
Universität Karlsruhe - Fakultät für Informatik - Bibliothek - Postfach 6980 - 76128 Karlsruhe

The Palladio Component Model

Ralf Reussner, Steffen Becker, Jens Happe,

Heiko Koziolek, Klaus Krogmann,
Michael Kuperberg

Interner Bericht 2007-21

 ISSN 1432-7864

The Palladio Component Model

Ralf Reussner, Steffen Becker, Jens Happe,

Heiko Koziolek, Klaus Krogmann, Michael Kuperberg

Chair for Software Design & Quality (SDQ)

University of Karlsruhe (TH), Germany

reussner@ipd.uka.de sbecker@ipd.uka.de

happe@ipd.uka.de koziolek@ipd.uka.de

krogmann@ipd.uka.de mkuper@ipd.uka.de

October 8, 2007

Contents

1 Introduction 4

1.1 Motivation . 5

1.2 Overview . 6

2 Foundations 7

2.1 Component-based Development Process . 8

2.1.1 Motivation . 8

2.1.2 Roles in Component-based Development . 8

2.1.3 Development Process Model . 10

2.1.4 Specification Workflow . 12

2.1.5 QoS Analysis Workflow . 14

2.1.6 Discussion . 15

2.2 Interfaces and Composition . 18

2.2.1 Interfaces as First-Class Entities . 18

2.2.2 Composed Structure . 19

2.3 Parametric Contracts . 20

2.3.1 Classical Contracts for Software Components 20

2.3.2 Parametric contracts as a generalisation of classical contracts 21

2.4 Context . 23

2.4.1 Motivation . 23

2.4.2 Context Influences . 24

2.4.3 An Explicit Context Model . 26

2.5 Random Variables . 28

2.5.1 Overview . 28

2.5.2 Definition . 28

2.5.3 PDF discretisation . 29

2.5.4 Functional random variables . 30

2.5.5 Stochastic Expressions . 32

3 Concepts 35

3.1 Component Developer . 36

3.1.1 Overview . 36

3.1.2 Interfaces . 38

3.1.3 Components . 41

3.1.4 Service Effect Specification . 47

2

CONTENTS 3

3.2 Software Architect . 58

3.2.1 Overview . 58

3.2.2 Assembly . 59

3.2.3 Assembly Context . 59

3.2.4 System Assembly Connectors . 60

3.2.5 System . 60

3.2.6 System Roles . 60

3.2.7 System Delegation Connectors . 60

3.3 System Deployer . 61

3.3.1 Motivation . 61

3.3.2 Responsibilities of the Deployer . 61

3.3.3 Resource Types . 62

3.3.4 Resource Environment . 63

3.3.5 Allocation Context . 65

3.3.6 Open Issues and Future Work . 67

3.4 Domain Expert . 69

3.4.1 Overview . 69

3.4.2 Usage Model . 69

3.4.3 Parameter Model . 73

3.5 QoS Analyst . 78

4 Technical Reference 79

4.1 Core and Repository . 80

4.2 Assembly and System . 84

4.3 Resource Type and Resource Environment . 85

4.4 Usage Model . 86

5 Discussion 88

5.1 PCM versus UML2 . 89

5.2 Related Work . 91

5.3 Open Issues and Limitations . 92

Index . 96

Chapter 1

Introduction

4

CONTENTS 5

1.1 Motivation

This report introduces the Palladio Component Model (PCM), a novel software component model for

business information systems, which is specifically tuned to enable model-driven quality-of-service

(QoS, i.e., performance and reliability) predictions (based on work previously published in [1, 2, 3,

4, 5]). The PCM’s goal is to assess the expected response times, throughput, and resource utilization

of component-based software architectures during early development stages. This shall avoid costly

redesigns, which might occur after a poorly designed architecture has been implemented. Software ar-

chitects should be enabled to analyse different architectural design alternatives and to support their design

decisions with quantitative results from performance or reliability analysis tools.

Component-based software engineering (CBSE) [6] promises many advantages over object-oriented

or procedural development approaches. Besides increased reusability, better preparation for evolution,

higher quality due to increased testing, and shorter time-to-market, CBSE potentially offers better pre-

dictability for the properties of architectures, because individual components should be provided with

more detailed specifications. A large number of component models has been designed for different pur-

poses. Component models used in the industry today (COM+/.NET, J2EE/EJB, CCM, etc.) do not offer

capabilities for predicting QoS attributes. Component models from academia [7] have been designed

to support purposes like runtime configuration, protocol checking, mobile device assessment etc. Some

of them deal with QoS predictions (e.g., ROBOCOP, KLAPER, CB-SPE, PACC, etc.), but often have a

different notion of software components.

Model-based QoS-prediction approaches for determining the performance and reliability of software

systems have been researched for decades, but are still hardly used in practice. A survey by [8] classifies

recent performance prediction approaches, and the overview by [9] includes a large number of reliability

models. These approaches mostly target monolithic systems and are usually not sufficiently tuned for

component-based systems. Specifying QoS properties of independently deployable software components

is difficult, because component developers cannot know on what kind of machine their code is used, what

parameters will be supplied to the component’s provided services, and how the components required

services will react.

Two key features of the PCM are i) the parameterised component QoS specification and ii) the de-

veloper role concept. Concerning i), the PCM is based on the component definition introduced by [6].

Software components are black box entities with contractually specified interfaces. They encapsulate

their contents and are a unit of independent deployment. Most importantly, components can be com-

posed with other components via their interfaces. The PCM offers a special QoS-specification for soft-

ware components, which is parameterised over environmental influences, which should be unknown to

component developers during design and implementation.

Concerning ii), the domain-specific language of the PCM is aligned to the different roles involved

in component based development. Component developers specify models of individual components,

which are composed by software architects to architectures. Deployers can model the hardware/VM/OS-

environment of the architecture, and domain experts are enabled to supply a description of the user’s

behaviour, which is necessary for QoS predictions. A QoS-driven development process model supports

the roles in combining their models.

6 CONTENTS

1.2 Overview

This report is structured as follows:

• Chapter 2: lays the foundation to understand the concepts of the PCM. First, the QoS-driven

development process model targeted by the PCM is introduced (2.1). Basic principles of in-

terfaces and composition are highlighted. (2.2). Parametric contracts enable adapting the pre-

/postconditions of components (2.4). As QoS of component depends on the context a component

is executed in, the PCM introduces a special context concept (2.4). To specify resource demands,

random variables can be used in the PCM (2.5).

• Chapter 3: presents the concepts of the PCM and is structured after the roles involved in mod-

eling. Component developers specify interfaces, services, components, and QoS properties (3.1).

Software architects use the specifications of component developers to build architectures (3.2).

Deployers model the resource environment of an architecture (3.3). Domain experts provide in-

formation about the user behaviour (3.4). QoS experts collect the information from the different

roles, use prediction tools and pre-interpret the results (3.5).

• Chapter 4: contains the technical reference of the PCM.

• Chapter 5: discusses the PCM, describes related work, open issues, as well as limitations and

assumptions present in the PCM.

Chapter 2

Foundations

7

8 CONTENTS

2.1 Component-based Development Process

2.1.1 Motivation

Component-based software development follows a different process than classical procedural or object-

oriented development [6]. The task of developing software artefacts is split between the role of the

component developer, who develops individual components, and the software architect, who assembles

those components to form an application. Further roles are involved in specifying requirements and

defining the resource environment.

For using the PCM, a specific development process with specific developer roles is envisioned, which

builds on an existing component-based development process introduced by Cheeseman and Daniels [10],

which was in turn based on the Rational Unified Process (RUP).

Early QoS analyses of a component-based architectures depend on information about its usage profile

and resource environment. This information might not be available directly from software architects

or component developers. Thus, further developer roles, such as deployers, domain experts and QoS

analysts are needed for the specification and QoS analysis of a component-based architectures. These

developer roles and their tasks are described in Section 2.1.2. For the PCM, a domain specific modeling

language has been created for each of these roles. These modeling languages will be described in detail

in Chapter 3.

The PCM process model extends the process model by Cheeseman and Daniels (Section 2.1.3).

Section 2.1.4 elaborates on the specification workflow and illustrates the interdependencies between

component developer and software architect. The PCM process model additionally contains a workflow

”QoS-Analysis” (Section 2.1.5), in which all of the developer roles interact to predict the performance

or reliability of the architecture.

The development process introduced in the following is generic, so that it could be followed by

other model-based QoS prediction approaches for component systems [11] as well. It is furthermore not

restricted to a specific QoS property like performance, but can also be used for reliability, availability,

security, safety, etc. The process model reflects our vision of software development including early QoS

analyses. Its applicability in practice remains to be validated. Some discussion points about the process

model as well as related work are summed up in Section 2.1.6.

2.1.2 Roles in Component-based Development

Role TaskPerson
1..*1..*

assigned has

1..*1

performed by has

Figure 2.1: Concept of Roles.

Before introducing the individual roles of the component-based development process, we describe

the general concept of roles in software development. Figure 2.1 illustrates the relation of persons, roles,

and tasks. A role groups a set of tasks that have an overall purpose and each task is associated to exactly

one role. For example, the role component developer performs tasks like component implementation and

component specification. A role can be adopted by multiple persons, e.g. there can be multiple persons

who are component developers involved in the process. On the other hand, it is also possible for a person

to adopt multiple roles. For instance, some component developers might also play the role of software

architects, who are responsible for designing the software architecture. The relation of persons and roles

CONTENTS 9

is an important concept and has to be considered when reading the following descriptions of roles.

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component Developer>>

QoS Evaluation

Model

<<Software Architect>>

<<Deployer>>

<<Domain Expert>>

<<QoS Analyst>>

Figure 2.2: Developer Roles in the Palladio Process Model

Since we want to evaluate QoS attributes during early development stages, we need additional infor-

mation about the internal component structure, the usage model, and the execution environment. These

cannot be provided by a single person (e.g., the software architect) involved in the development process,

since the required knowledge is spread among different persons with different development roles. There-

fore, a QoS analyst requires support of component developers, software architects, domain experts, and

deployers to analyse the QoS attributes of a software architecture (cf. Fig. 2.2).

…

if (a>b)

c = a;

…

Component Code

External Services

Execution Environment

Usage Profile

Figure 2.3: Influences on the QoS properties of a Software Component

Component developers are responsible for the specification and implementation of components. They

develop components for a market as well as per request. To enable QoS analyses, they need to specify

the QoS properties of their components without knowing a) to which other components they are con-

nected, b) on which hardware/software platform they are executed, and c) which parameters are used

10 CONTENTS

when calling their services (cf. Figure 2.3). Only such a specification enables independent third party

analyses. In the PCM, component developers use service effect specifcations (SEFF, cf. Section 3.1.4)

to characterise the QoS properties of their components.

Software architects lead the development process for a complete component-based application. They

design the software architecture and delegate tasks to other involved roles. For the design, the planned

application specification is decomposed into component specifications. Existing component specifica-

tions can be selected from repositories to plan the integration of existing components into a software

architecture. If no existing specification matches the requirements for a planned component, a new

component has to be specified abstractly. The software architect can delegate this task to component

developers. Additionally, the software architect specifies component connections thereby creating an

assembly model (cf. Section 3.2.2). After finishing the design, software architects are responsible for

provisioning components (involving make-or-buy decisions), assembling component implementations,

and directing the tests of the complete application.

Deployers specify the resources, on which the planned application shall be deployed. Resources can

be hardware resources, such as CPUs, storage devices, network connections etc., as well as software

resources, such as thread pools, semaphores or database connection. The result of this task is a so-called

resource environment specification (cf. Section 3.3.4). With this information, the platform independent

resource demands from the component specifications can be converted into timing values, which are

needed for QoS analyes. For example, a component developer may have specified that a certain action

of a component service takes 1000 CPU cycles. The resource environment specification of the deployer

provides the information how many cycles the CPU executing the component processes per second. Both

information together yield the execution time of the action. Besides resource specification, deployers

allocate components to resources. In the PCM, this step can also be done during design by creating a

so-called allocation model (cf. Section 3.3.5). Later in the development process, during the deployment

stage, deployers can be responsible for the installation, configuration, and start up of the application.

Domain experts participate in requirement analysis, since they have special knowledge of the busi-

ness domain. They are familiar with the users’ work habits and are therefore responsible for analysing

and describing the user behaviour. This includes specifying workloads with user arrival rates or user

populations and think times. In some cases, these values are already part of the requirement documents.

If method parameter values have an influence on the QoS of the system, the domain experts may charac-

terise these values. The outcome of the domain experts’ specification task is a so-called usage model (cf.

Section 3.4.2).

QoS analysts collect and integrate information from the other roles, extract QoS information from

the requirements (e.g., maximal response times for use cases), and perform QoS analyses by using math-

ematical models or simulation. Furthermore, QoS analysts estimate missing values that are not provided

by the other roles. For example, in case of an incomplete component specification, the resource demand

of this component has to be estimated. Finally, they assist the software architects to interpret the results

of the QoS analyses.

2.1.3 Development Process Model

In the following, the roles described in the former section are integrated into a development process

model featuring QoS analysis. We focus on the development process that is concerned with creating a

working system from requirements and neglect the concurrent management process that is concerned

with time planning and controlling. We base our model on the UML-centric development process model

described by Cheeseman and Daniels [10], which is itself based on the Rational Unified Process (RUP).

CONTENTS 11

Requirements

Specification QoS-Analysis Provisioning Assembly

Test

Deployment

Business Concept

Model

Use Case

Models

QoS

Results Component Specs &

Architecture

Business

Requirements

Existing Assets

Technical Constraints Components

Use Case

Models

Applications

Tested

Applications

Deployment

Diagrams

Legend

Workflow

Change of Activity

Flow of Artifact

Figure 2.4: QoS Driven Process Model: Overview

The main process is illustrated in Figure 2.4. Each box represents a workflow. Thick arrows between

boxes represent a change of activity, while the thin arrows characterise the flow of artifacts between the

workflows. The workflows do not have to be traversed sequentially (i.e., no waterfall model). Backward

steps into former workflows are allowed. The model also allows an incremental or iterative development

based on prototypes.

The workflows requirements, provisioning, assembly, test, and deployment have mainly been inher-

ited from the original model and will briefly be described in the following. The workflow ”specification”

has been slightly modified to explicitly include the interaction between component developer and soft-

ware architect and the specification of extra-functional properties. The workflow ”QoS Analysis” has

been added to the model and will be described in detail below.

Requirements The business requirements coming from customers are formalised and analysed during

this workflow. It produces a business concept model and a use case model. The former is a conceptual

model of the business domain and creates a common vocabulary between customers and developers. It

is, however, not relevant for QoS Analysis. The latter describes the interaction between users (or other

external actors) with the system. It establishes the system boundaries and a set of use cases that define

the functional requirements.

Specification Business concept model and use case model are input from the requirements to this

workflow. Additionally, technical constraints, which might have been revealed during provisioning, and

QoS metrics from already performed QoS predictions can be input to the specification workflow after

initial iterations of the process model. During specification, the component-based software architecture

is designed. Components are identified, specified, and their interaction is defined. The software architect

usually interacts with component developers during this workflow. More detail about this workflow is

provided in Section 2.1.4. The output artifacts of this workflow are complete component specifications

(in PCM also extra-functional specifications) and the component architecture (called assembly model in

the PCM).

12 CONTENTS

QoS Analysis Component specifications, the architecture, and use case models are input to the QoS

analysis workflow. During this workflow, deployers provide models of the resource environment of

the architecture, which contain specifications of extra-functional properties (Section 3.3). The domain

expert takes the use case models, refines them, and adds QoS-relevant information, thereby creating a

PCM usage model (Section 3.4). Finally, the QoS-Analyst a) combines all of the models, b) estimates

missing values, c) checks the models’ validity, d) feeds them into QoS predictions tools, and e) prepares

a pre-evaluation of their predictions, which is targeted at supporting the design decisions of the software

architect. More detail about the QoS analysis workflow follows in Section 2.1.5. Outputs of the QoS

analysis are pre-evaluated results for QoS metrics, which can be used during specification to adjust the

architecture, and deployment diagrams that can be used during deployment.

Provisioning Compared to classical development processes the provisioning workflow resembles the

classical implementation workflow. However, one of the assets of component-based development is

reuse, i.e. the incorporation of components developed by third parties. During the provisioning work-

flow ”make-or-buy” decisions are made for individual components. Components that cannot be pur-

chased from third-parties have to be implemented according to the specifications from the corresponding

workflow. Consequently, the provisioning workflow receives the component specifications and architec-

ture as well as technical constraints as inputs. The outputs of this workflow are implemented software

components.

Assembly Components from the provisioning workflow are used in the assembly workflow. Addition-

ally, this workflow builds up on the component architecture and the use case model. The components

are assembled according to the assembly model during this workflow. This might involve configuring

them for specific component containers or frameworks. Furthermore, for integrating legacy components

it might be necessary to write adapters to bridge unfitting interfaces. The assembled components and the

complete application code are the outputs of this workflow.

Test The complete component-based application is tested according to the use case models in this

workflow in a test environment. It also includes measuring the actual extra-functional properties of the

application and their comparison with the predicted values. Once the functional properties have been

tested and the extra-functional properties are satisfiable in the test environment the application is ready

for deployment in the actual customer environment.

Deployment During deployment, the tested application is installed in its actual customer environment.

The term deployment is also used to denote the process of putting components into component contain-

ers, but here the term refers to a broader task. Besides the installation, it might be necessary to adopt the

resource environment at the customer’s facilities or to instruct future users of the system. For the map-

ping of components to hardware resources, the deployment diagrams from the QoS analysis workflow

can be used.

2.1.4 Specification Workflow

The specification workflow (see Figure 2.5, right column) is carried out by software architects. The work-

flows of the software architect and the component developers influence each other. Existing components

(e.g., from a repository) may have an impact on the inner component identification and component spec-

ification workflow, as the software architect can reuse existing interfaces and specifications. Vice versa,

CONTENTS 13

components newly specified by the software architect serve as input for the component requirements

analysis of component developers, who design and implement new components.

Component Repository

Component Requirements

Analysis

Functional Property

Specification

Extra-Functional Property

Specification

Component Implementation

Requirements

Interfaces

Internal Dependencies

QoS Relevant

Information

Binary Component

and Specification

Component Identification

Component Interaction

Component Specification

Interoperability Check

Initial Component

Specs & Architecture

Service Effect

Specification

Optimised Component

Specs & Architecture

Business

Type

Model

Business

Concept Model

Use Case

Model

Initial Interfaces

Interface

Signatures

Interface

Protocols

Existing

Interfaces

and Assets

Component

Requirements &

Interface Signatures

Service Effect

Specifications &

Interface

Protocols

S
p
e
c
if
ic

a
ti
o
n

Technical

Constraints

Results of QoS

Metrics

Initial Component

Specs & Architecture

Initial Component

Specs & Architecture

Figure 2.5: Specification Workflow

The component developer’s workflow is only sketched here, since it is performed separately from

the software architect’s workflows. If a new component needs to be implemented, the workflow of the

component developer (see Figure 2.5) can be assumed to be part of the provisioning workflow according

to Cheesman and Daniels [10].

Any development process model can be used to construct new components as long as functional and

extra-functional properties are specified properly. First, a component requirements analysis has to be

conducted. It is succeeded by functional property specification and then extra-functional property speci-

fication. The functional properties consist of interface specifications (i.e., signatures, pre/postconditions,

protocols), descriptions of internal dependencies between provided and required interfaces. We use ser-

vice effect specifications (Section 3.1.4) to describe such dependencies. Additionally, descriptions of

the functionality of component services have to be made. Extra-functional, QoS-relevant information

includes resource demands, reliability values, data flow, and transition probabilities for service effect

specifications. Finally, after component implementation according to the specifications, component de-

velopers have to put the binary implementations and the specifications into repositories, where they can

14 CONTENTS

be retrieved and assessed by software architects.

The specification workflow of the software architect consists of four inner workflows. The first two

workflows (component identification and component interaction) are adapted from [10] except that we

explicitly model the influence on these workflows by existing components. For component identifica-

tion, so-called ProvidedComponentTypes can be used in the PCM (cf. Section 3.1.3.3). Com-

ponent interaction can be described in the PCM once the provided component types have evolved to

ImplementationComponentTypes (cf. Section 3.1.3.1). During the component specification, the

software architect additionally gets existing interface and service effect specifications as input. Both are

transferred to the new workflow interoperability check. In this workflow, interoperability problems are

solved and the architecture is optimised. For example, functional parametrised contracts [12], which

are modelled as service effect specifications, can be computed (cf. Section 2.3). The outputs of the

specification workflow are an architecture and component specifications with refined interfaces.

2.1.5 QoS Analysis Workflow

During QoS analysis, the software architecture is refined with information on the deployment context,

the usage model, and the internal structure of components. Figure 2.6 shows the process in detail.

Allocation

QoS Requirement

Annotation

QoS Information Integration

Q
o
S

 A
n
a
ly

s
is

System Model

Transformation

System Environment

Specification (incl. QoS

Attributes)

Use Case Analysis

Usage Model Refinement

Use Case Models

Scenarios

(Activity Charts)

Annotated System

Architecture

Fully QoS Annotated

System Architecture

QoS Evaluation

Model

QoS

Metrics

Results for

QoS Metrics

Component

Architecture

Component Specs &

Architecture
Use Case Models

Refined

User

Model

System
Environment

Business

Requirements

QoS Evaluation

Deployment
Diagrams

Component QoS

Specification

(Data Dependencies,

Resource Consumption)

Annotated

Deployment

Diagrams

Figure 2.6: Detailed View of the QoS Analysis Workflow

The deployer starts with the resource environment specification based on the software architecture

and use case models. Given this information, the required hardware and software resources and their

interconnections are derived. As a result, this workflow yields a description of the resource environment,

for example, a deployment diagram without allocated components or an instance of the resource environ-

ment model (cf. Section 3.3.4). Instead of specifying a new resource environment, the deployer can also

use the descriptions of existing hardware and software resources. Moreover, a set of representative sys-

CONTENTS 15

tem environments can be designed if the final resource environment is still unknown. For QoS analysis,

detailed information on the resources modelled in the environment are required.

