theory) are of typeκ = 2 + ε for
all ε > 0. We will call suchα “Diophantine”. For instance, algebraic irrationals are of
this type (Roth’s theorem).

In [7] we establish some results towards the conjecture thatαnd mod 1 is Poissonian
for anyα of Diophantine type. In this note we examine the behavior for almost allα,
which according to the above should be Poissonian. The statistic we examine is thepair
correlation: The pair correlation density for a sequence ofN numbersθ1, . . . , θN ∈
[0, 1] which are equidistributed asN → ∞, measures the distribution of spacings
between theθj at distances of order of the mean spacing 1/N . Precisely, if‖x‖ =
distance(x, Z) then for any interval [−s, s] set

R2([−s, s], {θn}, N ) =
1
N

#
{

1 ≤ j 6= k ≤ N : ‖θj − θk‖ ≤ s

N

}
. (1.1)

For random numbersθj chosen uniformly and independently,

R2([−s, s], {θn}, N ) → 2s

with probability tending to 1 asN → ∞. Our main result is that this holds for
the sequence of fractional parts{αnd mod 1} for almost everyα: Denoting by
R2([−s, s], α, N ) the pair correlation sum (1.1) for this sequence, we show

Theorem 1. For d ≥ 2, there is a setP ⊂ R of full Lebesgue measure such that for
anyα ∈ P , and anys ≥ 0,

R2([−s, s], α, N ) → 2s, N → ∞.

Remark 1.1.The proof given below does not provide (and we do not know of) any
specificα which isprovablyin P .

Remark 1.2.Already with the pair correlation we see the necessity of a condition on
the type ofα. For if there are arbitrarily large integersp, q so that

|α − p

q
| ≤ 1

10qd+1
,

thenR2([−s, s], α, N ) 6→ 2s. Indeed if we chooseN = q, then form 6= n ≤ N ,∥∥ndα − mdα
∥∥ =

∥∥∥∥ (nd − md)p
q

+
t(nd − md)

10qd+1

∥∥∥∥
with |t| ≤ 1. Hence either

∥∥ndα − mdα
∥∥ ≤ 1/10q = 1/10N if q dividesnd − md, or∥∥ndα − mdα

∥∥ ≥ 9/10q = 9/10N otherwise. Thus there are no normalized differences
N
∥∥ndα − mdα

∥∥ in the interval (1/10, 9/10) for this sequence ofN = q.
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The proof of the theorem follows the steps in [8] (where a similar assertion is proven
for the values of binary quadratic forms). We first establish that as a function ofα ∈ [0, 1],
R2([−s, s], α, N ) → 2s in L2(0, 1). This together with standard bounds on the Weyl
sumsS(n, N ) =

∑
x≤N e(nαxd) allows us to pass to almost everywhere convergence.

In Sect. 4 we briefly discuss higher correlations and show that they do not converge in
L2 to the expected value. Thus our approach does not lend itself directly to establishing
almost everywhere convergence of the higher correlations.

2. Bounding the Variance

Let f ∈ C∞
c (R) be a test function and set

R2(f, {θn}, N ) :=
1
N

∑
1≤j 6=k≤N

FN (θj − θk), (2.1)

where

FN (y) =
∑
m∈Z

f (N (y + m)). (2.2)

The functionFN (y) is periodic and has a Fourier expansion

FN (y) =
1
N

∑
n∈Z

f̂
( n

N

)
e(ny). (2.3)

Hence

R2(f, {θn}, N ) =
1

N2

∑
n∈Z

f̂
( n

N

) ∑
1≤j 6=k≤N

e(n(θj − θk)). (2.4)

In particular, ifθn = αnd mod 1, then the pair correlation function is given by

R2(f, α, N ) =
1

N2

∑
n∈Z

f̂
( n

N

)
soff (n, N ), (2.5)

where

soff (n, N ) :=
∑

1≤x 6=y≤N

e
(
nα(xd − yd)

)
. (2.6)

As a function ofα, R2(f, α, N ) is periodic and from (2.5) its Fourier expansion is

R2(f, α, N ) =
∑
l∈Z

bl(N )e(lα), (2.7)

where forl 6= 0,

bl(N ) =
1

N2

∑
n6=0

∑
1≤x 6=y≤N

n(xd−yd )=l

f̂
( n

N

)
. (2.8)

Themeanof R2(f, α, N ) overα ∈ [0, 1] is
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〈R2〉 = b0(N ) =
1

N2

∑
1≤x 6=y≤N

f̂ (0) =

(
1 − 1

N

)
f̂ (0), (2.9)

so that

〈R2〉 =
∫ ∞

−∞
f (x)dx + O

(
1
N

)
, (2.10)

which is the expected value for a random sequence.
We next estimate the variance ofR2(f, α, N ) as a function ofα:

Proposition 2. As a function ofα ∈ [0, 1],∥∥∥R2(f, α, N ) − f̂ (0)
∥∥∥

2
� N−1/2+ε (2.11)

for anyε > 0, the implied constants depending onε andf .

