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Abstract. Gamma-band neuronal oscillation and synchronization with the range of 30-90 Hz 

are ubiquitous phenomenon across numerous brain areas and various species, and correlated 

with plenty of cognitive functions. The phase of the oscillation, as one aspect of CTC 

(Communication through Coherence) hypothesis, underlies various functions for feature 

coding, memory processing and behaviour performing. The PPC (Pairwise Phase Consistency), 

an improved coherence measure, statistically quantifies the strength of phase synchronization. 

In order to evaluate the PPC and its relationships with input stimulus, neuronal activation and 

firing rate, a simplified spiking neuronal network is constructed to simulate orientation 

columns in primary visual cortex. If the input orientation stimulus is preferred for a certain 

orientation column, neurons within this corresponding column will obtain higher firing rate and 

stronger neuronal activation, which consequently engender higher PPC values, with higher 

PPC corresponding to higher firing rate. In addition, we investigate the PPC in time resolved 

analysis with a sliding window.   

1 Introduction 
Neuronal gamma-band oscillation and synchronization (30–100 Hz) have been observed in several 

cortical and subcortical areas [1-4] and numerous species [1, 5, 6], and suggested to be associated with 

a variety of cognitive functions, including signals routing [7-9], feature integration [10, 11], selective 

attention [12, 13], memory [14, 15] and so on. The properties of gamma band oscillation and its role 

for cognitive functions are extensively investigated [16-18]. A hypothesis, referred to as CTC 

(Communication through Coherence), often manifests itself as a plausible mechanism for neuronal 

oscillation [8, 19]. 

The CTC hypothesis concerns two aspects for two signals, if their amplitudes correlate (power 

correlation) or if their peaks and valleys align (phase coherence) [20]. With regard to amplitude 

aspect, increasing the amplitude of the neuronal activity can implement attention selection to a certain 

sensory stimulus [21]. Besides, switching one of several convergent pathways from asynchronous to 

oscillatory state can accurately establish signal routing, because the spatial pattern of amplitude of 

firing rate can reproduce the spatial pattern of firing rates of neuronal population [22]. As for phase 

aspect, the oscillatory phase, describing the temporal relationship relative to the background 
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oscillation, is a vital oscillatory parameter and proposed to underlie information processing and 

transferring in brain cortex [23]. 

The phase of oscillation is indicated to support multiple cognitive functions, for instance feature 

coding [24, 25]. The phenomenon of theta-phase precession occurs in the hippocampus and the spatial 

information can be encoded by theta phase. when the animal moves across the place field of a 

particular neuron, the phase gradually advances towards the peak of the theta cycle [26]. The gamma 

cycle hypothesis proposes that the gamma cycle is determined by synchronized inhibitory 

interneurons, and the excitatory input to a pyramidal neuron can be transformed into a temporal code 

[27]. The physiological experiment in visual cortex of awaken monkey suggests that the phase can be 

coded systematically as a function of neuronal activation strength in the gamma cycle [28]. 

Hippocampal theta has also been proposed to implement information encoding and retrieving in 

different phases of the theta cycle [4, 15, 23]. The oscillatory phase for other cognitive functions is 

elucidated in information integration [10, 29], phase-dependent coding of memorized objects [30] and 

letter recognition [31]. 

Several computational simulations and theoretical analyses also confirm the general functions of 

oscillatory phase. The phase of oscillation carries information about stimulus identity and can be 

shifted with stimulus features, with spike phase coding for stimulus strength [32]. The interaction 

strength between two neuronal groups can also be established by their relative phase [5, 16, 33]. 

Two aspects correlated with oscillatory phase are taken into account: the phase of oscillation, 

representing input stimulus or neuronal activation, and the phase synchronization, serving as an 

instance of CTC approach for signal routing, information communication and selective attention. The 

spike-LFP phase, a kind of phase representation, relates spike activity to its background LFP (Local 

field potential) oscillation [34]. 

With respect to phase synchronization, PLV (Phase Locking Value) [35], general coherence [5] 

and PPC (Pairwise Phase Consistency) [34, 36] are three major measures, each of which can quantify 

phase consistency or the strength of rhythmic synchronization. However, both PLV and general 

coherence approaches are strongly influenced by the variable and uncontrollable sample size, such as 

different spike and trial numbers. In order to overcome this bias influence, the PPC measure is 

introduced, which executes the computation of vector dot product instead of the operation of vector 

addition across pairs of oscillatory phases [36]. Unfortunately, there still exists further obstacles for 

PPC approach and a revised version of point-field PPC ��� , with respect to spike-LFP phase, is 

proposed. The point-field PPC ��� measure only implements dot product computations across different 

trials in order to eliminate the phase dependence within the same trial, which is induced by non-

Poisson history effects, such as refractoriness and bursting [34].  