During allocation, the deployer specifies the mapping of components to resources. The result of this

workflow can be a complete deployment diagram or a resource environment plus allocation contexts for

components as described in section 3.3.5. The resulting specifications are part of the inputs of the QoS

analysis models used later. The resulting fully specified resource environment and component allocation

are passed to the QoS analyst.

The domain expert refines the use case models based on the requirements during the use case analysis

workflow. A description of the scenarios for the users is created based on an external view of the current

software architecture. The scenarios describe how users interact with the system and which dependencies

exists in the process. For example, activity charts or usage models (cf. Section 3.4.2) can be used to

describe such scenarios. The scenario descriptions are input to the usage model refinement. The domain

expert annotates the descriptions with, for example, branching probabilities, expected size of different

user groups, expected workload, user think times, and parameter characterisations.

As the central role in QoS analysis, QoS analysts integrate relevant information, perform evaluations,

and deliver feedback to all involved parties. In the QoS requirement annotation workflow, the QoS

analyst maps QoS requirements to direct requirements of the software architecture. For example, the

maximum waiting time of a user becomes the upper limit of the response time of a component’s service.

While doing so, the QoS analyst selects metrics, like response time or probability of failure on demand,

that are evaluated during later workflows.

During QoS information integration, the QoS analyst collects the specifications provided by the com-

ponent developers, deployers, domain experts, and software architects, checks them for soundness, and

integrates them into an overall QoS model of the system. In case of missing specifications, the QoS

analyst is responsible for deriving the missing information by contacting the respective roles or by esti-

mation and measurement. The system specification is then automatically transformed into a prediction

model.

The QoS evaluation workflow either yields an analytical or simulation result. QoS evaluation aims,

for example, at testing the scalability of the architecture and at identifying bottlenecks. The QoS analyst

performs an interpretation of the results, comes up with possible design alternatives, and delivers the

results to the software architect. If the results show that the QoS requirements cannot be fulfilled with

the current architecture, the software architect has to modify the specifications or renegotiate the QoS

requirements.

2.1.6 Discussion

Related Work There are numerous publications on component-based development processes [6, 13,

14, 15, 16, 2]. However, most of these process descriptions do not deal with extra-functional properties.

Furthermore, there are many approaches for the performance prediction of component-based software

systems [11], but only few describe the encompassing development process in detail or spread the needed

information for QoS analyses among the participating roles.

Role Names There are several synonyms for the role names we have chosen for the PCM process

model.

• Component Developer: Application Component Provider, Component Implementer, Component

Programmer

16 CONTENTS

We chose ”component developer” because it is quite generic, should be known to most software

engineers, and describes the tasks of this role best.

• Software Architect: System Architect, Component Assembler, System Assembler, Architect, Ap-

plication Assembler

It might be argued that this role does not only deal with software, but also has an influence on

the hardware environment. Therefore the broader term ’system’ instead of ’software’ could be

used. However, the term software architect is quite established and the tasks involving the hard-

ware environment of the component-based system could be delegated to the deployer. The term

component assembler is sometimes used in the literature, it is, however, a too restricted term for

the tasks of this role.

• Deployer: System Allocator, Component Deployer, Assembly Allocator, System Administrator,

Resource Specifier, Execution Environment Modeller, Middleware Expert, Deployment Expert

In J2EE the term ’deployment’ is used for assembling components and allocating them on re-

sources. In the PCM, we explicitly separate between assembly and allocation, as the former is

conducted by the software architect and the latter by the deployer. We chose the most generic term

’deployer’ for the role, which is responsible for specifying the resource environment and allocating

component assemblies to resources.

• QoS Analyst: Performance Analyst, Reliability Specialist, QoS Expert, QoS Evaluator, QoS Man-

ager

As we do not want to restrict our model to performance or reliability analyses we chose the collec-

tive term ’QoS’ (Quality-of-Service), which covers performance, reliability, availability, etc. The

goal of this role is to come up with analyses of the QoS properties of an application, so we chose

the term ’QoS analyst’

• Domain Expert: Business Expert, Usage Modeller

We are not sure, if there are dedicated roles for specifying user behaviour in IT organisations.

Therefore we chose the term ’domain expert’, because this role might be involved into other tasks

related to requirements analyses in addition to the task of usage modelling.

Is there a QoS Analyst? As described in Section 2.1.2, the role of QoS analysts bundles the tasks of

1) deriving QoS information from the requirements, 2) integrating information from the other roles, 3)

estimating missing input parameters, 4) using QoS analysis tools such as queueing network solver, and

5) pre-interpreting the results of these tools.

It can be argued that this role is not really necessary, as most of the tasks could also be performed by

the software architect. In fact, task 2), 4), and 5), should even be encapsulated into user-friendly tools, so

that no special knowledge would be required to perform the QoS analysis. Task 3) might require special

knowledge of a QoS domain, but software architects should at least be able to provide rough estimation

for missing values, which might be sufficient for early QoS analysis.

However, it can also be argued, that existing tools are not so far advanced to automate the tasks of

this role. The manual specification of additional input parameters for the prediction method might be

too time-consuming and thus expensive for software architects. Additionally, it remains questionable if

task 5) can be encapsulated into tools as it is sometimes difficult to map analysis or simulation results to

problems in the architecture. Furthermore, designing QoS-improving architectural alternatives requires

special knowledge (such as performance patterns or configuration options of component containers).

CONTENTS 17

We have decided to keep the role in the model, because of role-based separation of concerns. We

suppose that today the QoS analysis task is often delegated to specialists.

18 CONTENTS

2.2 Interfaces and Composition

2.2.1 Interfaces as First-Class Entities

According to Parnas [17], an interface is an abstraction of piece of software (a software entity) which

should contain a sufficient amount of information for a caller to understand and finally request the realised

functionality from any entity claiming to offer the specified functionality. Note that this implies, that the

specification of the interface also has to contain a sufficient amount of information for the implementer to

actually implement the interface. Due to the inherent need of an interface to abstract the behaviour of the

software entity not in all cases there is sufficient information provided to use or implement an interface

in an unambiquious way.

This definition has several consequences. First of all, interfaces can exist on their own, i.e., without

any entity requesting or implementing the specified functionality. In industrial practice, this is actually

often used. For example, Sun defined for the Java programming language several sets of Java inter-

faces which deal with a specific sets of generic functionality without actually providing an implemen-

tation. Part of these domain-standards are the Java Messaging Standard dealing with different types of

message-based communication or the Java Persistence API concerned with persisting objects in rela-

tional databases.

Second, two roles can be identified a software entity can take relative to an interface. Any entity can

either claim to implement the functionality specified in an interface or to request that functionality. This is

reflected in the Palladio Component Model by a set of abstract meta-classes giving a conceptual view on

interfaces, entities and their relationships. The abstract meta-class InterfaceProvidingEntity is

inherited by all entities which can potentially offer interface implementations (Figure 2.7). Similarly, the

meta-class InterfaceRequieringEntity is inherited by all entities which are allowed to request

functionality offer by entities providing this functionality. Details follow in Section 3.1.

0..* +requiredRoles

+requiredInterface

0..*

+providedInterface

0..*

0..* +datatypes

0..*

+interfaces

0..*

+components

Interface

ProvidingEntity

Interface

RequiringEntity

InterfaceProviding

RequiringEntity

ProvidedRole RequiredRole

0..*+providedRoles

BasicComponent

Entity

NamedElement

entityName : EString

Identifier

id : EString

Interface

Repository

DataType

Figure 2.7: InterfaceProvidingRequiringEntity in the PCM metamodel

CONTENTS 19

2.2.2 Composed Structure

Clements Szyperski approaches the definition of a component in his book on component based software-

engineering with the statement ”Components are for composition, much beyond is unclear” [6]. This

statement does not only point out how hard it is to find a common definition for the term ”component”.

It also highlights the most common principle in the definitions of the term component in the literature:

a component can be composed with other components in order to get a more complex structure. We

also consider the ability to compose components into new structures as a primary feature of compo-

nents. As a consequence, our component model contains an abstract conceptual view of the concept of

a ComposedStructure, which is a structure build by composing components (Figure 2.8, details in

Section 3.2).

+innerProvidedRole 1

1+outerProvidedRole

+innerRequiredRole 1

1+outerRequiredRole

+providedDelegationConnectors

0..*

+requiredDelegationConnectors

0..*

Composed

Structure
AssemblyContext

Assembly

Connector

+childContexts

0..*

+assemblyConnectors

0..*

BasicComponent

+encapsulatedComponent
1

0..*

+componentParameterUsage

VariableUsage+requiringChild
1

+providingChild
1

ProvidedRole

RequiredRole
1

+requiredRole

1

+providedRoleProvidedDelegation

Connector

RequiredDelegation

Connector

Figure 2.8: ComposedStructure in the PCM metamodel

20 CONTENTS

2.3 Parametric Contracts

2.3.1 Classical Contracts for Software Components

Before defining contracts for components, we briefly review B. Meyer’s design-by-contract principle

from an abstract point of view. According to [18, p. 342], a contract between the client and the supplier

consists of two obligations:

• The client has to satisfy the precondition of the supplier.

• The supplier has to fulfill its postcondition, if the precondition was met by the client.

Each of the above obligations can be seen as the benefit for the other party. (The client can count on the

postcondition if the precondition was fulfilled, while the supplier can count on the precondition). Putting

it in one sentence:

If the client fulfills the precondition of the supplier, the supplier will fulfil its postcondition.

The used component plays the role of a supplier. But to formulate contracts for components, we also

have to identify the pre- and postconditions and the user of a component. But what is to be consid-

ered a precondition, postcondition and user depends on whether the component is used at run-time or

configuration-time. Let’s first consider the component’s use at run-time. Using a component at run-time

is calling its services. Hence, the user of a component C is the set of all components connected to C’s

provides-interface(s).

The precondition for that kind of use is the precondition of the service, likewise the postcondition

is the postcondition of the service. Actually, that shows that this kind of use of a component is nothing

different as using a method. Therefore, the author considers this case as the use of a component service,

but not as the use of a component. Likewise, the contract to be fulfilled here from client and supplier is

a method contract as described by B. Meyer already in 1992. This is the contract for using a component

service, but not the contract for using the component!

The other case of component usage (usage at composition-time) is actually the relevant case when

talking about the contractual use of components. This is the important case when architecting systems

out of components or deploying components within existing systems for reconfigurations. Again, in this

case a component C is acting as a supplier and the component connected to the provides interface(s) as

a client. The component C offers services to the those components of the assembly context which are

connected to C’s provides-interface(s). According to the above discussion of contracts, these offered

services are the postcondition of the component, i.e., what the client can expect from a working compo-

nent. Also according to B. Meyer’s above mentioned description of contracts, the precondition is what

the component C expects from those components of the assembly context which are connected to C’s

requires-interface(s) to be provided by the assembly context, in order to enable C to offer its services (as

stated in its postcondition). Hence, the precondition of a component is stated in its requires-interfaces.

Analogously to the above single sentence formulation of a contract, we can state:

If the user of a component fulfills the component’s requires-interface (offers the right re-

quired components in the assembly context) the component will offer its services as de-

scribed in the provides-interface.

Let us denote with prec the precondition of a component c and with postc the postcondition of a compo-

nent c. For checking whether a component c can be replaced safely by a component c′, one has to ensure

CONTENTS 21

that the contract of c′ is a subcontract of c. The notion of a subcontract is described in [18, p. 573] like

contravariant typing for methods: A contract c′ is a subcontract of contract c iff

prec′ E prec ∧ postc′ D postc (2.1)

(Where D means “stronger”, i.e., if prec and postc are predicates,D is the logical implication ⇒. In the

set semantics of pre- and postcondition below, D is the inclusion ⊇.)

To check the interoperability between components c and c′ (see point (1) in figure 2.9), one has to

check whether

prec E postc′ (2.2)

Coming back to protocol-modelling interfaces, we can consider the precondition of a component as the

set of required method call sequences, while the postcondition is the set of offered call sequences. In this

case, the checks described in the above formulas (2.1) and (2.2) boiled down to checking the inclusion

relationship between the sets of call sequences, i.e., for the substitutability check we have:

prec′ ⊆ prec ∧ postc′ ⊇ postc (2.3)

and for the interoperability check:

prec ⊆ postc′ (2.4)

For arbitrary sets A and B holds A ⊆ B ⇐⇒ A ∩ B = A. Hence, the inclusion check we need for

checking interoperability and substitutability can be reduced to computing the intersection and equiva-

lence of sets of call sequences. One of the main reasons for choosing finite state machines (FSMs) as a

model to specify these sets of call sequences was the existence of efficient algorithms for computing the

intersection of two FSMs and checking their equivalence. Of course, more powerful models than FSMs

exist (in the sense that they can describe protocols which cannot be described by FSMs) but for many

of these models (like the various push-down automata) the equivalence is not decidable (see e.g., [19]).

Hence, one can use these models for specifying component interfaces, but that does not help to check

their interoperability or substitutability at configuration-time.

2.3.2 Parametric contracts as a generalisation of classical contracts

While interoperability tests check the requires-interface of a component against the provides-interface of

another component, parametric contracts link the provides-interface of one component to the requires-

interface of the same component (see points (2) and (3) in figure 2.9).

The usefulness of parametric contracts is based on the observation that in practice often only a sub-

set of a component’s functionality is used. This is especially true for coarse-grained components. In

this case, also only a subset of the functionality described in the requires-interface is actually used. That

means that the component could be used without any problems in assembly contexts where not all depen-

dencies, as described in the requires interface, are fulfilled. Vice versa, if a component does not receive

all (but some) functionality it requires from the assembly context, it often can deliver a reasonable subset

of its functionality.

These facts can be modelled by a set of possible provides-interfaces P := {prov} and a set of

possible requires-interfaces R := {req} and a monotone total bijective mapping p between them p :
P → R.1 As a result, each requires-interface req ∈ R is now a function of a provides-interface prov:

1p can be made total and surjective by defining P := dom(p) and R := im(p).

22 CONTENTS

Figure 2.9: Interoperability checks (1) and Requires-parametric Contract (2) and Provides-parametric

Contract (3)

req = p(prov) and (because p is bijective) each provides-interface prov ∈ P can be modelled as a

function of a requires-interface req ∈ R: prov = p−1(req).
This mapping p is now called parametric contract, since it parameterises the precondition with the

postcondition of the component and vice versa. It can be considered as a generalisation of “classical con-

tract” which uses a fixed pre- and postcondition. The parametric contract is bundled with the component

and computes the interfaces of the components on demand.

For the following, assume component B uses component C and is used by component A. If compo-

nent A uses only a subset of the functionality offered by B we compute a new requires-interface of B
with the parametric contract pB:

pB(reqA ∩ provB) =: req′B ⊆ reqB (2.5)

Note that the new requires-interface req′B requires possibly less than the original requires-interface

reqB := pB(provB) (but never more) since pB is monotone and reqA ∩ provB ⊆ provB . When com-

puting the requires-interface out of a provides-interface (possibly intersected with an external requires-

interface) the parametric contract is called provides-parametric contract.

Likewise, if component C does not provide all the functionality required by B, one can compute a

new provides-interface prov′B with pB:

p−1
B (reqB ∩ provC) =: prov′B ⊆ provB (2.6)

Since pB is monotone, p−1 is, too. With reqB ∩provC ⊆ reqB we have prov′B ⊆ provB := p−1(reqB).
In this case we use a requires-parametric contract.

Technically, the parametric contract is specified by the service effect specification. The actual way

what to specify to calculate the parametric contract depends on the interface model used. In case of

protocol modelling interfaces, the service effect specification can be given by FSMs [20]. In case of

quality of service modelling interfaces, only requires parametric contracts are used. This is because a

provides parametric contract evaluates not to a concrete interface with QoS requirements, but to con-

straints which describe a set of possible requires interfaces. Anyhow, for QoS modelling interfaces the

parametric contract is given by service effect specifications, as described in section 3.1.4.

CONTENTS 23

2.4 Context

2.4.1 Motivation

One of the most important arguments for component-based software development is the black-box reuse

of components. Components are developed by third party vendors, who sell their products to multiple

clients. Therefore, component developers cannot make assumptions on the underlying operating system

and hardware as well as the usage profile and connected components. In other words, the context the

component will be used in is unknown to component developers. Szyperski defines a software component

as “a unit of composition with contractually specified interfaces and explicit context dependencies only.

A software component can be deployed independently and is subject to a composition by third parties”

[6].

This definition emphasises the importance of context dependencies and their explicit definition. How-

ever, it remains vague what is actually part of the context beyond the relationships defined by the pro-

vided and required interfaces of a component. One of those undefined dependencies is the underlying

hardware that influences QoS attributes of a component, like performance and reliability. Especially for

QoS predictions, knowledge about such dependencies to the context is needed in addition to functional

specifications, like behavioural protocols [21] and service effect specifications [22].

…

if (a>b)

c = a;

…

Component Code

External Services

Execution Environment

Usage Profile

Figure 2.10: Influences on QoS properties of a software component.

Factors influencing the QoS attributes of a component can be classified into four main categories as

shown in figure 2.10:

1. The implementation of the component, e.g. the selection of an algorithm.

2. The quality of required services, e.g. calling a slow or a fast service will result in a different

performance for the provided service perceived by a user.

3. The runtime environment the component is deployed in. This includes the hardware and system

software like the operating system and middleware platforms.

4. The usage of the component, e.g. if the component has to serve many requests per time span it is

more likely to slow down.

With these four categories of influences we can define the quality of a provided service s of a concrete

component as a function of the varying influences. The implementation of the component’s service is

24 CONTENTS

considered as a constant as it does not depend on its context but is fixed by the component developer

at implementation time. Thus, the QoS of a component can be defined as a function of the remaining

parameters, which are determined during its allocation, assembly and usage:

qimpl : P(s) × DR × UP → Q

where P(s) is the domain of the set of external services used by service s, DR specifies the deployment

relationship defining which component and connector is deployed on which part of the execution envi-

ronment and UP describes the usage profile. As a result, the function yields a value in the domain of the

investigated quality metric Q.

2.4.2 Context Influences

Since QoS attributes of a component are strongly influenced by the environment the component is used

in, the actual delivered QoS can only be determined knowing all influencing factors. We identified three

aspects defined during system design that determine the complete context of a component based on

the influences shown in figure 2.10: composition (connected components), usage, and allocation. For

understandability, we split the influence of composition into the parts hierarchy and system/assembly and

leave out the influence of the usage profile. All aspects are associated to different roles in the component-

based development process as described in section 2.1.

The structure of a system/assembly is defined by software architects who decide which components

are used and how they are connected. Similarly component developers may construct composite compo-

nents, which define the hierarchy of the system. Deployers define the execution environment and allocate

software components among different resources, like servers and desktop computers.

System/Assembly (Horizontal Composition) A system specifies which components are used within

an application and how they communicate. Within the system, the required interfaces of components are

connected to provided interfaces of other components. That way it is determined which concrete external

services are called by a component.

Figure 2.11: Component assembly.

A component can be used multiple times within a single system. Figure 2.11 illustrates this with

a simple example. Three different types of components exist in the system shown there. On the right

hand side, we have two I/O components that manage the access either to a file or network connection.

Two different kinds of caching components that implement different caching strategies are shown in the

CONTENTS 25

middle. The SyncCache component on the left-hand side allows multiple tasks to access the caches

concurrently without producing an incorrect state of the connected single-threaded caches.

The same component (SyncCache) is inserted at two different locations within the system. Both

representations of the component are connected differently. Thus, users or other components that call

the services provided by the different component representations will experience different QoS on the

provided interfaces of the respective component representations. This is caused by the different caching

strategies and I/O devices used by the SyncCache components. Modelling the component context

explicitly allows us to hold the information on the diverse connections and the resulting quality attributes

without changing the component specification.

Hierarchy (Vertical Composition) Related to the system, another important part of the context is the

hierarchy in which a component is used. In figure 2.12, a composite component (BillingManager) is

depicted which has been designed to create bills and store each one in a single PDF (Portable Document

Format) file. The component is additionally supposed to write a summary of all the created bills as PDF

file. Hence, the component PDFCreator is used in two different places. Notice however, that this

kind of usage is usually unknown to the creators of the outer composite component. For them, the inner

component (BillCreator) is a black box. They do not know the internal details and, hence, the usage

of the inner PDFCreator is hidden.

Figure 2.12: Component hierarchy.

In this case, the PDFCreator component is used in different contexts on different hierarchy levels.

Note, that this only makes sense if the underlying component model supports hierarchical components

at all. Considering parametric contracts, both components might offer different characteristics (QoS,

functions offered, etc.). Additionally, they are used differently in their contexts. The PDFCreator

of the inner component produces bills with less pages than the summary PDF file created by the outer

PDFCreator.

Allocation An explicit context model is especially advantageous to model the allocation of components

on hardware and software resources. Figure 2.13 depicts a system that uses replicated components to

fulfil requests. In our example, server I is assumed to be slow and server II is assumed to be fast. Hence,

the workload is not distributed equally, but 30% of the requests are directed to server I and 70% are

directed to server II.

Here, we see several context influences. We have two copies of the same component allocated on

26 CONTENTS

Figure 2.13: Component allocation.

different machines and, thus, in different contexts. The workload of each replicated component is differ-

ent because of the distribution strategy. The processing power available to both replicated components

is varying with the underlying hardware systems. However, both components are connected with an

identical logical link going from the required interface of the workload balancer to the provided service

of the replicated component. But again, each of these logical connections is most likely using a different

physical communication channel, i.e., different network links.