Proof. It is easy to see from (2.8) that sincef ∈ C∞
c (R), the Fourier coefficientsbl(N )

are negligable forl ≥ Nd+1+δ for any fixedδ > 0. Also from (2.8) we have forl 6= 0,

bl(N ) � τ (|l|)2

N2
, (2.12)

whereτ (|l|) is the numbers of divisors of|l|. This is because the factors ofl determine
n, x, y. We will use the well-known estimate

τ (m) � mε, for anyε > 0. (2.13)

Thus by Parseval

∥∥∥R2(f, α, N ) − f̂ (0)
∥∥∥2

2
=

(
f̂ (0)
N

)2

+
∑
l 6=0

|bl(N )|2

�
∑
l 6=0

N ε

N2
|bl(N )|

=
∑

06=|l|≤Nd+1+δ

N ε

N2
|bl(N )| + smaller order term

� N ε

N2

∑
l 6=0

|bl(N )|

� N ε

N2

∑
1≤x 6=y≤N

n∈Z

1
N2

|f̂
( n

N

)
| � N−1+ε.

�
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3. Almost-Everywhere Convergence

3.1. Overview of the argument for Theorem 1.In order to prove Theorem 1 from the
decay of the variance of the pair correlation, we first show that for eachf ∈ C∞

c (R),
there is a set of full measureP (f ) ⊂ R so that for allα ∈ P (f ),

R2(f, α, Nm) → f̂ (0) (3.1)

for a subsequenceNm which grows faster thanm. Indeed, fixδ > 0, and let{Nm} be
a sequence of integers with

Nm ∼ m1+δ.

Set

XN (α) = R2(f, α, N ) − f̂ (0).

By Proposition 2,‖XN‖2
2 �ε N−1+ε for all ε > 0 and so

∞∑
m=1

∫ 1

0
|XNm (α)2|dα < ∞.

Therefore (since|XNm
|2 ≥ 0)∫ 1

0

∑
m

|XNm (α)|2dα =
∑
m

∫ 1

0
|XNm (α)|2dα < ∞,

and so
∑

m |XNm |2 ∈ L1(0, 1). Thus the sum is finite almost everywhere:∑
m

|XNm (α)|2 < ∞, for almost allα.

Therefore,XNm (α) → 0 asm → ∞ for almost allα, that is we have (3.1) on a setP (f )
of α’s which we may assume consists only of Diophantine numbers.

To go from almost everywhere convergence along a subsequence to almost every-
where convergence, we will show that as a function ofN , R2(f, N, α) does not oscillate
much for Diophantineα. More precisely, there is someν > 0 so that ifNm ≤ n < Nm+1
then for Diophantineα, there isc(f, α) > 0 so that

|Xn(α) − XNm (α)| � c(f, α)N−ν
m .

Because 0≤ n − Nm ≤ Nm+1 − Nm � N δ
m, this estimate in turn will follow from:

Proposition 3. Let 0 < δ < 1/2d−1. Then for allf ∈ Cc(R) and allα of Diophantine
type, there is somec(f, α) > 0 so that for all0 ≤ k ≤ Nδ,

|XN+k(α) − XN (α)| ≤ c(f, α)N−ν ,

whereν < 1/2d−1 − δ.
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SinceXNm (α) → 0 for all α ∈ P (f ), which by throwing out a measure-zero subset
we assumed consisted only of Diophantineα’s, Proposition 3 impliesXn(α) → 0 for all
α ∈ P (f ). We will prove this proposition after finishing the proof of Theorem 1. What
remains to do is to find one subsetP ⊂ R of full measure for whichR2(f, α, N ) →∫∞

−∞ f (x)dx for all α ∈ P and allf which are characteristic function of intervals [−s, s]
(or inC∞

c (R)). To do this, pick a (countable) sequence of positivefi ∈ C∞
c (R) so that for

eachf ≥ 0 as above, there are subsequences{f±
i } ⊂ {fi} which satisfyf−

i ≤ f ≤ f+
i

and
∫∞

−∞(f+
i − f−

i )(x)dx → 0. TakeP := ∩iP (fi) which is still of full measure. For
everyα we have

R2(f−
i , α, N ) ≤ R2(f, α, N ) ≤ R2(f+

i , α, N ),

and in addition forα ∈ P , we haveR2(f±
i , α, N ) → ∫∞

−∞ f±
i . Since

∫∞
−∞ f±

i →∫∞
−∞ f , this shows thatR2(f, α, N ) → ∫∞

−∞ f for α ∈ P and gives Theorem 1.
The proof of Proposition 3 will occupy the rest of this section.

