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The Palaeocene–Eocene thermal maximum (PETM) is characterized by a global
negative carbon isotope excursion (CIE) and widespread dissolution of seafloor
carbonate sediments. The latter feature supports the hypothesis that the PETM
and CIE were caused by the rapid release of a large mass (greater than 2000 Gt C) of
12C-enriched carbon. The source of this carbon, however, remains a mystery. Possible
sources include volcanically driven thermal combustion of organic-rich sediment,
dissociation of seafloor methane hydrates and desiccation and oxidation of soil/sediment
organics. A key constraint on the source(s) is the rate at which the carbon was released.
Fast rates would be consistent with a catastrophic event, e.g. massive methane hydrate
dissociation, whereas slower rates might implicate other processes. The PETM carbon
flux is currently constrained by high-resolution marine and terrestrial records of the
CIE. In pelagic bulk carbonate records, the onset of the CIE is often expressed as a
single- or multiple-step excursion extending over 104 years. Individual planktonic shell
records, in contrast, always show a single-step CIE, with either pre-excursion or
excursion isotope values, but no transition values. Benthic foraminifera records, which
are less complete owing to extinction and diminutive assemblages, show a delayed
excursion. Here, we compile and evaluate the individual planktonic shell isotope data
from several localities. We find that the most expanded records consistently show a
bimodal isotope distribution pattern regardless of location, water depth or depositional
facies. This suggests one of several possibilities: (i) the isotopic composition of the
surface ocean/atmosphere declined in a geologic instant (!500 yr), (ii) that during the
onset of the CIE, most shells of mixed-layer planktonic foraminifera were dissolved, or
(iii) the abundances or shell production of these species temporarily declined, possibly
due to initial pH changes.
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1. Introduction

The Palaeocene–Eocene thermal maximum (PETM) represents the single largest
well-documented warming event in Earth’s history. The rise in global
temperature, more than 58C, occurred in less than 10 kyr and was sustained
for a few tens of thousands of years before gradually abating. With a few
exceptions, mainly along Antarctica and in coastal regions, the warming of the
sea surface appears to have been relatively uniform from the equator to the pole
(e.g. Kennett & Stott 1991; Thomas et al. 2002; Zachos et al. 2003, 2006; Sluijs
et al. 2006). This pattern together with the transient nature of the event is
consistent with warming driven by greenhouse forcing. In model simulations
absent an ice-albedo feedback, for example, greenhouse forcing will typically
generate globally uniform warming (Shellito et al. 2003). The geochemical
evidence for massive carbon release to the atmosphere/ocean during the PETM
is also quite strong. The large magnitude of the CIE, its relative abruptness,
along with global carbonate dissolution horizons can only be explained by the
release of a large mass (much greater than 1000 Gt) of isotopically depleted
carbon into the ocean and atmosphere (Dickens et al. 1995, 1997).

Despite the overwhelming evidence for massive carbon release during the
PETM, a lack of consensus still exists over the source and trigger. Decomposition
of seafloor methane hydrates was the first source to be implicated, in large part,
owing to the magnitude and apparent abruptness of the CIE (Dickens et al. 1995,
1997). One hypothesis suggests long-term gradual warming or deep-ocean
circulation changes (Bice & Marotzke 2002) eventually nudged ocean
temperatures over a thermal stability threshold for seafloor hydrates, thereby
initiating runaway decomposition. Numerical modelling showed that as little as
2000 Gt C from methane hydrates would be sufficient to produce a 3.0‰ negative
excursion (Dickens et al. 1995, 1997; Dickens 2000). However, this mass of
carbon, assuming oxidation to CO2, might be insufficient to drive and sustain the
warming, at least for a period longer than a few thousand years (Zachos et al.
2003; Higgins & Schrag 2006). Moreover, the scale of carbonate dissolution would
suggest a much larger mass (Zachos et al. 2005). Another potential source
involves the thermal decomposition of crustal organic matter in the vicinity of
the North Atlantic Igneous Province (Svensen et al. 2004). This model proposes
that intrusion of magma associated with the Iceland plume rapidly generated
large quantities of methane and CO2 that escaped to the ocean/atmosphere via a
vast network of fluid/gas seeps between the Greenland and Norwegian margins.
The mass of carbon generated by this activity would be limited by the scale of
dike intrusion and carbon content of the crust (Higgins & Schrag 2006). Finally,
other models invoke widespread oxidation of subaerially exposed marine organic
matter in a desiccating epicontinental sea or the widespread oxidation of organic
matter (lignites) in soils (Kurtz et al. 2003; Higgins & Schrag 2006). Although
these sources are posited as the primary cause of the PETM, either could have
operated purely in a positive feedback mode as well.