2.4.3 An Explicit Context Model

In the previous section, we identified different input factors of the provided QoS of the same component

in various contexts. In order to cope with these factors, we model a component’s context explicitly as

described in sections 3.2.3, and 3.3.5. Table 2.1 summarizes the attributes of our context model.

Software Architect Deployer Domain Expert

System/Assembly Deployed-on relation System usage:

(see section 3.2.5) (see section 3.3.5) - Call probability

Containment Execution environment (see section 3.4.2)

(see section 3.3.4) - Call parameter

- Component configuration (see section 3.4.3)

- Container properties - Workload

Specified

Results of parametric QoS-Attributes

contracts (Extra-Functional)Computed

(Functional)

Table 2.1: Properties of the context

We arrange the table according to two dimensions. The vertical dimension distinguishes specified

and computed attributes. Specified attributes are provided during the design process. They determine

the computed attributes. The horizontal dimension divides the properties according to the roles of the

CONTENTS 27

development process that specify them: Software architects, deployers, and domain experts. While

functional properties of the architecture can already be analysed on the basis of the system assembly,

since only components and their connections are required to perform interoperability checks [21] or

to evaluate parametric contracts [22], extra-functional attributes require additional information on the

execution environment and usage of the system.

The deployer needs to specify the underlying hardware (CPU speed, cache sizes, available mem-

ory, available bandwidth, . . .) and system software (details on the used middleware, virtual machines,

container configurations, . . .). The domain expert specifies probabilities for calling specific services,

probability distributions on the actual parameter characteristics, or the request arrival rates. Using this

information, it is possible to estimate QoS properties, like the actual execution time of a service on the

specified runtime environment considering the specified usage profile. However, it depends on the capa-

bilities of the analytical method, which information has to be specified and which QoS metrics can be

derived.

28 CONTENTS

2.5 Random Variables

2.5.1 Overview

In the Palladio Component Model, we use random variables in expressions which specify parametric

dependencies. The rationale behind this is that many aspects of larger software systems, especially

in the business information systems area, can not be modelled having complete information (see for a

classification of the information types for example [23]). Uncertainties can be found in many aspects

of the system model. Two main sources stem from the behaviour of users and time spans of method

executions (because we do not consider real-time environments). User behaviour can only be specified

in a stochastical manner. How long users think (aka think time) between requests to the system, what

parameter values they use in their requests can often only be characterized using probabilities. The

second source comes from the facts that the PCM is designed to support predictions on an architectural

level. On such a level, real-time constraints are usually not available. The reasons are also manifold.

First, the information is simply not available at early design stages. Second, environmental features as

garbage collectors, middle-ware services, etc. make it hard to predict timing time consumptions with

certainty.

In the following, the use of random variables in parametric dependencies is introduced. These types

of specifications are used in several places in the PCM. They are used especially in the ResourceDemand-

ingSEFF and the ResourcePackage to describe resource consumptions. A library in the implementation

of the PCM supports the use of random variables in different types. See 2.5.5 for technical details on this

library.

2.5.2 Definition

Mathematically, a random variable is defined as a measurable function from a probability space to some

measurable space. More detailed, a random variable is a function

X : Ω → R

with Ω = the set of observable events and R being the set associated to the measurable space. Observable

events in the context of software models can be for example response times of a service call, the execution

of a branch, the number of loop iterations, or abstractions of the parameters, like their actual size or type.

Note, that often a random variable has a certain unit (like seconds or number of bytes, etc.). It is important

for the user of prediction methods to keep the units in the calculations and in the output to increase the

understandability of the results.

A random variable X is usually characterised by stochastical means. Besides statistical character-

isations, like mean or standard deviation, a more detailed description is the probability distribution. A

probability distribution yields the probability of X taking a certain value. It is often abbreviated by

P (X = t). For discrete random variables, it can be specified by a probability mass function (PMF).

For continuous variables, a probability density function (PDF) is needed. However, for non-standard

PDFs it is hard to find a closed form (a formula describing the PDF). Because of this and for reasons of

computational complexity, we use discretisized PDFs in our model.

For the event spaces Ω we support include integer values N, real values R, boolean values and

enumeration types (like ”sorted” and ”unsorted”) for discrete variables and R for continuous variables.

CONTENTS 29

2.5.3 PDF discretisation

A probability density function (PDF) represents a probability distribution in terms of integrals. The

probability of an interval [a, b] for a pdf f(x) is given by the integral

∫ b

a
f(x)dx

for any two number a and b, a < b. To fulfill this property, f(x) has to be a non-negative Lebesque-

integrable function R → R. The total integral of f(x) has to be 1.

To create a discrete representation of a PDF, we use the fact that the probability of an interval is given

by its integral. Basically, there are two ways to approximate a PDF, which mainly differ in the way how

the intervals are determined. The first one uses a sampling rate and, therefore, a fixed interval size. The

second one uses arbitrary sizes for intervals. Both methods store the probabilities for the intervals, not

the probability density.

2.5.3.1 Sampling – Fixed intervals

To create an approximation of a PDF by a set of fixed intervals, the domain of the PDF is devided into

N intervals denoted by the set I , each of which has the same width specified by the value d. The ith
interval is then defined by [(i− 1/2)d, (i + 1/2)d[. For our purposes, we can assume that the domain of

a PDF is always greater or equal to zero. Thus, we set the first interval (i = 0) to [0, 1/2d[. To minimize

computational errors, we associate the probability of the ith interval [(i−1/2)d, (i+1/2)d[to its middle

value i ∗ d. So, we get a set of N probabilities, where the probability of interval i, pi is given by the

integral:

pi =

∫ b

(i−1/2)d
f(x)dx, limb→(i+1/2)d

for i > 0 and

pi =

∫ b

0
f(x)dx, limb→1/2d

for i = 0. The approximation of a PDF is completely described by the interval width d and the probabil-

ities pi for all intervals I .

Figure 2.14: The probability of the interval [2.5d, 3.5d[is the striped area under the graph.

30 CONTENTS

Example 2.1. Figure 2.14 illustrates how a pdf f(x) is approximated by deviding its domain into a set of

intervals. The X-axis shows the multiples of the interval width d (1d, 2d, 3d...). These values represent

the mean values of the intervals to which the probabilities will be associated. The figure shows how the

probability of the third interval is computed. The interval borders are given by [2.5d, 3.5d[and its mean

value is 3d. The probability p3 is the striped area under the graph. So, all values lying in this area are

associated to the value 3d.

2.5.3.2 Approximation by boxes – Variable intervals

For many PDFs, variable interval sizes allow a better approximation using less values compared to fixed

ones. This is especially useful if the function consists of large, almost constant parts and sharp peaks

on the other hand. Variable interval sizes allow the specification of almost constant areas by one large

interval and the use of multiple, fine grained intervals for sharp peaks, which need to be described in

more detail.

We have a set of intervals I so that for each two intervals J1, J2 ∈ I , J1 6= J2 the disjunction is

the empty set J1 ∩ J2 = ∅ and the union of all intervals forms a new interval from zero to x ∈ R
+,

∪J∈I = [0, x[. Intuitively, this means that the intervals do not overlap and that there are no gaps between

the intervals.

To ensure both properties mentioned above, the intervals are specified by their right hand value only.

Thus, we have a set IX whose values define the right hand sides of all intervalls. Suppose we can define

an order on the set such that x1 < x2 < . . . < xn−1 < xn. Then the ith interval is [xi−1, xi[for i > 1
and [0, x1[for i = 1. This allows us to specify n intervals by n values only and to ensure that the intervals

neither do overlap nor have gaps inbetween. Now the probability pi for the ith interval is given by

pi =

∫ b

xi−1

f(x)dx, limb→xi

for i > 1 and

pi =

∫ b

0
f(x)dx, limb→x1

for i = 1.

2.5.4 Functional random variables

2.5.4.1 General

Additionally, it is often necessary to build new random variables using other random variables and math-

ematical expressions. For example, to denote that the response time is 5 times slower, we would like to

simply multiply a random variable for a response time by 5 and assign the result to a new random variable.

For this reason, our specification language supports some basic mathematical operations (∗,−,+,/,...) as

well as some logical operations for boolean type expressions (==,>,<,and,or,...).

To give an example, the distribution of a random variable N is depicted in figure 2.15. The variable

could model some characterisation of the size of a parameter of a component service.

To determine the time consumption of the method body which depends on the characterisation N
it is known that the amount of CPU instructions needed to execute the method is three times N . The

resulting distribution function is shown in figure 2.16.

CONTENTS 31

Figure 2.15: A Distribution of a Discrete Random Variable N

Figure 2.16: A Distribution of N * 3

2.5.4.2 Differences btw. discrete and continuous variables

As introduced above we support the use of discrete as well as continuous variables. However, in such a

case special care has to be taken when constructing expressions. Three times of a discrete variable can not

be determined in the same way as three times a continuous variable. The reason for this is that continuous

variables are also scaled continuously. To give an example, consider the continuous variable X which is

uniformly distributed in a range between 5 and 10 seconds. If the variable is now multiplied by three,

possible values of the resulting random variable can be in the interval between 15 and 30 seconds. The

resulting distribution is again uniformly distributed having a density function which is one-third of the

original density function.

An analogous example for a discrete random variable follows. Consider a discrete random variable

taking the value 5 in 30% of all cases, 7 in 20% of all cases and 10 in the remaining 50%. If this variable

is multiplied by 3, the result is a variable taking the value 15 in 30%, 21 in 20% and 30 in 50% of all

cases. The probabilities of the single events stay the same only the actual outcome changes.

The depicted difference is especially important in the case of discretisized PDFs. Any mathematical

operation in which such a variable is involved has to treat the discretisized PDF as a ’real’ PDF in order

to avoid calculation mistakes.

32 CONTENTS

2.5.5 Stochastic Expressions

We call the language in which functional random variables can be specified Stochastic Expressions.

As said before, the specifications of this kind of expressions is based on mathematical operations like

addition or multiplication. The complete grammar is given below.

2.5.5.1 Parser (EBNF)

expression : compareExpr;

compareExpr : sumExpr((GREATER | LESS | EQUAL | NOTEQUAL | GREATEREQUAL | LESSEQUAL) sumExpr |);

sumExpr : prodExpr ((PLUS | MINUS) prodExpr)*;

prodExpr : powExpr ((MUL | DIV | MOD) powExpr)*;

powExpr : atom(POW atom|);

atom: (NUMBER | scoped_id | definition | STRING_LITERAL | boolean_keywords | LPAREN compareExpr RPAREN);

scoped_id : ID (DOT (ID | "INNER"))*;

definition : "IntPMF" LPAREN (unit) RPAREN SQUARE_PAREN_L (numeric_int_sample)+ SQUARE_PAREN_R

| "DoublePMF" LPAREN (unit) RPAREN SQUARE_PAREN_L (numeric_real_sample)+ SQUARE_PAREN_R

| "EnumPMF" LPAREN (unit)(SEMI ORDERED_DEF|)RPAREN SQUARE_PAREN_L (stringsample)+ SQUARE_PAREN_R

| "DoublePDF" LPAREN (unit) RPAREN SQUARE_PAREN_L(real_pdf_sample)+ SQUARE_PAREN_R

| "BoolPMF" LPAREN (bool_unit)(SEMI ORDERED_DEF|)RPAREN SQUARE_PAREN_L (boolsample)+ SQUARE_PAREN_R;

boolean_keywords: ("false"| "true");

unit: "unit" DEFINITION STRING_LITERAL;

numeric_int_sample: LPAREN NUMBER SEMI NUMBER RPAREN;

numeric_real_sample: LPAREN NUMBER SEMI NUMBER RPAREN;

stringsample: LPAREN STRING_LITERAL SEMI NUMBER RPAREN;

real_pdf_sample: LPAREN NUMBER SEMI NUMBER RPAREN;

bool_unit: "unit" EQUAL "\"bool\"";

boolsample: LPAREN boolean_keywords SEMI NUMBER RPAREN;

characterisation_keywords: ("BYTESIZE" | "STRUCTURE" | "NUMBER_OF_ELEMENTS" | TYPE" | "VALUE");

2.5.5.2 Lexer (EBNF)

mPLUS | mMINUS | mMUL | mDIV | mMOD | mPOW | mLPAREN | mRPAREN | mSEMI | mDEFINITION | mEQUAL

| mSQUARE_PAREN_L | mSQUARE_PAREN_R | mNUMBER | mNOTEQUAL | mGREATER | mLESS | mGREATEREQUAL

| mLESSEQUAL | mSTRING_LITERAL | mDOT | mID | mWS

mPLUS:’+’; mMINUS:’-’; mMUL:’*’; mDIV:’/’; mMOD:’%’; mPOW:’ˆ’; mLPAREN:’(’; mRPAREN:’)’;

mSEMI:’;’; DEFINITION:’=’; mEQUAL:’==’; mSQUARE_PAREN_L:’[’; mSQUARE_PAREN_R:’]’;

mDIGIT:’0’..’9’;

mNUMBER: (mDIGIT)+(’.’ (mDIGIT)+ |);

mALPHA: ’a’..’z’| ’A’..’Z’;

mNOTEQUAL:"<>"; mGREATER:">"; mLESS:"<"; mGREATEREQUAL:">="; mLESSEQUAL:"<=";

mSTRING_LITERAL:"\""(mALPHA | ’_’)+ "\"";

mDOT: ’.’;

mID:(mALPHA | ’_’)+; // variable ids

mWS: (’ ’| ’\t’| ’\r’| ’\n’); // whitespace

2.5.5.3 Examples

DoublePDF(unit="s")[(1.0;0.3)(1.5;0.2)(2.0;0.5)]

• Specifies a time interval as boxed probability density function

• the unit is seconds

• the probability of the time being between 0 and 1 second is 30 percent (0.3)

• the probability of the time being between 1 and 1.5 seconds is 20 percent (0.2)

• the probability of the time being between 1.5 and 2 seconds is 50 percent (0.5)

• the probabilty of the time being longer than 2 seconds is 0 percent.

• all probabilities sum up to 1.0

CONTENTS 33

IntPMF(unit="iterations")[(27;0.1)(28;0.2)(29;0.6)(30;0.1)]

• Specifies the number of executing a loop as a probability mass function (PMF)

• the unit is iterations

• the probability of executing the loop exactly 27 times is 10 percent (0.1)

DoublePMF(unit="")[(22.3;0.4)(24.8;0.6)]

• Specifies a floating point variable charcterisation as a probability mass function (PMF)

• unit is omitted

• the probability of the variable taking the value 22.3 is 40 percent (0.4)

EnumPMF(unit="graphics")[("circle";0.2) ("rectangle";0.3)("triangle";0.5)]

• Specifies a probability mass function over the domain of a parameter

• Graphics-Objects can either be circles, rectangles, or triangles with the respective probabilities

BoolPMF(unit="bool")[(false;0.3)(true;0.7)]

• Specifies a probabilty mass function for a boolean guard on a branch transition

• The guard is false with a probability of 30 percent and true with a probablity of 70 percent.

23

• An integer constant

• Can be used for example for loop iteration numbers, variable characterisations or resource demands

42.5

• An floating point number constant

• Can be used for variable characterisations and resource demands (not for loop iterations)

"Hello World!"

• A string constant

number.VALUE

• Characterises the value of the variable ”number”

• You can assign a constant or probabilty function to a characterisation

• For example, number.VALUE = 762.3 or number.VALUE = DoublePMF(unit=””)[(22.3;0.4)(24.8;0.6)]

34 CONTENTS

graphic.TYPE

• Characterises the type of the variable ”graphic”

• For example: graphc.TYPE = ”polygon”

file.BYTESIZE

• Characterises the size of variable ”file” in bytes

array.NUMBER_OF_ELEMENTS

• Characterises the number of elements in the collection variable ”array”

• For example:

array.NUMBER_OF_ELEMENTS = IntPMF(unit="elements") [(15;0.1)(16;0.9)]

set.STRUCTURE

• Characterises the structure of the collection variable ”set”

• For example: sorted, unsorted

2+4, 34.3-1, 88.2*1.2, 14/2, 60\%12

number.VALUE * 15, file.BYTESIZE / 2

• Arithmetric expressions can combine constants

• Allowed are + (addition), - (substraction), * (multiplication), / (division),

• Arithmetric expressions may include variable characterisations

DoublePDF(unit="s")[(1.0;0.3)(1.5;0.2)(2.0;0.5)] * 15

IntPMF(unit="iterations")[(1124.0;0.3)(1125.5;0.7)] + 2.5

DoublePDF(unit="s")[(12.0;0.9)(15;0.1)] -

DoublePDF(unit="s")[(128.0;0.3)(256;0.2)(512.0;0.5)]

• Arithmetric expressions can also combine probability functions

number.VALUE < 20, foo.NUMBER_OF_ELEMENT == 12,

blah.VALUE >= 108.3 AND fasel.TYPE == "mytype"

• Boolean expressions evalute to true or false

• You can use them on guarded branch transitions

• Valid operators are > (greater), < (less), == (equal), != (not equal), ≥ (greater equal), ≤ (less

equal), AND, OR

Chapter 3

Concepts

35

36 CONTENTS

3.1 Component Developer

3.1.1 Overview
Component developers are responsible for the implementation of software components. They take func-

tional and extra-functional requirements for components to be developed and turn them into component

specifications and executable software components. They may also receive specifications from other

parties and implement components against them.

Component developers deposit their specifications and implementations into repositories, where they

can be accessed by software architects to compose systems or by other component developers to create

composite components. To provide an overview of the following section, Figure 3.1 contains an exem-

plary component repository, which contains most of the entities supported by the PCM.

Interfaces, components, and data types are first-class-entities in PCM repositories. They may exist

own their own and do not depend on other entities. For example, Figure 3.1 contains the interface My-

Interface (upper left), which is not bound to a component. The interface contains a list of service

signatures. Interfaces may also contains protocol specifications, which restrict the order of calling its

services, or QoS specifications, which describe their extra-functional properties. Section 3.1.2 describes

interfaces in detail.

Components may provide or require interfaces. The binding between a component and an interface

is called ”provided role” or ”required role” in the PCM. We distinguish provided and requires roles de-

pending on the meaning of an interface for a component. For example, figure 3.1 contains the component

A (top), which is bound to the interface YourInterface in a providing role. Section 3.1.3 details on

the relationship between components and interfaces.

Common data types are needed in repositories, so that the signatures of service specifications refer

to standardised types. In the PCM, data types can be primitive types, collection types, or composite

types to build complex data structure. Figure 3.1 contains a PrimitiveDataType ”INT” and a

CollectionDataType ”INT-Array”, which only contains ”INTs” as inner elements. Section 3.1.2

contains more information on data types.

Different types of components can be modelled in the PCM to a) reflect different development stages

and b) to differentiate between basic (atomic) components and composite components.

Concerning a), Figure 3.1 contains the components B, which has a ProvidedComponentType

and does not contain required interfaces, C, which has a CompleteComponentType and contains

no inner structure, and component D, which has an ImplementationComponentType and may

contain an inner structure. Components may be refined from ProvidedComponentTypes to Im-

plementationComponentTypes during design.

Concerning b), component E in Figure 3.1 is a composite component. The PCM is a hierarchical

component model, which allows composing new components from other components. From the outside,

composite components look like basic components, as they publish provided and required interfaces.

Within the composite component, they use delegation connectors to forward requests to inner compo-

nents and assembly connectors to bind inner components. Composite components may also include other

composite components (notice component G within component E).

For each provided service, basic components may include a mapping to required services, a so-called

ServiceEffectSpecification (SEFF). It models the order in which required services are called

by the provided service and may also include resource demands for computations of the service, which

are needed for performance predictions. SEFFs are an abstract behavioural description of a component

designed to preserve the black-box principle. Section 3.1.4 explains different types of SEFFs and their

application.

CONTENTS 37

<<Repository>>

<<CompositeComponent>>

E

<<Basic

Component>>

F

<<Composite

Component>>

G

<<Implementation
ComponentType>>

D

<<Provided
ComponentType>>

B

<<Complete
ComponentType>>

C

<<Basic

Component>>

H

<<Delegation
Connector>>

<<Assembly
Connector>>

<<ProvidedRole>>

<<RequiredRole>>

<<Delegation
Connector>>

<<Interface>>

MyInterface

void method1(Object par)

Object method2()

<<PrimitiveDataType>>

type = „INT“

<<CollectionDataType>>

name = „INT-ARRAY“

innerType = „INT“

<<Provided
Interface>>

<<Required
Interface>>

<<Basic

Component>>

A

<<Interface>>

YourInterface

INT method3()

void method4()

<<ServiceEffectSpecification>>

<<ExternalCallAction>>

method1

<<InternalAction>>

doSomething

<<BasicComponent>>

I

<<ProvidedRole>>
<<RequiredRole>>

Figure 3.1: Repository Example

38 CONTENTS

3.1.2 Interfaces

Szyperski et al. emphasise the relation between components and interfaces: ”Interfaces are the means by

which components connect [6, p. 50].” For components, interfaces are a key concept serving multiple

purposes. First, this section will describe the structure of PCM interfaces and then discuss the role of

interfaces as contracts as well as inheritance of interfaces.

An interface within the PCM consists of a list of sigatures (mandatory), a protocol specification

(optional). The following explains both concepts in more detail.

3.1.2.1 Signatures

A signature in the PCM is comparable to a method signature in programming languages like C# or Java.

It is widely compatible with the OMG’s IDL standard [24, p. 3-1 and following]. Each signature of an

interface is unique and contains:

• A type of the return value or void (no return value)

• An identifier naming the service

• An ordered set of parameters (0..*). Each parameter is a tuple of a datatype and an identifier (which

is unique across the parameters). Additionally, the modifiers in, out, and inout (with its OMG

IDL semantics, cf. [24, Chapter 3]) can be used for parameters.