In this experiment, we construct a spiking neuronal network to simulate activities of orientation 

columns in primary visual cortex, which is inspired by the physiological experiment in visual cortex 

of awaken monkeys [28]. The properties of PPC and its relationships with input stimulus, orientation 

preference, firing rate and neuronal activation are extensively investigated and thoroughly 

demonstrated. The PPC, statistically quantifying the consistency of oscillatory phases, shows 

significant values all within the frequency of gamma-band. When the input orientation is similar to or 

as same as the preferred orientation of a certain column, higher firing rate and stronger neuronal 

activation will be brought about for this corresponding column, which consequently leads to higher 

PPC values. 

2 Methods

2.1 Neuronal model

A leaky integrate-and-fire neuronal model is adopted in this paper, which evolves according to the 

following equation [37]: 
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�	 =  −
�(� − �
��	) + ����� + ����� + ���                                          (1) 

, where �� is a membrane capacitance, 
�  a membrane leak conductance, and ���  a constant tonic 

background current. When the membrane potential V surpasses the threshold potential of �	�
��, an 

action potential is engendered, then the membrane potential V is reset to the resting potential �
��	, 

and it remains clamped for a refractory period of �
�� . The excitatory (AMPA) and inhibitory 

(GABA) synaptic currents ����� and ����� obey (2) and (3) 

����� =  
����(�� − �)                                                                (2) 

����� =  
����(�� − �)                                                                 (3) 

, where �� and �� are excitatory and inhibitory reversal potential respectively. The dynamics of the 

excitatory and inhibitory conductance 
���� and 
���� comply with the equations as below: 

������
�	 =  − �����

!����
                                                                   (4) 

��"�#�
�	 =  − �"�#�

!"�#�
                                                                   (5) 

, where $���� and $���� are excitatory and inhibitory synaptic decay time, and the default values of 

all parameters can be referred to the Table 1 in the following section. 

2.2 Network Architecture

 

Figure 1. Network architecture

The architecture of neuronal network is elucidated in Figure 1, the left part of which is six groups of 

Poisson neurons, providing external spike inputs, and the right is six columns, simulating orientation 

columns in the primary visual cortex. There are 1200 Poisson neurons, 200 for each Poisson group, 

and totally 1200 excitatory neurons and 300 inhibitory neurons in the six orientation columns. Each of 

the six orientation columns, decorated with same color, is comprised of 200 excitatory and 50 

inhibitory neurons. The ratio of excitatory neurons is 80%, which is in accordance with the 

experimental evidence [38]. The red and blue arrows represent excitatory and inhibitory synaptic 

connections respectively, with the parameter ε = 0.2 as their connection probability. 

Owing to orientation selectivity and tuning curve of firing rate with regard to stimulus orientation 

in visual cortex [39], both excitatory and inhibitory neurons in each column are specified with a 

preferred orientation, with − &
' + &

* , for the ith column. Therefore the vector of preferred orientation 
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for six columns is -− &
' , − &

* , 0, &
* , &

' , &
13. Besides, the same orientation preference is also assigned 

to the neurons of Poisson groups as their corresponding orientation columns, and Poisson rate is 

determined according to (6): 

45678	 = 9cos :2;<7
�� − <�	5�>? + 1A B�CD                                             (6) 

, where <7
�� and <�	5� are the preferred orientation of Poisson neuron and the stimulus orientation 

respectively, B�CD the maximal Poisson firing rate. 

There are forward connections from Poisson groups to their corresponding columns, the weights  

(E�) of which are all the same and constant. Whereas the connection weights within six orientation 

columns depend on the difference of preferred orientation between presynaptic and postsynaptic 

neurons. 

E5F = Wexp :G 9cos :2;<7
� − <7H�	>? − 1A?                                           (7) 

, where <7
�  and <7H�	  denote the preferred orientations for presynaptic and postsynaptic neurons 

respectively. 