One of the key challenges in identifying the source and trigger is to constrain the
rate and magnitude of the CIE. This task is complicated by the fact that all pelagic
P–E boundary sections are truncated or condensed as a consequence of ocean
acidification and carbonate dissolution. These sections are characterized by
distinct clay layers or low carbonate dissolution horizons (Kennett & Stott 1991;
Phil. Trans. R. Soc. A (2007)
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Thomas et al. 1999; Zachos et al. 2005). Even though most dissolution involved
sediment deposited prior to the event (Zeebe & Zachos in press), it is clear that
much of the deep sea was undersaturated throughout the onset of the CIE. As a
consequence, the pelagic sediment record of the initial phase of the CIE is not
likely to have been preserved, at least in the highly undersaturated portions of
the ocean that probably included most of the ocean below the thermocline.

It is probable that carbonates deposited in relatively shallow areas of the
ocean with high sedimentation rates (i.e. the shelves) may have escaped severe
dissolution, thereby preserving the initial phase of the CIE. The Eocene surface
ocean, much like the modern, would have been highly oversaturated with
respect to CaCO3, in large part owing to the export of organic carbon.
Therefore, even though pH and carbonate ion content would have declined in
the surface ocean with increased CO2, those waters should have remained
oversaturated. Deeper in the water column, higher saturation levels could only
be maintained in regions where the carbonate flux was sufficiently high to
suppress the local CCD. To test this, we examine new single-shell isotope data
generated for a shelf sequence preserved in a core from Bass River, NJ. Previous
work on this core identified the CIE and indicates that the P–E boundary
contact is conformable (Cramer et al. 1999). The sediments, which are
composed predominantly of clay with some carbonate, were deposited on the
outer shelf at depths less than several hundred metres. As a consequence,
bottom water carbonate ion concentration at this location would have been
higher than in the deep ocean during the PETM. Moreover, owing to high
sedimentation rates and high clay content, foraminifer preservation is excellent.
Comparison of this record with pelagic records characterized by high and low
carbonate flux should allow us to assess the impact of dissolution on the pelagic
isotope records, in particular, the extent to which the CIE is truncated. If the
CIE is indeed geologically rapid, this would strengthen the case for models
invoking rapid release of carbon, as might occur with massive decomposition of
methane hydrates.
(a ) CO2 flux and ocean acidification

Model simulations of the time-dependent impacts of current anthropogenic
CO2 emissions on ocean carbonate saturation state provide insight into what
might have transpired during the PETM over short and long time-scales. In
effect, because the large flux of carbon in these simulations transpires over a
brief period (approx. 300 years) relative to the vertical ocean mixing time
(approx. 1000 years), the surface ocean pH rapidly drops (Archer et al. 1997;
Caldeira & Wicket 2003). Eventually, as the CO2 flux subsides and the ocean
mixes, the acidified waters are transferred down into the ocean interior where
they are buffered through reactions with seafloor carbonate. For several
thousand years, such reactions chemically erode seafloor carbonate until
complete buffering is achieved (Archer et al. 1997). Carbonate accumulation
gradually increases as CO2 levels begin to decline and saturation levels rise.