• An unordered set of exceptions.

A signature has to be unique for an interface through the tuple (identifier, parameters). An interface has

a list of 1..* signatures and a signature is assigned to exactly one interface. However, different interfaces

can define equally named signatures, which are distinguished by their parameters. If, for example, void

doIt() is defined for interface A and B, void doIt() is not identical in both interfaces.

3.1.2.2 Protocols

A protocol is a set of call sequences to the services of a single interface and can be optionally added

to an interface specification. In general, a protocol defines the set of all possible call sequences of

the interface’s signatures. Depending on the role of the interface (cf. Section 3.1.2.5), protocols are

interpreted differently. Protocols of provided interfaces specify the order in which services have to be

called by clients. Protocols of required interfaces specify the set of all possible call sequences to required

services. However, the specification of a protocol is independent of its interface’s role.

Figure 3.2 shows an example of protocols visualised as finite state machine. Nodes represent states,

while edges represent calls to services and are labelled with signatures. The figure on the left hand side

shows the protocol for the interface IReaderWriter as a finite state machine. First, open(..) is

called. Then, read(..) and write(..) can be called in an arbitrary sequence. Finally, close()

terminates the protocol.

Besides finite state machines, different formalisms can be used to model protocols. For example, Petri

nets or stochastic process algebras could model interface protocols. However, the choice of a formalism

implies the possible analyses. For example, to check the interoperability of two components, language

inclusion has to be checked. The language inclusion is undecidable for Petri nets in the general case, so

protocols modelled with Petri nets cannot be checked for interoperability.

CONTENTS 39

ReaderWriter

Com ponent

I ReaderW riter

Handle open()

throws SecurityException;

void write(string s, Handle h);

string read(Handle h);

void close(Handle h);

I ReaderWriter

I Logging

I Cache

I Logging

void writeLog(string log)

throws WriteException;

I Cache

string readFromCache(Handle h)

throws CacheMissException;
open()close()

write(),

read() readFromCache()

writeLog()

Figure 3.2: Example: Interfaces with Signature Lists and FSM protocols

3.1.2.3 Interfaces as Contracts

Interfaces are applied to specify the allowed communication between components. The contracts spec-

ified in the interface (method contracts, invariants) characterize the valid behaviour of these entities. In

object-oriented languages an object can act in two roles with respect to an interface: server or client.

In the server role, the object ”implements” or ”realizes” the operations specified in the interfaces and

observes the method pre- and postconditions. In the client role, the object calls services offered in a

given interface by fulfilling the precondition and expecting the postcondition. However, in both cases the

interface and its associated contracts serve both roles as contract on which they can rely.

As with legal contracts, interfaces can exist even if no one actually declared their commitment to

them, i.e., there is no specific client or server. For example, this is used to define a certain set of stan-

dardised interfaces of a library to enable the construction of clients and servers of these libraries inde-

pendently. Thus, in our model the concept Interface exists as first class entity which can be specified

independent from other entities.

An interface protocol is a special case of the more general concept of arbitrary preconditions for

methods. Any kind of protocol can be expressed via preconditions. Thus, the protocol is an abstraction of

the set of all preconditions. The abstraction is often based on the expressiveness of the used specification

formalism.

3.1.2.4 Interface Inheritance

The subtype relationship of any two arbitrary interfaces I1, I2 can be specified as follows. Interface I1

is subtype of I2 if it is able to fulfil at least the contracts of I2. In detail, this means it has to be able to

handle all the (single) method calls which I2 can handle. Additionally, it must also at least support the

call sequences which I2 supports. A common constraint for the hierarchy of interfaces is that any given

40 CONTENTS

interface can not be supertype of itself, which gives us a acyclic subtype hierarchy.

This definition of interface inheritance is required to support contra-variance – cases in which not the

original interface is used, but a super- or sub-type. A sub-type can replace a super-type at the provided

side of a component, while a super-type can be used instead of a sub-type at the required side.

3.1.2.5 Roles

Components use interfaces to declare their provided and required functionality. These interfaces are

often referred to as provided and required interfaces. Since interfaces themselves can be considered as

contracts that do not make any statement about the participants of the contract (cf. Section 3.1.2), the

role of the component for the contract needs to be set elsewhere.

The PCM uses Roles for this purpose. A Role associates an interface to a component. The type of

the association determines whether the component offers or demands the interfaces. ProvidedRoles

reference the interfaces offered by a component. In this case the component takes the role of a server. It

implements the services defined in the interfaces. Furthermore, it can rely on the call sequences defined

in the interface’s protocol, because its clients will adhere to it. On the other hand, RequiredRoles

reference the interfaces requested by a component. The component uses the interfaces to implement its

functionality. It will only call the its services according to the interface’s protocol specification.

CONTENTS 41

3.1.3 Components

To create a software system, software architects can use existing components from repositories or specify

new ones. So, some of the components in an architecture are already specified while others are only

sketched. As a consequence, we cannot characterise component-based development processes into the

classical top-down (i.e., going from requirements to implementation) or bottom-up (i.e., assembling

existing component to create an application) categories. Instead, it is a mixture of both approaches.

This mixture needs to be reflected in the component model, since software architects must be able to

use fully specified components in combination with nearly unspecified ones in their architectural descrip-

tions. The PCM reflects this requirement by a so-called component type hierarchy. It distinguishes three

abstraction levels for software component specifications (from abstract to concrete): provided types,

complete types, and implementation types. On the most abstract level, provided types specify a com-

ponent’s provided interfaces leaving its requirements and implementation open. This allows software

architects to create ideas of components, leaving their realisation unspecified. On the middle level, com-

plete types fully specify a component’s required and provided interfaces, but do not make any statements

about its internal structure. This is more concrete than provided types as the component’s dependencies

have already been defined. However, the actual implementation (how provided services use required

ones) still remains open. Software architects can use complete types for substitution of one component

by another, if they have a selection of multiple components (e.g., different variants or versions) with the

same functionality but different extra-functional properties. Last but not least, implementation types ab-

stractly specify the internal behaviour of a software component. Their behavioural model describes how

the provided services of the actual component implementation call its required services. Behavioural de-

scriptions of software components are needed to evaluate extra-functional properties such as reliability

or performance of software architectures.

This section provides an overview on the different component types and their relationships. It first

introduces the ideas and concepts of the type hierarchy. Then, the realisation in the PCM and the meta

model of the type hierarchy are explained. The following describes the concepts of the three levels of

the type hierarchy. The explanation starts with the most concrete implementation type, since it conforms

to the intuitive understanding of a software component for most developers. Based on the concepts

introduced the more abstract concepts of complete and provided types are explained.

3.1.3.1 Implementation Component Type

Implementation (component) types include descriptions of a component’s provided and required inter-

faces as well as abstract specifications of its internal structure. The specification of the internal structure

depends on the way the component is realised. In general, components can either be implemented from

scratch or composed out of other components. In the first case, the implemented behaviour of each

provided service needs to be specified with a service effect specification (SEFF, cf. Section 3.1.4) to

describe the component’s abstract internal structure. We refer to such components as basic components,

since they form the basic building blocks of a software architecture. On the other hand, developers can

use existing components to assemble new, composite components. The internal structure of these com-

ponents is the structure of the assembly (i.e., the included components and their interconnections). The

following explains the concepts of basic and composite components in more detail

Basic Components Basic components are atomic building blocks of a software architecture. They

cannot be further subdivided into smaller components.

42 CONTENTS

<<ServiceEffectSpecification>>

<<ExternalCallAction>>

method1

<<InternalAction>>

doSomething

<<BasicComponent>>

I

Figure 3.3: Example of a Basic Component.

Basic components encapsulate their internal structure (black box view). For reasoning about a basic

component’s properties, it may contain SEFFs, which describe the dependency between provided and

required roles (cf. Figure 3.3). SEFFs abstract from the component’s internal behaviour and only reveal

necessary internals to reason on the component properties, such as protocol interoperability and QoS.

Section 3.1.4 describes SEFFs in detail.

Composite Components Composite components are created by assembling other, existing compo-

nents (cf. Figure 3.4). They base on composed structures (cf. Section 2.2.2), which contain a set of

assembly contexts, delegation connectors, and assembly connectors. Assembly contexts embed compo-

nents into the composite component. Assembly connectors bind required and provided roles of inner

components in different contexts. Delegation connectors bind provided (required) roles of the composite

component with provided (required) roles of its inner components.

<<CompositeComponent>>

E

<<Basic

Component>>

F

<<Composite

Component>>

G

<<Basic

Component>>

H

<<Delegation
Connector>>

<<Assembly
Connector>>

<<ProvidedRole>>

<<RequiredRole>>

<<Delegation
Connector>>

<<Provided
Interface>>

<<Required
Interface>>

Figure 3.4: Example of a Composite Component.

Composite components may contain other composite components, which again are composed of

other components. This enables building arbitrary hierarchies of nested components. Like basic compo-

nents, composite components may contain SEFFs. However, these SEFFs are not specified manually by

the component developer, but can be computed by combining the SEFFs of the inner components.

3.1.3.2 Complete Component Type

Complete (Component) types abstract from the realisation of components. They only have provided

and required roles omitting the components’ internal structure (i.e., the service effect specifications or

encapsulated components). Thus, complete types represent a black box view on components.

CONTENTS 43

Software architects can integrate complete types into their architectures, which are fully connected

with their provided and required roles. However, as their internal structures are not specified, they can

be substituted by basic or composite components in later development stages. This is especially useful if

the component is developed in a top down fashion. As described in Section 2.1.2, software architects can

use complete types as a requirement specifications handed over to third parties. Component developers

provide the actual implementations and specifications which complete the software architecture as soon

as they are available.

If a component’s implementation and specification does not exist, software architects can still model

and evaluate an architecture. However, they have to provide basic QoS estimates for the complete com-

ponent types in their architecture to evaluate its QoS attributes. Furthermore, the QoS results cannot be

expected to be as accurate as for implementation component types.

3.1.3.3 Provided Component Type

Provided (Component) types abstract a component to its provided interfaces, leaving its requirements and

implementation details open. So, provided types subsume components which offer the same function-

ality, but with different implementations and requirements. As different implementations might require

different services from the environment, provided types omit required interfaces. Provided types allow

software architects to focus on a component’s functionality.

Using provided types, software architects can draft ideas on how functionality can be partitioned

among different components without worrying about their implementation. In the initial phases of archi-

tectural design, it often does not make sense to arrange all details of a component, since most of them

depend on the actual implementation and thus need to be specified by component developers. As during

this phase the actual implementation is unknown, also the required interfaces of a component cannot be

stated. However, software architects can still pre-evaluate software architectures containing provided-

types by giving basic QoS estimates for them. This gives rough estimates about the quality of a software

system and defines QoS requirements for the component implementation.

3.1.3.4 Type Hierarchy

The provided, complete, and implementation component types can be organised in a hierarchy as shown

in Figure 3.5. Provided types are on the top, most abstract level, since they only specify provided roles.

The lower levels extend provided types with requirement and implementation specifications. On the

middle level, complete types extend provided types with required roles, but still abstract from the actual

implementation of a component. Implementation types on the lowest level of the hierarchy can either

be composite or basic components. Thus, they specify the provided and required roles as well as the

abstract internal structure of a component.

The different levels of the hierarchy are related to one another by the conforms and impl-conforms

relationships. These relationships define under which conditions a component specification on a lower

level is of a higher level type. A complete type conforms to a provided type if it offers at least the

functionality specified in the provided type. Furthermore, an implementation type impl-conforms to a

complete type if it offers at least the functionality of the complete type and requires at most the function-

ality of it required interfaces. The following explains both relationships in more detail and introduces a

notion of substitutability based on their definition.

44 CONTENTS

<<ProvidedType>>

<<CompleteType>>

<<BasicComponent>>

<<CompositeComponent>>

<<impl-conforms>> <<impl-conforms>>

<<conforms>>

Figure 3.5: Component Type Hierarchy.

Conforms Relation The conforms relation is a subtype relation of provided and complete types. Ab-

stractly speaking, a complete type conforms to provided type if it provides at least the functionality

specified in the provided type. In order to concretise this statement, we need to define the provided

functionality of a component and its relation.

Provided roles of components define their offered functionality associating interfaces to components.

Thus, the conforms relation is defined on the provided interfaces of components 1.

+doSomeThing()

«interface»

ITop

+doSomeThingElse()

«interface»

IBottom

Figure 3.6: Example of interface inheritance.

Section 2.2 introduces the concepts of interfaces in the PCM. At this point, we only give a brief

overview on the fundamental concepts. Interfaces are organised in an inheritance hierarchy. So, an

interface can have multiple supertypes and subtypes. Basically, a supertype of an interface provides

less and the subtype provides more services. Figure 3.6 shows an example. There, interface ITop is a

supertype of interface IBottom while IBottom is a subtype of ITop.

1Another option would be the definition of the conforms relation on services provided by a component neglecting the

corresponding interfaces. However, this is ambiguous, since two interfaces can provide syntactically equal services, but with

different semantics. Furthermore, the PCM allows the specification of protocols for interfaces, which have to be considered in

the conforms relation.

CONTENTS 45

In order to give a meaningful definition of the conforms relation, we have to consider the inheritance

hierarchy of interfaces. We can refine the definition of the conforms relation.

A complete type conforms to a provided type if it provides at least the interfaces or subtypes of the

interfaces specified in the provided type. More formally, let Prov be the set of provided interfaces of

a component type including all supertypes. Then a complete type C conforms to a provides type P if

ProvP ⊆ ProvC , the interfaces provided by P are a subset of the interfaces provided by C.

Implementation-Conforms Relation The impl-conforms relation is a subtype relation between im-

plementation types and complete types. Abstractly speaking, an implementation type (either a basic or

composite component) conforms to a complete type if it provides the same or more functionality and

requires the same or less functionality than the complete type.

With respect to the provided functionality, the impl-conforms relation is similar to the conforms re-

lation. In addition, the required functionality of an implementation type must be less or equal to the

required functionality of a complete type. Analogously to the provided functionality, the required func-

tionality is specified in the components’ required roles (i.e., the interfaces associated to the component

with its required roles). Considering the supertype and subtype relation of interfaces, we can define the

impl-conforms relation as follows.

An implementation type conforms to a complete type if it provides at least the interfaces or subtypes

of the interfaces provided by the complete type and if it requires at most the interfaces or supertypes of

the interfaces required by the complete type. More formally, let Prov be the set of provided interfaces of

a component type including all supertypes and Req be the set of required interfaces of a component type

including all subtypes. Then an implementation type I conforms to a complete type C if ProvC ⊆ ProvI

and ReqC ⊇ ReqI , the interfaces provided by C are a subset of the interfaces provided by I and the

interfaces required by C are a superset of the interfaces required by I.

<<Complete

ComponentType>>

X

<<Complete

ComponentType>>

Y

<<Basic

Component>>

A

<<Composite

Component>>

B

Ia Ib

Ic

Ia

Ib Ic

Ia

Ib Ic

Ia Ib

Ic

<<impl-conforms>> <<impl-conforms>> <<impl-conforms>>

Figure 3.7: Example for Component Type Conformance.

Figure 3.7 shows an example for conforms relations of implementation and complete components.

Complete component X provides interface Ia and requires Ib and Ic while complete component Y

provides Ia and Ib and requires Ic. Basic component A provides and requires the same interfaces

as complete type X and thus impl-conforms to X as indicated by the dashed arrow with the stereotype

46 CONTENTS

<<impl-conforms>>. However, A does not conform to Y since it does not provide interface Ib and

additionally requires it. Composite component B impl-conforms to both types X and Y as it provides

interfaces Ia and Ib and only requires Ic.

Cardinality of the Conforms Relations The conforms as well as the impl-conforms relations are

many-to-many relations between two levels of the component type hierarchy. Each implementation type

can conform to multiple complete types and each complete type can be implemented multiple times.

Figure 3.7 illustrates this. Composite component B impl-conforms to complete types X and Y and com-

plete type X is implemented by basic component A and composite component B. The same holds for the

conforms relation as well. Each provided type can abstract multiple complete types and each complete

type can conform to multiple provided types.

Substitutability The main application of both conforms relations is the definition of substitutability

for software components in the PCM. A component can substitute another component if it conforms to

its type. Depending on the type of conforms relation, the substitution of a software component can have

different effects. The following discusses this in more detail.

Assume we have a software architecture where an implementation type A is used. If a component B

shall substitute A and B conforms to the provided type of A, but not impl-conforms to its complete type,

B provides at least the interfaces offered by A, but requires additional interfaces. Thus, replacing A by

B in the given architectures can lead to problems since not all of its requirements are fulfilled. On the

other hand, a component B’ that impl-conforms to A can easily replace A, since it provides the necessary

interfaces and all its requirements can be fulfilled by the surrounding architecture.

3.1.3.5 Type Hierarchy Meta Model

A part of the meta model describing the component type hierarchy is analogous to the structure of the

type-hierarchy itself (cf. Figure 3.8). Each type level is a specialisation of the upper levels. So, lower

levels in the hierarchy only add information to the component specification, e.g. the complete type adds

mandatory required roles. Thus, lower type levels inherit the attributes of the upper levels.

However, the inheritance between the different type levels is only partially connected to the conforms

relations. As a consequence of the inheritance, an instance of a basic component is as well an implemen-

tation, complete, and provides type. Due to the definition of the conforms relation, it certainly conforms

to itself. However, the conforms relation is not restricted to itself, it can conform to other component

types as well.

CONTENTS 47

childComponent

Contexts
*

InterfaceProviding

RequiringEntity

Provides

ComponentType

Complete

ComponentType

Implementation

ComponentType

Basic

Component

Composite

Component

AssemblyContext

encapsulatedComponent

*

1

Figure 3.8: Meta Model of the Component Type Hierarchy.

3.1.4 Service Effect Specification

3.1.4.1 Motivation

The goal of the PCM is to provide modeling capabilities that enable QoS analyses of component-based

software architectures. As clients perceive different QoS characteristics of a provided service in a

component-based architecture depending on a particular context, component developers have to pro-

vide parameterised specifications of the QoS attributes of their components. Such context dependencies

for a specific component service may originate from a) input parameters (including the current compo-

nent internal state), b) resource usage, and c) usage of required services. These influences have to be

made explicit in the service’s specification.

To achieve accurate QoS analyses, a description of the usage of required services (influence c))

for each provided service of a component is useful, because the QoS characteristics perceived at the

provided interface can depend on QoS characteristics of calls to required services. For example, consider

a provided service calling a slow required service. In this case, the response time of the provided service

will be perceived as slow by its clients, because the execution time of the slow required service has to

be included in its own execution time (details can be found in [25]). software architects cannot know

how requests to a provided service of a component are propagated to required services if no dependencies

between them are specified. Thus, component developers have to enhance their component specifications

with a description of such intra-component dependencies to enable accurate specification-based QoS

analyses by third parties.

3.1.4.2 Description

A service effect specification (SEFF) describes how a provided service of a component calls its required

services and is thus an abstraction of the control flow through the component. In the simplest case, a

SEFF of a provided service is a list of signatures of the services in the component’s required interfaces.

For more sophisticated analyses, a SEFF can be modelled as a finite state machine (FSM), which captures

48 CONTENTS

sequences, branches, and loops. In any case, a SEFF captures the externally visible behaviour of a

provided service while hiding its internal computations.

logger.writeLog()

cache.read()

logger.writeLog()

logger.writeLog()

read()

(a)

ILogging logger;

ICache cache;

[…]

public void read(Handle h){

 if (h==null){

 h = new Handle(FILENAME);

 }

 logger.writeLog(„start reading cache“);

 while(h.hasNext()){

 cache.read(h.Current());

 logger.writeLog(„accessing cache“);

 }

 logger.writeLog(„end reading cache“);

}

(b)

Figure 3.9: Example SEFF as FSM and corresponding source code

Example 3.1 (FSM-SEFF). In figure 3.9(a), a SEFF is modeled as a FSM for the provided service read,

whose source code is shown in Figure 3.9(b)). This service first initialises a file handle, writes to a log

file, and then reads from a cache within a loop. After completing the file access, another entry is added to

the log. In the FSM, edges represent calls to required services and are annotated with the name of these

services. The states abstractly represent the internal computations of a service after or before executing

a required service. Notice, that the SEFF only contains the sequence of calls to the required services,

while the component internal activity of initialising the file handle is abstracted.

Although SEFFs reveal the inner dependencies between provided and required interfaces of a com-

ponent, they do not violate the black box principle. First, these specifications are only used by tools

performing analyses, and do not have to be understood by humans. Second, they do not reveal the intel-

lectual property of component developers encoded in the service’s algorithms, because they are a strong

abstraction of the component’s source code. Third, in many cases, these specification can be generated

out of byte code components, which are generally considered black box components.

SEFFs can be specified for basic components by the component developers and computed for com-

posite components out of the SEFFs specified for the inner components [12]. For existing legacy basic

components with available source code, the SEFFs have to be specified manually so far. However, in the

future it is planned to implement analysis tools for component source code to assist component develop-

ers in the SEFF specification of legacy components by semi-automatically generating them.

3.1.4.3 Types of Service Effect Specifications

Different types of SEFFs besides simple service lists and FSMs can be modelled to support different

kinds of analysis (e.g., protocol checking, QoS analysis, etc.). If different SEFF types are defined for the

same provided service, a mapping should exist between the FSM SEFF and the other types of SEFFs,

CONTENTS 49

which ensures the same names for provided and required services and the same order of calls to required

interfaces.

SEFFs have been introduced by Reussner [12], who has used them in the context of parameterised

contracts for protocol adaptation (Section 2.3). In that work, counter-constraint automata are used to

model SEFFs restricting the number of calls to specific required services. Furthermore, using Petri nets

to model SEFFs is envisioned to support concurrent component behaviour. However, assuring proto-

col interoperability is not possible if the component behaviour is modeled with Petri nets, because the

language inclusion problem is undecidable for them in the general case.