3.2. Estimates for Weyl sums.We begin with some consequences of Weyl’s estimates
for the “Weyl sums”S(n, N ) =

∑
x≤N e(nαxd) which we will need. Throughout the

remainder of this section, we setD = 2d−1.

Lemma 4. For α Diophantine, andM ≥ 1, we have∑
1≤n≤M

|S(n, N )|D � M1+εND−1+ε

for all ε > 0 (D = 2d−1).

Proof. This follows from proof of Weyl’s inequality (see [6], Lemma 3). We will outline
the steps. By repeated squaring, one finds that

|S(n, N )|D � ND−1 + ND−d
N∑

y1,...,yd−1=1

min

{
N,

1
‖d!nαy1 . . . yd−1‖

}
,

where‖·‖ denotes the distance to the nearest integer. Now sum overn ≤ M , collecting
together terms with the productd!ny1 . . . yd−1 having a given valuem. The number of
such terms is at most the divisor functionτ (m) � mε. Since the maximal value ofm is
d!MNd−1, we find∑

1≤n≤M

|S(n, N )|D � MND−1 + M εND−d+ε
∑

m≤d!MNd−1

min

{
N,

1
‖mα‖

}
.
(3.2)

Proceeding as in [6], we replaceαby a rational approximationa/q with |α−a/q| ≤ 1/q2,
and divide the range of summation into consecutive blocks of lengthq. This will give

∑
m≤d!MNd−1

min

{
N,

1
‖mα‖

}
�
(

MNd−1

q
+ 1

)
· (N + q logq).

Inserting into (3.2) we get
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∑
1≤n≤M

|S(n, N )|D � MND−1 + M εND−d+ε

(
MNd−1

q
+ 1

)
· (N + q logq).

(3.3)

Now chooseq ≤ MNd−1 with |α − a/q| ≤ 1/qMNd−1 (so certainly|α − a/q| ≤
1/q2 so (3.3) holds). Sinceα is Diophantine,|α − a/q| � 1/q2+ε which givesq �
(MNd−1)1−ε. Therefore(

MNd−1

q
+ 1

)
· (N + q logq) � (MNd−1)1+ε,

and consequently ∑
1≤n≤M

|S(n, N )|D � M1+εND−1+ε

as required. �

As an immediate consequence of this lemma, we get on repeatedly using the Cauchy-
Schwarz inequality that

Corollary 5. For α Diophantine, andM ≥ 1,∑
1≤n≤M

|S(n, N )|2 � M1+εN2−2/D+ε (3.4)

and ∑
1≤n≤M

|S(n, N )| � M1+εN1−1/D+ε. (3.5)

3.3. Proof of Proposition 3.We first show

XN+k(α) − XN (α) =
1

N2

∑
0<|n|≤M

f̂
( n

N

)
{soff (n, N + k) − soff (n, N )}

+ O
(
M2+εN−2+δ−2/D

)
. (3.6)

We use the representation (2.5),

XN (α) =
1

N2

∑
n6=0

f̂
( n

N

)
soff (n, N ).

Sincef ∈ C∞
c (R), its Fourier transform̂f is rapidly decreasing and so on using the

trivial estimate|soff (n, N )| ≤ N2 we see that for anyb > 0, M = N1+b,

XN (α) =
1

N2

∑
06=|n|≤M

f̂
( n

N

)
soff (n, N ) + rapidly decaying term.

Next we use|soff (n, N )| ≤ N + |S(n, N )|2 and Corollary 5 to deduce that∑
06=|n|≤M

|soff (n, N + k)| ≤ MN +
∑

06=|n|≤M

|S(n, N + k)|2 � M1+εN2−2/D.
(3.7)
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Next we claim that

1
(N + k)2

∑
06=|n|≤M

f̂
( n

N + k

)
soff (n, N + k) =

1
N2

∑
06=|n|≤M

f̂
( n

N

)
soff (n, N + k)

+ O(M2+εN−2+δ−2/D). (3.8)

Indeed, write
1

(N + k)2
=

1
N2

+ O

(
k

N3

)
=

1
N2

+ O(N−3+δ)

and
n

N + k
=

n

N
+ O(

nk

N2
) =

n

N
+ O

(
M

N2−δ

)
,

so that for|n| ≤ M , k < N δ,

f̂
( n

N + k

)
= f̂

( n

N

)
+ O

(
M

N2−δ

)
.