This anthropogenic ocean acidification model represents an extreme case for
the PETM, one that may have been realized only if the release of carbon occurred
all at once or in pulses. If the carbon were released gradually, say over 5–10 kyr,
the effects of acidification on the surface ocean would have been less severe.
Phil. Trans. R. Soc. A (2007)
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Figure 1. Palaeogeographic reconstruction (55 Ma; from the Ocean Drilling Stratigraphic Network,
http://zeus.palaeoz.geomar.de) with locations of ODP Sites 689, 690 and 1209, and the core from
Bass River, NJ.
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Nevertheless, this model provides insight into how carbon uptake by and
redistribution within the ocean might have progressed, as well as the potential
impact on calcareous plankton production and preservation. In particular, the
pH of the surface ocean should have declined, possibly inhibiting biogenic
calcification. The extent of pH change would simply depend on the rate of carbon
release, which was probably slower during the PETM. Regardless, the long-term
impacts on deep-sea carbonate chemistry would be very similar with the scale of
change depending primarily on the mass of carbon released. The main impact
would be significant deep-sea carbonate undersaturation and chemical erosion,
which would create clay-rich condensed layers over much of the deep sea
(Zeebe & Zachos in press). Even in places where carbonate was not completely
dissolved, very little of the sinking shell mass would survive dissolution until the
carbonate saturation state of the deep sea recovered (figure 1).
(b ) CO2 flux and ocean carbon isotopes

The above anthropogenic emissions scenario also provides insight into how the
distribution of carbon isotopes in the ocean might have evolved during the CIE.
With the rapid flux scenario, the surface ocean d13CDIC rapidly drops, again
owing to relatively slow vertical mixing. With a sustained flux of isotopically
depleted carbon, the d13CDIC of the large deep-sea carbon reservoir eventually
begins to drop. As an example, just in the last century, d13CDIC of the surface
ocean has decreased by 1.4‰ (figure 2), while the deep-sea d13CDIC has remained
constant (Böhm et al. 2002). Eventually, with continued anthropogenic carbon
release and mixing, the deep-sea d13CDIC will decline, though more gradually.
With the PETM, the pattern and magnitude of change in ocean d13CDIC would
have similarly depended on the flux and isotopic composition of the carbon
source as well as the rate of oceanic mixing. As such, information on the rate
and magnitude of d13C change in each reservoir is essential for identifying the
carbon source.
Phil. Trans. R. Soc. A (2007)
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Figure 2. Record of atmospheric pCO2 between AD 1350 and AD 2000 plotted along with d13C of
atmospheric CO2 (from analysis of ice cores) and mixed-layer d13CDIC as reconstructed from two
Atlantic coralline sponges (Böhm et al. 2002).

1833Palaeocene–Eocene carbon isotope excursion
2. The marine carbon isotope excursion

Themagnitude and timing of themarine carbon isotope excursion (CIE) across the
Palaeocene–Eocene boundaryhas been established through the analysis of a variety
of sedimentary components including bulk inorganic and organic carbon, organic
biomarkers, coccoliths (i.e. fine fraction) and benthic and planktonic foraminifera
(e.g. Kennett & Stott 1991; Bralower et al. 1995; Kaiho et al. 1996; Schmitz et al.
1996, 2001;Thomas&Shackleton 1996;Bralower et al. 1997;Kelly et al. 2005; Sluijs
et al. 2006). Each of these offers advantages and disadvantages. Ideally, biomarkers
or specific species of foraminifera are preferred because the fractionation of isotopes
between the dissolved carbon pool and these products is likely to have remained
relatively constant with time (within certain limits). High-resolution marine
biomarker records, however, have been difficult to construct due to the low organic
carbon content of pelagic sediments. Foraminifer stable isotope records, on the
other hand, are common.Typically, for both the reasons of analytical and statistical
precision, each data point is generated by analysis of multiple shells. A drawback,
however, is that the range of variability among individual specimens in each sample
interval is lost. This limitation becomes especially acutewhen investigating periods
of rapid environmental change, where slow sedimentation rates combined with
bioturbation tend to smooth transitions.