While plain FSMs are well-suited for restricted protocol checking, they are generally insufficient for

QoS analyses, because additional stochastic information and QoS characteristics (such as execution times

or reliability values) are needed. Thus, several other forms of SEFFs have been proposed. For reliability

prediction, Reussner and Schmidt [20] enhance SEFF FSMs with transition probabilities, so that they

become Markov models. Similar Markov models enhanced with distribution functions for execution

times have been used for performance predictions by Firus et. al. [4]. Happe et. al. [26] propose

modeling SEFFs as stochastic Petri nets to enable QoS analyses involving concurrency. Koziolek et.

al. [27] use stochastic regular expressions as SEFFs to make component-based performance predictions.

These expressions are similar to Markov models, but are hierarchically structured and contain special

constructs to model loops. Koziolek et. al. [3] use annotated UML 2.0 activities as SEFF models in the

context of performance analysis. In [1] so-called resource demanding SEFFs have been introduced for

QoS analysis, which have become part of the PCM and are described in Section 3.1.4.4.

In the PCM, a basic component can contain any number of SEFFs for each provided service, but

at most one SEFF of each type, such as FSM or Petri net. A restriction on a particular SEFF type is

deliberately avoided to enable different kinds of analyses. At the point of writing, the only SEFF type

explicitly included in the PCM is the resource demanding SEFF. However, other types can be included

in the PCM by inheriting from the class ServiceEffectSpecification. Consistency between

different SEFF types has to be ensured by component developers, as it is not checked by the component

model. If component developers implement a component based on a SEFF, it has to be ensured that the

language of the SEFF is a superset of the language of the implementation.

3.1.4.4 Resource Demanding Service Effect Specification

A resource demanding service effect specification (RDSEFF) [1] is a special type of SEFF designed for

performance and reliability predictions. Besides dependencies between provided and required services of

a component, it additionally includes notions of resource usage, data flow, and parametric dependencies

for more accurate predictions. Its control flow is hierarchically structured and can be enhanced with

transition probabilities on branches and numbers of iterations on loops. In the following, the meta model

of the RDSEFF will be illustrated, and its design rationale will be explained. For understanding and

clarity, the illustration of the meta model and the concept descriptions are spread over several paragraphs.

Overview Figure 3.10 shows how RDSEFFs are connected to the PCM and contains their main parts.

Each BasicComponent can contain a number of ServiceEffectSpecifications, each of

which references a signature of a provided service of the component. Each provided service can be

described with different types of SEFFs.

A ResourceDemandingSEFF is a ServiceEffectSpecification and a Resource-

DemandingBehaviour at the same time inheriting from both classes. The reason for this construct

lies in the fact, that ResourceDemandingBehaviours can be used recursively inside themselves

50 CONTENTS

ServiceEffectSpecification

seffTypeID : EString

ResourceDemandingSEFF

ResourceDemandingBehaviour

AbstractActionSignature

serviceName : String

BasicComponent

*

11

*
1

*

Figure 3.10: Overview of the RDSEFF

to describe loop bodies or branched behaviours (explained later), and these inner behaviours should not

be RDSEFFs themselves.

The ResourceDemandingBehaviour is designed to reflect different influence factors on the

performance and reliability of a component service. It contains a set of AbstractActions to model

• calls to required services,

• resource usage by internal activities, and the

• corresponding control flow between required service calls and resource usage.

AbstractAction

AbstractResourceDemandingAction

AquireAction

ExternalCallAction
ParametricResourceDemand

demand : String

unit : String

ReleaseAction

ProcessingResourceTypePassiveResourceType

1 *

1

1

1

1

1

1

Figure 3.11: Resource Usage in RDSEFFs

Resource Demand To conduct QoS analyses, component specifications must contain information on

how system resources, such as hardware devices or middleware entities are used by components. Ideally,

component developers would specify a timing value for the execution time of each provided service of

CONTENTS 51

a component. However, these timing values would be useless for third party users of the component,

because they would depend on the specific usage profile, hardware environment, software platform, and

attached required services the component developer had used while measuring them.

Thus, component developers have to specify the demand each provided service places on resources

instead of a timing value. Other than a timing value, the demand is independent from concrete resources.

For example, a component developer could specify the number of CPU cycles of a specific operation

within a service or the number of bytes read from or written to an I/O device. These demands have

to be specified against abstract resource types, because the component developer does not know all

possible resources the component could be deployed on. Only software architects and deployers know

the concrete resources the component shall be used on and can define a specific deployment context (i.e.,

a resource environment model, Section 3.3.4). With this concrete context, for example, the execution

time of one CPU cycle or the time to read one byte from an I/O device is specified. Then, actual timing

values can be derived from the resource demands.

Resource demands of a component service may vary depending on how the service is used. For

example, the hard disk demand of a component service, which offers downloading different files from a

server, strongly depends on the size of the file that is requested via an input parameter. Another example

would be the CPU demand of a component that allows sorting collections. Its CPU demand for the sort

operation would depend on the number of elements in the collection. Thus, it could not be specified as a

fixed value by the component developers, because they cannot forsee how the component will eventually

be used by third parties. Therefore, it is necessary to specify resource demands in dependency of input

parameters.

These considerations have been mapped to the meta model of the RDSEFF (see Figure 3.11). Ab-

stractActions can either be external calls (ExternalCallAction), which reference required

services and do not produce resource demands themselves, or internal computations actions (Abstract-

ResourceDemandingActions), which actually place demands on resources. These Parameteric-

ResourceDemands contain a demand (e.g., ”127”) and a unit (e.g., ”bytes”). The demand can be spec-

ified in dependency to the service’s input parameters (e.g., demand=”x.BYTESIZE * 200”, unit=”CPU

cycles”, where ”x” is an input parameter of the service). Once ”x.BYTESIZE” is specified by third party

users, the actual resource demand can be computed.

Resource demands reference ProcessingResourceTypes from the ResourceType package

of the PCM (Section 3.3.3). Once the concrete processing resource, such as a CPU or network device, is

specified, the actual resource demands can be placed on them to calculate timing values.

Besides active resources, such as CPUs, I/O devices, storage devices, memory etc., component ser-

vice may also acquire or release passive resources, such as semaphores, threads, monitors, etc. These

resources usually exist in a limited number, and a service can only continue its execution if at least

one of them is available. Passive resource are themselves not able to process requests and do not al-

low to place demands on them. They can only be acquired and released, which can be modelled with

the AquireAction and ReleaseAction (see Figure 3.11). These actions reference Passive-

ResourceTypes from the resource type package of the PCM.

External Calls and Parameter Usage RDSEFFs allow the specification of calls to required services

with ExternalCallActions, which are themselves AbstractActions (see Figure 3.12), but

produce no resource demands directly. The resource demand produced by executing a required service

has to be specified in the RDSEFF of that service. ExternalCallActions reference the signature

of a required service.

Classical FSM SEFFs only specify the name of a called required service, but do not include the

52 CONTENTS

AbstractAction

ExternalCallAction

ResourceDemandingBehaviour

VariableUsage

Signature

serviceName : String

Parameter

parameterName : EString

1 *

1

*

11

1

*

Figure 3.12: External Service Calls and Parameter Usage in RDSEFFs

parameter values of this call. They are control flow oriented and neglect the data flow. However, input

parameters, which represent the concurrent data flow, can have a significant impact on the resource usage

of a called service. Therefore, characterisations of parameter values passed to required services should be

included into the RDSEFF by the component developers. They can either specify these characterisations

if the component is still being designed. Or, after completing the component implementation, they can

derive these characterisations from the source code.

It is possible that input parameters passed to a required service do not receive fixed or constant values

within the calling component service. They might in turn depend on the input parameters of the calling

service. These input parameters are however unknown to the component developers. Therefore, in such

a case, the component developers have to specify a dependency (instead of a constant characterisation)

between input parameters of the calling service and input parameter passed to required services.

In the PCM, VariableUsages can be used to specify the needed dependencies between param-

eters (Figure 3.12), which abstractly characterise the data flow through a component service. These

variable usages are aligned to the parameter model described in Section 3.4.3. With them, it is possible

to characterise the value, byte size, or type of primitive parameters as well as the number of elements or

the structure of collections. The characterisations can be expressed as random variables (for details refer

to Section 3.4.3).

Control Flow RDSEFFs extend classical FSM SEFFs with additional constructs for modeling con-

trol flow of the dependencies between provided and required interfaces (Figure 3.13). All control flow

constructs are aligned in a hierarchical fashion that avoids ambiguities and eases analyses (an example

will follow). A ResourceDemandingBehaviour contains a chain of AbstractActions, which

each reference at most a single predecessor and successor. The first element of the chain is a Start-

Action, which has no predecessor, while the last element of the chain is a StopAction, which has

no successor.

InternalActions should be used to reference ParametricResourceDemands for activi-

ties inside the described service, between calls to required services. In the future, they could be used to

characterise the inner resource demand of basic components more detailed.

BranchActions split the control flow with an XOR-semantic: Exactly one of the attached Ab-

stractBranchTransitions is taken when such an action is executed. Branches may result from

if/ then/ else or case statement of the underlying source code.

CONTENTS 53

AbstractResourceDemandingAction

AbstractAction

BranchAction

ExternalCallAction

I nternalAction

failureProbability : String

StartAction

StopAction

AbstractLoopAction

ForkAction

transition0..1

+ successor_AbstractAction

0..1

+ predecessor_AbstractAction

Figure 3.13: Control Flow in RDSEFFs

Branch transitions can be either guarded or probabilistic (Fig. 3.14). GuardedBranchTransitions,

contain a branch condition as a random variable. For example, a branch condition could be connected to

the value of an input parameter (”x < 1”), in which case a branching probability could be computed once

the value of the input parameter is known. ProbabilisticBranchTransitions directly contain

a probability and not a branch condition. They can be used in case a component developer cannot specify

a guard related to input parameters or just to ease the analyses.

Additionally, each type of branch transition contains a ResourceDemandingBehaviour to

model the inner actions of the branch. Using inner behaviours avoids the need to have a merge ac-

tion to join branches. Furthermore, it prevents problems, which might arise when a nested ”else”-branch

cannot be associated unambigiously with an according ”if”-branch.

ForkActions split the control flow with an AND-semantic: Each of the inner forked Resource-

DemandingBehaviours has to be executed (possibly concurrently) before the control flow continues

with the successor of the corresponding ForkAction. Forks may for example result from the invoca-

tions of threads. Because the inner activities of the forked behaviours are encapsulaed in Resource-

DemandingBehaviours, there is no need for a join action to reconnect concurrent control flows.

AbstractLoopActions, like BranchTransitions and ForkActions, contain inner Re-

sourceDemandingBehaviour, which include actions carried out in the loop body (Fig. 3.15).

Loops can originate from for or while statements of the underlying source code.

Concrete loop action can be modelled either with LoopActions or CollectionIterator-

Actions. The former contain the number of iterations as a random variable, and this random variable

can include dependencies on input parameters (explained later). The latter enables modeling the special

but common case of iterating over a collection. Because of this, CollectionIteratorActions

reference an input parameter of the current component service. This input parameter must be a collection

parameter and the number of elements in this collection has to be characterised with a random variable.

Then the loop gets executed for each element in the collection.

Notice, that for LoopActions, it is assumed that the parameters characterisations used in the loop

body are stochastically independent, whereas for CollectionIteratorActions it is assumed that

54 CONTENTS

AbstractBranchTransition

BranchAction

BranchCondition

GuardedBranchTransitionProbabilisticBranchTransition

branchProbability : EDouble

ResourceDemandingBehaviour

RandomVariable

specification : String

1

1

1

*

1

1

Figure 3.14: Branches in RDSEFFs

AbstractLoopAction

CollectionI teratorAction

I terationCount

LoopAction

ResourceDemandingBehaviour

RandomVariable

specification : String

Parameter

parameterName : EString

1

1

1

1

1

1

Figure 3.15: Loops in RDSEFFs

the characterisations are not independent. For example, if the characterisation of a parameter value is

specified by a random variable and is used by two external call actions within a loop body, the analyses

algorithms have to assure, that the second action uses the same characterisation as the first action and

that the random variable does not get evaluated a second time.

Modelling loops with inner behaviours instead of allowing cyclic references in the chain of Ab-

stractActions has several advantages [27]. In Markov models, loops are specified with cycles, so

that there is an entrance probability for each loop and an exit probability. The probability of entering the

loop decreases if the number of loop iterations is increased. For example, entering a loop with a entrance

probability of 0.9, leads to a probability of 0.81 for two loop iterations, and a probability of 0.729 for

three loop iterations. Thus, the number of loop iterations is always limited to a geometrical distribution,

which does not resemble practical situations well. Fixed number of loop iterations can only be specified

by unrolling the loop to a number of states in Markov models. With the approach described above, it is

possible to attach an arbitrary distribution function for the number of iterations to each loop.

Figure 3.16 shows a simplified example instance of an RDSEFF, which highlights the control flow

concepts introduced before. Note that the constructs are hierarchically structured. Analysis algorithms

can easily traverse the abstract syntax tree to make model transformations or QoS predictions.

CONTENTS 55

:ResourceDeman

dingBehaviour

:StartAction :StopAction:InternalAction :ExternalAction:BranchAction :LoopAction

:ResourceDeman

dingBehaviour

:Guarded

BranchTransition

:ResourceDeman

dingBehaviour

:Guarded

BranchTransition

:ResourceDeman

dingBehaviour
:StartAction :StopAction:ExternalAction

:StartAction :StopAction:ExternalAction:StartAction :StopAction:ExternalAction

:BranchCondition
specification =

„x.VALUE <10"

:BranchCondition
specification =

„x.VALUE >=10"

:IterationCount
specification = „20"

Figure 3.16: Example Instance RDSEFF highlighting control flow concepts

Parametric Dependencies A major problem for component developers is that during component spec-

ification it is unknown how the component will be used by third parties. Thus, in case of varying resource

demands or branch probabilities depending on user inputs, component developers cannot specify fixed

values. However, to help the software architects in QoS predictions, the component developer can specify

the dependencies between input parameters and resource demands, branch probabilities, or loop iteration

numbers in SEFFs. If an usage model of the component has been specified by business domain experts

or if the usage of the component by other components is known, the actual resource demands and branch

probabilities can be determined by the software architect by solving the dependencies. In the following,

examples for the specification of parametric dependencies in the PCM will be illustrated. Note that as

a concrete syntax a more easily readible UML-based notation is used for the examples instead of the

abstract syntax.

As the first example (Figure 3.17), the ResourceDemandingSEFF of the service HandleShip-

ping from an online-store component is depicted. It has been specified by a component developer in a

parametrised form. The service calls required services shipping a customer’s order with different charges

depending on its costs, which it gets passed as an input parameter. If the order’s total amount is below

100 Euros, the service calls a service preparing a shipment with full charges (ShipFullCharges). If the

costs are between 100 and 200 Euros, the online store grants a discount, so ShipReducedCharges is

called. Orders priced more than 200 Euros are shipped for free with the ShipWithoutCharges service.

Once a domain expert specifies the value of the parameter costs, it can be derived which of the

services will be called.

The second exmample (Figure 3.18) illustrate assigning a number of iterations to a loop in a param-

eterisable way. The illustration shows the ResourceDemandingSEFF of the service UploadFiles. It

gets an array of files as input parameter and calls the external service HandleUpload within a loop for

each file.

With the specified dependency to the number of elements in the input collection, the probability

distribution of random variable Xiter for the number of loop iterations in the ResourceDemanding-

Behaviour can be determined once the number of elements are known. If the dependency had not

been specified, it would not have been known from the interfaces how often the required service would

56 CONTENTS

<<ExternalCallAction>>
ShipReducedCharges

<<ExternalCallAction>>
ShipFullCharges

<<ExternalCallAction>>
ShipWithoutCharges

<<GuardedBranchTransition>>
specification = „costs.VALUE < 100"

<<Parameter>>

parameterName=“costs“

<<ResourceDemandingSEFF>>
HandleShipping

<<BranchAction>>

<<BranchAction>>

<<ResourceDemandingBehaviour>>

<<ResourceDemandingBehaviour>><<ResourceDemandingBehaviour>>

<<GuardedBranchTransition>>
specification = „costs.VALUE >= 100"

<<GuardedBranchTransition>>
specification = „costs.VALUE < 200"

<<GuardedBranchTransition>>
specification = „costs.VALUE >= 200"

Figure 3.17: Branch Condition Example

<<ResourceDemandingBehaviour>>

<<ExternalCallAction>>

HandleUpload

<<Parameter>>

parameterName=“files“

<<ResourceDemandingSEFF>>
UploadFiles

<<CollectionIteratorAction>>

<<VariableCharacterisation>>

type = NUMBER_OF_ELEMENTS

specification =

IntPMF[(10,0.2)(20,0.3)(30.0.5)]

Figure 3.18: Loop Example

CONTENTS 57

have been called. Thus, with the specified PMF, a more refined prediction can be made for varying usage

contexts.

58 CONTENTS

3.2 Software Architect

3.2.1 Overview

The tasks of the software architect are to retrieve components from existing repositories and connect

them to build an assembly which is an essential part of the complete system. Connections are specified

by using system assembly connectors to connect required roles of components with provided roles of

other components. After connecting all components, the software architect puts the components into a

system and defines the system provided and system required roles as well as the respective delegation

connectors. The definition of a system and its boundaries is comparable to the definition of composite

components. However, the difference is that composite components are built with the aim to use them in

other composite components or assemblies. On contrary, systems are built to interact with other systems

only. An overview of a system and its subconcepts is shown in figure 3.19.

<<System>>

A

<<SystemProvidedRole>> <<SystemRequiredRole>>

B

C

<<AssemblyContext>>

A
D

<<SystemDelegationConnector>>

<<SystemAssemblyConnector>> <<SystemDelegationConnector>>

<<AssemblyContext>>

<<AssemblyContext>>
<<AssemblyContext>>

<<AssemblyContext>>

Figure 3.19: A system and its assembly

Components can only be used in contexts as introduced in section 2.4. Hence, the software architect

is responsible to introduce system assembly contexts in which a component is put. When a component

is put into a context its roles also become part of the context. Such roles which are part of a context can

be connected. For this, a required role in a specific context is connected to a compatible provided role

in an other context. A single component can be put into several different contexts and can be connected

differently in each of them. As mentioned in section 2.4, the introduction of multiple assembly contexts

is important as they capture the different influence of component external calls in different contexts.

The defined assembly model is finally passed on the the system deployer who specifies the allocation

of the components to middle- and hardware environments. The assembly model is the second essential

part of a system and is described in detail in section 3.3.

CONTENTS 59

3.2.2 Assembly

An assembly is a set of assembly contexts containing component types from several repositories and a

set of system assembly connectors connecting the components in their context. Conceptually, every sys-

tem has exactly one assembly. An assembly is different from a composite component in its visibility for

the system deployer. The inner structure of a composite component is hidden from the system deployer.

Only the outer aspects of the component are visible for the system deployer which is mainly the com-

ponent and its roles. Opposed to this, the system deployer has full access to the assembly contexts and

the system assembly connectors. The rationale behind this difference in modelling is that a composite

component should always look like any other component (besides for the developer of that component).

The decision, whether a component’s inner structure is build from scratch (i.e., as basic component) or

by connecting existing components (i.e., using a composite component), is considered as an implemen-

tation detail. As a consequence the inner structure of any component is only visible to the component

developer. Neither the assembler nor the deployer know about the inner structure. To be consequent this

means that a composite component can not be allocated on more than a single runtime environment as

this would mean that the system deployer has access to the composite components inner structure. This

is different for an assembly. The component and their contexts as well as the system assembly connectors

are visible and can be distributed in arbitrary ways by the system deployer on execution environments.

3.2.3 Assembly Context

As introduced above, the software architect uses assembly contexts to put components into a component

assembly. Contexts support the multiple use of the same component type in several environments in an

assembly.

Context A

Com ponent A Com ponent A

Context B

Figure 3.20: Component Assembly Context

The assembly context refers to exactly one component from an arbitrary available repository for

which the context is applied. The component and its provided and required roles are affected by the

context in which it is used. This can be indicated by deriving from the provided and required roles the

corresponding provided and required context roles.

According to the principles of parametric contracts (see section 2.3, context roles represent the con-

textual influenced interfaces of the component in a given assembly context.

60 CONTENTS

3.2.4 System Assembly Connectors

After putting components into assembly contexts (from which provided and required context roles can

be derived) they can be connected by using system assembly connectors. A system assembly connector

connects a required role in of a component in a given assembly context with the provided role of a

component in a different assembly context 2. The meaning of the connector is that any call of the client

component using the required role involved will be routed to the provided role of the server component.

Connectors are important entities when it comes to checking of interoperability classes. The min-

imum requirement a connector has to fulfil is that the interface of the provided role is a supertype of

the required role. This automatically implies semantic conformance of the interfaces (compare section

3.1.2).

3.2.5 System

As mentioned in the overview, an assembly forms on of the important aspects of a system. A system

consists of an assembly and an allocation as described in section 3.3.5. The first specifies how the com-

ponents are connected with other components, the latter specifies how the components and connectors

are mapped to hardware and middleware environments. Systems can be seen as special kind of compos-

ite components - with the visibility differences mentioned above and the fact that an allocation is also

provided. Systems are not supposed to be reused as components are. The are assumed to be coupled by

using special techniques for system integration.