Therefore

1
(N + k)2

∑
06=|n|≤M

f̂
( n

N + k

)
soff (n, N + k)

− 1
N2

∑
06=|n|≤M

f̂
( n

N

)
soff (n, N + k)

=

(
1

N2
+ O(

1
N3−δ

)

) ∑
06=|n|≤M

(
f̂
( n

N

)
+ O

(
M

N2−δ

))
soff (n, N + k)

− 1
N2

∑
06=|n|≤M

f̂
( n

N

)
soff (n, N + k)

�
(

M

N4−δ
+

1
N3−δ

) ∑
06=|n|≤M

|soff (n, N + k)|

� M

N4−δ
M1+εN2−2/D = M2+εN−2+δ−2/D by (3.7)

as required. This proves (3.6).
Next we express the differencesoff (n, N + k) − soff (n, N ) as

soff (n, N + k) − soff (n, N ) = 2 Re
∑

N+1≤y≤N+k

e(−nαyd)
∑

1≤x≤N

e
(
nαxd

)
+

∑
N+1≤x 6=y≤N+k

e
(
nα(xd − yd)

)
.

We estimate the second term trivially byk2:

|soff (n, N + k) − soff (n, N )| ≤ k|S(n, N + k)| + k2.
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Then inserting this into (3.6) we get

XN+k(α) − XN (α) � 1
N2

∑
0<|n|≤M

(
k|S(n, N + k)| + k2

)
+ M2+εN−2+δ−2/D

� k

N2

∑
0<|n|≤M

|S(n, N )| +
Mk2

N2
+ M2+εN−2+δ−2/D

� k

N2
M1+εN1−1/D +

Mk2

N2
+ M2+εN−2+δ−2/D by (3.5)

� M1+εkN−1−1/D � N b+δ−1/D+ε.

Sinceb > 0 can be made arbitrarily small, this proves our proposition. �

4. Triple and Higher Correlations

The higher correlations run into some basic difficulties. For example, consider the triple
correlation forαn2 mod 1. For a test functionf ∈ C∞

c (R2), let

FN (y1, y2) =
∑

(m1,m2)∈Z2

f (N (y1 + m1), N (y2 + m2)) . (4.1)

This function is periodic and has a Fourier expansion

FN (y) =
1

N2

∑
k∈Z2

f̂

(
k

N

)
e(k · y). (4.2)

The triple correlation function of the sequenceαn2 mod 1 and for the test function
f is

R3(f, α, N ) =
1
N

′∑
1≤x,y,z≤N

FN

(
α(x2 − y2), α(y2 − z2)

)
, (4.3)

where the sum
∑′ is over all triples ofdistinct integersx, y, z. The Fourier expansion

of R3 is

R3(f, α, N ) =
∑

l

cl(N )e(lα) (4.4)

with

cl(N ) =
1

N3

′∑
1,x,y,z≤N, k1,k2

k1(x2−y2)+k2(y2−z2)=l

f̂

(
k1

N
,
k1

N

)
. (4.5)

There is no doubt that the mean〈R3〉 = c0(N ) → f̂ (0, 0), asN → ∞, the expected
answer for random sequence, and that more generallycl(N ) → 0 if l 6= 0. That is to say
thatR3(f, α, N ) → f̂ (0, 0) in the weak sense. This can probably be proven. However,
a much greater difficulty appears and that is that iff (0) 6= 0 then
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∥∥∥R3(f, N ) − f̂ (0)
∥∥∥2

2
� N. (4.6)

This shows that theL2 approach to almost-everywhere convergence is problematic in
this case. In fact, this feature of theL2-norm being as large a manifestation ofR3 being
very large at rationalα’s. For almost allα we still expect thatR3(f, α, N ) → f̂ (0, 0).

To prove (4.6) note that asN → ∞,

∑
l

cl(N ) =
1

N3

′∑
1≤x,y,x≤N

∑
k1,k2

f̂

(
k1

N
,
k1

N

)
∼ N2f (0).

Hence iff (0) 6= 0 then

N2 � |
∑

l

cl(N )| ≤
(∑

l

|cl(N )|2
)1/2(∑

l�N3

1

)1/2

= N3/2

(∑
l

|cl(N )|2
)1/2

,

which gives (4.6).
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11. H. Weyl:Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann.77, 313–352 (1916)

Communicated by Ya. G. Sinai