The potential artefacts created by sample smoothing became obvious with one
early investigation of the PETM in Pacific ODP Site 865, where a carbon isotope
time-series constructed from analyses of a mixed-layer foraminifer species of the
genera Morozovella and Acarinina yielded a CIE smaller than recorded elsewhere
(Kelly et al. 1996). Bioturbation was suspected and as a test, dozens of shells
were collected from several of the boundary samples and analysed individually.
The results demonstrated that each sample was in fact, composed of mixtures of
pre-excursion and excursion specimens, but no specimens with transitional d13C
Phil. Trans. R. Soc. A (2007)
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Figure 3. Single-shell foraminifer isotope data for ODP Sites (a) 689 (Nielsen et al. submitted) and
(b) 690 (Thomas et al. 2002), both located on Maud Rise, South Atlantic. Multiple shell isotope
data for Nuttalides truempyi are represented by open circles, single shells by filled circles.
Sedimentation rates at these sites were in excess of 2.8 cm kyrK1.
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values. Even peak excursion samples further up-section contained reworked
pre-excursion shells. In addition to resolving the full magnitude of the CIE at this
site, this individual shell dataset suggested that the excursion might have been
geologically instantaneous, at least in the ocean mixed layer, though potential
artefacts were identified as well, including a hiatus. This bimodal pattern,
however, was eventually found at several other sites, including ODP Site 690
(figure 3; Thomas et al. 2002). As with Site 865, the mixed-layer foraminifera
CIE showed only pre-excursion and excursion values indicating that this
phenomenon was a global occurrence. Similar patterns have been subsequently
identified in the North Pacific, ODP Site 1209 (figure 4; Zachos et al. 2003), at
shallower location on Maud Rise, ODP Site 689 (figure 3; Nielsen et al.
submitted) and in a continental shelf section in the Atlantic (figure 5).
(a ) Top-down propagation of the CIE

In the Maud Rise sites, appearance of the first excursion values in benthics and
deeper dwelling planktonic foraminifer, species of Subbotina, stratigraphically
lags the excursion values of the mixed layer planktonic foraminifera implying a
Phil. Trans. R. Soc. A (2007)
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top-down propagation of the d13C signal. While the stratigraphic offset could
potentially be explained by a combination of preservation and reworking
artefacts, this result has since been reproduced at a nearby shallower Site 689
(Nielsen et al. submitted). No such lag between planktics and benthics is
observed at Bass River, nor should we expect this at such shallow depths where
the added isotopically depleted carbon would be quickly transferred to the base
of the water column. Biological pumping and release of respired carbon on the
bottom, however, would still maintain the vertical d13C gradient.

Collectively, these records imply that the CIE was first recorded in the
ocean mixed layer, which would have been in near isotopic equilibrium with
the atmosphere. The signal then appears to propagate downward into the
thermocline and deep sea. This pattern bears some similarity to the decrease
in the d13C of carbon in the atmosphere and surface ocean over the last 150
years as recorded in ice cores and sclerosponges (figure 2; Böhm et al. 2002).
The overall decrease of 1.1‰ in sclerosponges more or less parallels the rise in
atmospheric pCO2 indicating that (i) anthropogenic carbon (approx. K22‰)
Phil. Trans. R. Soc. A (2007)
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is the primary source and (ii) it is rapidly being absorbed by the ocean-mixed
layer. The magnitude of the decrease also demonstrates that this carbon is
largely accumulating in the surface ocean/atmosphere. Because the rate of
release is rapid relative to the vertical mixing time of the ocean, the invasion
of anthropogenic CO2 deeper into the ocean has been limited largely to regions
of vertical advection such as the North Atlantic (Feely et al. 2004; Sabine
et al. 2004). On such brief time-scales, the deep sea is not in equilibrium
with the surface ocean/atmosphere and may remain so for at least one
mixing cycle.