The LFP data is simulated as the sum of the absolute values of constant background current, 

excitatory and inhibitory synaptic currents from all excitatory neurons within a nearby neuronal group 

[40]. 

LFP = R;∑ ;|�����| + |�����| + K���K>6
5M� >                                             (8) 

, where the parameter R represents the impedance of electrodes [41]. 

2.3 Experiment simulating

In the middle of each orientation column, we continuously select 10 excitatory neurons and record 

their spike activities (action potentials) and synaptic currents, which bring about one LFP channel 

data. In consequence, there are totally 6 LFP and 60 neuron channels to simulate 6 recording sites by 

means of intracranial electrodes. 

We implement 15 trials altogether for this experiment. For each trial, there is a pre-stimulus 

baseline period of 500 ms, during which only a tonic background current ��� and low Poisson spike 

inputs with a rate of B�� are supplied, which simulates the spontaneous activity in visual cortex. Then 

a constant orientation of 30 degrees is presented for a duration of 1500 ms, in order to mimic the 

drifting gratings. The input orientation is as same as the preferred orientation of the fourth column, 

which renders neurons within this column have higher firing rate, stronger neuronal activation and 

higher phase consistency. 

For each spike from a certain neuron channel, six LFP segments except the one within the same 

column are cut out, all with the spike time as their segments center. Through Discrete Fourier 

Transform with a Hanning window, all LFP segments are decomposed into spike-triggered LFP 

spectrum by (9) 

NO5(Q) = �
S ∑ TU

V(�)
XTU

V(�)X
S
FM�                                                                (9) 

 , where N5
F(Q) denotes the spike-triggered LFP spectrum from the jth LFP channel and ith spike of a 

certain neuron. Then the spike-LFP phase can be easily obtained through (10) [28]. 

Θ5 = angle;NO5(Q)>                                                             (10) 
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, the angle function obtains the phase angle of the input spectrum. The term Z[,�  is a vector 

representation of spike-LFP phase Θ5. Then we can determine point-field PPC ��� with the help of the 

following equation [34]: 

��� =
∑ ∑ ∑ ∑ ;Z\,]⋅ZV,_>`_

Vbd
`]
\bd_∈h]∈�

∑ ∑ (i]i_)_∈h]∈�
                                                  (11) 

, where M and L represent the trial number, j� and jk denote the spike number for trial m and trial l. 

Finally, we demonstrate time resolved analyses with a sliding window, and the window length and 

time step are 75 ms and 10 ms respectively. All the neuronal model simulation and network 

construction are conducted on the basis of an open source Python package of Brian simulator, with a 

time step 0.1 ms. Then the following spectral analyses are implemented based on a MATLAB toolbox 

FieldTrip. In addition, the parameters encountered in previous sections are set according to the Table 

1: 

Table 1. Parameter Settings. 

Parameter Value Parameter Value Parameter Value Parameter Value 

�� 250 pF 
� 10 nS �
��	 -65 mV �	�
�� -45 mV 

��� 300 pA �� 0 mV �� -75 mV $���� 5 ms 

$���� 10 ms �
�� 5 ms B�CD 40 Hz ε 0.2 

G 2 E� 0.05 4 1.0 MΩ B�� 3 Hz  

 

3 Results

3.1 Neuronal activities

 

Figure 2. Spike raster and LFP oscillation.
(A) Spike raster of 200 ms period for (A1) Poisson neurons, (A2) excitatory neurons, (A3) inhibitory neurons. (B) 

Three time sequences of LFP oscillations for the first, fourth and sixth orientation columns.

As demonstrated in Figure 2A, there are three spike raster plots of 200 ms period, representing for 

Poisson, excitatory and inhibitory neurons respectively. Each interval between index numbers in the 

vertical coordinate corresponds to one orientation column. Owing to the Poisson rate vector of {3 Hz, 

23 Hz, 63 Hz, 83 Hz, 63 Hz, 23 Hz} for six Poisson groups, determined by the differences between 

preferred orientation of Poisson groups and stimulus orientation, the spike raster of Poisson neurons 

from the fourth column is densest and gradually declines upwards and downwards to other columns 
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(Figure 2A1). According to experimental evidences [12], individual neurons fire irregularly, whereas 

population neurons fluctuate approximately at a certain frequency, giving rise to appropriate 

oscillation and synchronization. It has been observed that there are strong oscillations in both 

pyramidal and inhibitory neurons, both around the frequency of 55 Hz (Figures 2A2 and 2A3). If not 

mentioned otherwise, the subsequent spectral analyses, i.e. PPC computing, are all restricted to this 

frequency. 