3.2.6 System Roles

As components, also systems can specify that the offer the functionality of a specific interface or that

they require functionality of a specific interface. Analogous to the component roles, the PCM defines

system provided and system required roles. The semantics corresponds to the semantics of the roles of

a complete component type. The system offers the functionality specified in the provided interfaces if

all requirements of the system are met. If they are not met, only a subset will be offered. The semantics

of the required interfaces is that a system may call other systems using a required role. It can not

call other services than those defined in the system required roles. Using parametric contracts (see

section 2.3) for functional dependencies, the actuall demand or the actual provided functionally can be

derived (which would result in a system context role, but as it can be fully derived, it is not part of the

PCM specifications).

3.2.7 System Delegation Connectors

Systems can have delegation connectors, just like composite components. The delegation connectors are

used to route calls to the system interfaces to the desired destination. As composite component delegation

connectors there are also two types of system delegation connectors: provided and required. Provided

system delegation connectors route calls to system interfaces to components in the assembly which are

responsible to process the requests. System required delegation connectors route calls of components in

the assembly, which are not processed in the current system, to system required roles. Hence, they can

be used to model calls to other systems.

2Using the derived context roles as concept, we can say, a system assembly connector connects a required context role and

a provided context role

CONTENTS 61

3.3 System Deployer

3.3.1 Motivation

To execute an application specified by a component assembly, components and connectors have to be al-

located to different hardware and software resources, which provide the required infrastructure. Servers,

clients, or any other kind of systems are set up with the required operating system and middleware. Com-

ponents are installed on the systems and configured so that they can run in this environment. Computers

are connected by networks enabling the communication needed by the components. The whole process

of setting up the infrastructure, allocating components, and configuring the system is handled by the

deployer as introduced in section 2.1.

For QoS analyses, it is required that the deployment of the software architecture is specified in

advance, since it has a major influence on QoS attributes, such as performance and reliability. For

example, the response times of a component’s services will be shorter when it is deployed on a machine

with a 3GHz processor instead of a machine with a 1GHz processor. With the specification of the

execution environment with its hardware and software resources and connections, and the component

allocation, several QoS attributes can be predicted. So, deployers are able to try different deployment

scenarios to find the optimal configuration for a software architecture. In many cases, such a procedure

can save a lot of work and cost, since bottlenecks can be discovered early and hardware will not be

oversized.

In the context of the PCM, we currently provide a basic model for the description of resource envi-

ronments and allocation of components. In the following, we describe how these concepts can be used

to specify new resource types that form an execution environment. Furthermore, we introduce alloca-

tion contexts that allow us to allocate components to multiple hard and software nodes. For the future,

it is most likely that the model described here will be extended to allow a higher accuracy in terms of

modelling as well as prediction results.

Section 3.3.2 describes the responsibilities and duties of deployers. In section 3.3.3, we describe

what kinds of resource types we model and how they can be used. Section 3.3.4 shows how the PCM

in combination with a fixed set of resource types can model an execution environment. In section 3.3.5,

we describe how components are allocated on resource containers and how they can access the available

resources. Finally, section 3.3.6 sums up open issues and assumptions of our model.

3.3.2 Responsibilities of the Deployer

Mainly, the resource environment is in the deployer’s responsibility. This includes the specification of

resource environments as well as the installation of a component-based application or the setup of a new

environment. Deployers are assumed to be experts in the area of component deployment (allocating

software components to different hard- and software nodes) and the configuration or creation of an en-

vironment, that enables the system to fulfil its extra-functional requirements. Deployers are responsible

for:

• Definition and description of the resource environment. This includes the specification of hard-

and software resources, their properties, and their interconnections.

• Allocation of components to different resources.

Deployers are not only concerned with the specification of the resource environment and component

allocation, but also with the realisation of the actual system setup. However, as these are two different

62 CONTENTS

tasks, they might not be performed by a single person only. For example, an application for the mass

market might have a set of typical deployment scenarios defined by members of the development team,

but the setup will be accomplished by the customers themselves.

To specify the resource environment in the PCM, deployers use resource containers. A resource con-

tainer represents a part of the real world that can host components, for example an application server or

client computer. It holds a set of different resources, such as processors, hard disks, or thread pools. Each

resource conforms to a certain resource type that discribes a class of resources with common properties.

If a component is allocated on a resource container, it has access to all resources the container provides.

3.3.3 Resource Types

A resource type describes the common properties of a class of resources. For example, a processor type

could be used to describe different CPUs, e.g. with a different clock speed or a different architecture.

The concept of resource types allows a flexible specification of different kinds of resources that might

occur in a real world scenario. Component developers and deployers agree on a common set of resource

types that is specified within a so-called resource repository.

We distinguish passive and processing resources. Passive resources can only be owned by a pro-

cess or thread, while processing resources do some work by themselves and offer processing services.

A scheduler might decide, which process is handled next by the processing resource. CPUs and hard

disks are typical processing resources, while connections to a database or a block of memory are pas-

sive resources. Communication links are a special kind of processing resource type used to describe

connections between different resource containers.

ResourceRepository

Processor

Unit: Ticks/s

Disk

Unit: Mb/s

Semaphore

ResourcePool

LocalAreaNetwork

Unit: Mb/s

Passive Resources

Processing Resources

Communication Resources

Figure 3.21: Basic instance of a resource repository.

Figure 3.21 shows an initial instance of a resource repository. It contains a set of passive and pro-

cessing resources. The processing resources themselves are subdivided into plain processing resources

and communication resources. The latter can only be used to connect two different resource containers.

In this example, resource pools and semaphores are the only passive resources. In the following, we

describe the different resource types in more detail.

Resource pools manage a limited set of resources of the same type. Typical examples are database

connection pools and thread pools. A process or thread can fetch one database connection, use it to

CONTENTS 63

read or update some of the database entries and then return it to the pool. If no database connection is

available, the process will block until one is available in the pool.

Semaphores are the most basic kind of passive resources. They can be used for synchronisation and

limiting access to a resource. Basically, a semaphore is an integer value with an acquire (or p) and release

(or v) operation. Intuitively, the value of a semaphore indicates how many instances of a resource are

available. If the semaphore is greater than zero, the acquire operation reduces the semaphore counter by

one and continues the execution. Otherwise, it waits until the counter is greater than zero. The testing and

setting of a semaphore’s value has to be atomic (i.e., it must not be interrupted). The release operation

increases the counter by one, which must be atomic as well, and awakes the waiting threads or processes.

Acquire and release actions are used for semaphores as well as for resource pools and can be directly

modelled in the service effect specification (see section 3.1.4).

Processors and disks are classical processing resources. They are available in every desktop and

server computer system and provide the basic computational and storage functionalities. In figure 3.21,

the processing rate of a CPU is specified as the number of cycles per second. Another possible metric is

the number of instructions per second.

Disks are used to permanently store and to retrieve data if needed. In figure 3.21, we indicate the

speed of a disk (or data storage) in megabytes per second. In our case, we assume that the rate is the

same for read and write operations.

For communication resources, we consider any kind of network connection. The rate or throughput

of a connection is specified in megabytes per second. This resource type can be used to model most of

the common networks. For example, a wireless connection between two nodes can be described as an

ethernet connection with a throughput of 11 MB/s.

The resource types described here can be considered as a basic set, which has to be extended and

refined in future. Next, we describe how these resource types can be used to specify an execution envi-

ronment.

3.3.4 Resource Environment

In the PCM, resource environments are described by a set of resource containers and connections between

them. A resource container provides a set of processing and passive resources to the components it hosts.

It represents a physical entity such as a server, a desktop computer or an element on a higher level like

application servers or web browsers.

<<component>>

WebServiceProvider

<<ResourceContainer>>

Server

<<component>>

WebServiceClient

<<ResourceContainer>>

Client

<<LinkingResource>>

+ processor: cycles/s = 2*10^9

+ disk: Mb/s = 31
+ processor: cycles/s = 3*10^9

+ disk: Mb/s = 15.5

Figure 3.22: Simplified example of a resource environment.

Example 3.2 (Resource Environment). Figure 3.22 shows a simplified view on a resource environment.

The depicted system consists of two resource containers, a server and a client, and a linking resource

64 CONTENTS

between them. The figure also shows the allocation of two components, a WebServiceProvider

and a WebServiceClient. Figure 3.22 is a structural view of the resource environment. For each

container, a processor and a disk are specified. Both have different performance values for the resources

they provide. For instance, the processor of the server has a clock frequency of 3 GHz, while the client

has a clock frequency of 2 GHz.

Processor

Unit: cycles/s

<<ProcessingResourceType>>

CPU

processingRate: 3 * 10^9

<<ProcessingResourceSpecification>>

<<ResourceContainer>>

Server

ResourcePool

<<PassiveResourceType>>

ThreadPool

capacity: 8

<<PassiveResourceSpecification>>

<<instance>> <<instance>>

Figure 3.23: Specification of Resources of a Container.

Figure 3.23 shows the resource specification in more detail. The server contains a CPU and a

ThreadPool. Both are described by ProcessingResourceSpecifications, which charac-

terise the QoS relevant attributes of a resource and relate it to a resource type. There is a CPU with a

processing rate of 3GHz and a thread pool that limits the degree of concurrency within the system. The

CPU is a processing resource of the type Processor. The type also specifies the units of the CPU’s

processing rate. The thread pool is a passive resource with a capacity of eight threads. The thread pool

is of the type ResourcePool, which is depicted by an association to the type instance. For sake of

simplicity, we omitted the modelling of any kind of data storage and hard disks at this point.

Passive and Processing Resources Resources are divided into processing and passive resources, whose

concepts are elaborated in the following.

Active resources are those which perform tasks on their own and thus can actively execute a task.

This includes CPUs, hard disks, and network connections. As these resources always do some kind of

job processing, we call them processing resources.

Passive resources on the other hand can be owned by a process or thread for a certain period of time.

A passive resource has to be acquired to be accessed. Since passive resources can be limited, processes

or threads might have to wait until a resource becomes available. Typical examples of passive resources

are connection pools and thread pools. The acquisition and the release of a passive resource has to be

represented in the SEFFs, which describe the control flow of a component (see page 50). If a component

requires access to a limited resource, it first has to acquire it using the AcquireAction. After it has

finished its operation, it has to release the resource using the ReleaseAction. The semantics of a

passive resource with its AcquireActions and ReleaseActions is based on the semantics of

semaphores.

CONTENTS 65

Figure 3.24: Example of a SEFF using a passive resource.

Example 3.3 (Passive Resource). Figure 3.24 shows a simple SEFF that uses a passive resource. First,

the SEFF performs some initialising actions that are captured in the InternalAction initialise.

Next, an AcquireAction is invoked to get a connection to the database. The capacity attribute

of the DBConnectionPool indicates that there are 15 connections to the database available. If

no connection is left, the AcquireAction blocks the current thread until a database connection is

returned to the pool. The DBConnection object is then passed by the AcquireAction to the

InternalAction readData, which reads some entries from the database. Finally, the ReleaseAction

returns the connection object to the DBConnectionPool allowing other processes to use it.

Example 3.3 shows how a passive resource is used by a SEFF. The object received from the DB-

ConnectionPool is passed from one action to another. Within the actions, the object can be used.

So, a passive resource can be owned and used by a process or thread for a certain period. Opposed to

that, active resources cannot be owned. A scheduler decides which thread or process will be handled

next by a processing resource.

3.3.5 Allocation Context

After introducing different resource types and means to specify execution environments, which provide

the infrastructure to an application, components have to be allocated on the available resource containers.

For this purpose, the PCM uses the allocation context. In section 3.2.3, we described how a component

is integrated in a system assembly using assembly contexts. The idea of allocation contexts is similar.

Each component integrated in an assembly might be allocated on multiple resource environments. Thus,

for each component in an assembly context, there can be multiple allocation contexts that place the

component on different resource containers. For example, a possible alternative of the allocation in

figure 3.22 is shown in figure 3.25.

Figure 3.26 shows a simplified instance of the PCM that realises the allocation shown in figure 3.25.

The allocation context is an association class that links a component to a resource environment. The

allocation context allows to specify the placement of the same component on multiple resource envi-

ronments. In reality, a copy of the component is created for each machine. Furthermore, the allocation

66 CONTENTS

<<component>>

WebServiceProvider

<<ResourceContainer>>

Server

<<component>>

WebServiceClient

<<ResourceContainer>>

Client

<<LinkingResource>>

<<component>>

WebServiceClient

<<ResourceContainer>>

Client

<<LinkingResource>>

+ processor: cycles/s = 3*10^9

+ disk: Mb/s = 15.5

+ processor: cycles/s = 2*10^9

+ disk: Mb/s = 31

+ processor: cycles/s = 2*10^9

+ disk: Mb/s = 31

Figure 3.25: Alternative allocation for figure 3.22.

Figure 3.26: Allocation of a component on multiple resource environments (simplified).

CONTENTS 67

context stores QoS related information that depends on the resources used by a component. For example,

if an internal action of a component uses 5000 cycles on a Processor resource, this can be transformed

to an execution time of 1.6µs for a processor with 3GHz (1/(3 ∗ 109s−1) ∗ 5000). As the execution

time of internal actions depends on the resources the component is allocated on, these information are

handled by the allocation context.

In the PCM, resource environments are described using resource containers holding an arbitrary

number of processing and passive resources. Linking resources connect resource containers with each

other and provide a communication resource for sending data from one container to another. Resource

types can be used to specify which kinds of passive, processing and communication resources exist.

Components that are integrated into an assembly can be allocated on resource containers using allocation

contexts. These allow to allocate one component on multiple resource containers and store QoS relevant

information, which depends on the container, independent of the component. So, the PCM provides a

complete infrastructure to specify the environment of an application and its allocation. However, there

are a lot of open issues that need to be addressed in the future. We will discuss some of them in the

following.

3.3.6 Open Issues and Future Work

So far, the PCM does not support the modelling of hierarchical resource containers. This is a major

limitation for deployers, since they cannot model different software layers running on the same machine.

For example, virtualisation of operating systems cannot be specified. Furthermore, it is not possible

to describe systems that contain multiple components that are placed on different software layers, e.g.

operating system and application server, but on the same machine.

Another limitation stems from the modelling of linking resources. At the moment, we only allow

a single linking resource between two resource environments with one specification. Thus, scenarios

in which two hardware nodes are connected by multiple links, e.g. LAN and wireless LAN connection

cannot be modelled. Furthermore, it is not possible to explicitly allocate connectors between components

to linking resources. With only one connection between two containers, this can be done automatically

using direct links only. However, if multiple connections are allowed the allocation of connectors must

be modelled explicitly. The same problem arises when indirect communication between containers is

allowed. In this case, the communication path between components is ambiguous even with only one

connection between two containers.

In section 3.3.3, we described how to specify new resource types. Even though this provides a

high flexibility, it requires component developers and deployers to agree on a common set of resource

types. For scientific purposes, this is feasible. However, we need to integrate a standardised set of

resources into our model so that there are no mismatches between the specifications of different parties.

As the modelling of execution environments is not as elaborated as other parts of the PCM, we left the

specification of resources open for the time being. For the future, we plan to fix the available set of

resources.

Also, the specifiable properties of the resource types are limited. So, if a new resource type has

additional attributes that have to be specified, this cannot be described. For example, queues could be

introduced as a passive resource. Usually, queues are used for asynchronous communication between

multiple processes and threads. One process puts a message or any data into the queue while another

process reads it. A producer-consumer system is a common example for such a scenario. A special

application for queues can be found in combination with active objects [28]. Instead of calling a method

of an active object directly, the call with its parameters is placed in a message queue. The scheduler of

68 CONTENTS

the active object fetches the messages from the queue and processes them. Queues do not only have a

capacity as all passive resources do, but also require an attribute which specifies the order in which its

items are processed, like LIFO or FIFO. This is not possible so far.

Furthermore, multicore processors and multi-processor systems are becoming more and more com-

mon forming new challenges for the PCM, hence we need appropriate mechanisms to specify the QoS-

relevant aspects of these systems. For example, the number of memory buses and caches has a signifi-

cant influence on the performance of a multithreaded application. So, specifying two processors with the

same properties might not be sufficient, as these processors share other important resources that are not

modelled explicitly.

CONTENTS 69

3.4 Domain Expert

3.4.1 Overview

Business domain experts participate in the development of any larger software system. This role has

special knowledge and experience in the business domain (e.g., automobile, banking, etc.) of the sys-

tem being developed. However, domain experts usually have no or only a limited technical background.

They mainly participate in the development process during feasibility studies and requirements analy-

ses and help in specifying the functionality and business logic of the system. Therefore, they have to

interact closely with the system architects, who have a technical background and are able to tailor their

requirements to a component-based software architecture.

For early QoS analyses, domain experts assist system architects in specifying the user interaction with

the system. As they are familiar with the business domain and the targeted end-users, they should best

be able to specify the anticipated usage scenarios and workloads of the system. The usage specifications

may be based on experiences with similar legacy systems or on market analyses of the business domain.

In the PCM, the usage specification consists of usage models (see Section 3.4.2), which are similar to

UML use cases with attached UML activities. They additionally contain stochastical information (e.g.,

probabilities of choosing a branch in an alternative) and the notion of workload to characterise the number

of users in the system, which is especially relevant for performance predictions. Usage models may be

refined with a parameter model (explained in Section 3.4.3) to characterise the data values passed to

component services by users.

3.4.2 Usage Model

An instance of the PCM usage model specifies user interactions with a system. It describes which

services are directly invoked by users in specific use cases and models the possible sequences of calling

them.

3.4.2.1 Example

Purchase Item

(a) Example UML Use Case

Login

Search

Browse

BuyItemLogout

Purchase Item

(b) Example UML Activity

Figure 3.27: Example UML diagrams for using an Online Shop

Example 3.4 (Usage Model). For a first overview, Figure 3.27 shows a UML use case diagram and

corresponding UML acitivity for using an online shop. Users log in to the shop, either search or browse

in the shop’s catalog, then buy items, and finally log out. Figure 3.28 shows the corresponding PCM

usage model instance of this scenario. In this example figure, the concepts were illustrated with UML

activities, where the stereotypes (denoted by <<stereotype>>) refer to classes in the PCM. This

simple usage model instance serves as a running example for the rest of this section.

70 CONTENTS

<<ScenarioBehaviour>>
<<LoopAction>>

<<ScenarioBehaviour>>

<<SystemCallAction>>

Login

<<ScenarioBehaviour>>

<<ClosedWorkload>>

population=100

<<ThinkTime>>

specification = „5"

<<SystemCallAction>>

Search

<<SystemCallAction>>

BuyItem

<<StopAction>>

<<SystemCallAction>>

Logout

<<ScenarioBehaviour>>

<<SystemCallAction>>
Browse

<<StartAction>>

<<IterationCount>>

specification = „3"

<<UsageScenario>>

<<BranchAction>>

<<BranchTransition>>

<<BranchTransition>>
branchProbability = 0.4

branchProbability = 0.6

<<UsageModel>>

Figure 3.28: Example Usage Model for an Online Shop

An usage scenario consists of i) a workload to model the frequency of user interactions and ii) a

scenario behaviour to model the steps of service invocations by users. In this example, the workload is

a closed workload (upper right corner of Figure 3.28) and specifies that 100 users (population) execute

the scenario behaviour. Each user executes the actions specified in the behaviour from the start action to

the end action. After reaching the end action, the user reenters the behaviour at the start action after 5

seconds (think time). The number of users in the system is fixed to 100 in this scenario.

The actions inside the behaviour either model flow constructs (start, stop, branch, loop) or user

invocations of services available in system provided roles (Login, Search, Browse, BuyItem, Logout)

(also see Section 3.2.6). Like in the UML diagrams before, users first log in to the online shop and then

either search directly for an item via a search interface or browse the shop’s catalog to find an item to

buy. This alternative is modelled with a branch action and the probabilities of search and browsing are

specified as 40% and 60% respectively. Browsing the catalog is modelled as a loop with three iterations,

as it is assumed that users need three clicks to find the item they want to buy. After browsing or searching

is finished, the user continues with buying the selected item, and finally the logging out from the shop.

Note, that usage models are completely decoupled from the inner contents of a system (see Sec-

tion 3.2.5), which consists of an assembly (see Section 3.2.2) and a connected resource environment (see

Section 3.3.4). The usage model only refers to services of system provided roles. It regards the com-

ponent architecture (i.e., the assembly) as well as used resources (i.e., hardware devices such as CPUs

and harddisks or software entities such as threads, semaphores) as hidden in the system. Thus, the usage

model only captures information that is available to domain experts and can be changed by them. Re-

source environment and component architecture may be changed independently from the usage model

by system architects, if the system provided roles remain unchanged.

3.4.2.2 Structure

The meta model for usage modelling in the PCM is described with more detail in the following (see

Figure 3.29). A usage model consists of a number of usage scenarios. Each usage scenario is intended

CONTENTS 71

to model a use case of the system and the frequency of executing it. Thus, a usage scenario contains a

Workload to model execution frequency and a ScenarioBehaviour to model a use case.

UsageModel

UsageScenario Workload

OpenWorkload

ClosedWorkload

population : EInt

ThinkTime

I nterArrivalTimeScenarioBehaviour

RandomVariable

specification : String

1

*

1 1

1

1

1 1

1 1

Figure 3.29: Usage Model: Scenario and Workload

Modelling workloads in the PCM is aligned with performance models such as queueing networks

[29] or stochastic process algebras [30] as well as the UML SPT profile [31]. Therefore, open and closed

workloads can be specified. An open workload models an unbounded (thus open) number of users

entering the system with a specific inter-arrival time as a random variable (e.g., a new customer arrives

each 0.5 seconds) and leaving the system after executing their scenario. A closed workload models a

bounded (thus closed) number of users entering the system, executing their scenario, and then re-entering

the system after a given think time, which can be specified as a random variable (see Section 2.5).