With the PETM, a similar situation could have arisen if the rate of carbon
release were relatively rapid when compared with the vertical mixing time of the
ocean. The abrupt step in mixed-layer foraminifera d13C values and top-down
propagation of the CIE in the isotope records might be indicative of such
phenomena. Still, several features of the single-shell record are difficult to
reconcile with a top-down propagation scenario. The first is the apparent length
of delay for the full CIE to be expressed in the deep-sea reservoir. The delay
recorded at Site 690 is estimated to be of the order of 5–10 kyr (Thomas et al.
2002), or longer if sedimentation rates slowed (Farley & Eltgroth 2003). If the
carbon were released in less than 1000 years, with an ocean mixing time of similar
duration, the carbon along with its depleted isotopic signature should have been
transferred to the deep sea within two to three mixing cycles. For the signal to lag
by more than this, vertical mixing rates must have slowed significantly, a
plausible scenario if the polar regions warmed rapidly, thereby increasing the
Phil. Trans. R. Soc. A (2007)
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density stratification in regions of deep water formation. However, if vertical
overturn did slow, the disparity in the surface to deep d13C gradient should also
continue to grow during this period. Instead, it appears to immediately stabilize
suggesting some quasi-equilibrium in the flux of light carbon.

Could the patterns in the individual shell records be artefacts of differential
dissolution and reworking? For example, preferential dissolution of Late
Palaeocene mixed-layer foraminifera would create an apparent stratigraphic
offset with the more dissolution-resistant thermocline and benthic foraminifera
extending further up section. However, the first excursion values of the mixed-
layer values should then lag those of the more dissolution-resistant species.
Instead, there is a lead lag relationship between the first mixed-layer
foraminifer excursion values relative to those in the thermocline and deep
sea. This lead lag relationship is of the order of tens of thousands of years and
implies a top-down propagation of the CIE, from the mixed-layer to
thermocline and deep sea.

The extra long lag in the benthic d13C CIE relative to planktic in deep-sea cores
is probably an artefact of reworking. The primary species used to reconstruct
most benthic d13C records spanning the P–E boundary is Nuttalides truempyi.
Even though specimens can be found in the excursion layer, it appears these are
reworked, and that N. truempyi temporarily disappeared in most pelagic locations
coeval with the benthic extinction horizon. This assertion is based on the sudden
decrease in the relative abundances of this species at the benthic extinction
horizon (Thomas & Shackleton 1996; Thomas 1998, 2003). Apparently, the initial
chemical/physical changes associated with the PETM that were responsible for
the extinction, also forced N. truempyi to abandon large areas of the seafloor,
which were replaced by ‘excursion’ taxa, such as Bulimina spp. that increase in
abundance during the event (Thomas & Shackleton 1996; Thomas 1998). These
excursion taxa which are much too small to be analysed individually, apparently
could tolerate the harsh conditions that terminated or excluded other species.
Still, it is possible that these taxa also do not record the full CIE. Even so, it would
be hard to determine this using a single-specimen approach.

The lag in bulk carbonate may also be an artefact of reworking coupled with
dissolution. Clearly, such an effect is evident in the Walvis Ridge transect, where
there is a depth-dependent shift in the pattern of the bulk CIE (Zachos et al.
2005). In the clay or low carbonate layers, much of the carbonate present at the
base of these layers would probably be Palaeocene in age as these layers are
forming primarily by chemical erosion of existing sediment. As chemical erosion
slows, more of the sinking carbonate is preserved which along with bioturbation
creates a more gradual transition.
(b ) Magnitude of the marine CIE