We record three LFP oscillation traces from the first, fourth and sixth orientation columns, the 

peaks of which are entirely different, with the channel four, six and one as a peak time sequence 

(Figure 2B). Because spikes are more likely to discharge in the trough of the LFP oscillation [41], 

neurons in the fourth column will fire early with greater likelihood, and then the sixth and first 

columns, which accounts for the generation of different oscillatory phases and distinct PPC values.  

 

Figure 3. Neuronal firing rate and mean PPC.
(A) Neuronal firing rates of 60 neurons across 15 trials. (B) Mean PPC averaged across 60 neuron channels as a 

function of frequency

The neuronal firing rates of all 60 neurons across 15 trials are precisely computed and exhibited in 

Figure 3A. Though to a certain degree do the firing rates of all neurons fluctuate, there are higher 

firing rates for the third, fourth and fifth columns, and lower firing rates for other columns, because of 

different orientation preference and the tuning curves of Poisson rates. 

Through the measure of point-field PPC ���, we calculate PPC for each neuron and then average them 

to obtain the mean PPC as a function of frequency (Figure 3B). The mean PPC value, with a peak at 

55 Hz, demonstrates significant phase consistency all within the frequency of gamma range, which is 

consistent with the monkey physiological experiment [28].  

3.2 Pairwise phase consistency

 

Figure 4. PPC of 60 neurons.
(A) PPC of 60 neurons for the frequency range of 20-140 Hz. (B) PPC of 60 neurons at 55 Hz

The PPC values of all 60 neurons, with the frequency range of 20-140 Hz, are thoroughly elucidated 

in Figure 4A, which are derived by means of point-field PPC ��� approach. The significant phase 

consistency values of all neurons are all within the frequency of gamma-band. Furthermore, the PPC 
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values for the fourth orientation column are the most powerful and gradually decrease towards left and 

right to other columns. We select the PPC at the frequency of 55 Hz, the same frequency of LFP 

oscillation, and illustrate it as a function of neuron number (Figure 4B). 

The input orientation of 30 degrees is the same as the preferred orientation of the fourth column, 

which gives rise to stronger Poisson inputs, higher firing rates and neuronal activation. Thus the 

spikes are more likely to be concentrated on a certain part of LFP oscillations and therefore lower 

phase dispersions are engendered. Consequently, the PPC measure, quantifying the consistency of 

oscillatory phases, obtains higher values in the fourth column, and declines gradually to its nearby 

columns. 

3.3 Time resolved analysis

 

Figure 5. Time resolved analysis of PPC for 60 neurons.

With a sliding window, we analyze the PPC values of all 60 neurons in a time resolved way (Figure 

5). The PPC manifests higher values for neurons from the fourth orientation column, and then 

decreases gradually upwards and downwards to other columns. Though neurons within the same 

orientation column receive the same Poisson input and obtain similar neuronal activation, the PPC of 

which are not always the same, but slightly different across different neurons for the same column. 

Additionally, the PPC for the beginning period is considerably small and comparatively similar across 

all 60 neurons because of the transient stimulus onset effect. 

4 Conclusions
In order to investigate the oscillatory phase, PPC and their relationships with input orientation, firing 

rate and neuronal activation, we construct a spiking neuronal network according to the physiological 

experiment of awaken monkeys [28]. Six Poisson groups, with different Poisson rates, provide 

external spike inputs and six columns, with distinct orientation preference, simulate orientation 

columns in primary visual cortex. Then we conduct data recording and spectral analyses, which 

include spike-LFP phase calculation [28] and point-field PPC ��� computation [34]. The most powerful 

PPC values of neurons are all within the gamma-band frequency, which is consistent with 

physiological experiments [28]. If the preferred orientation of one column is close or equivalent to the 

input orientation stimulus, the neurons within this column will obtain higher firing rate and stronger 

activation, thereby giving rise to stronger synchronization and higher PPC values. However, the PPC 

will degrade if the input orientation is far from the preferred orientation of a certain column. 

Furthermore, we adopt the leaky integrate-and-fire neuronal model because of its biological 

plausibility and computational efficiency, however other models such as Hodgkin–Huxley model and 

SRM model are feasible. 
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