ScenarioBehaviour

AbstractUserActionBranch

BranchTransition

branchProbability : EDouble

Loop

LoopI terations
Start

Stop

EntryLevelSystemCall

VariableUsage
RandomVariable

specification : String

1

*

1 1

1

1

0..1

+ predecessor

0..1
+ successor

1

*

1

*

1

*

Figure 3.30: Usage Model: Scenario Behaviour

Modelling scenario behaviours in the PCM (Figure 3.30) is similar to modelling resource demanding

behaviours in SEFFs (see Section 3.1.4). However, SEFFs contain notions of resource usage, while the

72 CONTENTS

language for usage scenarios is reduced to concepts familiar to domain experts, and does not refer to

resources.

ScenarioBehaviours contain a number of user actions. Within a scenario behaviour, the flow

of actions can be described as follows: Each AbstractUserActions references at most one prede-

cessor and one successor. StartActions initiate a scenario behaviour and contain only a successor,

while StopActions end a scenario behaviour and contain only a predecessor. Notice, that the start

and stop actions in the example above (Figure 3.28) follow this pattern.

Loops can be modelled to describe user actions that are repeated multiple times (e.g., searching for

an item in a online store by repeatedly entering search terms, or repeatedly checking the latest status

of an online auction). Loops over user service invocations are modelled with LoopActions, which

are attributed with the number of iterations and contain inner ScenarioBehaviours to model loop

bodies. These loop bodies may consist of multiple actions or even nested loops themselves. In the

example (Figure 3.28), the browse action is called within a loop three times. It is additionally possible to

specify the number of loop iterations with a probabilty distribution instead of a constant value to allow

more fine-grained modelling (see Section 2.5).

Notice that the chain of user actions in a scenario behaviour must not contain cycles to model loops,

i.e., an action referencing another action as its successor and predecessor. Instead, loops always have to

be modelled explicitly with loop actions. This explicit modelling eases the later analyses, as it arranges

actions hierarchically in a tree structure, which can be analysed by standard tree traversal algorithms.

Most often, users have multiple choices to continue their interaction with the system. For such cases,

the usage model offers branch actions, which are able to split the user control flow with an XOR-semantic

and allow different successors to a single user action. A probability of executing each branch transition

can be specified. In the example (Figure 3.28), users first log in to the system and then have the choice

to either search the shop with a probability of 40% or browse in the shop’s catalog with a probability

of 60%. BranchTransitions contain inner ScenarioBehaviours to model the content of a

branch. With this kind of modelling, additional merge actions for reconnecting two branches are not

needed, as the control flow continues with the successor of the branch actions once the end action of

the the branched behaviour is reached. Forks of user behaviour (i.e., splitting the flow with an AND-

semantic) are not allowed so far, as it is assumed that a single user only executes the services of the same

system subsequently but not concurrently.

Besides these control flow constructs, actual service invocations to the architecture are modelled

by EntryLevelSystemCalls. They refer to services in system provided roles (see Section 3.2.6),

which are connected to component services directly visible to the users. Inner component services, which

are only called by other components cannot be referenced from the usage model.

3.4.2.3 Related Work

The PCM usage model has been designed based on meta models such as the performance domain model

of the UML SPT profile [31], the Core Scenario Model (CSM) [32], and KLAPER [33]. It is furthermore

related to usage models used in statistical testing [34]. Although the concepts included in the PCM usage

model are quite similar to the modelling capabilities of the UML SPT profile, there are some subtle

differences:

• The usage model is aligned with the role of the domain expert, and uses only concepts known to

this role. It is a domain specific language, whereas the UML SPT performance domain model is

a general purpose language that includes information, which is usually spread over multiple de-

veloper roles such as the component assembler and the system deployer, so that a domain expert

CONTENTS 73

without a technical background could not specify an instance of it. Nevertheless, domain experts

should be able to create PCM usage models with appropriate tools independently from other de-

veloper roles, because such models only contain concepts known to them.

• The number of loop iterations is not bound to a constant value, but can be specified as a random

variable.

• The control flow constructs are arranged in a hierarchical fashion to enable easy analyses.

• Users are restricted to non-concurrent behaviour, as it is assumed, that users only execute the

services of a system one at a time.

• System service invocations can be enhanced with characterisations of parameters values, as de-

scribed in Section 3.4.3.

3.4.3 Parameter Model

3.4.3.1 Motivation

Parameters of component services may have a significant impact on the perceived performance and

reliability of a component-based systems. It can be distinguished between

• Input Parameters: which are passed to a component service by its clients (users or other compo-

nents)

• Output Parameters: return values, which are sent back to clients by a service after finishing its

execution

• Internal Parameters: which can be global variables or configuration options of a component

All of these forms of parameters can cause different influences on the QoS properties of a system:

• Resource Usage: Parameters can influence the usage of the resources present in the system exe-

cuting the component. For example, the time for the execution of a service that allows uploading

files to a server depends on the size of the files that are passed as input parameters. In this case, the

parameter alters the usage of the storage device. Another example would be a service for sorting

items within an array. The duration of executing the sort service would mainly depend on the size

of the array passed to it. Thus, the parameter would alter CPU usage.

• Control Flow: SEFFs (see Section 3.1.4) describe how requests to provided services are propa-

gated to other components. The transition probabilities or number of loop iterations in SEFFs can

depend on the parameters passed to a service. For example, a component service might provide

clients access to a number of databases, thus communicating with several database interfaces as

required services. This service would call different required services depending on the input pa-

rameter passed to it. Thus, the transition probabilities in the SEFF modelling the alternative to

communicate with different databases would directly be linked to the input parameter. Another

example could be a component service having a collection parameter, which would call another

component’s service subsequently for each item in the array. Such a situation would be expressed

as a loop in a SEFF, and the number of iterations would directly be linked to the size of the array.

74 CONTENTS

• Internal State: Input parameters can influence the internal state of the component. The compo-

nent state in turn may influence resource usage or control flow between components. Imagine a

component allowing users to log in to a system, which stores user sessions as global variables.

The later behaviour of other services of this component in terms of control flow propagation and

resource usage could depend on which user is currently logged in. Thus the QoS properties of the

component would be related to the internal parameter, which was created when the user logged in

to the system. Although the influence of the internal state has been recognised by us, it is so far

not modelled in the PCM and remains future work.

3.4.3.2 Example

Before describing the parameter model in detail, two short examples are shown in Figure 3.31 to give the

reader a feel for the modelling capabilities. These examples extend certain actions from the usage model

example in Figure 3.28 with parameter characterisations.

<<ScenarioBehaviour>>

<<SystemCallAction>>

Search

<<Parameter>>

parameterName =

„searchTerm“

<<VariableUsage>>

<<VariableCharacterisation>>

type = VALUE

specification = „EnumPMF[(item1-10; 0.2)

(item11-20; 0.4)(item21-30; 0.3)(item31-40; 0.1)]“

(a)

<<SystemCallAction>>

BuyItems

<<SystemCallAction>>

Logout

<<Parameter>>

parameterName =

„listOfItems“

<<VariableUsage>>

<<VariableCharacterisation>>

type=NUMBER_OF_ELEMENTS

specification= „IntPMF[(1; 0.4)(2; 0.5)(3; 0.1]“

(b)

Figure 3.31: Parameter Characterisation Examples

Example 3.5. In Figure 3.31(a), a parameter ’searchTerm’ has been introduced to the ’Search’ action. The

Parameter class of the PCM enables specifying a name and a data type (not shown here) for a param-

eter. Thus, it includes only information about the formal parameter. The actual parameter, i.e., the value

a parameter takes when the service is actually called, can be characterised with a VariableUsage.

In this case, the parameter is a string, which is the name of the item to be searched for. The database

is assumed to contain 40 items. The domain expert has characterised the value of the input parameter

and has specified a probability distribution for the search terms users pass to the service. Therefore, the

domain expert has divided the input domain of the service into four subdomains (item1-10, item11-20,

item21-30, item31-40) to reduce the modelling effort, and has provided probabilities for each of these

subdomains. If the behaviour of the component service changes depending on which item is searched for

(e.g., because of calling different databases), this can be included in the performance prediction, because

the parameter has been characterised.

Example 3.6. In Figure 3.31(b), an array ’listOfItems’ is passed to the ’BuyItems’ action. The domain

expert has not characterised the value of this array, but just the number of elements it contains. It is a

suitable abstraction of the parameter in this case, because the value of the array is not relevant in this

example. The service ’Buy Items’ calls required services for each item in the array (not shown here

because this is part of the service’s SEFF and not the usage model), so that the number of elements in the

array is sufficient for the performance predictions, as it is directly related to the number of loop iterations

CONTENTS 75

in the SEFF of this service. The number of elements is specified as a probability distribution, so that the

loop is iterated with the same probability distribution.

3.4.3.3 Structure

The PCM parameter model (Figure 3.32) allows characterising actual parameters of a component ser-

vice by associating a VariableUsage with a formal Parameter. The formal Parameter is

part of an interface from the repository model (see Section 3.1.2) and referenced from the parameter

model using an AbstractNamedReference. This may be a NamespaceReference or a con-

crete VariableReference, which contains the name of the parameter to be characterised. With

NamespaceReferences more complex data structures such as composite data types or the inner

elements of collections can be referenced. For example, an object ’customer’ containing two strings

’name’ and ’address’, can be characterised by providing characterisations for both ’customer.name’ and

’customer.address’.

VariableUsage VariableCharacterisation

type : VariableCharacterisationType

AbstractNamedReference

referenceName : String

NamespaceReference VariableReference
«enumeration»

VariableCharacterisationType

STRUCTURE

NUMBER_OF_ELEMENTS

VALUE

BYTESIZE

DATATYPE

RandomVariable

specification : String

1 *11

1

1

Figure 3.32: Parameter Model

Note, that it is only necessary to characterise parameters if they indeed influence performance or

reliability. Many parameters do not change resource usage or alter the control flow between components,

and their characterisation can be omitted. Characterising every parameter of the services in a complex

component-based architecture would require too much effort and not support performance analysis.

Many parameters can be characterised by simply providing a constant value for them. However,

as motivated in the example above, in some situations it is useful to characterise parameters not only

with constant values but with probability distributions to allow more fine-grained predictions. Thus the

attributes of parameters are characterised with VariableCharacterisation in the PCM, which

inherit from RandomVariables (see Section 2.5).

Different attributes of parameters can be characterised in the PCM parameter model. Primitive data

types can be characterised with their value, byte size, or data type. To demonstrate the modelling ca-

pabilities, consider the examples for primitive parameters in Figure 3.33. Note, that these examples are

illustrated with class diagrams instead of the annotated activities used before.

Example 3.7. In Figure 3.33(a), a probability distribution for the value of the integer parameter named

”id” has been specified. The parameter receives the values 1, 2, or 3 with probabilities of 70%, 20%,

and 10% respectively. Figure 3.33(b) shows a parameter named ”inputFile”, whose size in bytes has be

specified as a constant value (20). Via inheritance, extensions of certain parameters may be passed to a

component service, thus the concrete data type may additionally be characterised by a domain experts.

76 CONTENTS

In the example in Figure 3.33(c), the parameter ”shape” of type GraphicObject may become a circle,

triangle, or rectangle, which may alter the response time of the service that is supposed to draw these

graphics. It is also possible to specify multiple characterisations of a single parameters, for example to

specify the value and byte size.

:Parameter

parameterName = „id“

:VariableUsage

:VariableCharacterisation

type = VALUE

specification = IntPMF[(1;0.7)(2;0.2)(3;0.1)]

:DataType

type = INT

:VariableReference

referenceName = „id“

(a)

:Parameter

parameterName = „inputFile“

:VariableUsage

:VariableCharacterisation

type = BYTESIZE

specification = 20

:DataType

type = FILE

:VariableReference

referenceName = „inputFile“

(b)

:Parameter

parameterName = „shape“

:VariableUsage

:VariableCharacterisation

type: DATATYPE

specification = EnumPMF[(Circle;0.3)

(Triangle;0.4)(Rectangle;0.3)]

:DataType

type = GraphicObject

:VariableReference

referenceName = „shape“

(c)

Figure 3.33: Primitive Parameter Characterisation Examples

Example 3.8. For collection parameters, it is more difficult to characterise the value domain. The

performance-influence of collections like array, tree, or hash can sometimes be characterised simply

by the number of elements. Thus, it may be appropriate for such parameters to specify probability distri-

butions over the number of elements. Consider the example in Figure 3.34(a): the number of elements

in the collection ”niceTree” of type RedBlackTree has been specified with a probability distribution, i.e.,

the tree contains 10, 100, or 1000 nodes with probabilities of 10%, 30%, and 60%. The value, byte size

or data type of a collection can be characterised as explained above. In Figure 3.34(a), the size of the

collection has additionally been specified.

Besides the number of elements, it is sometimes useful to specify the structure of a collection, if it

influences QoS properties of a component service. For example presorted arrays may by sorted quicker

than unsorted arrays or the deletion duration of an element in a tree may depend on the balance of the

tree. In Figure 3.34(b), the structure of the array list ”luckyNumbers” has been characterised as sorted

with a probability of 10% and unsorted with a probability of 90%. Additionally, the number of elements

in the array list has been characterised with the constant value of 10.

To ease modelling, collection contain may contain one inner VariableUsage, which shall rep-

resentatively model the inner elements of a collection. In the example in Figure 3.34(c), the collection

”interestingFiles” is characterised with its number of elements. Additionally, the inner parameter usage

representatively characterises a single file within the collection. Here, the files in the collection have a

size in bytes between 10 and 40 bytes.

CONTENTS 77

:Parameter

parameterName = „niceTree“

:VariableUsage

:VariableCharacterisation

type = NUMBER_OF_ELEMENTS

specification = IntPMF[(10;0.1)

(100;0.3)(1000;0.6)]

:DataType

type = RedBlackTree

:VariableReference

referenceName = „niceTree“

:VariableCharacterisation

type = BYTESIZE

specification = IntPMF[(30;0.1)

(300;0.3)(3000;0.6)]

(a)

:Parameter

parameterName = „luckyNumbers“

:VariableUsage

:VariableCharacterisation

type = STRUCTURE

specification =

EnumPMF[(sorted;0.1)(unsorted;0.9)]

:DataType

type = ArrayList

:VariableReference

referenceName = „luckyNumbers“

:VariableCharacterisation

type = NUMBER_OF_ELEMENTS

specification = 100

(b)

:Parameter

parameterName = „interestingFiles“

:VariableUsage

:VariableCharacterisation

type = NUMBER_OF_ELEMENTS

specification = IntPMF[(10;0.1)

(100;0.3)(1000;0.6)]

:DataType

type = ArrayList

:VariableReference

referenceName = „interestingFiles“

:VariableUsage

:VariableCharacterisation

type = BYTESIZE

specification = IntPMF[(10;0.01)(20;0.05)

(30;0.44)(40;0.5)]

:NamespaceReference

referenceName = „interestingFiles“

:VariableReference

referenceName = „INNER“

(c)

Figure 3.34: Collection Parameter Characterisation Examples

3.4.3.4 Related Work

Many performance prediction approaches or performance related meta models neglect the influence of

parameters values to the above described properties. The UML SPT profile [31] as well as the CSM

[32] do not include notions of parameters. Methods that build on these modelling approaches such as

CB-SPE [35] thus also cannot express the influence of parameters to QoS properties.

KLAPER [33] allows characterising parameters values, but does not include a formal way of creating

abstractions for parameters, because the kind of parameter specification is left open for developers. This

limits the use of tools evaluating KLAPER instances, because they can not foresee all possible ways

of abstracting parameters. Thus, manual work is required with KLAPER to complete the performance

prediction process if parameters are involved.

The ROBOCOP component model [36] also allows characterising parameter values. However, as

ROBOCOP aims at embedded systems, it is assumed that the domain for parameter values is very limited.

It is possible to model parameters with constant values only, stochastical characterisation for parameter

abstractions are not in the scope of that work.

The performance prediction approach by Hamlet et. al. [25] models components as functions and

divides their input space into several subdomains. For each subdomain, which can be conceived as a

parameter abstraction, different execution times can be determined. However, subdomains are always

built for the values of parameters in this approach, other attributes of parameters are neglected.

78 CONTENTS

3.5 QoS Analyst

QoS analysts collect and integrate information from the other roles, extract QoS information from the

requirements (e.g., maximal response times for use cases), and perform QoS analyses by using mathe-

matical models or simulation. Furthermore, QoS analysts estimate missing values that are not provided

by the other roles. For example, in case of an incomplete component specification, the resource demand

of this component has to be estimated. Finally, they assist the software architects to interpret the results

of the QoS analyses.

We have planned several metamodel extensions to support QoS analysts. They should support

adding required QoS values to model entities and also store the result of QoS predictions attached to

corresponding model constructs. For example, the response time of an use case can be attached to a

UsageScenario or the throughput of a resource to a ProcessingResourceSpecification.

However, these modelling constructs have not been finalised and are subject to future work. So far, the

QoS analyst is not explicitly supported by the PCM.

Chapter 4

Technical Reference

79

80 CONTENTS

4.1 Core and Repository

0..* +requiredRoles

+requiredInterface

0..*

+providedInterface

0..*

0..* +datatypes

0..*

+interfaces

0..*

+components

Interface

ProvidingEntity

Interface

RequiringEntity

InterfaceProviding

RequiringEntity

ProvidedRole RequiredRole

0..*+providedRoles

BasicComponent

Entity

NamedElement

entityName : EString

Identifier

id : EString

Interface

Repository

DataType

Figure 4.1: Repository

CONTENTS 81

0..*

+innerDeclaration

0..*+parameters

Parameter

Primitive

DataType

Collection

DataType

Composite

DataType

<<enumeration>>

Primitive

TypeEnum

InnerDeclaration

0..*+signatures

0..*

+ancestorInterfaces

1

+parentInterface

0..*

0..*

INT

STRING

BOOL

CHAR

DOUBLE

LONG

BYTE

+datatype

1

+datatype

1

0..* 0..1

+returnType

DataTypeSignature

serviceName : String

Interface Type ; PrimitiveTypeEnum

+innerType1

Figure 4.2: Interface

Interface

ProvidingEntity

Interface

RequiringEntity

InterfaceProviding

RequiringEntity

ProvidedRole RequiredRole

0..*+providedRoles 0..*
+requiredRoles

BasicComponent

Entity

NamedElement

entityName : EString

Identifier

id : EString

Interface

+providedInterface

0..* 1

+requiredInterface

0..*1

Figure 4.3: Component

82 CONTENTS

0..1

0..1

+predecessor

+successor

0..*

BasicComponent
ServiceEffect

Specification

Resource

DemandingSEFF

ResourceDemanding

Behaviour

AbstractAction

*

+describedService
1

0..*

Signature

serviceName : String

*

Figure 4.4: Resource Demanding Service Effect Specification (1/5)

+requiredResource 1

0..*

+resourceDemand
AbstractResource

DemandingAction

ExternalCall

Action

1 +calledService

InternalAction

AbstractAction RandomVariable

specification : String

Parametric

ResourceDemand

Processing

ResourceType
Signature

serviceName : String
unit : String

Figure 4.5: Resource Demanding Service Effect Specification (2/5)

+branchCondition1

+branches0..*

1+bodyBehaviour

+iterations1

BranchAction AbstractLoopAction ForkAction

ResourceDemanding

Behaviour

AbstractBranch

Transition

Guarded

BranchTransition

BranchCondition Probabilistic

BranchTransition
branchProbability : Double

1
+branchBehaviour

LoopAction CollectionIterator

Action

IterationCount

+forkedBehaviours
0..*

1+parameter

Parameter

parameterName : String

RandomVariable

specification : String

AbstractResource

DemandingAction
StartAction StopAction

Figure 4.6: Resource Demanding Service Effect Specification (3/5)

CONTENTS 83

1

+resourceType+resourceType
1

AbstractResource

DemandingAction
AcquireAction ReleaseAction

Passive

ResourceType

Figure 4.7: Resource Demanding Service Effect Specification (4/5)

1
+variableUsage

AbstractResource

DemandingAction
ExternalCallAction

VariableUsage

SetVariableAction

0..*
+parameterUsage

0..*

+outputVariableUsage

Figure 4.8: Resource Demanding Service Effect Specification (5/5)

84 CONTENTS

4.2 Assembly and System

+system

1

InterfaceProviding

RequiringEntity

System

Composed

Structure

Allocation

Figure 4.9: System

+innerProvidedRole 1

1+outerProvidedRole

+innerRequiredRole 1

1+outerRequiredRole

+providedDelegationConnectors

0..*

+requiredDelegationConnectors

0..*

Composed

Structure
AssemblyContext

Assembly

Connector

+childContexts

0..*

+assemblyConnectors

0..*

BasicComponent

+encapsulatedComponent
1

0..*

+componentParameterUsage

VariableUsage+requiringChild
1

+providingChild
1

ProvidedRole

RequiredRole
1

+requiredRole

1

+providedRoleProvidedDelegation

Connector

RequiredDelegation

Connector

Figure 4.10: Composed Structure

CONTENTS 85

4.3 Resource Type and Resource Environment

0..*

+allocationContext

0..*

+availableResourceTypes

0..*
ResourceType

Resource

Repository

Processing

ResourceType

Passive

ResourceType

CommunicationLink

ResourceType

Resource

Environment

ResourceContainer LinkingResource

AllocationAllocationContext

PassiveResource

Specification

ProcessingResource

Specifciation

CommunicationLink

ResourceSpecification

0..* 0..*

+resourceContainer 1

1
+targetResource

Environment

1 1 1

capacity : Integer processingRate : EDouble

units : String

throughput : EDouble

units : String

0..* 1
+fromResourceContainer

+toResourceContainer
10..*

Figure 4.11: Resource Types and Resource Environment

86 CONTENTS

4.4 Usage Model

+interArrivalTime
1

1..* +usageScenario

+workload

1

+scenarioBehaviour1

UsageModel

UsageScenario Workload

ClosedWorkload

OpenWorkload ThinkTime

InterArrivalTime

1
+thinkTime

Scenario

Behaviour

RandomVariable

specification : String

population : Integer

Figure 4.12: Usage Model

CONTENTS 87

+actions
0..*

0..1

+predecessor

0..1
+successor

+branchedBehaviour
1

0..* +branchTransitions

+actualParameterUsage
0..*

Scenario

Behaviour

Abstract

UserAction
Loop

EntryLevel

SystemCall

VariableUsage

Start Stop

Branch

BranchTransition

branchProbability : EDouble
1

+bodyBehaviour

Signature

+signature1

ProvidedRole

+providedRole 1

Figure 4.13: Usage Model Scenario Behaviour

+inner

Reference

+variableCharacterisation
0..*

+namedReference1

VariableUsage

AbstractNamed

Reference

Namespace

Reference

Variable

Reference

Variable

Characterisation

<<enumeration>>

VariableCharacteri-

sationType

VALUE

TYPE

NUMBER_OF_ELEMENTS

BYTESIZE

STRUCTURE

type : VariableCharacteri-

sationType

RandomVariable

specification : String

referenceName : String

Figure 4.14: Variable Usage

Chapter 5

Discussion

88

CONTENTS 89

5.1 PCM versus UML2

Despite the fact that several concepts in the PCM have counterparts in the UML2 meta-model, the PCM’s

design is intentionally not based on the UML2 meta-model. We argue against commonly used arguments

for using UML2 and highlight its additional problems which hinder an approach as described in this

paper.