Terrestrial carbon isotope records across the P–E boundary generally show
excursions of the order of 5–6‰. The larger magnitude of the CIE, as recorded by
plant-derived organic matter or soil nodules, very likely reflects the effect of
humidity and/or pCO2 on fractionation during photosynthesis, an effect that
might amplify the signal (Bowen et al. 2004). Regardless, there is some suspicion
that the record of the marine CIE is attenuated, possibly owing to pH or
carbonate ion effects or even a preservation artefact (Bowen et al. 2004; Pagani
Phil. Trans. R. Soc. A (2007)
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et al. 2006). Are all the pelagic records of the CIE truncated owing to ocean
acidification and widespread dissolution of carbonate? To test this, we cross-
plotted the d18O and d13C values of mixed layer foraminifer shells from
immediately above and below the boundary from Sites 690 (G0.2 m) and 1209
(G0.1 m) (Thomas et al. 2002; Zachos et al. 2003) along with new data from
Sites 689 (Nielsen et al. submitted) and Bass River (John et al. submitted). The
duration of the intervals selected represent less than 20 kyr. We included only
data for species of Acarinina and Morozovella, taxa that are thought to have
harboured photosymbionts (D’Hondt et al. 1994) and thus would have resided in
the photic zone. The range of excursion and pre-excursion d13C values for Sites
689, 690 and Bass River are actually very similar and strongly bimodal (figure 6).
The values for Site 1209 shells show less separation between the pre-excursion
and excursion values, and are on an average also slightly heavier than the other
sites (figure 6). Owing to the rapid exchange rate of CO2 between the ocean/
atmosphere, the d13C of surface water DIC should be globally uniform (G0.5‰).
Larger deviations reflect the influences of local processes on carbon fluxes, such
as intense vertical mixing (e.g. upwelling) or phytoplankton blooms, which can
create temporary disequilibrium. For example, the initial reduction in the d13C
gradient between Acarinina and thermocline dweller Subbotina during the CIE
could be attributed to either increased vertical mixing/or reduced export
production at the Maud Rise and Bass River sections (Kennett & Stott 1991;
Thomas et al. 2002). Alternatively, the positively offset excursion values at Site
1209 may simply reflect a temporal gap due to the effects of dissolution in this
low-accumulation rate setting. The entire excursion layer at Site 1209 is less than
Phil. Trans. R. Soc. A (2007)
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0.5 m thick, much thinner than at Maud Rise (approx. 2 m) and Bass River
(approx. 10 m; John et al. submitted). The fact that the pre-excursion and
excursion values are nearly identical at Maud Rise and Bass River, both sections
characterized by high-accumulation rates, but in very different depositional
environments, suggests the sections were less impacted by dissolution, and thus
more likely to record the full magnitude of the CIE in the surface ocean mixed-
layer, approximately K3.5 to K4.0‰.

With the exception of a few data points near the base of the CIE at Site 1209
(figure 4), there are no transitional carbon isotope values among individual
mixed-layer shell data generated to date, implying a rapid shift in surface ocean
d13C. Are there other factors that might have contributed to the lack of
transitional carbon isotope values in mixed-layer foraminifera? It is possible that
the abundances of these species decreased during the period of lowest pH or
warmest temperature (Kelly et al. 1996, 1998; Kelly 2002), or that these and
other planktonic foraminifera precipitated thinner shells which did not readily
preserve. In either case, the implications are significant that pH changes might
have impacted the biomineralization and ecology of planktonic foraminifera.
Additional analyses of individual shells of both common and rare species, and
from locations where dissolution was minimal should help to resolve this issue.
3. Summary

The marine record of the CIE has been constructed from analysis of a large
variety of materials ranging from bulk inorganic and organic carbon to individual
foraminifer shells. Analyses of individual mixed-layer planktonic shells from
cores spanning the boundary generally yield pre-excursion or excursion carbon
isotope values, but no transitional values suggesting that the d13C of the
atmospheric and surface ocean carbon pools changed very rapidly on geologic
time-scales (less than 500 years). Close agreement of the absolute pre-excursion
and excursion foraminifera carbon isotope values between pelagic and coastal
sections suggests that the magnitude of the CIE in the atmosphere and surface
ocean was between 3.5 and 4.0‰, almost 1.0‰ greater than that recorded in
deeper dwelling planktonic and benthic foraminifera. While the pattern inferred
for the mixed-layer might be an artefact of preservation, the similarity in
foraminifer records from diverse depositional facies strongly suggests otherwise.
Consequently, any attempt to characterize the nature and origin of the carbon
cycle perturbation must also reconcile the rapid and large change in the d13C of
surface ocean DIC relative to the smaller anomaly recorded in the deep sea.

We thank Dyke Andreasen for technical support, and two anonymous reviewers for their
comments. This research was supported by NSF grant EAR-0120727.
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