Common arguments for using UML2 as foundation of performance prediction models are the wide-

spread use and familiarity of the developers with UML2, the availability of model-instances and the reuse

of existing concepts.

We agree that using a notation familiar to developers is necessary to increase the willingness to

accept and use a new technique. As a consequence we reused the UML2 graphical notation whenever it

appeared adequate. However, as we use model-driven techniques to transform the model instances into

prediction models, the source model should be unambiguous in a way which ideally only has one concept

to model a certain fact. In UML2 many constructs exist which allow modelling a single fact in many

different ways. Take for example a loop modelled in an UML2 activity diagram. Either an iterator node

or a control flow going backwards may be used to express it. Facing such ambiguities, transformations

turn out to be overly complex as they have to identify all these different options.

The same argument also holds for the reuse of existing UML2 models for performance predictions.

Industrial style UML2 models have mostly been designed for human communication. Hence, they use

models which need further explanations, UML2 notes, or additional documentation which renders them

unsuited for automated, machine interpreted model transformations. Besides the effort of addition per-

formance annotations using a UML profile, such models would need significant effort to prepare them

for automated predictions aligning the model with the concepts as expected by the transformation (for

further discussions on using UML2 in model-driven approaches see [37]).

Using UML2 tools and profiles for performance annotations raises an additional issue. Performance

annotations like those defined in the UML-SPT profile are rather complex and their attachment to model

elements is error-prone. Support for this task by means of modern UIs, like on the fly error correction,

syntax highlighting, etc. is crucial. However, the UML stereotype mechanism allows only for editing ba-

sic datatypes like strings or numbers with very basic editing capabilities. As a way out, some UML tools

offer extension mechanisms to customise the tool’s editing capabilities. However, such extensions need

special coding for every UML2 tool available. In addition to the issues with specifying the annotations,

additional problems arise when implementing model transformations using standard transformation ap-

proaches like QVT. In present state, support for stereotypes is limited as they do not offer any means to

parse tagged values. For SPT based annotations this means transforming the annotations using for exam-

ple ad-hoc Java transformations which means loosing the advantage of the standardised transformation

engine again.

Reusing UML2 concepts sounds good on first sight as well. In our PCM, several concepts like

interface, signature, etc. have their counterparts in UML2. However, as UML2 is a large and complex

meta-model respecting all kinds of concepts available is difficult - especially, when defining the concept’s

meaning wrt. a performance prediction model. Therefore, the PCM is restricted to concepts for which

we know how to map them onto the performance domain and how to predict their performance impact.

Finally, UML2 is not designed specifically for the aim of doing performance predictions which can

be seen by the need of profiles for model annotations. Opposed to that, the PCM includes advanced

concepts coming from the CBSE as well as from the performance domain. Examples of the additional

concepts are service effect specifications, a component type hierarchy, inherent support for performance

annotations and an explicit component context model for expressing a components QoS in dependence

90 CONTENTS

of its environment [38]. In this paper, we focus on QoS-relevant modelling elements, a specification of

the other concepts can be found on the PCM’s website [39].

With all that said, it becomes clear that using the PCM for legacy projects includes migrating existing

UML2 model into the PCM. If the models have been designed for human communication, this might not

be a problem as the models need checking anyhow. For models which have already been designed for

model driven approaches, writing a transformation to initially transform the UML2 model into the PCM

becomes necessary.

CONTENTS 91

5.2 Related Work

Component Models In recent years, many component models have been developed for many different

purposes. A taxonomy of these models can be found in [7].

• ROBOCOP: [40] allows performance predictions, aims at embedded systems.

• PACC: [41] allows performance predictions, aims at embedded systems.

• Koala: [42] no QoS, aims at embedded systems

• SOFA: [21] allows protocol checking.

• Fractal: allows runtime reconfigurations of architectures

• UML: [43] limited component concept

• CCM: no QoS

• EJB: no QoS

• COM+: no QoS

Performance Meta-Models To describe the performance properties of software systems, several meta-

models have been introduced (Survey by [44]).

• SPE-Metamodel: [45] designed for object-oriented software systems.

• UML+SPT profile: [31] offers capabilities to extend UML models with performance properties.

Is not suited for parametric dependencies, which are needed for component specifications.

• CSM: [32] is closely aligned with the UML-SPT approach and does not target component-based

systems.

• KLAPER: [33] is designed for component-based architectures and reduces modelling complexity

by treating components and resources in a unified way.

92 CONTENTS

5.3 Open Issues and Limitations

• Resource Model: The PCM’s resource model is still very limited and supports only a few types of

abstract resource types on the hardware layer. QoS influencing factors from the middleware, the

virtual machine, and operating system are still missing in the PCM’s resource model. We plan to

introduce a layered resource model, where different system levels (such as middleware, operating

system, hardware) can be modelled independently and then composed vertically, just as software

components are composed horizontally.

• Dynamic Architectures: The PCM is only targeted at static architectures, and does not allow

the creation/deletion of components during runtime or changing links between components. With

the advent of web services and systems with dynamic architectures changing during runtime, re-

searchers pursuit methods to predict the dynamic performance properties of such systems.

• Prediction Result Interpretation and Feedback: While today’s model-transformations in soft-

ware performance engineering bridge the semantic gap from the developer-oriented models to the

analytical models, the opposite direction of interpreting performance result back from the analyti-

cal models to the developer-oriented models has received sparse attention. Analytical performance

results tend to be hard to interpret by developers, who lack knowledge about the underlying for-

malisms. Thus, an intuitive feedback from the analytical models to the developer-oriented models

would be appreciated.

• State of Component Protocols: Parametric contracts model dependencies between component

interfaces with protocols which, therefore, have a state. In some cases, this leads to difficulties

when analysing the interoperability of components communicating via an interface. Assume an

interface provided by component A is accessed by components B and C. If B changes the state of

the interfaces by calling a service, does component C see the changes or does it have its own view

on A? This question cannot be answered in general. In some cases, components share the state,

e.g. when using the Singleton pattern, in other cases they don’t. To solve this issue, additional

information in the component model is required. Ports and interfaces with cardinalities seem to be

a promising concept.

• Identification of the Relevant QoS Parameters: To achieve accurate QoS predictions, the pa-

rameters influencing the attributes of interest need to be identified. A lot of work has already been

done in this context, in UML for example by the definition of the UML SPT profile [46]. How-

ever, the existing work needs to be reviewed, to be extended and the identified parameters needed

to be specified within our component model. Furthermore, means to analyse and derive the desired

performance metrics from the input values have to be found and/or developed.

• High-level concurrency modelling constructs: We plan to add special modelling constructs for

concurrent control flow into the PCM. This shall relieve the burden from developers to specify

concurrent behaviour with basic constructs, such as forks or semaphores for synchronisation. The

concurrency modelling constructs shall be aligned with known concurrency patterns and be con-

figurable via feature diagrams. Model-transformations shall transform the high-level modelling

constructs to the performance domain of analytical and simulation models.

Bibliography

[1] Steffen Becker, Heiko Koziolek, and Ralf Reussner, “Model-based Performance Prediction with

the Palladio Component Model,” in Proceedings of the 6th International Workshop on Software

and Performance (WOSP2007). February5–8 2007, ACM Sigsoft.

[2] Heiko Koziolek and Jens Happe, “A Quality of Service Driven Development Process Model for

Component-based Software Systems,” in Component-Based Software Engineering, Ian Gorton,

George T. Heineman, Ivica Crnkovic, Heinz W. Schmidt, Judith A. Stafford, Clemens A. Szyperski,

and Kurt C. Wallnau, Eds. July 2006, vol. 4063 of Lecture Notes in Computer Science, pp. 336–343,

Springer-Verlag GmbH.

[3] Heiko Koziolek, Jens Happe, and Steffen Becker, “Parameter dependent performance specification

of software components,” in Proceedings of the Second International Conference on Quality of

Software Architectures (QoSA2006). July 2006, vol. 4214 of Lecture Notes in Computer Science,

pp. 163–179, Springer-Verlag, Berlin, Germany.

[4] Viktoria Firus, Steffen Becker, and Jens Happe, “Parametric Performance Contracts for QML-

specified Software Components,” in Formal Foundations of Embedded Software and Component-

based Software Architectures (FESCA). 2005, vol. 141 of Electronic Notes in Theoretical Computer

Science, pp. 73–90, ETAPS 2005.

[5] Ralf H. Reussner, Heinz W. Schmidt, and Iman Poernomo, “Reliability prediction for component-

based software architectures,” Journal of Systems and Software – Special Issue of Software Archi-

tecture – Engineering Quality Attributes, vol. 66, no. 3, pp. 241–252, 2003.

[6] Clemens Szyperski, Dominik Gruntz, and Stephan Murer, Component Software: Beyond Object-

Oriented Programming, ACM Press and Addison-Wesley, New York, NY, 2 edition, 2002.

[7] K.-K. Lau and Z. Wang, “A Taxonomy of Software Component Models,” in Proceedings of the

31st EUROMICRO Conference. 2005, pp. 88–95, IEEE Computer Society Press.

[8] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni, “Model-Based

Performance Prediction in Software Development: A Survey,” IEEE Transactions on Software

Engineering, vol. 30, no. 5, pp. 295–310, May 2004.

[9] Katerina Goseva-Popstojanova and Kishor S. Trivedi, “Architecture-based approach to reliability

assessment of software systems,” Performance Evaluation, vol. 45, no. 2-3, pp. 179–204, 2001.

[10] John Cheeseman and John Daniels, UML Components: A Simple Process for Specifying

Component-based Software, Addison-Wesley, Reading, MA, USA, 2000.

93

94 BIBLIOGRAPHY

[11] Steffen Becker, Lars Grunske, Raffaela Mirandola, and Sven Overhage, “Performance Prediction of

Component-Based Systems: A Survey from an Engineering Perspective,” in Architecting Systems

with Trustworthy Components, Ralf Reussner, Judith Stafford, and Clemens Szyperski, Eds., vol.

3938 of LNCS, pp. 169–192. Springer, 2006.

[12] Ralf H. Reussner, Parametrisierte Verträge zur Protokolladaption bei Software-Komponenten, Dis-

sertation, Fakultät für Informatik, Universität Karlsruhe (TH), Germany, July 2001.

[13] Jim Q. Ning, “A component-based software development model,” in COMPSAC ’96: Proceedings

of the 20th Conference on Computer Software and Applications, Washington, DC, USA, 1996, p.

389, IEEE Computer Society.

[14] A. W. Brown and K. C. Wallnan, “Engineering of component-based systems,” in ICECCS ’96: Pro-

ceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems

(ICECCS ’96), Washington, DC, USA, 1996, p. 414, IEEE Computer Society.

[15] E. Teiniker, G. Schmoelzer, J. Faschingbauer, C. Kreiner, and R. Weiss, “A hybrid component-

based system development process,” in Proceedings of 31st EUROMICRO Conference on Software

Engineering and Advanced Applications, August 2005, pp. 152–159.

[16] Ivica Crnkovic, Michel Chaudron, and Stig Larsson, “Component-based development process and

component lifecycle,” in International Conference on Software Engineering Advances, ICSEA’06,

Tahiti, French Polynesia, October 2006, IEEE.

[17] David Lorge Parnas, “On the criteria to be used in decomposing systems into modules,” Commu-

nications of the ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[18] Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, Englewood Cliffs, NJ,

USA, 2 edition, 1997.

[19] A. V. Aho and J. D. Ullman, Foundations of Computer Science, Computer Science Press, W.H.

Freeman and Co., New York, 1992.

[20] Ralf H. Reussner, “Automatic Component Protocol Adaptation with the CoCoNut Tool Suite,”

Future Generation Computer Systems, vol. 19, pp. 627–639, July 2003.

[21] Frantisek Plasil and Stanislav Visnovsky, “Behavior Protocols for Software Components,” IEEE

Transactions on Software Engineering, vol. 28, no. 11, pp. 1056–1076, 2002.

[22] Ralf H. Reussner, Steffen Becker, and Viktoria Firus, “Component Composition with Parametric

Contracts,” in Tagungsband der Net.ObjectDays 2004, 2004, pp. 155–169.

[23] Franz Eisenführ and Martin Weber, Rationales Entscheiden, Springer Verlag, Berlin, u.a., 4.

edition, 2003.

[24] Object Management Group, “Common Object Request Broker Architecture: Core Specification,”

March 2004, [letztes Abrufdatum 29.04.2006].

[25] Dick Hamlet, Dave Mason, and Denise Woit, Component-Based Software Development: Case

Studies, vol. 1 of Series on Component-Based Software Development, chapter Properties of Soft-

ware Systems Synthesized from Components, pp. 129–159, World Scientific Publishing Company,

March 2004.

BIBLIOGRAPHY 95

[26] Jens Happe and Viktoria Firus, “Using stochastic petri nets to predict quality of service attributes

of component-based software architectures,” in Proceedings of the Tenth Workshop on Component

Oriented Programming (WCOP2005), 2005.

[27] Heiko Koziolek and Viktoria Firus, “Parametric Performance Contracts: Non-Markovian Loop

Modelling and an Experimental Evaluation,” in Proceedings of FESCA2006, 2006, Electronical

Notes in Computer Science (ENTCS).

[28] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, Pattern-Oriented Software

Architecture – Volume 2 – Patterns for Concurrent and Networked Objects, Wiley & Sons, New

York, NY, USA, 2000.

[29] E.D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative System Performance -

Computer System Analysis Using Queueing Network Models, Prentice-Hall, 1984.

[30] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen, “Process Algebra for Performance

Evaluation,” Theoretical Computer Science, vol. 274, no. 1–2, pp. 43–87, 2002.

[31] Object Management Group (OMG), “UML Profile for Schedulability, Performance and Time,”

http://www.omg.org/cgi-bin/doc?formal/2005-01-02, January 2005.

[32] Murray Woodside, Dorina C. Petriu, Hui Shen, Toqeer Israr, and Jose Merseguer, “Performance by

unified model analysis (PUMA),” in WOSP ’05: Proceedings of the 5th International Workshop

on Software and Performance, New York, NY, USA, 2005, pp. 1–12, ACM Press.

[33] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta, “From Design to Analysis Models:

a Kernel Language for Performance and Reliability Analysis of Component-based Systems,” in

WOSP ’05: Proceedings of the 5th international workshop on Software and performance, New

York, NY, USA, 2005, pp. 25–36, ACM Press.

[34] James A. Whittaker and Michael G. Thomason, “A Markov chain model for statistical software

testing,” IEEE Transactions on Software Engineering, vol. 20, no. 10, pp. 812–824, Oct. 1994.

[35] Antonia Bertolino and Raffaela Mirandola, “CB-SPE Tool: Putting Component-Based Perfor-

mance Engineering into Practice,” in Proc. 7th International Symposium on Component-Based

Software Engineering (CBSE 2004), Edinburgh, UK, Ivica Crnkovic, Judith A. Stafford, Heinz W.

Schmidt, and Kurt C. Wallnau, Eds. 2004, vol. 3054 of Lecture Notes in Computer Science, pp.

233–248, Springer.

[36] Egor Bondarev, Peter de With, Michel Chaudron, and Johan Musken, “Modelling of Input-

Parameter Dependency for Performance Predictions of Component-Based Embedded Systems,”

in Proceedings of the 31th EUROMICRO Conference (EUROMICRO’05), 2005.

[37] Brian Henderson-Sellers, “UML - the good, the bad or the ugly? perspectives from a panel of

experts,” Software and System Modeling, vol. 4, no. 1, pp. 4–13, February 2005.

[38] Steffen Becker, Jens Happe, and Heiko Koziolek, “Putting components into context - supporting

qos-predictions with an explicit context model,” in Proceedings of the Eleventh International Work-

shop on Component-Oriented Programming (WCOP’06), Ralf Reussner, Clemens Szyperski, and

Wolfgang Weck, Eds., June 2006.

96 BIBLIOGRAPHY

[39] Palladio, “The Palladio Component Model (Download and Documentation),” http://sdqweb.

ipd.uka.de/wiki/Palladio_Component_Model, May 2007.

[40] Egor Bondarev, Peter H. N. de With, and Michel Chaudron, “Predicting Real-Time Properties of

Component-Based Applications,” in Proc. of RTCSA, 2004.

[41] Scott A. Hissam, Gabriel A. Moreno, Judith A. Stafford, and Kurt C. Wallnau, “Packaging Pre-

dictable Assembly.,” in Component Deployment, IFIP/ACM Working Conference, CD 2002, Berlin,

Germany, June 20-21, 2002, Proceedings, Judy M. Bishop, Ed. 2002, vol. 2370 of Lecture Notes

in Computer Science, pp. 108–124, Springer.

[42] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee, “The koala component

model for consumer electronics software,” Computer, vol. 33, no. 3, pp. 78–85, 2000.

[43] Object Management Group (OMG), “Unified modeling language specification: Version 2, revised

final adopted specification (ptc/05-07-04),” 2005.

[44] Vittorio Cortellessa, “How far are we from the definition of a common software performance ontol-

ogy?,” in WOSP ’05: Proceedings of the 5th International Workshop on Software and Performance,

New York, NY, USA, 2005, pp. 195–204, ACM Press.

[45] C. U. Smith and L. G. Williams, Performance Solutions: A Practical Guide to Creating Responsive,

Scalable Software, Addison-Wesley, 2002.

[46] Object Management Group (OMG), “UML Profile for Modeling Quality of Service and Fault Tol-

erance Characteristics and Mechanisms,” http://www.omg.org/cgi-bin/doc?ptc/2005-05-02, May

2005.

http://sdqweb.ipd.uka.de/wiki/Palladio_Component_Model
http://sdqweb.ipd.uka.de/wiki/Palladio_Component_Model

Index

Assembly, 59

Component Developer, 36

Connector

System Assembly Connector, 60

Context

Assembly Context, 59

Domain Expert, 69

External Calls, 51

Interface, 38

Parametric Dependencies, 55

Probability

PDF, 28

discetisized, 28, 29

PMF, 28

Protocol, 38

QoS Analyst, 78

Random Variable, 28

Definition, 28

Resource Demand, 50

Scenario Behaviour, 71

Service Effect Specification, 47

FSM, 47

RDSEFF Control Flow, 52

Resource Demanding SEFF, 49

Signature, 38

Software Architect, 58

System, 60

Delegation Connectors, 60

Roles, 60

Usage Model, 69

Workload, 71

97

	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Foundations
	2.1 Component-based Development Process
	2.1.1 Motivation
	2.1.2 Roles in Component-based Development
	2.1.3 Development Process Model
	2.1.4 Specification Workflow
	2.1.5 QoS Analysis Workflow
	2.1.6 Discussion

	2.2 Interfaces and Composition
	2.2.1 Interfaces as First-Class Entities
	2.2.2 Composed Structure

	2.3 Parametric Contracts
	2.3.1 Classical Contracts for Software Components
	2.3.2 Parametric contracts as a generalisation of classical contracts

	2.4 Context
	2.4.1 Motivation
	2.4.2 Context Influences
	2.4.3 An Explicit Context Model

	2.5 Random Variables
	2.5.1 Overview
	2.5.2 Definition
	2.5.3 PDF discretisation
	2.5.4 Functional random variables
	2.5.5 Stochastic Expressions

	3 Concepts
	3.1 Component Developer
	3.1.1 Overview
	3.1.2 Interfaces
	3.1.3 Components
	3.1.4 Service Effect Specification

	3.2 Software Architect
	3.2.1 Overview
	3.2.2 Assembly
	3.2.3 Assembly Context
	3.2.4 System Assembly Connectors
	3.2.5 System
	3.2.6 System Roles
	3.2.7 System Delegation Connectors

	3.3 System Deployer
	3.3.1 Motivation
	3.3.2 Responsibilities of the Deployer
	3.3.3 Resource Types
	3.3.4 Resource Environment
	3.3.5 Allocation Context
	3.3.6 Open Issues and Future Work

	3.4 Domain Expert
	3.4.1 Overview
	3.4.2 Usage Model
	3.4.3 Parameter Model

	3.5 QoS Analyst

	4 Technical Reference
	4.1 Core and Repository
	4.2 Assembly and System
	4.3 Resource Type and Resource Environment
	4.4 Usage Model

	5 Discussion
	5.1 PCM versus UML2
	5.2 Related Work
	5.3 Open Issues and Limitations
	Index

